
Kahrs, Stefan (1992) Polymorphic Type Checking by Interpretation of Code. 
 Technical report. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21028/ The University of Kent's Academic Repository KAR 

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/21028/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Polymorphic Type Checking by Interpretation of Code

Stefan Kahrs
�

University of Edinburgh

Laboratory for Foundations of Computer Science

King�s Buildings� EH� �JZ

email� smk�dcs�ed�ac�uk

Abstract

The type system of most modern functional programming languages is based on Milner�s
polymorphism� A compiler or interpreter usually checks �or infers� the types of functions
and other values by directly inspecting the source code of a program�

Here� another approach is taken� The program is �rst translated into code for a stack
machine and then a non	standard interpreter applied to this code checks �or infers� the type
of the corresponding values� This can be seen as an abstract interpretation of the object
code of the program�

� In t r o d u c t io n

In the early days of Functional Programming in the �����s� functional programming languages
did not have any proper concept of type� they 	Lisp� ISWIM 
���� were typeless
 Classical�
monomorphic type�systems are restrictive in the sense that they only support the solution of
concrete problems� but not problem schemes
 But it is characteristic for the style of Functional
Programming to solve problems in an abstract way� and thus a monomorphic type system is not
really appropriate for it


Strachey in ���� 
��� was probably the �rst to consider more general and abstract type
systems� �tting to corresponding general and abstract ways of expressing algorithms
 He in�
vented the notion of polymorphism� distinguishing generic and ad hoc polymorphism
 Today�
�polymorphism� refers to Strachey�s generic polymorphism


The type systems of most wide�spread 	typed� functional programming languages 	Haskell�
Hope� Miranda�� SML� are based on Milner�s polymorphic types 
��� for functional programs

This polymorphism is a proper subsystem of the type system of second�order typed ��calculus
of Girard 
�� and Reynolds 
���
 An important di�erence is that ML types can be inferred from
the program� while type�inference for second�order typed ��calculus is not decidable�


The idea of polymorphism is to avoid writing the same function several times for types that
are di�erent but have the same structure
 For example� the de�nition of a general list type and
an associated length function in Miranda might look like this�

list � ��� NIL � CONS � �list ��

length NIL � �

length �CONS x xs� � 	
length xs

�The research reported here was partially supported by SERC grant GR�E ������
�Miranda is a trademark of Software Research Limited�
�In a certain sense	 type
inference for ML types is also not decidable	 because semi
uni�cation is undecidable	

see ��	 �
� But it is well
behaved� there are decision procedures that almost always �nd the most general ML
type	 and the semi
uni�cation algorithm can be supplied with an occur
check that almost always guarantees
termination�

�



The above type de�nition is parameterised 	the asterisk� by the component type
 The im�
portant point is that the de�nition does not make any use of the list components� so they could
be of any type
 list char is the type list of characters and list num the type list of numbers

The constructors NIL and CONS can be used for both types and the function length as well

It is not necessary to write an instantiation 	like a generic instantiation in Ada�� to use the
specialised forms of lists


This is the user�s point of view of polymorphism

The implementor�s point of view is surprisingly similar
 It is not necessary to produce di�erent

object code for the function length for di�erent instantiations of type list �
 The reason is
simple� If the function is polymorphic� then it does not access a certain component of a data
structure
 But if the function does not access it� why should the code for the function do so�
Eventually� if the code does not access it� it is as least as polymorphic as the original function
and can be used for all instantiations


Hence� if the object code of a polymorphic function re�ects its polymorphism� then type
checking of the code would yield the same result as type checking of the source
 But how do we
type�check the code�

� Ty p e Fu n c t io n s

Each function can be seen as a pair of functions� one function operates on values� the other on
types
 On the type type� the function length could be de�ned as follows�

length �� type �� type

length �LIST x� � NUM

Here� NUM and LIST are constructors of the type type and list is a partial function

Type�inference for length means to compute this function
 If all functions come in pairs� i
e


as functions on values and functions on types� then we can compute the type of an expression
f t by computing the types for f and t and applying the type function corresponding to the
type of f to the type of t
 Therefore� application of functions corresponds to application of type
functions
 So� the idea is to compute the type of an expression by evaluating it in a di�erent
environment where all constructors are bound to their corresponding type functions and all basic
values 	literals� to their corresponding types


It is not quite as simple as that� because constructors of some type t are not constructors of
type type� i
e
 the left�hand sides have to be treated di�erently
 Also� there is currying � we
might use length without argument�

length �� type

length � ABST �LIST x
 NUM�

This version shows us a di�erent problem� the x on the right�hand side is free� it is a
placeholder for an arbitrary type
 Operationally� this means that rewriting has to be replaced
by narrowing� when we apply rules to 	type� expressions


These are the underlying ideas of this paper

To exploit this for practical applications we have to produce the code before type checking�

i
e
 it cannot depend on the result of type checking and even more there has to be some code for
ill�typed programs able to reproduce ill�typedness when used by the type checking interpretation
of the code


So we need an 	abstract machine� code for an untyped version of the language we want to
deal with� likely a code for untyped ��calculus� i
e
 something similar to the SECD machine 
��
for ��calculus� or a corresponding machine for term rewriting
 We choose the latter� merely
because term rewriting appears a bit closer to functional programming with pattern matching

