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Abstract

In this thesis we explore how moving frames can be applied to variational prob-

lems and symmetry reduction. First we consider the difference variational cal-

culus. We show how the recently-developed difference prolongation space can be

used to find a moving frame applicable to partial difference equations. This is

used to develop the invariant difference calculus of variations for partial difference

equations, which includes finding the Euler–Lagrange equations in an invariant

form. Moreover, we use the infinitesimal and adjoint action to write the conver-

sation laws for partial difference equations in terms of invariants and the adjoint

action. Using difference forms, new formulas for the invariant Euler–Lagrange

equations are found. Several different Lie group actions on the dependent vari-

ables are explored throughout.

This is extended from the standard rectangular mesh to include meshes con-

structed from non-rectangular tilings of the plane, looking particularly at the

snub square tiling as a running example.

We define the differential-difference moving frame, using recent results on

differential-difference structure. With this we develop the invariant differential-

difference calculus of variations. This enables us to find the invariant formulation

of differential-difference Euler–Lagrange equations for several different types of

Lie group actions, including actions on an independent variable.

Finally, we expand the applicability of the moving frames symmetry reduction

algorithm for ordinary difference equations. Currently, this does not address Lie

group actions that depend on the independent variable, nor can it deal with

partitioned difference equations. We give a framework in which these equations

can be analysed and discuss differences and similarities between the canonical

coordinates method and moving frames method.
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Chapter 1

Introduction

Since the modern development of moving frames by Fels and Olver [7, 8], finding

different Lie group invariants such as differential invariants, joint invariants, and

semi-differential invariants has become more algorithmic. In addition to this there

has been the development of several practical applications, see [29] by Olver. For

example in computer vision, moving frames have been used in a program that

automatically assembles apictorial jigsaw puzzles. Also moving frames have been

applied to practical image processing with a focus on medical imaging like, for

example, an MRI scan. Additionally, moving frames are used for invariant numer-

ical approximations within the study of symmetry-preserving numerical methods

(geometric numerical integration/structure-preserving algorithms). This gears

the motivation to consider moving frames for difference equations.

This thesis extends the theory of moving frames developed by Fels and Olver

[7, 8] to variational problems and symmetry reduction. In particular, we use

moving frames to determine the calculus of variations in terms of invariants of a

Lie group action. This problem has been resolved for differential equations (with

a Lie group action on the independent and/or dependent variables) by Kogan

and Olver [19]. With Lκ the invariant form of the Lagrangian, they showed that

the Euler–Lagrange equations of partial differential equations (PDEs) have the

invariant form

A∗E (Lκ)− B∗H (Lκ) = 0,

where E (Lκ) is the invariantized Eulerian, H (Lκ) a suitable invariantized Hamil-
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CHAPTER 1. INTRODUCTION

tonian and A∗, B∗ certain invariant differential operators. Formulas for each of

these components are given by Kogan and Olver [19]. The invariant calculus of

variations for ordinary difference equations (O∆Es) has also been resolved by

Mansfield et al. [26], who found that the original Euler–Lagrange equations in

invariant form are equivalent to

H∗Eκ (Lκ) = 0.

Here H∗ is a matrix of linear difference operators and Eκ (Lκ) is a column vector

of the Euler operators of Lκ with respect to some generating invariants κ. The

method in both these papers starts by writing the Lagrangian in terms of the

invariants of the Lie group action. This is done by using the moving frame and

the replacement rule given by Fels and Olver [8].

Although the papers by Kogan and Olver [19], and Mansfield et al. [26]

reached their desired outcomes, the methods used to attain their results are quite

different. For PDEs, Kogan and Olver [19] introduce the invariant variational bi-

complex, which is an invariant version of the variational bicomplex introduced by

Anderson [1, 2]. For O∆Es, Mansfield et al. [26] use a method based on intro-

ducing an additional dummy variable, which was originally used in a textbook

on invariant calculus by Mansfield [22]. In this book, it was shown, by letting the

dependent variables depend on an additional variable, that the Euler–Lagrange

equations could be written in terms of invariants of the Lie group action when

the Lie group acts on the dependent variables.

Currently, there is no known Lie group invariant formulation of the Euler–

Lagrange equations for partial difference equations (P∆Es) or for differential-

difference equations (D∆Es). P∆Es with two independent variables typically lie

on a regular square tiling. A generalization to other types of tilings has not yet

been considered.

Several applications in the physical world can be modelled by P∆Es and

D∆Es, see the difference equations book by Hydon [15] for some P∆Es exam-

ples. Therefore, it would be good to have an invariant formulation of the Euler–

Lagrange equations for these different types of equations. So a natural question

2



arises. “Is it possible to find an invariant formulation of the Euler–Lagrange

equations for P∆Es and D∆Es?”

In this thesis, we derive the Lie group invariant Euler–Lagrange equations for

P∆Es on a rectangular lattice and a non-rectangular tiling of the plane and indi-

cate how this can be extended to various other tilings. For D∆Es, we construct

the invariant calculus of variations for Lie group actions on the dependent vari-

ables. We also find the invariant Euler–Lagrange equation of a D∆E with a Lie

group action on one independent variable only. Considering only one independent

continuous variable and one dependent variable, the invariant Euler–Lagrange

equation for a Lie group action on both continuous variables is found.

To achieve these results, we begin by looking at the P∆Es case using the

method in the O∆Es paper [26], that is, using an additional dummy variable.

Then we look at the same calculations using a difference version of the invari-

ant variational bicomplex. This is constructed from the difference variational

bicomplex introduced in a paper by Hydon and Mansfield [17]. From here the

two methods can be compared showing many similarities between them. From

this point, either method can be used to find the formula of the invariant Euler–

Lagrange equations.

In addition to finding the invariant Euler–Lagrange equations for various types

of equations, we also construct conservation laws of P∆Es by developing an equiv-

ariant form of Noether’s Theorem. Mansfield [22] showed that for ODEs the con-

servation laws could be written in terms of the moving frame and the invariants

of the Lie group. Similar methods for PDEs have been developed by Gonçalves

and Mansfield in several recent papers [9, 10, 11], using extensions to the original

method. Very recently, the method of introducing an additional variable to find

the conservation laws has progressed from PDEs to O∆Es in two papers [25, 26],

where both linear and semi-simple actions were explored.

At present, it is unknown whether or not a similar formula exists for writing

the conservation laws of P∆Es in terms of invariants and the moving frame. Con-

servation laws are important for many reasons, including the fact that if a P∆E

is the Euler–Lagrange equation for a variational problem then the conservation

laws are linked with variational symmetries by Noether’s Theorem for P∆Es (see

3



CHAPTER 1. INTRODUCTION

[15]). The goal is to find a similar formula for the conservation laws of P∆Es

using the same approach as seen in the O∆Es paper by Mansfield et al. [26].

To finish this thesis we consider symmetry reduction. Symmetry reduction

of ODEs was first described by Lie (see the texts by Olver [28], Bluman and

Anco [5] and Hydon [16]). This approach is known as the canonical coordinates

method, and it involves finding the invariant and equivariant components of a

particular equation. This method has been extended to O∆Es in the difference

equations book by Hydon [15]. Benson and Valiquette [4] recently showed that

the moving frame can be used for symmetry reductions of O∆Es. It was also

shown by Valiquette [34] that symmetry reduction can be done for ODEs by

moving frames. At present, the O∆Es theory requires the Lie group actions not

to depend on the independent variable. Additionally, the theory for partitioned

O∆Es, as defined in the difference equations book by Hydon [15], has not been

studied yet.

Many O∆Es have Lie group actions that depend on the independent variable

so these must be considered. Therefore, we extend the moving frames method by

Benson and Valiquette [4] to include these Lie group actions. Furthermore, we

show how to apply this method for partitioned O∆Es. A thorough comparison

of symmetry reductions of O∆Es by moving frames and canonical coordinates

methods is also given.

Here is a summary of the topics covered in the rest of the thesis. In Section

2.1 the difference prolongation space is explained in detail; this space is the foun-

dation of the difference moving frame theory. Section 2.2 introduces difference

calculus of variations and gives some key results from the literature, including

the difference case of Noether’s theorem. Section 2.3 defines the Lie group ac-

tion and gives the linearized symmetry condition, which is used to find the Lie

group symmetries of an equation. Section 2.4 describes the current knowledge

of moving frames and explores how we get from using a moving frame which is

useful for the continuous case to one adapted to the discrete case. This will in-

clude the most important extension for us, the difference moving frame. Section

2.5 presents the main proposition of the chapter, which explains how the Euler–

Lagrange equations can be calculated directly in terms of invariants of the Lie

4



group action. Section 2.6 uses difference forms, which are comparable to differ-

ential forms, to complete the proof of the main proposition in Section 2.5. It also

gives rise to two new formulae for the invariantized Euler–Lagrange equations.

Indeed, this section amounts to the difference form version of what is shown by

Kogan and Olver [19]. A running example is used throughout these sections to

help with understanding these concepts. In Section 2.7, one of the new formu-

lae for the invariantized Euler–Lagrange equations is used to revisit an example

from the O∆E paper [25]. In Section 2.8 we look at the same Lagrangian and

explore some of its different Lie subgroups. These include a one-parameter Lie

group of translations, a two-parameter Lie group of translations, a 4-parameter

Lie group of scalings and translations, and the projective SL(2) action which is

a semi-simple group action. The Lie group action depends on the independent

variables in both the two-parameter Lie group of translations example and the

4-parameter Lie group of scalings and translations example. When the Lie group

action depends on the independent variables some additional complications can

occur. For each example, the calculations to find the invariant Euler–Lagrange

equations are shown. Also, we show how changing the normalization can change

the difficulty of some of the computations. Section 2.9 discusses infinitesimal gen-

erators and the adjoint action, which is used to help formulate the conservation

laws in Section 2.10.

In Chapter 3 the extension to non-rectangular tilings of the plane is con-

sidered. To help explore this topic the snub square tiling is used as a running

example; the prolongation space for this is described in Section 3.1. (The pro-

longation for other regular and semi-regular tilings is outlined in Appendix B.)

Then in Section 3.2 the difference variational calculus on non-rectangular tilings

is discussed. Most of this section is an extension of the rectangular case with some

subtle differences, so some details are omitted. Section 3.3 defines a difference

moving frame on a non-rectangular mesh and explains how this is used to extend

the definitions and propositions in Chapter 2. The last section in this chapter,

Section 3.4, lays out the definition of difference forms on a non-rectangular mesh,

proves the formula for the invariant Euler–Lagrange equations on non-rectangular

mesh and provides a simple example to illustrate the theory.

5



CHAPTER 1. INTRODUCTION

Chapter 4 extends the theory by considering different variational problems

for differential-difference equations (D∆Es). Section 4.1 explains the differential-

difference structure developed very recently by Peng and Hydon [32]. This ex-

tends the difference prolongation space in Chapter 2 to include a differential

structure. In Section 4.2 the difference moving frame is extended to include

D∆Es. Then we consider the differential-difference calculus of variations in Sec-

tion 4.3. Section 4.4 explains how to obtain the invariant differential-difference

Euler–Lagrange equations, for several Lie groups.