The choice is not essential


�Ada is a trademark of the US DoD�

�



The idea of type checking by abstract interpretation of code came into my mind when I
wanted to add a type checker to an already existing compiler for a typeless variant of Miranda

The compiler consisted of three main phases�

� parsing�

� pre�compilation to an applicative CTRS� see 
��� the methods used are fairly standard� e
g

lambda�lifting� compilation of list comprehensions etc
� see 
��� ���

� compilation of the CTRS to abstract code for a stack machine


The abstract machine was initially designed to execute 	applicative� CTRSs under variable
strategies� and the �rst two steps were added later
 Then� it was slightly modi�ed to ful�ll the
needs of a real life functional programming language
 It was certainly not designed for the task
of type checking
 To my own surprise� it was neither necessary to change the instruction set
of the abstract machine nor any of the compilation steps producing the code to use it for the
purpose of type checking and type inference


It would be probably boring� but certainly misleading to give the type inference algorithm
on the original 	C implementation� data structure for terms 	and types� and to include the full
instruction set of the original abstract machine
 Both are too detailed and both are results of
many further design decisions
 Instead� we use for instructions and terms idealised represent�
ations� which are just strong enough to show the idea
 For the matter of readability we use
Miranda as presentation language


� T h e st a ck m a ch in e

First� we give a short description of term structure and the abstract machine


term ���

Symbol �char� �

Apply term term

The type term refers to ground terms of applicative TRSs� i
e
 a Symbol can be a constructor
as well as a function symbol
 Variables do not need to be represented� because the stack machine
overtakes their task


The representation might look oversimpli�ed� because e
g
 a lazy interpreter of the stack
machine needs to know whether a term is in whnf 	weak head normal form� see 
���� or not� but
adding special representations for constructor application� prede�ned functions� built�in types�
etc
 does not change anything principal to the method


Furthermore� an implementation type for terms would usually 	not necessarily for Miranda�
contain some kind of closure operator to represent ��abstractions
 Here it would be applied
to an instruction sequence equipped with an environment for the global identi�ers used by the
abstraction
 For the dynamic semantics� it is safe to replace ��abstractions by global combinators
	which makes closures super�uous�� but this might not be type�safe under all circumstances


instruction ���

Isappl � Right � Set � Eq term �

Push term � Pushi num � Pop � Fail

Ifnot num � Label num � Goto num

The instruction set re�ects the representation of terms� i
e
 more primitive 	implementation�
internal� connectives than Apply for terms would require corresponding instructions for their
construction and destruction
 In the last line� the instructions for if�then�else are not essential
for the approach� they are included here to show how it works in the presence of imperative�style
instructions


�



Evaluating terms by using this abstract machine works roughly as follows� Each term rewrite
rule is represented by a list of instructions
 Applying these instructions to a term 	at its root�
yields either the empty list 	rule not applicable�� or a singleton list of terms containing the result
of the application
 This view is independent from the choice of a one�step strategy 	concerning
strategies see 
�� chapter ��� or 
���� because the search for a redex has to be done elsewhere
 For
many�step strategies such as lazy evaluation this is not quite true
 But strategies do not a�ect
the type anyway


Not all elements of the type �instruction� are proper instruction sequences� e
g
 a Pop or
a Right cannot be the �rst instruction� all jumps are forwards� etc
 A more precise character�
isation of correct instruction sequences is given by the following context�free grammar 	ignoring
instruction arguments��

instruction�sequence ��� match stack
match ��� Eq j Set match� j match�
match� ��� Isappl match Right match j �

stack ��� Push j Pushi j stack stack Pop j stack if
if ��� Ifnot stack Goto Label stack Label

There are further non�context�free conditions on instruction sequences
 The two labels in an
if have numbers corresponding to the numbers of the Ifnot 	�rst label� and the Goto instruction
	second label�
 So the if always forms an ifthen�else�� and the 	conditional� jumps are forward
jumps
 Each Pushi n has to be preceded by at least n
	 Set instructions
 The usual purpose of
the Set instruction is to store the values for the pattern variables� a following non�empty match�

means that the value is stored for a non�variable subpattern

The following example de�nes the functional filter for our previously de�ned lists and gives

its corresponding instruction sequences�

filter p NIL � NIL

filter p �CONS x xs�

� CONS x �filter p xs�
 if p x

� filter p xs
 otherwise

filter	 � �Isappl
 Isappl
 Eq �Symbol �filter��
 Right
 Right


Eq �Symbol �NIL��
 Push �Symbol �NIL���

filter� � �Isappl
 Set
 Isappl
 Eq �Symbol �filter��
 Right
 Set


Right
 Isappl
 Set
 Isappl
 Eq �Symbol �CONS��
 Right


Set
 Right
 Set
 Pushi 	
 Pushi �
 Pop


Ifnot �
 Pushi �
 Pushi �
 Pushi �
 Pop
 Pop
 Goto 	


Label �
 Pushi �
 Pushi �
 Pop
 Label 	�

filter	�� is the code for the �rst�second part of the de�nition of filter

Notice the distinction made between constructors 	NIL� CONS�� identi�ers de�ned by values

	filter� and arguments 	p� xs� etc
�
 Their treatment is similar as in term rewriting� i
e
 value
identi�ers and constructors are considered as symbols� arguments as variables
 In an e�cient
implementation one may want to represent value identi�ers and constructors di�erently� but this
does not necessarily a�ect the abstract code
 It is somewhat easier to produce such code for
Miranda or Haskell than for SML or Hope� because the former lexically distinguish constructors
from other identi�ers� while the latter do not
 Hence� in Miranda or Haskell the code could be
produced while completely ignoring type de�nitions


The example � and the grammar for instruction sequences � might give an idea how the
code would be executed� but better would be a de�nition�

interpret rules t � take 	 �re � cs �� rules�

re �� run rules t cs �� �� ���

�



run r t �� p e stack � stack

run r �Apply a b� �Isappl�cs� pat e s � run r a cs �b�pat� e s

run r �Symbol str� �Isappl�cs� pat e s � ��

run r t �Right�cs� �u�pat� e s � run r u cs pat e s

run r t �Set�cs� pat env s � run r t cs pat �t�env� s

run r t �Eq u�cs� pat env s

� run r t cs pat env s
 if t � u

� ��
 otherwise

run r t �Push u�cs� pat env stack � run r t cs pat env �u�stack�

run r t �Pushi n�cs� pat env st � run r t cs pat env �get n env�st�

run r t �Pop�cs� pat env �x�y�st� � run r t cs pat env �Apply y x�st�

run r t �Fail�cs� p e s � ��

run r t �Label l�cs� p e s � run r t cs p e s

run r t �Goto x�cs� p e s � run r t �dropwhile ��� Label x� cs� p e s

run rules t �Ifnot x�cs� p e �b�s�

� run rules t cs p e s
 if eval rules b

� run rules t �dropwhile ��� Label x� cs� p e s
 otherwise

get n ls � reverse ls � n

The function interpret tries to apply one of the rules to the term t at its root position

Each rule is given by its instruction sequence
 The selected rule 	instruction sequence� is executed
by the function run which uses three further stacks� pat are the remaining terms to be matched�
env is the environment computed by the matching so far� and stack is the stack for creating
the instance of the right�hand side of the de�nition


A couple of remarks to the interpretation if�then�else instructions� we assume that Goto is
always a forward jump� thus it is possible to restrict the search for the label to the remaining
commands
 For the interpretation of Ifnot we have used an obscure function eval which is
supposed to fully evaluate a term w
r
t
 a set of rules and then to convert the result term into a
bool
 The de�nition of such a function depends on the chosen strategy� we omit it here


Notice that at the end of the instruction sequence evaluation 	�rst equation of run�� the stack
is a singleton list� according to the grammatic restrictions for instruction sequences


� Ty p e s fo r Te rm s

The alternative interpretation of the code on types has to work on an appropriate representation
of types and type environments


Type environments are �nite mappings from symbols to types
 The abstract machine code
contains symbols� because the Push and the Eq instruction have terms as arguments and each
	�nite� term contains symbols� according to the de�nition above
 To get the type from the code�
we need the types of these symbols
 For the sake of simplicity� we moreover assume the term
arguments of these instructions to always be symbols


This can safely be done� because an instruction sequence of the form s

�Push�Apply f

a��

t is equivalent to an instruction sequence s

�Push f
Push a
Pop�

tw
r
t
 to the de�n�
ition of run
 Similarly� we have for s

�Eq�Apply f a��

t the equivalent s

�Isappl
Eq

f
Right
Eq a�

t� provided t is of a certain form� e
g
 if it starts with a Right or if it only
contains stack instructions 	Push� Pushi� Pop�
 But this is guaranteed by the given grammar
for instruction sequences
 The assumption is a simpli�cation� because a term �Apply f a� can
be wrongly typed on its own� while a symbol cannot be


�



��� Type Structure

In type systems based on polymorphic typed ��calculus� a type � can be either a type variable
�� or 	C������n�� where C is a n�ary type constructor and the �i are types� or ���� �� where � is
a type variable and � � is a type
 However� not all types formed this way occur in the languages
treated here� because none of it has a notion of binding type variables
 In particular� the type
of a function argument is quanti�er�free and the type of each global identi�er is of the form
��������n�� where � is quanti�er�free and the �i are exactly the free type variables occurring in
it


For this reason we do not really need quanti�ers in the representation for types� a �rst�order
term structure serves well�

typerep ���

Tvar num �

Tcon �char� �typerep�

A term Tvar n is a type variable with index n meaning the n�th type variable
 A function
type � � � is represented as Tcon ���� ���
���� where �� and �� are the representations of �
and �� respectively


Quanti�cation can be treated on the level of type environments� for example as follows�

typeassoc �� ��term
typerep��

typeenv �� �typeassoc
typeassoc
num�

A type association typeassoc is a �nite mapping from terms 	symbols� to types� represented
here as an association list
 In a type environment typeenv we distinguish between a global
and a local type association� where the global association implicitly binds the type variables
	the local does not�
 The third component of a type environment is in fact redundant� it is an
upper bound for the numbers not occurring as a variable index in the local environment
 This is
useful information for creating fresh type variables� i
e
 type variables not occurring in a certain
environment


This structure is not quite appropriate for local operations and values� because they are
usually monomorphic in some variables and polymorphic in some others
 We assume here that
all local values have been ��lifted