Chapter 5 considers the use of moving frames to reduce and solve O∆Es. In

Section 5.1 we introduce the inductive moving frame construction that is used for

the moving frame reduction of O∆Es with a solvable symmetry group. Inductive

moving frames have been developed across many papers [4, 18, 30, 33, 34] of which

the most important for us is the O∆E reduction theory introduced by Benson

and Valiquette [4]. Section 5.2 adapts this theory to the difference moving frame,

enabling group actions to involve the independent variable. This section includes

theory and examples for both one-parameter and multi-parameter solvable sym-

metry groups. Section 5.3 explores more examples, including a third order O∆E

with a solvable symmetry group of dimension three. The theory of symmetry

reductions using moving frames for systems of O∆Es is discussed, with an ex-

ample, in Section 5.4. Section 5.5 gives the reduction method and an illustrative

example for partitioned O∆Es. To conclude this chapter, Section 5.6 discusses

some of the positives and negatives of the moving frame method compared to

the canonical coordinates method. All of the examples in this chapter are O∆Es

that have a Lie group that depends on the independent variable.

Finally, Chapter 6 gives some conclusions and potential future areas of re-

search.

Throughout this thesis, propositions and lemmas represent new results found

and theorems represent current results in the literature, as cited.

6



Chapter 2

Variational partial difference

equations: rectangular mesh

This chapter extends the invariant calculus of variations theory from ordinary dif-

ference equations (O∆Es) to partial difference equations (P∆Es). This includes

the difference moving frame, differential-difference invariants and syzygies, the

invariant formulation of the Euler–Lagrange equations, and conservation laws.

This newly extended theory is illustrated by several examples. The most novel

material is in the section where the invariant formulation of the Euler–Lagrange

equations is found using difference forms. This is then related to the existing

method of finding the invariant formulation of Euler–Lagrange O∆Es.

2.1 Difference prolongation space

In the differential case, one can represent differential equations on a connected

space using independent variables, dependent variables, and derivatives of the de-

pendent variables (see [28]). As for the differential case, it is important to obtain

a connected space to represent difference equations. The difference prolongation

space achieves just this. We now outline the construction of the difference pro-

longation space for the case of one independent variable [26] and more than one

independent variable [32].

The total space in which solutions of the difference equations lie is Zp × Rq,

where the coordinates of the independent variables are n :=
(
n1, n2, ..., np

)
∈ Zp,

7



CHAPTER 2. VARIATIONAL P∆ES: RECTANGULAR MESH

u

n

(a) O∆Es.

u

n1

n2

(b) P∆Es.

Figure 2.1: The total space for O∆Es (Figure 2.1a) is T = Z × R and the total
space for P∆Es with 2 independent variables (Figure 2.1b) is T = Z2 × R.

and the dependent variables are u :=
(
u1, u2, ..., uq

)
∈ Rq. As an example in

Figure 2.1 a diagram of the O∆Es total space (with one dependent variable)

(Figure 2.1a) and P∆Es total space (with one dependent and two independent

variables) (Figure 2.1b) is shown.

We give here some definitions found in [15] that will help define a product

lattice. For many difference equations, the independent variables do not take all

possible values in Zp. When p = 1, the domain is a set of consecutive points in Z;

such a set is called a discrete interval, whether or not it is finite, that is, either the

domain D = Z or some finite discrete interval D = [n0, n1]∩Z, where n0, n1 ∈ Z

with n0 < n1. The simplest p-dimensional analogue of a discrete interval is the

Cartesian product of p discrete intervals called a box. Now we introduce a valid

lattice map, which is a map that does not shuffle points arbitrarily because the

image of the lattice must be the Cartesian product of p copies of Z. A valid

lattice map is a bijective change of the independent variables that preserves the

structure of the lattice. Then a product lattice is any set of points in Zp that can

be mapped to a box by a valid lattice map.

The total space is disconnected; therefore, finding a connected representation

of this space, over each base point m, is necessary to relate values of u on different

fibres. Consider the horizontal translation

TK : Zp × Rq → Zp × Rq, TK : (n,u) 7→ (n + K,u) ,

where K ∈ Zp is a multi-index. Let uαJ denote the value of uα on the fibre

n + J. The total prolongation space is Zp × P (Rq), with coordinates (n,uJ),

8



2.1. DIFFERENCE PROLONGATION SPACE

where uαJ : P (Rq) 7→ R are functions. Furthermore, we extend the translation

operator to this space

TK : (n, (uαJ)) 7→ (n + K, (uαJ)) .

Thus, it is possible to move a prolonged dependent coordinate from one fibre to

another using this same horizontal translation. It is also possible to construct a

copy of the prolongation space P (Rq) over each n; this prolongation space on n,

denoted by Pn (Rq), contains the values of u on all fibres. The prolongation space

allows us to represent values of u on different fibres onto a single fibre. To do

this we introduce the pullback. Given f is a (locally smooth) function on P (Rq)

with its restriction to Pn (Rq) denoted

fn ((uαJ)) = f (n, (uαJ)) ,

the pullback T∗K of fn+K ((uαJ)) to Pn (Rq) is

T∗Kfn+K ((uαJ)) = f
(
n + K,

(
uαJ+K

))
.

Therefore, the pullback by TK takes uαJ on n + K to the function uαJ+K on n.

Finally, the shift operator is the operator on each continuous fibre Pn (Rq) that

mimics translation by K, i.e.,

SKf (n, (uαJ)) = f
(
n + K,

(
uαJ+K

))
.

Therefore, the shift operator relates to the pullback as follows: SKfn := T∗Kfn+K.

From now on the prolongation space over n is used to represent all values of u

on different fibres onto a single fibre. Here the fixed n is called the base point.

Before we discuss difference variational problems, we need to define what is a

regular domain D, [15]. To do this, let

A (m,n, {ui,j : (i, j) ∈ S}) = 0

be the P∆E with (m,n) ∈ D and S a non-empty finite set, called the stencil

9



CHAPTER 2. VARIATIONAL P∆ES: RECTANGULAR MESH

of the P∆E. Here we consider two independent variables but can extend this to

more if required. For any P∆E the stencil at (m,n) is denoted by S (m,n) and

is obtained by evaluating A = 0 at (m,n) and finding the stencil of the resulting

expression. A border is a line in (i, j)-plane, li (k), that includes at least two

points of S and is not straddled by S. A vertex is a point that belongs to two

distinct borders, so each border contains exactly two vertices. Any point (m,n)

at which at least one vertex of S does not belong to S (m,n) is called a singular

point. A regular domain D for a given P∆E is a product lattice that has no

singular points (for more details, see Chapter 4 of [15]).

For the rest of this thesis, we omit neighbourhoods of singularities and treat n

as fixed, using the shift operator to represent structures over different base points

m. The difference prolongation space allows us to introduce key definitions and

theorems for the difference calculus of variations. We use the Einstein summation

convention to denote sums over all variables other than n where this is possible.

2.2 The difference variational calculus

The definitions and results in this section can be found for P∆Es in Chapter

6 of the difference equations book by Hydon [15] and for O∆Es in Section 3

of the paper by Mansfield et al [26]. We first write the Euler operators and

Euler–Lagrange equations in terms of shifts and derivatives. A system of P∆Es

is a given system of relations between the quantities uαn+J, for each multi-index

J =
(
j1, ..., jp

)
. For convenience we write J = jk1k, where 1k is the multi-index

whose kth entry is 1 and whose other entries are 0. The system will hold for

all n in a given product lattice, which may or may not be finite, so we can

suppress n and use the shorthand notation as before of uαJ for uα (n + J) and uJ

for u (n + J). As noted in the last section n is taken to be the base point. From

now we often drop the multi-index 0 when representing variables at n; however,

where the multi-index adds clarity it will be included. For any multi-index J,

the corresponding shift operator is SJ = S
j1
1 · · · S

jp
p , where Si := S1i denotes the

forward shift with respect to ni. Specifically, the forward shift operator in the

10



2.2. THE DIFFERENCE VARIATIONAL CALCULUS

direction nk is

Sk : (n, f (n)) 7→ (n + 1k, f (n + 1k)) ,

for all functions f whose domain includes n and n + 1k. Consequently,

Sk : u 7→ u1k , Sk : uJ 7→ uJ+1k ,

on any domain where these quantities are defined. The identity operator is

id : n 7→ n, id : f (n) 7→ f (n) , id : uαJ 7→ uαJ,

and the forward difference operator in the direction nk is

Dnk = Sk − id.

A difference divergence is an expression of the form Div (F ) = DnkF
k for some

F :=
(
F 1, . . . , F p

)
. These are all the essential definitions for us to start looking

at difference variational calculus, as introduced by Kupershmidt [20].

The basic variational problem is to find the extrema of a given functional

L [u] =
∑
n

L (n, [u]) , (2.1)

with [u] representing finitely many shifts of the dependent variables. Throughout

this thesis, L = L (n, [u]) is used to denote the Lagrangian in terms of the original

variables u and their shifts. While Lκ = Lκ (n, [κ]) denotes the Lagrangian in

terms of generating invariants κ and their shifts. The sum is over a regular domain

D, which may be unbounded, if it is bounded u is prescribed at the boundaries

of the domain. From here on, we work formally assuming the boundary terms

do not contribute. The extrema can be found for variational P∆E problems by

requiring that {
d

dε
L [u + εw]

}∣∣∣∣
ε=0

= 0,

for all w : Zp → Rq that vanish on the boundary (or in the appropriate limit,

where the domain is unbounded). Consequently, the variation of L [u] in the

11
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direction w is

d

dε

∣∣∣∣
ε=0

L [u + εw] =
∑
n

(
SJw

α ∂L

∂uαJ

)
=
∑
n

wαS−J
∂L

∂uαJ
+ Div (Au (n,w))

=
∑
n

wαEuα (L) + Div (Au (n,w)) , (2.2)

where S−J = S
−j1
1 S

−j2
2 · · · S−jpp and

Euα = S−J
∂

∂uαJ

is the Euler operator with respect to uα. This was derived by Kupershmidt in

the book on discrete Lax equations and differential-difference calculus [20]. To

derive (2.2), the summation by parts formula,

(SJf) g = f (S−Jg) + (SJ − id) f (S−Jg) (2.3)

for each J, is used. Hence, the last term in (2.2) is

Div (Au (n,w)) =
∑
J

(SJ − id)wαS−J

(
∂L

∂uαJ

)
.

This can be written into the form Dni
(
Aiα (n, [u])wα

)
, with difference operators

Aiα (n, [u]) for i = 1, ..., p. It is known that the extrema satisfy the following

system of Euler–Lagrange (difference) equations

Euα (L) = S−J

(
∂L

∂uαJ

)
= 0. (2.4)

Each Euα depends on only n and [u]. Note if we let the dependent variable

depend on an additional independent variable t one can achieve the same result

using

d

dt

∣∣∣∣
(uα)′=wα

L [u] = 0, (2.5)

where (uα)′ = duα/dt. The following sections will show how to find the invari-

antized version of the Euler–Lagrange equations using a similar method.

12
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Certain variations w in (2.1) are important in relation to the Lagrangian. For

a particular Lagrangian L, certain variations Q are linked with the symmetries

of the Lagrangian. The variations Q linked with symmetries of the Lagrangian

will leave the Lagrangian invariant up to a total difference term. Now we define

the symmetry condition for a Lagrangian, L = 0.

Definition 2.2.1. Suppose that a nonzero function Q satisfies

QαJ (n,u)
∂L

∂uαJ
= DniB

i (n,u) , where QαJ = SJQ
α, (2.6)

with potentially some or all Bi (n,u) being equal to zero. Then the Lagrangian

L is said to have a variational symmetry (this is shorthand for a one-parameter

local Lie group of variational symmetries, see [28]) with characteristic Q. The

Lagrangian is invariant under this symmetry if Bi = 0 for all i.

In this thesis, we only consider symmetries which leave the Lagrangian in-

variant. Section 9 of the O∆E paper [26] explains how to deal with variational

symmetries for which not all Bi are zero. An extension of this method to P∆Es

is trivial.

More details on the relationship between symmetries and characteristics are

discussed in Section 2.3 and Section 2.9. The next theorem is Noether’s Theorem

for P∆Es, which outlines the importance of symmetries and their relationship to

conservation laws.

Theorem 2.2.2 (Difference Noether’s theorem). Suppose that a Lagrangian L

has a variational symmetry with characteristic Q 6= 0. If u = u is a solution of

the Euler–Lagrange system for L then

(
Dni{A

i
α (n, [u])Qα −Bi (n,u)}

)
|u=u = 0. (2.7)

Proof. Substituting Qα for wα in (2.2) and using

Div (Au (n,w)) = Dni
(
Aiα (n, [u])wα

)

13
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gives

Qα (n,u) Euα (L) + Dni
(
Aiα (n, [u])Qα

)
= QαJ (n,u)

∂L

∂uαJ
= DniB

i (n,u) .

The result follows immediately.

The expression in (2.7) is a conservation law for the Euler–Lagrange system.

Note for difference equations (and differential-difference equations) transfor-

mations in addition to Lie point symmetries are possible. For example, one

can use a lattice transformation of the form n̂ = An + n0, where the matrix

A ∈ GLp (Z) and n0 is a column vector with p rows, (see [15] for more details).

However, only Lie point symmetries are considered here.

2.3 Lie group actions and symmetries

This section details some of the basic facts about Lie group actions and Lie

symmetries, in particular, what they are and how to find them. To start we

introduce the definition of a Lie group action using [35].

Definition 2.3.1. Let M be a manifold, and let G be a Lie group. A C∞ map

G×M →M such that

µ (g1g2, z) = µ (g1, µ (g2, z)) , µ (e, z) = z, (2.8)

for all g1, g2 ∈ G, e the identity element of G and z ∈ M is called an action of

G on M on the left. If the map µ : G×M → M is an action of G on M on the

left, then for a fixed g ∈ G the map z 7→ µ (g, z) is a diffeomorphism of M , that

is, a smooth invertible map whose inverse is also smooth. Similarly, a C∞ map

µ : M ×G→M such that

µ (z, g1g2) = µ (µ (z, g1) g2) , µ (z, e) = z

for all g1, g2 ∈ G and z ∈M is called an action of G on M on the right.

The choice of action can significantly affect the difficulty of computations. For

simplicity, in this thesis, the left action is used throughout. Using µ (g, z) 7→ g ·z,

14
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the condition for a left action (2.8) above can be written as

(g1g2) · z = g1 · (g2 · z) , e · z = z.

With this understanding of a Lie group action, one should now ask how to

find the Lie group symmetries of an equation. As the majority of this thesis

examines difference equations we restrict attention to the P∆Es case, which is

described in the difference equations book by Hydon [15]. For the PDEs case,

see the differential equations texts [5, 16, 28].

From Hydon [15] “A transformation of a differential or difference equation

is a symmetry if every solution of the transformed equation is a solution of the

original equation and vice versa. Thus the set of solutions is mapped invertibly

to itself.”

The type transformations we are interested in are diffeomorphisms. Given

an equation (system) whose dependent variables are u =
(
u1, . . . , uq

)
, a point

transformation is a locally defined diffeomorphism Γ : u 7→ û (u; ε); the term

‘point’ is used because û depends only on the point u. A parameterized set of

point transformations,

Γε : u 7→ û (u; ε) , ε ∈ (ε0, ε1) ,

where ε0 < 0 and ε1 > 0, is a one-parameter local Lie group if the following

conditions are satisfied:

• Γ0 is the identity map, so that û = u when ε = 0.

• ΓδΓε = Γδ+ε for every δ, ε sufficiently close to zero.

• Each ûα can be represented as a Taylor series in ε (in a neighbourhood of

ε = 0 that is determined by û), and therefore

ûα (u; ε) = uα + εQα (n,u) +O
(
ε2
)
, α = 1, . . . , q.

For further details see [15] by Hydon.

For this thesis, we only consider Lie point transformations that belong to
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a one-parameter local Lie group. Additionally, all the Lie symmetries are one-

parameter local Lie group symmetries (more parameters may be used later). To

find the Lie symmetries one needs to find each of the terms Qα, more commonly

known as the characteristics (see Section 2.10). One way to find the character-

istic is by using the linearized symmetry condition (LSC) first stated in a paper

by Maeda [21]. Given a system A = (A1, . . . ,As) = 0 of s equations with q

dependent variables and p independent variables, to find the LSC substitute

n̂ = n, ûαK = uαK + εQ (n + K, uαK) +O
(
ε2
)
, K ∈ Zp,

into the P∆E, and use that A = 0. This will leave an equation for the O (ε)

terms, which is the LSC. Then using an ansatz one can at least partially solve

the LSC (see [15]).

Another method to solve the LSC is by differential elimination. For O∆Es

there is a six-stage process to finding the characteristics Q by this method given

in the difference equations book [15].

1. Write out the LSC for the O∆E using the method described above.

2. Differentiate with respect to the dependent variables uαk (and, if necessary,

rearrange) the LSC repeatedly, so that at least one term involving a shift

of Q,Q′, . . . is eliminated. Continue doing this until an ODE is obtained.

3. Split the ODE into a system of ODEs whose coefficients involve only the

arguments of the unknown function Q.

4. Simplify the system of ODEs (if possible).

5. Integrate the simplified ODEs, one step at a time, and substitute the results

successively into the hierarchy of functional-differential equations that were

constructed in stage 2. If possible, solve the linear O∆Es for coefficients of

terms in Q, and solve these.

6. Finally, substituteQ into the LSC, collect and simplify any remaining O∆Es

for coefficients of terms in Q, and solve these.
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A similar process can be used for P∆Es (see [15] for examples). As an example

of this method we show how to find the symmetries of the autonomous dpKdV

equation. This example is given in [15] by Hydon.

Example 2.3.1. The autonomous dpKdV equation is

u1,1 = u+
1

u1,0 − u0,1
. (2.9)

For equations of the form u1,1 = ω (m,n, u, u1,0, u0,1) using the substitution

û = u+ εQ (m,n, u) +O
(
ε2
)

yields

Q (m+ 1, n+ 1, ω) =

∂ω

∂u
Q (m,n, u) +

∂ω

∂u1,0
Q (m+ 1, n, u1,0) +

∂ω

∂u0,1
Q (m,n+ 1, u0,1) ,

as the LSC. Thus, for the autonomous dpKdV equation (2.9) the LSC is

Q (m+ 1, n+ 1, ω) = Q (m,n, u) +
Q (m,n+ 1, u0,1)−Q (m+ 1, n, u1,0)

(u1,0 − u0,1)2 .

(2.10)

Now applying the partial differential operator ∂/∂u1,0 + ∂/∂u0,1 to (2.10) gives

Q′ (m,n+ 1, u0,1)−Q′ (m+ 1, n, u1,0) = 0. (2.11)

Then applying the partial differential operator −∂/∂u1,0 to (2.11) yields

Q′′ (m+ 1, n, u1,0) = 0. (2.12)

Shifting back (2.12) using S−1
1 and then integrating gives

Q′ (m,n, u) = A (m,n) .
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Substituting shifts of this into (2.11) gives the condition

A (m+ 1, n) = A (m,n+ 1)

that leads to

Q′ (m,n, u) = A (m+ n) .

Then integrating a second time yields

Q (m,n, u) = A (m+ n)u+B (m,n) . (2.13)

Substituting this into (2.10) gives the following conditions

A (m+ n+ 2) = −A (m+ n+ 1) = A (m+ n) ,

B (m+ 1, n+ 1) = B (m,n) , B (m+ 1, n) = B (m,n+ 1) .

Therefore, the set of all characteristics of Lie point symmetries is spanned by

Q1 = 1, Q2 = (−1)m+n , Q3 = (−1)m+n u. (2.14)

The last step we need to consider is how to get from the characteristics Qαi , for

i = 1, . . . , r and α = 1, . . . , q to the Lie group action on uα. Let ûα (n,u; ε) = g·uα

and Q̂αi = g ·Qαi , solving the system

dûα

dε
= Q̂αi (n, û; ε) , ûα (n,u; 0) = uα (2.15)

yields ûα. For an example we find the Lie group action on u of Q3 in (2.14)

above.

Example 2.3.2. Using (2.15) for Q3 in (2.14) we obtain

dû

dε
= (−1)m+n û, û (m,n, u; 0) = u.

Therefore, integrating this first-order differential equation gives

ln |û| = (−1)m+n ε+ c

18
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using the condition û (m,n, u, ; ε) = u gives c = ln |u| and so after simplification

û = e(−1)m+nεu.

2.4 Moving frames

Here we discuss the theory of moving frames, beginning by looking at these in

general and then turning to their extension to discrete moving frames on a prolon-

gation space. This allows us to introduce the important difference moving frame

theory, where additional prolongation conditions apply. When discussing differ-

ence moving frames and related examples u is used as a coordinate. Otherwise

when discussing moving frames in more general terms z is used. The results at

the start of this section on general moving frames come from the seminal papers

by Fels and Olver [7, 8], the book on invariant calculus by Mansfield [22] and are

all included in the O∆E paper [26].

An important assumption for the moving frame theory (see [7, 8, 22]) is

summed up in the following theorem.

Theorem 2.4.1. A moving frame exists in a neighbourhood of a point z ∈M if

and only if the group G acts freely and regularly near z.

A group action is free if the only group element g ∈ G which fixes every point

in the neighbourhood is the identity. A group action is regular if the orbits form

a regular foliation.

Therefore, to be free and regular in some domain Ω ⊂M means, in effect, for

every z ∈ Ω there is a neighborhood U ⊂ Ω of z such that the following conditions

are satisfied [22].

• The group orbits all have the dimension of the group and foliate U .

• There exists a submanifold K ⊂ U that intersects the orbits of U trans-

versely, and the intersection of U and K is a single point. The submanifold K

is known as the cross-section and has dimension equal to dim (M)−dim (G).

• If O (z) denotes the orbit through z, then the element h ∈ G that takes

z ∈ U to k, where {k} = O (z) ∩ K, is unique.
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three

different

orbits

K

O (z)

O (z) ∩ K
zg = ρ (z)

U

Figure 2.2: Moving frame defined by a cross-section.

If M is not free and regular replace it with a domain M on which the action is

free and regular.

In Beffa and Mansfield [3] Remark 4.19 discusses research detailing conditions

under which an action will become free and regular. For results on product

actions, with a suffiently large number of products, see Boutin [6]. Using this we

assume we have a free and regular group action.

Figure 2.2 shows an example for which there exists a cross-section K ⊂ M

that is transverse to orbits O (z) for each z ∈M . Furthermore, the set K ∩ O (z)

has just one element which is the projection of z onto K. The cross-section K is

not unique, that is, there are different choices of the cross-section, some of which

can vastly reduce the difficulty of computations.

Definition 2.4.2 (Moving frame). Given a smooth Lie group actionG×M →M ,

a moving frame is an equivariant map ρ : U ⊂ M → G. Here U is called the

domain of the frame.

Note here we construct moving frames in a neighbourhood U ⊂ Ω ⊂ M of

any point z and the map ρ is a smooth equivariant map [22].