��� Type Interpretation of a Program

The type inference of the whole program could be organised in di�erent ways� depending on
the details of the static semantics of the chosen programming language
 In SML it is rather
straightforward because of linear visibility
 Type inference for Miranda and Haskell usually
requires a dependency analysis to decompose the program 	a big letrec� into a sequence 	nested
lets� of smaller letrecs


We can do the same thing here � the dependency analysis would replace a �xed point
iteration which usually would be necessary in an abstract interpretation� and any rule would
be abstractly interpreted once and only once
 Instead� we could also make a �xed point ap�
proximation by starting with an environment where every non�constructor is bound to a fresh
type variable and then doing several 	� should be enough for almost any well�typed program�
interpretations of the rules until we �nd an error or a �xed point
 Since this process might
not stop� we had to add some further criterion to terminate the type inference
 Because of this
complication� and because semi�uni�cation might lead to more general types than the language
de�nition 	or� in in the absence of such a thing� the standard compiler� promises� we choose the
�rst approach


This means that we have some additional work on declaration level� i
e
 binding free type
variables after type checking a complete letrec� etc
 � we do not go into details here� as this
method is completely independent from our approach and applies similarly for a standard type
inference


�



��� Type Interpretation of a Single Rule

An alternative interpretation of code takes a type environment and an instruction sequence
and produces a new type environment
 As in standard interpretation� a failure can occur� in
standard interpretation it is non�applicability of a rule� here it is just a type error
 Because an
appropriate reporting of the type error is the most important task of a type checker� we want
somewhat more explicit messages than �there is a type error in your program�� so we supply the
failure with an error message
 This does not mean that we are producing henceforth the most
helpful error messages � this would require more case distinctions
 We just want to hint at the
treatment of errors


attempt � ��� Success � � Failure �char�

fails �Failure f� � True

fails �Success s� � False

type�interpret �� typeenv �� �instruction� �� attempt typeenv

The function type interpret is de�ned here in a similar way as interpret above� but the
auxiliary operations are a bit more complicated� because they work on types� type environments
and error messages rather than just on terms
 The main auxiliary function is typerun
 It
corresponds to run� because both traverse the instruction sequence and both work on similar
stacks
 On success� typerun produces two results� a new type environment and the type of the
right�hand side


type�interpret �gf
lf
n� cs

� tr
 if fails tr

� Success �subst�env sub �gf�
lf�
n���
 if b

� nouni arg res
 otherwise

where

tr � typerun �gf
�Symbol ��
nv��lf
n
	� nv cs �� �� ��

Success �res
�gf�
�lhs
arg��lf�
n��� � tr

�b
sub� � unify arg res

nv � Tvar n

nouni �� typerep �� typerep �� attempt �

nouni t u � Failure ��cannot unify � 

 show t 

 � with � 

 show u�

unify �� typerep �� typerep �� �bool
��num
typerep���

typerun �� typeenv �� typerep �� �instruction� �� �typerep� ��

�typerep� �� �typerep� �� attempt �typerep
typeenv�

If typerun fails 	�rst equation�� then there was a type error detected by interpreting the
code
 If not� it produces the type for the right�hand side res and an updated type environment

The updated environment includes the type of the left�hand side arg
 For a function de�nition
	equation�� left�hand and right�hand side need to have the same type
 If their types are uni�able
	b� second equation�� the result of type interpret is the application of sub� the mgu 	most
general uni�er� of res and arg� to the updated type environment
 If not� type interpret fails
with a corresponding error message


For uni�cation we use ordinary �rst�order uni�cation� a de�nition is in the appendix
 For
several kinds of substitution arguments there are several functions for substitution application
	subst� subst env� subst all�� also in the appendix


The �rst argument of typerun is the type environment� associating types to symbols
 It
is analogous to the �rst argument of run� because the rewrite rules give the symbols their
operational meaning� though in a rather indirect way
 At the beginning the type environment
used by typerun is the same environment as for type interpret enriched by associating the
empty symbol 	Symbol ��� with a fresh type
 The empty symbol is assumed not to occur in the
instruction sequence� it is a place�holder for the left�hand side of the original de�nition
 Thus�
the type associated to the empty symbol is the type of the left�hand side


�



��� Type Checking an Instruction Sequence

Amongst the auxiliary functions for the code�s alternative interpretation� the most interesting
one is typerun� because it directly interprets the code
 We split the de�nition of typerun into
several parts because of its length and the need for some explanation


typerun tenv t �� p e �top� � Success �top
tenv�

typerun tenv t �Right�cs� �p�pat� e s � typerun tenv p cs pat e s

typerun tenv t �Set�cs� p env s � typerun tenv t cs p �t�env� s

typerun �gf
lf
n� t �Isappl�cs� pat e s

� typerun �gf
lf
n
	� �Tcon ���� �nv
t�� cs �nv�pat� e s

where nv � Tvar n

The type of the right�hand side of a de�nition is computed on the stack� the last argument
of typerun� analogously to producing the value of the 	instance of the� right�hand side in run

After interpreting the entire instruction sequence 	third argument is ���� we know that the rule
did not include a type error and that the stack contains exactly one type � the type of the
right�hand side


The instructions Right and Set are interpreted similarly as for run

The instruction Isappl in the standard interpretation checks whether a term has the form

�f a�� continuing matching on f� �nally� matching on a is invoked by a corresponding Right