For a left action, a left equivariant map satisfies ρ (g · z) = gρ (z) and a

right equivariant map satisfies ρ (g · z) = ρ (z) g−1. The frame is called left or

right accordingly. In theoretical developments, it is not necessary to choose the

handedness of the frame, as to get a left frame from a right frame we take the

inverse of the right frame. In order to find the frame let the cross-section K be a

system of equations ψr (z) = 0, for r = 1, . . . , R, where R is the dimension of the
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group G. Then by solving the so-called normalization equations

ψr (g · z) = 0, r = 1, ..., R, (2.16)

for g as a function of z, the solution is the group element g = ρ (z) that maps z

to its projection on K. As a result, the frame ρ (z) satisfies

ψr (ρ (z) · z) = 0, r = 1, ..., R.

The conditions on the action above (i.e. freeness and regularity) are those for the

implicit function theorem [12] to hold, so the solution ρ (z) is unique. Therefore,

the frame is right equivariant as both ρ (g · z) and ρ (z) g−1 solve the equation

ψr (ρ (g · z) · (g · z)) = 0.

A consequence of uniqueness is that

ρ (g · z) = ρ (z) g−1.

Solving the normalization equations produces a right frame. Throughout, this

chapter examples will use a left action with a right frame. Knowing that the

frames are equivariant will enable us to obtain invariants of a Lie group action.

Example 2.4.1. To illustrate the theory, we use the Lagrangian

L =
1

2
ln

∣∣∣∣(u2,0 − u1,1) (u1,−1 − u0,0)

(u2,0 − u1,−1) (u1,1 − u0,0)

∣∣∣∣ (2.17)

as a running example. This Lagrangian has six different symmetries which can

be expressed by the infinitesimal generators

v1 = u0,0 ∂u0,0 , v2 = (−1)m+n u0,0 ∂u0,0 , v3 = ∂u0,0 ,

v4 = (−1)m+n ∂u0,0 , v5 = u2
0,0 ∂u0,0 , v6 = (−1)m+n u2

0,0 ∂u0,0 , (2.18)

where

vr = Qr∂u0,0 = Qr
∂

∂u0,0
.
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Additionally,

vr = (Si,jQr) ∂ui,j = (Si,jQr)
∂

∂ui,j
, (2.19)

see Chapter 6 of [15]. To show that the Lagrangian, L, is indeed invariant under

these infinitesimal generators one can use the symmetry condition (Definition

2.2.1)

vr (L) = 0 when L = 0, (2.20)

for each r (see [15]). As an example see Section A.1 in Appendix A for detailed

calculations showing that L is invariant under v1. See Section 2.9 for more

details on infinitesimal generators. The Lagrangian (2.17) is up to a divergence

equivalent to the Lagrangian,

L0 = ln

∣∣∣∣u1,0 − u0,1

u1,1 − u0,0

∣∣∣∣, (2.21)

see Section A.2 in Appendix A for details. Divergence terms are in the kernel of

the Euler operator, that is,

Euα (Div (A)) = 0,

for any divergence term Div (A). Therefore, L has the same Euler–Lagrange

equation as the Lagrangian L0. To find the Euler–Lagrange equation of L (2.17)

the key partial derivatives are

∂L

∂u0,0
=

u1,−1 − u1,1

2 (u0,0 − u1,−1) (u0,0 − u1,1)
,

∂L

∂u2,0
=

u1,1 − u1,−1

2 (u1,1 − u2,0) (u1,−1 − u2,0)
,

∂L

∂u1,−1
=

u0,0 − u2,0

2 (u0,0 − u1,−1) (u2,0 − u1,−1)
,

∂L

∂u1,1
=

u0,0 − u2,0

2 (u1,1 − u2,0) (u0,0 − u1,1)
,

(2.22)

with key shifted partial derivatives

S−2,0
∂L

∂u2,0
=

u−1,1 − u−1,−1

2 (u−1,1 − u0,0) (u−1,−1 − u0,0)
,

S−1,1
∂L

∂u1,−1
=

u−1,1 − u1,1

2 (u−1,1 − u0,0) (u1,1 − u0,0)
,

S−1,−1
∂L

∂u1,1
=

u−1,−1 − u1,−1

2 (u0,0 − u1,−1) (u−1,−1 − u0,0)
.
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u

n1

n2

odd

even

Figure 2.3: Partitioned P∆Es.

Using these and (2.4) gives

Eu (L) =
∂L

∂u0,0
+ S−1,1

∂L

∂u1,−1
+ S−1,−1

∂L

∂u1,1
+ S−2,0

∂L

∂u2,0

=
1

u1,1 − u0,0
− 1

u−1,1 − u0,0
− 1

u1,−1 − u0,0
+

1

u−1,−1 − u0,0

= 0,

a Toda-type equation satisfied by all solutions of the autonomous dpKdV equation

among others, (see [15] for details).

For the Toda-type equation, a phenomenon arises which can only arise for

difference or differential-difference equations. As the total space is disconnected

things can happen on one fibre without affecting another fibre. The Lagrangian,

L, and Euler–Lagrange equation for the Toda-type equation contains only shifts of

u with n1 +n2 of even parity. Therefore, the odd and even parts of the lattice act

entirely independent of one another (see Figure 2.3). Specifying initial conditions

for the Euler–Lagrange equation on the odd (even) part of the lattice determines

solutions on the odd (even) part only. However, it gives no information about the

even (odd) part. When restricting to solutions of the equation the odd and even

parts of the lattice are considered separately. The Lagrangian in (2.17) respects

this partitioning whereas the Lagrangian (2.21) does not. Later this split in the

lattice will manifest itself in other ways. For other Lagrangians it is possible that

the lattice could be split up into something other than even and odd n1 + n2.

As a running example, consider the moving frame method using the Lie group

action derived from the infinitesimal generators v1 and v3. This group action is

represented by

g : ui,j 7→ ũi,j = aui,j + b, (2.23)
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where i, j ∈ Z, a ∈ R+ is a scaling and b ∈ R a translation. Choosing the

normalization equations (2.16) to be

ψ1 ([u]) = u0,0, ψ2 ([u]) = u1,1 − 1, (2.24)

with [u] denoting shifts of u, yields

g · u0,0 = au0,0 + b = 0, g · u1,1 = au1,1 + b = 1. (2.25)

These normalization equations give the values of the parameters on the frame as

a =
1

u1,1 − u0,0
, b =

−u0,0

u1,1 − u0,0
. (2.26)

Alternatively, this choice of normalization equations can be denoted by the coor-

dinate cross-section

K = {u0,0 = 0, u1,1 = 1}. (2.27)

Remark 2.4.3. For the majority of applications and throughout this thesis, the

normalization equations have the form

g · z1 = c1, g · z2 = c2, . . . , g · zR = cR, (2.28)

where zr are coordinates on M and cr are constants, for r = 1, . . . , R. Typically,

each of the constants cr are either 0 or 1 for simplicity. From this point on

instead of giving the functions ψr (z), for r = 1, . . . , R, we write the normalization

equations as in (2.28) or use a coordinate cross-section, that is,

K = {z1 = c1, z2 = c2, . . . , zR = cR}. (2.29)

Here there is a freedom in the choice of normalization equations, for example,

we could also choose g · u0,0 = 0 and g · u1,1 = 2. Additionally, one could

also use the normalization equations g · uI = 0 and g · uJ = 1 for I 6= J and

I,J ∈ Z2. However, we cannot choose g · u0,0 = 0 and g · u1,1 = 0 as the resulting

normalization equations cannot be solved in terms of the parameters. Therefore,
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an appropriate choice of normalization equations needs to be able to find the

solutions for the parameters of the Lie group. Other nuances in the choice of a

particular normalization equation will be discussed throughout this thesis.

Remark 2.4.4. This Lie group action is not free on the space R over n, as this

space only has the coordinate u0,0 and is not a continuous space; therefore, to

achieve freeness we need to work in a higher-dimensional continuous space. To

do this we work on the prolongation space Pn (R), which includes the coordinate

u1,1.

Remark 2.4.5. As a > 0, this normalization is only valid throughout the half-

space U = {Pn (R) : u1,1 > u0,0}. For the other half-space when u1,1 < u0,0 an

appropriate normalization is g · u0,0 = 0 and g · u1,1 = −1.

The following (three) definitions and (two) theorems come from Section 4 of

the O∆E paper by Mansfield et al. [26], but analogous results can also be found

in one of the papers by Fels and Olver [8].

Theorem 2.4.6 (Normalized invariants). Given a left or right actionG×M →M

and a right frame ρ, then

ι (z) = ρ (z) · z, (2.30)

in the domain of the frame ρ, is invariant under the group action.

Proof. First, apply the group action to z; then, by definition,

ι(g · z) = ρ (g · z) · (g · z) = ρ (z) · g−1g · z = ρ (z) · z = ι(z) ,

so ι (z) is an invariant function.

In general, let ι (ui,j) = ρ ([u]) · ui,j , where i, j ∈ Z. Additionally, the invari-

antization of uαJ is ι (uαJ) = ρ ([u]) · uαJ, for J ∈ Zp.

Definition 2.4.7. The normalized invariants are the components of ι (z).

Definition 2.4.8. A set of invariants is said to be a generating, or complete, set

for an algebra of invariants if any invariant in the algebra can be written as a

function of elements of the generating set.
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This definition will be important when finding the generating invariants of a

group action, which enables us to write the Lagrangian in terms of invariants.

We now state the replacement rule and see that the normalized invariants

provide the set of generating invariants.

Theorem 2.4.9 (Replacement rule). If F (z) is an invariant of a given Lie group

action G×M →M for a right moving frame ρ on M , thenF (z) = F (ι(z)).

Proof. As F (z) is invariant it is clear that F (z) = F (g · z). Then taking g = ρ (z)

and using the definition of ι (z) gives the result.

Definition 2.4.10 (Invariantization operator). Given a right moving frame ρ,

the map z 7→ ι (z) = ρ (z) ·z is called the invariantization operator. This operator

extends to functions as f (z) 7→ f (ι (z)), and

ι (f (z)) = f (ι (z)) (2.31)

is called the invariantization of f .

If z has components zα, then let ι (zα) denote the αth component of ι (z).

The invariantization operator ι on zα is also given by

ι (zα) = g · zα|g=ρ(z),

where |g=ρ(z) takes the value of the parameters to their value on the frame. This

form of the invariantization operator is important for when the invariantization

operator is applied to different objects like duα/dt later in this section and dvu
α

in Section 2.6.

Example 2.4.2. (Example 2.4.1 cont.) The action of the frame on ui,j (or

invariantization of ui,j) is

ι (ui,j) =
ui,j − u0,0

u1,1 − u0,0
.

It is clear to see this is invariant under the group action.

Remark 2.4.11. It is possible to calculate the recurrence relations for these in-

variants and show that one can write all invariants in terms of two fundamental
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invariants for this group action. Note each shift of an invariant is an invariant

itself; consequently, the recurrence relations can be found by simply using the

replacement rule.

Let the two fundamental (or generating) invariants for the running example

be

κ = ι (u1,−1) =
u1,−1 − u0,0

u1,1 − u0,0
, λ = ι (u2,0) =

u2,0 − u0,0

u1,1 − u0,0
. (2.32)

As an example, we show how to find ι (u2,2) in terms of these generating invariants

and their shifts. Let κβi,j represent Si1Sj2κ
β for different generating invariants (this

convention will be used throughout.) In general let κβJ represent SJκ
β. Shift κ

to involve u2,2 and lower shifts of κ and λ:

S1S2κ = κ1,1 =
u2,0 − u1,1

u2,2 − u1,1
.

Then using the replacement rule to find the right-hand side of the shifted equation

in terms of invariants gives

κ1,1 =
ι (u2,0)− ι (u1,1)

ι (u2,2)− ι (u1,1)
,

thus, by substituting in ι (u2,0) = λ and ι (u1,1) = 1, and rearranging gives the

result

ι (u2,2) =
λ− 1 + κ1,1

κ1,1
.

Remark 2.4.12. Recurrence relations can also be constructed for different invari-

ants ι (ui+r,j+s) using shifts of ι (ui,j). Indeed, a recurrence relation for ι (ui+1,j+1)

is possible by shifting ι (ui,j) in both directions and invariantizing (2.31):

ι (ui+1,j+1) =

(
λ− 1

κ1,1

)
S1S2 ι (ui,j) + 1.

Note that taking i = j = 1 gives the same formula for ι (u2,2) as before. Also

if one calculates the recurrence relations for the positive shifts, that is, ι (ui,j)

to ι (ui+1,j) and ι (ui,j) to ι (ui,j+1) then their inverses can be constructed. By

changing the index from n1 to n1 − 1 and rearranging the formula for the new

invariant ι (ui,j) gives the recurrence formula for ι (ui,j) to ι (ui−1,j). Similarly,
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one can obtain the recurrence formula from ι (ui,j) to ι (ui,j−1). This enables one

to find ι (ui,j) for all i, j ∈ Z.

It is clear to see from the above example that the invariants ι (uJ) do not

behave well under the shift map in the sense that SK{ι (uJ)} 6= ι (uJ+K), in

general. So, even though the shift operator takes invariants to other invariants

there may be complicated expressions relating them.

2.4.1 Discrete moving frames

The discrete moving frame, as developed in papers by Mansfield, Beffa and Wang

[23] and by Beffa and Mansfield [3] can be thought of as a moving frame adapted

to discrete base points. The following definitions of the diagonal action of a

group G on z, discrete moving frames and invariants for the discrete frame are

given in the discrete moving frames papers [3, 23]. However, we follow closely the

explanation provided in Section 4 of the O∆Es paper by Mansfield et al. [26].

The manifold on which G acts will be the Cartesian product manifoldM = MN .

The regularity and freeness of the action now refers to the diagonal action on the

product; given a (left) action (g, zj) 7→ g · zj , for zj ∈ M , the diagonal action of

G on z = (z1, z2, ..., zN ) ∈M is

g · (z1, z2, ..., zN ) 7→ (g · z1, g · z2, ..., g · zN ) .

For discrete moving frames there are no assumptions made about any relation-

ships between the elements z1, ..., zN .

Definition 2.4.13 (Discrete moving frames). Let GN denote the Cartesian prod-

uct of N copies of the group G. A map

ρ : MN → GN , ρ (z) = (ρ1 (z) , ..., ρN (z))

is a right discrete moving frame if

ρk (g · z) = ρk (z) g−1, k = 1, ..., N,
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and a left discrete moving frame if

ρk (g · z) = gρk (z) , k = 1, ..., N.

As with the continuous theory of moving frames, using the normalization

equations (2.16) for discrete moving frames gives a right frame. So, the right

moving frame component ρk is the unique element of the group G that takes z to

the cross-sectionKk. The sequence of moving frames with a nontrivial intersection

of domains (ρk) which makes up the discrete moving frame is, locally, uniquely

determined by the cross-section K = (K1, ...,KN ) to the group orbit through z

(see [23] for more details on discrete moving frames).

The invariants of the right (discrete) frame are

Ik,j := ρk (z) · zj .

If M is q-dimensional then each zj has q components z1
j , ..., z

q
j . So, there are q

components of Ik,j and these are

Iαk,j := ρk (z) · zαj , α = 1, ..., q.

For the same reason as for normalized invariants of a general moving frame, each

Iαk,j is invariant.

The discrete moving frame applies to a wide variety of discrete domains.

We now use the discrete moving frame and the difference prolongation space to

develop the difference moving frame.

2.4.2 Difference moving frames

A difference moving frame is a particular type of discrete moving frame, so the

definitions and theorems for discrete moving frames in [3, 23, 26] apply here. For

P∆Es, the fibres lie on a regular lattice Zp. This gives us a geometric context

which determines the additional structures on the manifoldM. Let K and ρ ([u])

denote the cross-section and frame on n, respectively. The cross-section on n,

denoted K, is replicated for all the other base points n + J if and only if the
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cross-section over n + J is represented on M by SJK.

Definition 2.4.14. A difference moving frame is a discrete moving frame such

that M is a prolongation space Pn (U) and the cross-section over n + J is repre-

sented on M by SJK for all necessary J.

For difference moving frames, the invariants are

IK,J := ρK ([u]) · uJ = (SKρ ([u])) · (SJu) ,

where K and J are multi-indices. Here the multi-index K relates to the number of

shifts of the frame and the multi-index J relates to the number of shifts of u. By

definition Si (IK,J) = IK+1i,J+1i . Hence, every invariant IK,J can be expressed

as a shift of I0,J−K = (ρ ([u])) · (SJ−Ku). Again we drop the multi-index 0 when

talking about the moving frame on n.

Definition 2.4.15 (Discrete Maurer–Cartan invariants). Given a right discrete

moving frame ρ ([u]) (often given in matrix form), the right discrete Maurer–

Cartan group elements are

K(i) = (Siρ ([u])) ρ ([u])−1 = ι (Siρ ([u])) , i = 1, ..., p.

To get multiple shifts in one or more different directions, use the fact that

(SiSjρ ([u])) ρ ([u])−1 =
(
SjK(i)

)
K(j).

It is possible to extend this formula further when necessary. The frame is equivari-

ant, therefore, each K(i) is invariant under the group action of G. The Maurer–

Cartan invariants are the components of K(i) and their shifts. The equality

ι (Siρ ([u])) = (Siρ ([u])) ρ ([u])−1 is due to

Si (ρ (g · [u])) = (Siρ ([u])) g−1,

by Definition 2.4.13 of a right moving frame. Therefore,

ι (Siρ ([u])) = (Siρ (g · [u])) |g=ρ([u]) = (Siρ ([u])) ρ ([u])−1 . (2.33)
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Definition 2.4.16 (Syzygy). A syzygy on a set of invariants is a relation between

invariants that expresses functional dependency.

In other words, syzygies on a set of invariants are functions of invariants that,

when expressed in terms of the underlying variables, are identically zero.

One way to obtain a set of generating invariants is to use the Maurer–Cartan

elements; for example,

K(i) · I0,0 = (Siρ ([u])) ρ ([u])−1 ρ ([u]) · u0 = (Siρ ([u])) · u0 = I1i,0.

It is possible to extend this to look at multiple shifts in different directions to

achieve all invariants. The next proposition follows from Proposition 3.11 in

the discrete moving frames paper by Mansfield et al. [23] and the fact that a

difference moving frame is a particular type of discrete moving frame.

Proposition 2.4.17. Given a right discrete moving frame ρ ([u]), the compo-

nents of K(i), together with the set of all diagonal invariants, IJ,J = ρJ ([u]) ·uJ,

generate all other invariants.

The difference identities, or syzygies, K(i) · I0,0 = I1i,0 and other extensions

are also recurrence relations for the invariants. The next definition is from [26].

Definition 2.4.18. A set of invariants is a generating set for an algebra of

difference invariants if any difference invariant in the algebra can be written as a

function of elements of the generating set and their shifts.

Therefore, the right difference moving frame identity IJ,J = SJI0,0 together

with SKK(i), which can be written as shifts of the Maurer–Cartan components

K(j), for j = 1, ..., p, gives us the following proposition.

Proposition 2.4.19. Given a right difference moving frame ρ ([u]), the set of all

invariants is generated by the set of components of K(j) = (Sjρ ([u])) ρ ([u])−1,

where j = 1, ..., p, and I0,0 = ρ0 ([u]) · u0.

2.4.3 Differential-difference invariants and syzygies

This subsection extends the results for O∆Es [26] to P∆Es and introduces an-

other method of finding the first-order differential invariants. To enable us to

31



CHAPTER 2. VARIATIONAL P∆ES: RECTANGULAR MESH

write the Euler–Lagrange equations in terms of the invariants we need to find

the so-called differential-difference syzygies between differential and difference

invariants. Given any smooth path t 7→ z (t) in the space M = MN , consider

the induced group action on the path and its tangent. The group action is ex-

tended to the dummy variable t so that t is invariant. The action extends to the

first-order jet space of M as follows:

g · dz (t)

dt
=

d (g · z (t))

dt
.

For a component uα0 we have

g · duα0
dt

=
∂ (g · uα0)

∂uδ0

duδ0
dt

. (2.34)

If the action is free and regular on M, it will remain so on the jet space and we

may use the same frame to find the first-order differential invariants which are

IαK,J;t : = (SKρ ([u])) ·
duαJ (t)

dt

= g ·
duαJ (t)

dt

∣∣∣∣
g=SKρ([u])

,
(2.35)

for any multi-indexes K and J in the domain. The frame depends on z (t), so in

general,

IαK,J;t 6=
d

dt

(
IαK,J

)
.

For the calculations of the invariantized Euler–Lagrange equations the impor-

tant differential-difference syzygies are

dκβ

dt
= Hβασα, (2.36)

where κβ represents the generating invariants and σα represents the generating

first-order differential invariants. The terms Hβα are linear difference operators

whose coefficients are functions of κβ and their shifts. Relating this to the other

notation, κβ are components chosen from Iα0,J to give us a set which can generate

all Iα0,J using shifts of κβ. Therefore, the set of generating invariants κβ are a

subset of the set of invariants Iα0,J. Typically, one needs at least q × p (the num-
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ber of independent variables multiplied by the number of dependent variables)

generating invariants κβ, e.g., for the running example we need two (κ and λ).

Additionally, σα = I0,0;t are the generating first-order differential invariants, and

in particular shifts of κβ and σα are used to write each Iα0,K;t for K ∈ Zp. Here α

represents α = 1, . . . , q, and β is used to represent different generating invariants.

One method to find these differential-difference syzygies is to write dκβ/dt

in terms of the original variables and then apply the replacement rule (Theorem

2.4.9). This will be the method we adopt. The relations between the generating

first-order differential invariants and other first-order differential invariants can

be obtained by applying a shift to the generating first-order differential invariants

in its original variables and then using the replacement rule. This is similar to the

way of finding the recurrence relations. This implies that each of the first-order

differential invariants can be written in terms of shifts of the generating invariants

κβ and the relevant shift of the generating first-order invariant σα. This method

will be shown in Example 2.4.3, but first, we explain another way using matrices

to achieve the same differential-difference syzygies.

The second method is derived from Theorem 4.6 in the discrete moving frames

paper by Mansfield et al. [23]. It involves differentiating the Maurer–Cartan

matrix with respect to t. The dependent variables uα depend on t. Therefore,

ρ ([u]) and K(i) are dependent on t. Given a matrix representation of ρ ([u]) and

the product rule we obtain

d

dt
K(i) =

d

dt

(
(Siρ ([u])) ρ ([u])−1

)
=

(
d

dt
Siρ ([u])

)(
Siρ ([u])−1

)
K(i) −K(i)

(
d

dt
ρ ([u])

)
ρ ([u])−1 ,

(2.37)

for i = 1, . . . , p.

Definition 2.4.20 (Curvature matrix). The curvature matrix N is

N =

(
d

dt
ρ ([u])

)
ρ ([u])−1 = ι

(
d

dt
ρ ([u])

)

when ρ ([u]) is in matrix form. Note that also

SiN =

(
d

dt
Siρ ([u])

)
Siρ ([u])−1
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and it is clear to see that Siρ ([u])−1 = (Siρ ([u]))−1 for difference moving frames.