For type�inference� this means the following� the second argument of typerun� t� is the type of
�f a� and it can be any type� because matching continues with f� it has to continue with the
type of f which is some function type 	� � t� 	above� Tcon ���� �nv
t��� when matching of
a is invoked by a Right instruction� we need the type of a 	which is ��� so the corresponding
type variable nv is pushed onto the pattern�stack


typerun tenv t �Eq u�cs� pat env s

� typerun tenv� t cs pat� env� s
 if b

� nouni t t�
 otherwise

where

�tenv�
�pat�
env��� � subst�all sub ��gf
lf
n��
�pat
env��

�gf
lf
n� � tenv

�t�
n�� � gettype tenv u

�b
sub� � unify t t�

The Eq instruction is an equality test 	of terms� in the standard interpretation� here it
becomes a test for the equality 	uni�ability� of types
 The standard interpretation of Eq u is
to check whether the current term is equal to the term u� here it becomes to check whether the
current type is uni�able with the type of u
 We get the type of u by �gettype tenv u�
 Because
we have assumed u to be a symbol� it cannot contain a type error� but it can be polymorphic
and in that case the type variable counter has to be increased 	n��� because we get a copy of a
polymorphic type by replacing the bound variables by fresh variables


If uni�cation succeeds 	b�� we have to apply the mgu sub to the type environment� the envir�
onment and the pattern stack 	arguments �� � and ��
 According to the restriction 	grammar�
for valid instruction sequences� it is not necessary to apply sub to the stack � because it is still
empty� nor to the current type � because it is thrown away anyway
 Notice that in an imper�
ative implementation all these substitution applications 	done by subst all� can be implicitly
performed as a side�e�ect of the uni�cation


typerun tenv t �Push u�cs� p env stack

� typerun �gf
lf
n�� t cs p env �t��stack�

where

�t�
n�� � gettype tenv u

�gf
lf
n� � tenv

�



typerun tenv t �Pushi n�cs� p env stack

� typerun tenv t cs p env �get n env�stack�

The instruction Push is slightly more complicated to interpret than in the standard way

This is partly due to the additional indirection of taking the type of u rather than u itself� but
this type may also be polymorphic� i
e
 the fresh�variable�counter is a�ected
 The interpretation
of Push would be slightly di�erent� if we did a semi�uni�cation rather than the standard type
inference
 In that case� we could replace the gettype tenv call by gettype �lf

gf
��
n��
i
e
 we would treat the types in lf as polymorphic in right�hand side occurrences


Pushi has the same interpretation as before � formal parameters are never polymorphic

To support translation techniques that pass environments as arguments 	fully lazy ��lifting�

we might want to do a more sophisticated action here
 As long as only pattern variables 	formal
parameters� are included in those environments� the above interpretation is su�cient
 But if we
also pass letrec variables this way� we leave the world of ML types and enter the second�order
typed ��calculus


typerun tenv t �Pop�cs� p env �x�y�stack�

� typerun tenv� t cs p env� stack�
 if b

� nouni x� y
 otherwise

where

x� � Tcon ���� �x
nv�

nv � Tvar n

�b
sub� � unify x� y

�gf
lf
n� � tenv

�tenv�
�env�
stack��� �

subst�all sub ��gf
lf
n
	�
�env
nv�stack��

In the standard interpretation� Pop creates an application of the two top elements from the
stack
 Here correspondingly� the two top elements of the stack have to be a function type 	y�
and its domain type 	x� and they are replaced by the codomain of the function type
 A type
error can occur in two ways� either y is not a function type 	and not a type variable�� or the
domain of y is not uni�able with x
 Above� both errors are treated in the same way using a
single uni�cation� but to produce helpful error messages they should be treated separately


Finally for the if�then�else instructions we get�

typerun �gf
lf
n� t �Fail�cs� p env stack

� typerun �gf
lf
n
	� t cs p env �Tvar n�stack�

typerun tenv t �Ifnot n�cs� p env �c�stack�

� typerun tenv� t cs p env� stack�
 if b

� Failure ��expected type bool
 got � 

 show c�
 otherwise

where

�b
sub� � unify �Tcon �bool� ��� c

�tenv�
�env�
stack��� � subst�all sub �tenv
�env
stack��

typerun tenv t �Goto l	� Label l�� cs� p env �th�stack�

� typerun tenv t cs p �th�env� stack

typerun tenv t �Label l� cs� p �th�env� stack

� typerun tenv� t cs p env� stack�
 if b

� nouni th �hd stack�
 otherwise

where

�b
sub� � unify th �hd stack�

�tenv�
�env�
stack��� � subst�all sub �tenv
�env
stack��

While the standard interpretation of the code only assumes that 	conditional� jumps go
forwards� we additionally exploit their if�then�else structure here fully � for example� we ignore
the label identi�ers
 A Goto occurs at the end of the then�part� hence the type on top of the

�



stack is its type
 We push it upon the environment and continue with the else�part
 When we
�nd a Label 	not immediately after a Goto�� it is the end of an if�then�else�part and the types
of its then� and else�part are on top of the environment and on top of the stack� respectively


An alternative interpretation with less assumptions 	for a more general code generator� is
possible� but rather awkward
 Easy to handle are labels and gotos which could keep their meaning
in the type interpretation� but conditional jumps are expensive
 For the type interpretation of
�Ifnot n�cs� we would need to execute typerun twice� once with code cs and once with code
�Goto n�cs� and unify the resulting types and type environments afterwards
 For an imperative
implementation it is even worse� because it would have to copy the stacks involved for the second
run


��� Instances of a Polymorphic Type

To get a type from the environment� we have to distinguish types with bound variables and types
with free variables� mixtures do not occur 	because we have assumed ��lifting of local values��

gettype �gf
lf
n� s

� �hd ls
n�
 if ls����

� �copytype n � hd � lookup s� gf
 otherwise

where ls � lookup s lf

copytype n

� cp

where

cp �Tvar m� � �Tvar �m
n�
m
n
	�

cp �Tcon s ts� �

�Tcon s �map fst rec�
 max �n�map snd rec��

where rec � map cp ts

The function copytype creates an instance of a polymorphic type by replacing all type
variables by fresh ones
 We assume that for every call of �gettype tenv s� the term s occurs
somewhere in the type environment� i
e
 checks for non�declared identi�ers� dependency analysis
etc
 have already taken place
 lookup is de�ned in the appendix


� P r o b lem s

Not all features of functional programming languages or their compilers �t very well with our
approach
 Typical problems occur in the following cases�

� overloading

� type assertions

� preserving polymorphism

� irrefutable patterns

� environments as parameters

Most of these items are related to a certain interaction between the types on the one hand�
and expressions and their evaluations on the other
 Overloading requires a type�check before
evaluation� type assertions can appear in expressions and the feature of irrefutable patterns
changes the pattern matching semantics for certain types
 So far� we haven taken for granted
that compilation preserves the polymorphism of a program� but this is not always the case�
irrefutable patterns are one source of type change


��



��� Overloading

A function f is overloaded if there are at least two function de�nitions with the name f working
on di�erent types 	argument and�or result types�
 Typically� overloading is resolved at compile
time� i
e
 it has to be found out at compile time� which of the f functions has to be taken at a
certain occurrence of the name


Overloading 	ad hoc polymorphism� does not �t perfectly with our approach� because its idea
is to exploit the result of the type checker to resolve overloading� i
e
 to replace an ambiguous
identi�er by a non�ambiguous one that �ts the type context � hence the code is type dependent

In this sense� the code we base our type�check on would necessarily be ambiguous and not yet
executable


Most typed functional languages support some sort of overloading
 Haskell�s type classes
are a rather general form� they can be seen as constrained type variables
 The uni�cation of
a constrained type variable with a type expression � requires a check whether � satis�es the
constraint and the addition of inferred constraints 	not necessarily the same� and not necessarily
one at all� to the type variables in � 
 The only necessary changes to support this kind of ad hoc

polymorphism seem to be the addition of constraint uni�cation and a way to update the code�
if constrained variables get instantiated
 Miranda�s restricted overloading 	only for parsing�
unparsing� can be seen as a special case of type classes� similarly the equality types of SML


This can easily be adapted to our approach� because it only a�ects the uni�cation of type
expressions


A much harder problem would be to allow arbitrary overloading as in Ada� i
e
 having only
the meta�restriction that it can be resolved in some way
 This is already complicated for Ada
and even more complicated in the presence of polymorphism


��� Preserving Polymorphism

We mentioned that the code of a function is at least as polymorphic as its source
 To make the
code a sound basis for a type check� we need a bit more� the code also has to be at most as
polymorphic as the original function


But neither the one nor the other condition is always ful�lled

One problem is the treatment of certain kinds of language features� especially any kind of

local declaration 	where� case� lambda abstraction� list comprehensions� etc
�
 In our approach�
any local declaration has to be made global in some way
 There are standard techniques to do
this� which � of course � preserve the operational meaning� but it is rather delicate to preserve
the types as well
 For example in Miranda� Release � and Release � treat local declarations
di�erently� in Release � local declarations can be polymorphic� in Release � they could not be

But it is not necessary to change the code of a local declaration for the second release� because
the operational semantics is not a�ected


The following example 	partitions of a list� is legal in Miranda Release �� but not in Release
��

parts � foldr op ����

where

op x ���� � ���x���

op x xss � s� �

� �map �glue x�� �map ��x���� xss

s� b f g x � f x �b g x

glue x � s� ��� ��x���hd� tl

The problem is the local function s�� a polymorphic combinator used here with two di�erent
types
 Any translation technique operationally sound is not necessarily type sound as well �
simply globalising s� would be unsound for Release �� because this makes s� polymorphic and
permits the above use


A similar problem� occurring in many implementations� is the way ��lifting is usually per�
formed in implementations of lazy languages
 Simply ��lifting all locally de�ned identi�ers is

��



semantically sound� but destroys laziness� i
e
 it might lead to re�evaluating some expressions
several times�
 But maintaining laziness by passing those identi�ers as additional arguments
	as in fully lazy ��lifting� destroys polymorphism� because formal parameters in ML�like type
systems are never polymorphic


A special problem w
r
t
 the preservation of the polymorphism of the source program is the
treatment of type assertions


��� Type Assertions

Type assertions are useful for several reasons� they can be used to locate the source of a type�
error� they are sometimes necessary to resolve overloading� they can restrict the usage of poly�
morphic objects� and occasionally 	rarely� they can enhance polymorphism


There are two essentially di�erent places for type assertions� 	i� on the level of 	global�
declarations or modules and 	ii� inside expressions or patterns