The equality (
d

dt
ρ ([u])

)
ρ ([u])−1 = ι

(
d

dt
ρ ([u])

)
is as a result of N being invariant (allowing the use of the replacement rule

Theorem 2.4.9) and

ι
(
ρ ([u])−1

)
= Id,

(see (2.33)) where Id is some identity matrix.

It is easy to see that the curvature matrix N and any of its shifts are in-

variant matrices which involve first-order differential invariants. Using all these

definitions, (2.37) becomes

d

dt
K(i) = (SiN)K(i) −K(i)N. (2.38)

From these matrices we can solve componentwise for the differentials dκβ/dt to

obtain the differential-difference syzygies in (2.36). It is clear there is some re-

arranging of the components to achieve the same results as in the first method,

which uses the replacement rule; for this reason, we make use of the first method.

Additionally, (2.38) leads to some redundant information (unlike the first method)

because there are often more components of the matrix than generating invari-

ants.

Example 2.4.3. (Example 2.4.1 cont.) We now find the differential invariants

for the running example. Recall the group action is a scaling and translation

on u (2.23). Writing ui,j = ui,j (t), the action of the group on the derivative

u′i,j = dui,j/dt is induced by the chain rule, as follows:

g · u′i,j =
∂ (g · ui,j)
∂ui,j

u′i,j

= au′i,j .

So, the Lie group action is not trivial on the derivative u′i,j as can be the case
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with some group actions. The invariantization (2.31) of u′i,j is given by

g · dui,j
dt

∣∣∣∣
g=ρ0,0([u])

= g · u′i,j |g=ρ0,0([u]),

and is derived from (2.35). Therefore, with a given in (2.26) under the action of

the frame

ι
(
u′i,j
)

=
u′i,j

u1,1 − u0,0
,

which is a differential-difference invariant for u′i,j . In particular, this is the

differential-difference invariant for u′i,j derived from the invariantization operator

(Definition 2.4.10).

With the generating differential-difference invariant

σ =
u′0,0

u1,1 − u0,0
,

we can find the formula for the other differential-difference invariants by shifting

σ and then applying the replacement rule (Theorem 2.4.9). As an example we

work out ι
(
u′1,−1

)
. First, shift σ in the direction S1S−1

2 :

S1S−1
2 σ =

u′1,−1

(u2,0 − u1,−1)
.

This gives us the differential u′1,−1 we need. Then by using the replacement

rule (Theorem 2.4.9), there is no change to the left-hand side of the equation,

but the right-hand side now includes the differential invariant ι
(
u′1,−1

)
and some

additional invariants. Moving these additional invariants in the denominator to

the other side achieves the result

ι
(
u′1,−1

)
= (λ− κ) S1S−1

2 σ.

To find the differential-difference syzygies, we use the first method, involving

the replacement rule (Theorem 2.4.9), that is described above. Firstly, find dκ/dt

and dλ/dt in terms of the original variables. To do this let κ := κ (t) and

35



CHAPTER 2. VARIATIONAL P∆ES: RECTANGULAR MESH

λ := λ (t), i.e.,

κ (t) =
u1,−1 (t)− u0,0 (t)

u1,1 (t)− u0,0 (t)
, λ (t) =

u2,0 (t)− u0,0 (t)

u1,1 (t)− u0,0 (t)
.

Then the derivatives of the generating invariants are

dκ

dt
=
u′1,−1 − u′0,0
u1,1 − u0,0

−
(u1,−1 − u0,0)

(
u′1,1 − u′0,0

)
(u1,1 − u0,0)2 ,

dλ

dt
=
u′2,0 − u′0,0
u1,1 − u0,0

−
(u2,0 − u0,0)

(
u′1,1 − u′0,0

)
(u1,1 − u0,0)2 ,

(2.39)

(after dropping the variable t). Knowing that the generating invariants and t are

invariant under the group action allows us to use the replacement rule (Theorem

2.4.9) to find the right-hand side of the equations above in terms of invariants.

Therefore, the equations in (2.39) become

dκ

dt
= ι
(
u′1,−1

)
− κ ι

(
u′1,1

)
+ (κ− 1) ι

(
u′0,0

)
,

dλ

dt
= ι
(
u′2,0

)
− λ ι

(
u′1,1

)
+ (λ− 1) ι

(
u′0,0

)
.

(2.40)

Once each ι
(
u′i,j

)
in (2.40) has been found, they can be substituted into (2.40)

which gives

dκ

dt
=

(
(λ− κ) S1S−1

2 +
(1− λ)κ

κ1,1
S1S2 + (κ− 1) id

)
σ,

dλ

dt
=

(
(1− λ) (κ1,1 − λ1,1)

κ1,1
S2

1 +
λ (1− λ)

κ1,1
S1S2 + (λ− 1) id

)
σ.

(2.41)

Therefore, the differential-difference syzygy between the derivative of the gen-

erating difference invariants, dκ/dt and dλ/dt, and the generating differential

invariant, σ, can be put into the canonical form

dκ

dt
= Hκσ,

dλ

dt
= Hλσ,

where Hκ and Hλ are linear difference operators that depend only on the gen-

erating difference invariants and their shifts. Therefore, using the differential-
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difference syzygies in (2.41), the linear difference operators are

Hκ = (λ− κ) S1S−1
2 +

(1− λ)κ

κ1,1
S1S2 + (κ− 1) id,

Hλ =
(1− λ) (κ1,1 − λ1,1)

κ1,1
S2

1 +
λ (1− λ)

κ1,1
S1S2 + (λ− 1) id.

(2.42)

Remark 2.4.21. From the formula for the differential-difference syzygies (2.36),

note that the number of generating first-order differential invariants is equal to

the number of dependent variables. So the running example only requires one

generating differential invariant, σ.

2.5 The invariant formulation of the Euler–Lagrange

equations

Here we show how to calculate the Euler–Lagrange equations, in terms of invari-

ants, for the Lie group invariant difference Lagrangian. The following definition

is derived from Peng and Hydon [32].

Definition 2.5.1. Given a linear difference operator H = cJSJ, the adjoint

operator H† is defined by

H† (F ) = S−J
(
cJF

)
and the associated boundary term AH is defined by

FH (G)−H† (F )G = Div (AH (F,G))

for all appropriate expressions F and G.

Now suppose we have a Lie group action G × M → M , and a difference

frame for this action. Any group-invariant Lagrangian L (n, [u]) can be written,

in terms of the generating invariants κβ and their shifts κβJ = SJκ
β:

L (n, [u]) = Lκ (n, [κ]) .

Proposition 2.5.2 (Invariant Euler–Lagrange equations). Let L be a Lagrangian

functional whose invariant Lagrangian is given in terms of the generating invari-
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ants,

L =
∑
n

Lκ (n, [κ]) ,

and suppose the differential-difference syzygies are

dκβ

dt
= Hβασα.

Then,

Euα (L) (uα0)′ =

((
Hβα
)†

Eκβ (Lκ)

)
σα, (2.43)

where

Eκβ = S−J
∂

∂κβJ
(2.44)

is the difference Euler operator with respect to κβ. Consequently, the invarianti-

zation (2.31) of the original Euler–Lagrange equations is,

ι (Euα (L)) =
(
Hβα
)†

Eκβ (Lκ) , (2.45)

where α = 1, . . . , q. As a result, the original Euler–Lagrange equations, in invari-

ant form, are equivalent to

(
Hβα
)†

Eκβ (Lκ) = 0,

where α = 1, . . . , q.

In Section 2.6, this proposition will be proved using difference forms.

Example 2.5.1. (Example 2.4.1 cont.) For the Lagrangian (2.17) we continue

to use the most convenient generating invariants κ = ι (u1,−1) and λ = ι (u2,0)

which reduces the invariantized Lagrangian to

Lκ =
1

2
ln

∣∣∣∣(λ− 1)κ

λ− κ

∣∣∣∣. (2.46)

It is often wise to choose the normalization equations (2.16) and generating in-

variants to fix as many of the original variables in the Lagrangian as possible.

This can make the Euler operators with respect to the generating invariants eas-

ier to obtain because there are fewer shifts of the generating invariants. For the
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invariantized Lagrangian, the action of the Euler operators with respect to κ and

λ gives

Eκ (Lκ) = − λ

2κ (κ− λ)
,

Eλ (Lκ) =
κ− 1

2 (λ− 1) (κ− λ)
.

(2.47)

One can find the adjoint operators from the linear difference operators (2.42) by

using Definition 2.5.1. Thus,

H†κ = (λ−1,1 − κ−1,1) S−1
1 S2 +

(1− λ−1,−1)κ−1,−1

κ
S−1

1 S−1
2

+ (κ− 1) id,

H†λ =
(1− λ−2,0) (κ−1,1 − λ−1,1)

κ−1,1
S−2

1 +
λ−1,−1 (1− λ−1,−1)

κ
S−1

1 S−1
2

+ (λ− 1) id.

(2.48)

By the formula in Proposition 2.5.2, the invariant Euler–Lagrange equation for

the running example is

H†λEλ (Lκ) +H†κEκ (Lκ) = 0.

So substituting the adjoint linear difference operators and the Euler operators of

Lκ with respect to the generating invariants into this equation and simplifying

gives the invariant Euler–Lagrange equation

H†λEλ (Lκ) +H†κEκ (Lκ) =
λ−1,1

2 (κ−1,1)
+
κ− λ−1,−1 − 1

2κ

− (κ−2,0 − 1) (κ−1,1 − λ−1,1)

2 (κ−2,0 − λ−2,0)κ−1,1

= 0.

(2.49)

It is possible to check the resulting invariantized Euler–Lagrange equation by

changing it into the original variables ui,j and comparing this with the invari-

antization (2.31) of the original Euler–Lagrange equation, also given in terms of

the original variables (see Section A.3 in Appendix A).
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2.6 Invariant Euler–Lagrange equations by difference

forms

This section explores a new way of finding the invariant formulation of the Euler–

Lagrange equations and links it to the previous method.

2.6.1 The proof of the invariant Euler–Lagrange equations for-

mula in Proposition 2.5.2 by difference forms

This subsection will prove the invariant Euler–Lagrange equations formula (2.45)

in Proposition 2.5.2 and in doing so will give us two useful formulas for finding

the Euler–Lagrange equations directly in terms of invariants. We use some basic

features of the difference variational bicomplex, which was introduced in [17]

and examined in detail in [31] and is analogous to the differential variational

bicomplex [1, 2]. The difference structure is a consequence of the ordering of each

independent variable. Hydon and Mansfield [17] introduced difference forms on

Zp. These have the same algebraic properties as differential forms on Rp, with

the exterior algebra on p symbols, ∆1, . . . ,∆p, replacing the exterior algebra on

dx1, . . . ,dxp. For differential forms these algebraic properties include

dxi ∧ dxi = 0, dxi ∧ dxj = −dxj ∧ dxi,

while for difference forms

∆i ∧∆i = 0, ∆i ∧∆j = −∆j ∧∆i.

There are several other similarities between differential forms and difference

forms. The symbols ∆i at any two different points are related by (horizontal)

translations, so that

∆i|n = T∗K (∆|n+K) =: SK

(
∆i|n

)
. (2.50)

The standard exterior derivative on each fibre Pn (Rq) is denoted dv.

A (k, l)-form on Zp×P (Rq) is a (k + l)-form w that can be written (without
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redundancies) as

w = f
J1,...,Jl
i1,...,ik;α1,...,αl

(n, [u]) ∆i1 ∧ · · · ∧∆ik ∧ dvu
α1
J1
∧ · · · ∧ dvu

αl
Jl

; (2.51)

we denote the set of all such forms by Ωk,l. The exterior derivative is the mapping

dv : Ωk,l 7→ Ωk,l+1 whose action on (2.51) is

dvw =
∂

∂uαJ
{fJ1,...,Jli1,...,ik;α1,...,αl

(n, [u])}dvuαJ ∧∆i1 ∧ · · · ∧∆ik ∧ dvu
α1
J1
∧ · · · ∧ dvu

αl
Jl
.

(2.52)

Additionally, the exterior difference operator is the mapping d∆
h : Ωk,l 7→ Ωk+1,l

whose action on (2.51) is

d∆
h w = Dni{f

J1,...,Jl
i1,...,ik;α1,...,αl

(n, [u])}∆i ∧∆i1 ∧ · · · ∧∆ik ∧ dvu
α1
J1
∧ · · · ∧ dvu

αl
Jl
.

The notation dv and d∆
h mirrors the notation used for the differential variational

bicomplex where

dh = dxi ∧Di, dv =
(

duαJ − uαJ+1i
dxi
)
∧ ∂

∂uαJ
,

are the horizontal and vertical derivatives with

Di =
∂

∂xi
+ uJ+1i

∂

∂uαJ
.

Shifts of (2.51) are

SKw = SK{f
J1,...,Jl
i1,...,ik;α1,...,αl

(n, [u])}∆i1 ∧ · · · ∧∆ik ∧ dvu
α1
J1+K ∧ · · · ∧ dvu

αl
Jl+K,

because (2.50) implies that SK∆j = ∆j . Denote the restriction of a difference

form w on Zp × P (Rq) to Pn (Rq) by wn. Then the pullback of TK to wn is

SKwn = T∗Kwn+K.

By the standard properties of the pullback, SK commutes with the wedge product
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and with the exterior derivative on the fibre P (Rq), so

SK (w1 ∧ w2) = (SKw1) ∧ (SKw2) , SK (dvw) = dv (SKw) . (2.53)

This gives us sufficient knowledge of difference forms to begin to explain the

theory that will prove the formula (2.45) in Proposition 2.5.2.

Definition 2.6.1. A difference Lagrangian functional is the sum over Zp of a

Ωp,0 form,

λu =
∑

L (n, [u]) ∆1 ∧ · · · ∧∆p ∈ Ωp,0,

always assumed to be finite to avoid technical problems.

From this point on we use the notation vol for the volume form ∆1∧· · ·∧∆p.

Therefore,

λu =
∑

L (n, [u]) vol.

Additionally, when looking at forms there is no need to include n under the

summation sign.

The exterior derivative of λu is

dvλ
u =

∑ ∂L

∂uαJ
dvu

α
J ∧ vol.

Using summation by parts gives the Euler operator of L with respect to uα, as

follows:

dvλ
u =

∑
S−J

∂L

∂uαJ
dvu

α
0 ∧ vol

=
∑

Euα (L) dvu
α
0 ∧ vol.

This can be adapted to finite domains using the discrete analogue of Stokes’

theorem, see [24]. The divergence terms which arise disappear (for appropriate

boundary conditions) because of the summation over the boundary. The exterior

derivative is coordinate independent, therefore, if we have the same difference

Lagrangian functional written in different variables,

λκ =
∑

Lκ (n, [κ]) vol ∈ Ωp,0,
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then the exterior derivative of this is

dvλ
κ =

∑
Eκβ (Lκ) dvκ

β ∧ vol,

where Eκβ is the Euler operator with respect to κβ.

Lemma 2.6.2. If L (n, [u]) = Lκ (n, [κ]), with κβ = F β ([u]) for some functions

F β, then the exterior derivatives dvL and dvL
κ are equal:

∑
Euα (L) dvu

α
0 ∧ vol =

∑
Eκβ (Lκ) dvκ

β ∧ vol. (2.54)

This comes as no surprise as the exterior derivative dv is coordinate independent

as stated in Definition (2.6.1) above. However, the proof of this can be insightful

for the approach to the proof of the formula (2.45) in Proposition 2.5.2 so it is

shown here.

Proof. Starting with the right-hand side of (2.54),

RHS =
∑(

S−J
∂Lκ

∂κβJ

)
∂κβ

∂uαK
dvu

α
K ∧ vol

=
∑∑

K

(
S−J

∂Lκ

∂κβJ

)
SK

(
∂κβ−K
∂uα0

dvu
α
0

)
∧ vol

=
∑∑

K

(∑
J

∂ (S−J−KL
κ)

∂κβ−K

)
∂κβ−K
∂uα0

dvu
α
0 ∧ vol

=
∑∑

I

∂ (S−IL
κ)

∂uα0
dvu

α
0 ∧ vol (where I = J + K)

=
∑(

S−I
∂L

∂uαI

)
dvu

α
0 ∧ vol (using L = Lκ)

= LHS.

Definition 2.6.3. Two difference functions are called equivalent if they differ by

a divergence term.

Now we introduce an important lemma which uses the equivalence of func-

tions.
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Lemma 2.6.4. Let F , G be two difference functions and P = fJSJ a linear

difference operator. Then,

∑
n

FP (G) =
∑
n

P† (F )G,

where P† (F ) = S−J
(
fJF

)
.

Proof. Using the summation by parts formula (2.3) and that the divergence terms

disappear by Stokes’ theorem,

∑
n

FP (G) =
∑
n

F
(
fJSJG

)
=
∑
n

S−J
(
fJF

)
G

=
∑
n

P† (F )G.

This idea works equally for difference forms.

We now introduce the matrix ϑ with components

(ϑ)αδ =

(
∂ (g · uα0)

∂uδ0

) ∣∣∣∣
g=ρ0([u])

.

The inverse of this matrix is very important in the proof of (2.43) in Proposition

2.5.2 as it introduces a key equivariant component. Therefore, we need to show

that ϑ is non-singular. The vertical derivative of g · uα0 is

dv (g · uα0) =
∂ (g · uα0)

∂uδ0
dvu

δ
0.

This difference form is not necessarily invariant under the group action; however,

to achieve an invariant difference form one needs to introduce an equivariant

component. Applying the action of the frame to this gives the invariant difference
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forms in terms of the original variables as

ι (dvu
α
0) = (g · dvuα0) |g=ρ0([u])

= (dv (g · uα0)) |g=ρ0([u])

= (ϑ)αδ dvu
δ
0.

To prove that ϑ−1 exists, invariantize (2.31) this equation

ι (dvu
α
0) = ι ((ϑ)αδ ) ι

(
dvu

δ
0

)

and note that the left-hand side is unchanged as it is already invariant

ι (ι (dvu
α
0)) = ι (dvu

α
0) .

Not only this but it is clear to see that

ι ((ϑ)αδ ) =


1 if α = δ,

0 if α 6= δ.

Consequently, ι (ϑ) = Idq, where Idq is the q × q identity matrix, and so its

determinant is 1. Using the property

ι (det (ϑ)) = det (ι (ϑ))

of invariantization (2.31) means it is obvious to see that

ι (det (ϑ)) = 1 implies det (ϑ) 6= 0,

and so the inverse ϑ−1 exists. From here onwards we are more interested in the

components of the inverse matrix ϑ−1, so we introduce θ0 = ϑ−1. The shifts of

θ0 are

θJ = SJθ0.

In all that follows, Euα represents the Euler operator with respect to the

original variables, uα, and Eκβ represents the Euler operator with respect to the
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generating invariants, κβ.

Proposition 2.6.5. The invariantization of the original Euler–Lagrange equa-

tions is

ι (Euα (L)) =
(
Hβα
)†

Eκβ (Lκ) , (2.55)

where (
Hβα
)†

=
∑
J

S−J

(
ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

))
S−J. (2.56)

Proof. The exterior derivative of the generating invariant κβ is

dvκ
β =

∂κβ

∂uδJ
dvu

δ
J; (2.57)

this was used without introducing it in the proof of Lemma 2.6.2. It is stated

here because is central to the calculations. We show how to construct invari-

ant difference forms; developing the theory of an invariant difference variational

bicomplex, that is comparable to developments for the differential case in the

PDEs paper by Kogan and Olver [19]. For the difference case the horizontal

forms ∆i are all invariant, as the lattice remains unchanged. In the differential

case or differential-difference it is possible that the independent variables can be

changed by a Lie group action. The invariant difference forms have already been

defined and are

ι (dvu
α
0) = (ϑ)αδ dvu

δ
0.

Inverting the matrix on the right-hand side gives

(θ0)δα ι (dvu
α
0) = dvu

δ
0,

which can be shifted to get

(θJ)δα SJι (dvu
α
0) = dvu

δ
J.

The key identity is

ι
(

(θJ)δα

)
SJι (dvu

α
0) = ι

(
dvu

δ
J

)
, (2.58)

where ι (SJι (dvu
α
0)) = SJι (dvu

α
0) as the invariantization (2.31) of an invariant is
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unchanged. So, by invariantizing (2.57), we obtain

ι
(

dvκ
β
)

= ι

(
∂κβ

∂uδJ

)
ι
(

dvu
δ
J

)
,

and hence substituting in (2.58) yields

ι
(

dvκ
β
)

=
∑
J

ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

)
SJι (dvu

α
0) . (2.59)

Let

Hβα =
∑
J

ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

)
SJ, (2.60)

so that (2.59) is

ι
(

dvκ
β
)

= Hβα ι (dvu
α
0) . (2.61)

Lemma 2.6.2 implies dvλ
u = dvλ

κ. By invariantizing (2.31) both sides of this

equation, we obtain

∑
ι (Euα (L)) ι (dvu

α
0) ∧ vol =

∑
Eκβ (Lκ) ι

(
dvκ

β
)
∧ vol, (2.62)

where ι
(
Eκβ (Lκ)

)
= Eκβ (Lκ), as Eκβ (Lκ) is invariant. Also ι (vol) = vol as vol

does not depend on the Lie group action. From (2.61),

∑
ι (Euα (L)) ι (dvu

α
0) ∧ vol =

∑
Eκβ (Lκ)Hβα ι (dvu

α
0) ∧ vol.

Then Lemma 2.6.4 gives

∑
ι (Euα (L)) ι (dvu

α
0) ∧ vol =

∑(
Hβα
)†

Eκβ (Lκ) ι (dvu
α
0) ∧ vol.

Therefore, pulling out the coefficients of the invariant difference forms,

ι (Euα (L)) =
(
Hβα
)†

Eκβ (Lκ) ,

where (
Hβα
)†

=
∑
J

S−J

(
ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

))
S−J.
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Accordingly, the invariantized original Euler–Lagrange equations are

(
Hβα
)†

Eκβ (Lκ) = 0. (2.63)

Remark 2.6.6. The adjoint operators (2.56) can be worked out independent of the

form of the invariant Lagrangian. For the adjoint operators only the Lie group

action, normalization equations (2.16) and generating invariants are required.

Example 2.6.1. The running example has only one dependent variable, so we

adapt notation for H†, to include the generating invariant as a subscript, i.e., H†λ
and H†κ.

The difference operator H†κ for this example is

H†κ =
∑
J

S−J

[
ι

(
∂κ

∂uJ

)
ι (θJ)

]
S−J. (2.64)

We differentiate κ with respect to u0,0, u1,1, and u1,−1, as these are the only

shifts of the dependent variable in the definition of the generating invariant κ.

Invariantizing (2.31) these derivatives gives

ι

(
∂κ

∂u0,0

)
= κ− 1, ι

(
∂κ

∂u1,1

)
= −κ, ι

(
∂κ

∂u1,−1

)
= 1.