Type assertions on declaration level do not a�ect the technique described here very much�
they just enforce an additional check� additional to type inference
 In most cases this either does
not change the type of the concerned identi�er at all� or it restricts its type to a less polymorphic
instance
 In the presence of recursive 	particularly mutual recursive� de�nitions� type assertions
can even enhance polymorphism
 Consider the following small and rather pathological example�

twolist � �� ��� NIL � CONS � �twolist �� ��

length NIL � �

length �CONS x y� � 	 
 length y

Deducing the type of length in the standard way results in the type twolist � � �� num

But the more general type assertion length��twolist � �� �� num would also be consistent
for length
 This is not a problem for our approach� because it only a�ects the type environment
for a type interpretation of the code
 Of course we have to check that a type assertion about a
name is consistent with its de�nition� but this check does not interfer with our alternative code
interpretation
 SML does not support such an enhancement of polymorphism by type assertions


A type assertion on expression level only enforces an additional check too� but there the
check interferes with the code� i
e
 there is the problem what to check
 If we check the types by
inspecting the code� the level of expressions has vanished
 A type assertion at a subexpression
would most easily coincide with our approach by adding a Type instruction to the abstract
machine� which has a meaning for the type check interpretation of the code 	similar as Eq�� but
is like a Skip in the standard interpretation


��� Irrefutable Patterns

A serious problem is the exploitation of type de�nitions in the code� especially if the constructors
have been replaced by numbers referring to the type de�nition
 In this case� it is possible that
functions operating on di�erent types have the same code
 If wanted� such code has to be
produced in a separate step


Notice that the feature of irrefutable patterns in Miranda� is somewhat problematic in this
respect� see the following example�

ignore �x
y� � �bingo�

In a lazy language� evaluation happens on demand during pattern matching
 But a pattern
like �x
y� does not necessarily require any evaluation to check for applicability of the rule�
because any value of a pair type has this form
 In Miranda� such a pattern can be replaced by

�This re
evaluation can be avoided by unorthodox implementation techniques	 see ��
�
�In Haskell and SML the same problem occurs	 although for slightly di�erent reasons� In Haskell	 irrefutable

patterns are an explicit rather than an implicit feature	 but this has similar consequences� SML is eager	 so
irrefutability has no semantical consequences	 but the code for matching can be a�ected similarly though�

��



a fresh variable� and each occurrence of a component variable of the pattern in the right�hand
side of the de�nition by the application of the corresponding selector function to this variable

In the example there are no such occurrences and we should get�

ignore p � �bingo�

Obviously� the transformation has changed the type� the argument of ignore is no longer
guaranteed to be a pair� it is more general
 The same e�ect would occur if the code we base
our type check on already re�ects the irrefutability of patterns
 A solution would again be to
generate a Type instruction for such patterns� i
e
 to add a type assertion� in the example for p


��� Environments as Parameters

Some translation techniques provide a way to make certain environments at certain expressions
visible that is not type�safe� it is to introduce an additional parameter for the expression which
becomes bound to the corresponding environment
 This is not type�safe if the environment
contains identi�ers of a polymorphic type and if the expression uses them in di�erent instances


Operationally� there is nothing wrong with this method� but ML�like type systems do not
support the kind of type which would be needed here


Such a translation typically appears in the context of fancy modularisation techniques� e
g

functors in SML� parameterised modules in Miranda� or the class system of Haskell
 In particular�
the translation proposed in 
��� to handle the classes of Haskell is of such a form


� C o n c lu s io n s

We have presented a method to infer the types of a functional program by abstract interpretation
of its code
 Advantages of this approach are methodological as well as practical


A methodological advantage is related to the principle divide and conquer � many steps
of analysis or translation can be done independently from any knowledge about types� and
performing the type check on the produced code forces such a separation of tasks


A practical advantage is that the type check can exploit structural information gained from
earlier translation steps
 If an optimisation �nds anonymous variables 	variables with only
de�ning occurrences�� the code will ignore them and hence the type check will ignore them as
well � this is safe� because an anonymous variable has an arbitrary type
 If an optimisation �nds
common subexpressions and reduces the code to create only one instance of a subexpression� then
type checking will be performed for only this copy � this is safe� because compound expression
are never polymorphic in ML�like type systems


An apparent disadvantage is that optimisations based on type information cannot be used

This particularly holds for the representation of types� e
g
 the use of the same representation
for di�erent types
 But such optimisations can be done afterwards


There are two more serious problems
 One is the soundness of the approach� i
e
 it is only
sound if the code generation preserves the types� in particular if it preserves the degree of
polymorphism
 This requires a careful investigation of each code generation step
 Fortunately�
most translations do not change the type� i
e
 in practice it is more the kind of problem one has
to keep in mind� rather than the kind of problem one has to do something about
 Another serious
problem is to produce useful error messages
 Among the usual 	type independent� compilation
techniques for functional languages are methods like the translation of list comprehension into
combinators or ��lifting of local operations which transform a program in a non�trivial way� and
if the error messages of the type checker are based on the already transformed program 	because
the code is produced for it�� then they may not be very helpful


It would be interesting to see whether this approach can be applied to other forms of abstract
interpretation as well