As the action (2.23) is a translation and scaling, d (g · u0,0) /du0,0 = a, where a

comes from the scaling part of the group action. Taking the inverse of this and

applying the value of the parameter on the moving frame (2.26) gives

θ0,0 = u1,1 − u0,0.

To find all relevant ι (θJ), shift the above equation by all relevant values J and

invariantize (2.31):

ι (θ0,0) = 1, ι (θ1,1) =
λ− 1

κ1,1
, ι (θ1,−1) = λ− κ.
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Substituting these results into the formula (2.64) gives

H†κ = (λ−1,1 − κ−1,1) S−1
1 S2 +

(1− λ−1,−1)κ−1,−1

κ
S−1

1 S−1
2 + (κ− 1) id.

Next, we go through similar calculations for

H†λ =
∑
J

S−J

[
ι

(
∂λ

∂uJ

)
ι (θJ)

]
S−J. (2.65)

The components are

ι

(
∂λ

∂u0,0

)
= λ− 1, ι

(
∂λ

∂u1,1

)
= −λ, ι

(
∂λ

∂u2,0

)
= 1,

and

ι (θ0,0) = 1, ι (θ1,1) =
λ− 1

κ1,1
, ι (θ2,0) =

(1− λ) (κ1,1 − λ1,1)

κ1,1
.

Substituting these into (2.65) gives

H†λ =
(1− λ−2,0) (κ−1,1 − λ−1,1)

κ−1,1
S−2

1 +
λ−1,−1 (1− λ−1,−1)

κ
S−1

1 S−1
2 + (λ− 1) id.

These two adjoint linear difference operators are the same as (2.48) found in

Example 2.4.3. Using Eκ (Lκ) and Eλ (Lκ) from before one can then find the

invariant formulation of the Euler–Lagrange equations using Proposition 2.6.5.

There is a second way to get the invariant formulation of the Euler–Lagrange

equations. This produces a different formula for the adjoint linear difference

operators (2.56) compared to the one found in Proposition 2.6.5. However, it

achieves the same results as the adjoint operators (2.56) in Proposition 2.6.5,

and more interestingly it demonstrates a link between the order of invariantizing

and shifting.

Lemma 2.6.7. The invariantization of the original Euler–Lagrange equations is

ι (Euα (L)) =
(
Hβα
)†

Eκβ (Lκ) , (2.66)
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where
(
Hβα
)†

is a difference operator given by

(
Hβα
)†

=
∑
J

ι

(
∂κβ−J
∂uα0

)
S−J. (2.67)

Proof. Knowing that the exterior derivative is coordinate independent allows us

to manipulate the right-hand side of (2.54), using (2.57) and Lemma 2.6.4, so

that the difference form which remains is dvu
α
0 , as follows:

RHS =
∑

Eκβ (Lκ)
∂κβ

∂uαJ
dvu

α
J ∧ vol

=
∑∑

J

∂κβ−J
∂uα0

S−J
(
Eκβ (Lκ)

)
dvu

α
0 ∧ vol. (2.68)

Therefore, invariantizing (2.31) the left-hand side of (2.54) and the right-hand side

of (2.68) gives, after dropping the summation over n and extracting components

of difference forms,

ι (Euα (L)) =
∑
J

ι

(
∂κβ−J
∂uα0

)
S−J

(
Eκβ (Lκ)

)
.

where ι
(
S−J

(
Eκβ (Lκ)

))
= S−J

(
Eκβ (Lκ)

)
as this is already invariant. Writing

(
Hβα
)†

=
∑
J

ι

(
∂κβ−J
∂uα0

)
S−J,

gives the result.

Corollary 2.6.8. As a consequence of Proposition 2.6.5 and Lemma 2.6.7 the

two representations of the linear difference operators
(
Hβα
)†

are equivalent when

acting on Eκβ (Lκ). Therefore,

∑
J

S−J

[
ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

)
Eκβ (Lκ)

]
=
∑
J

ι

(
∂κβ−J
∂uα0

)[
S−JEκβ (Lκ)

]
.

(2.69)

This is a new identity that gives a relationship between invariantization that is

done before and after a shift.
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2.6.2 How the difference form theory relates to using the addi-

tional variable trick

In Section 2.4 we considered the first-order differential invariants

IK,J;t = ρK ([u]) · duJ

dt
.

The components of these first-order differential invariants are

IαK,J;t = ρK ([u]) ·
duαJ
dt

,

so

IαK,J;t =

(
∂ (g · uαJ)

∂uδJ

) ∣∣∣∣
g=ρK([u])

duδJ
dt

=

(
∂ (g · uαJ)

∂uδJ

) ∣∣∣∣
g=ρK([u])

(
uδJ

)′
.

For J = K = 0, this gives the first-order generating invariants

Iα0,0;t =

(
∂ (g · uα0)

∂uδ0

) ∣∣∣∣
g=ρ0([u])

(
uδ0

)′
= (ϑ)αδ

(
uδ0

)′
= σα, (2.70)

and so (
uδ0

)′
= (θ0)δα σ

α.

To find the invariants ι
((
uδJ
)′)

one shifts the above formula by J

(
uδJ

)′
= (θJ)αδ SJσ

α,

and then invariantizes (2.31):

ι

((
uδJ

)′)
= ι
(

(θJ)δα

)
SJσ

α. (2.71)

Here the invariantization in the last line leaves SJσ
α unchanged, as it is already

invariant.

We now inspect the differential-difference invariants dκβ/dt. The aim is to

show by using (2.71) that we can achieve the same differential-difference syzygies
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(2.36) with linear difference operators (2.60). Thus, by direct computation

dκβ

dt
=
∂κβ

∂uδJ

(
uδJ

)′
= ι

(
∂κβ

∂uδJ

)
ι

((
uδJ

)′)
=
∑
J

ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

)
SJσ

α

= Hβασα.

This shows that the method of using the additional variable t gives the same linear

difference operators as in the difference forms theory. The generating first-order

invariants σα in effect play the same role as ι (dvu
α
0) does in the difference form

theory. Likewise, the first-order invariants ι
((
uδJ
)′)

play the role of ι
(
dvu

δ
J

)
in

the difference forms theory and dvu
α
0 plays a similar role to (uα0)′. Using these

similarities we now prove several propositions for both the additional variable

and difference form methods.

Proposition 2.6.9. The following identity holds

Euα (L) dvu
α
0 ∧ vol =

(
Hβα
)†

Eκβ (Lκ) ι (dvu
α
0) ∧ vol. (2.72)

Proof. From the proof of Proposition 2.6.5 the identity

ι (Euα (L)) ι (dvu
α
0) ∧ vol =

(
Hβα
)†

Eκβ (Lκ) ι (dvu
α
0) ∧ vol,

implies

Euα (L) dvu
α
0 ∧ vol−

(
Hβα
)†

Eκβ (Lκ) ι (dvu
α
0) ∧ vol ∈ Ker (ι) ,

where this is invariant under the group action. The only (p, 1)-form which exists

with ι (Ω) = Ω and Ω ∈ Ker (ι) is Ω = 0. Therefore, this proves the identity.

Next, we prove identity (2.43) in Proposition 2.5.2 by implementing a similar

approach.
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Proposition 2.6.10. The following identity holds

Euα (L) (uα0)′ =
(
Hβα
)†

Eκβ (Lκ)σα. (2.73)

Proof. Multiply the main result in Proposition 2.6.5 by σα to obtain

ι (Euα (L))σα =
(
Hβα
)†

Eκβ (Lκ)σα.

Consequently,

Euα (L) (uα0)′ −
(
Hβα
)†

Eκβ (Lκ)σα ∈ Ker (ι) ,

where this is invariant under the group action. Similar to the proof of the previous

proposition, the only function F (uα0)′ which is invariant under the group action

and is an element of Ker (ι) is F = 0, which proves the identity.

This proves the formula (2.43) in Proposition 2.5.2 which completes the ex-

tension to P∆Es of the main theorem in the paper [26] by Mansfield et al. Now

we use this identity to prove another result for the divergence terms. Note the di-

vergence terms first appeared in the calculation of the Euler–Lagrange equations

in (2.2). Also recall the additional independent variable t method (2.5).

Proposition 2.6.11. The divergence terms

Div (Au) =
∂L

∂uαJ

duαJ
dt
−
(

S−J
∂L

∂uαJ

)
duα

dt
,

Div (Aκ) =
∂Lκ

∂κβJ

dκβJ
dt
−

(
S−J

∂Lκ

∂κβJ

)
dκβ

dt
,

Div (AH) = Eκβ (Lκ)Hβασα −
(
Hβα
)†

Eκβ (Lκ)σα,

have the following relationship

Div (Au) = Div (Aκ) + Div (AH) . (2.74)

Proof. In order to effect the variation, we set uα = uα (t) where the group action
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acts trivially on t and compare

dL

dt
= Euα (L) (uα0)′ + Div (Au) , (2.75)

with the same calculation in terms of the invariants. (This is the same result as

(2.2) but replacing wα with (uα)′.) Note that dL/dt = dLκ/dt, so

dLκ

dt
=
∂Lκ

∂κβJ

dκβJ
dt

=
∂Lκ

∂κβJ
SJ

dκβ

dt

=

(
S−J

∂Lκ

∂κβJ

)
dκβ

dt
+ Div (Aκ)

= Eκβ (Lκ)
dκβ

dt
+ Div (Aκ)

= Eκβ (Lκ)
(
Hβασα

)
+ Div (Aκ)

=

((
Hβα
)†

Eκβ (Lκ)

)
σα + Div (Aκ) + Div (AH) .

(2.76)

Thus, using the identity in Proposition 2.6.10 and comparing (2.75) to (2.76)

gives the result.

Let the divergence terms be equal to

Div (Au) =
∂L

∂uαJ

duαJ
dt
−
(

S−J
∂L

∂uαJ

)
duα

dt
= Dni

(
Aiα (n, [u]) (uα)′

)
,

Div (Aκ) =
∂Lκ

∂κβJ

dκβJ
dt
−

(
S−J

∂Lκ

∂κβJ

)
dκβ

dt
= Dni

(
F iβ (n, [κ])

(
κβ
)′)

,

Div (AH) = Eκβ (Lκ)Hβασα −
(
Hβα
)†

Eκβ (Lκ)σα = Dni
(
H i
α (n, [κ])σα

)
,

for some difference operators Aiα, F iβ and H i
α. In Section 2.10, these divergence

terms will be vital for calculating the conservation laws.

Remark 2.6.12. The divergence Div (Aκ) is linear in dκβ/dt and their shifts, while

Div (AH) is linear in σα and their shifts.
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2.7 A linear action of SL(2) on the plane

In the previous example of finding the invariantized Euler–Lagrange equation,

the matrices ι (θJ) were trivial 1 × 1 matrices. In the following O∆E example

of a linear action of SL(2) on the plane, the matrices ι (θJ) are not 1 × 1 or

diagonal. Therefore, it is a more representative example of the general theory.

This example is taken from the O∆E paper [25], which also explores other SL(2)

actions. By using the same normalization and generating invariants here the

results can be compared with those found in [25]. As this is a O∆E example

replace the multi-index J by j and use Sj to denote j shifts.

Example 2.7.1. Consider the following action of SL(2) on the prolongation space

Pn
(
R2
)
, which has coordinates

(
u1
j , u

2
j

)
. The infinitesimal generators are

va = u1∂u1 − u
2∂u2 , vb = u2∂u1 , vc = u1∂u2 ,

and the action is

g :

u1
0

u2
0

 7→
a b

c d


u1

0

u2
0

 =

ũ1
0

ũ2