��



R e fe r e n c e s


�� Hendrik P
 Barendregt
 The Lambda�Calculus� its Syntax and Semantics
 North�Holland�
����



�� A
 J
 Field and P
 G
 Harrison
 Functional Programming
 Addison�Wesley� ����



�� J
 Y
 Girard
 Une extension de l�interpr etation de godel a l�analyse� et son application !a
l� elimination des coupures dans l�analyse et la th eorie des types
 In J
 E
 Fenstad� editor�
Proceedings of the Second Scandinavian Logic Symposium
 North Holland� ����



�� Fritz Henglein
 Polymorphic Type Inference and Semi�Uni�cation
 PhD thesis� Courant
Institute of Mathematical Sciences� New York University� ����



�� Stefan Kahrs
 Unlimp " uniqueness as a leitmotiv for implementation
 In Proceedings

of the �th International Symposium on Programming Language Implementation and Logic

Programming� pages ���"���� Leuven� August ����
 Springer
 LNCS ���



�� A
J
 Kfoury� J
 Tiuryn� and P
 Urcyczyn
 The undecidability of the semi�uni�cation problem

In ��nd Annual ACM Symposium on Theory of Computing� pages ���"���� ����



�� Jan Willem Klop
 Term rewriting systems� a tutorial
 EATCS bulletin� ������"���� ����



�� Jan Willem Klop
 Term rewriting systems
 In S
 Abramsky� D
 M
 Gabbai� and T
 S
 E

Maibaum� editors� Handbook of Logic in Computer Science
 Oxford University Press� ����
	to appear�



�� P
 J
 Landin
 The mechanical evaluation of expressions
 Computer Journal� �����"����
����



��� P
 J
 Landin
 The next ��� programming languages
 Communications of the ACM� �����"
���� ����



��� Robin Milner
 A theory of type polymorphism in programming
 Journal of Computer and

System Sciences� ������"���� ����



��� Simon Peyton Jones
 The Implementation of Functional Programming Languages
 Prentice�
Hall� ����



��� John Reynolds
 Towards a theory of type structure
 In Paris Colloquium on Programming�
����



��� Christopher Strachey
 Fundamental concepts in programming languages
 In Notes for the

International Summer School in Computer Programming� ����



��� P
 Wadler and S
 Blott
 How to make ad hoc polymorphism less ad hoc
 In �	th ACM

Symposion on Principles of Programming Languages� pages ��"��� January ����
 Austin�
Texas


A p p e n d ix � U n i� c a t io n A lg o r i t h m

In the text� the function unify was used several times� but it has not been de�ned yet
 As
mentioned� we need just ordinary �rst�order uni�cation� so we give its de�nition here for the
sake of completeness


The algorithm uses a simple divide�and�conquer strategy� i
e
 it uni�es two terms by unifying
their subterms and composing the resulting uni�ers


��



unify �Tvar n� x

� �True
���
 if x�Tvar n

� �True
��n
x���
 if � occur n x

� �False
 undef�
 otherwise

unify x �Tvar n� � unify �Tvar n� x

unify �Tcon s tl� �Tcon s� tl�� �

foldr comp �True
��� �zipWith unify tl tl��
 if s�s�

unify p q � �False
 undef�
 otherwise

zipWith f �a�as� �b�bs� � f a b � zipWith f as bs

zipWith f x y � ��

The function unify does proper uni�cation� comp tries to compose the uni�ers of the sub�
problems
 It is assumed that each type constructor s has a �xed arity as� i
e
 for any �Tcon s

ls� the list ls has length as
 This assumption is not really necessary for �rst�order uni�cation�
but it is simply true for the languages with which we are concerned


occur n �Tvar m� � n�m

occur n �Tcon f ls� � �t�t��ls� occur n t� �� ��

Ordinary uni�cation of �rst order terms requires an occur check� here performed by the
function occur
 It would be no problem to enrich the approach to cyclic types� i
e
 to use trees
with �nitely many di�erent subtrees instead of �nite trees� but this is beyond the scope of this
paper and is of no signi�cance for the approach


comp �True
x��True
y� � foldr comp	 �True
x� y

comp x y � �False
undef�
 otherwise

comp	 x �False
y� � �False
undef�

comp	 �n
t� �True
s�

� comp �unify t �hd ua�� �True
s�
 if ua����

� �True
s�
 if t��Tvar n

� �False
undef�
 if occur n t�

� �True
�n
t���s��
 otherwise

where

ua � lookup n s

t� � subst s t

s� � subst�assoc ��n
t��� s

The function comp composes two uni�ers
 An occur check 	for comp	� is necessary again�
because the type t� the substitute for n� might contain a type variable m� which might be
substituted in �True
s� by a type u� which again might contain the type variable n


lookup lab ls � �val � �x
val���ls� x�lab�

subst sub �Tvar n�

� hd u
 if u����

� Tvar n
 otherwise

where u � lookup n sub

subst sub �Tcon f ls� � Tcon f �map �subst sub� ls�

subst�assoc sub ls � ��x
subst sub t� � �x
t���ls�

subst�env sub �g
l
n� � �g
subst�assoc sub l
n�

subst�all sub �tenv
lss� �

�subst�env sub tenv
map �map �subst sub�� lss�

Application of a substitution is done by subst� for types� by subst assoc� for association
lists� by subst env� for type environments� and by subst all� for a certain combination of those


��


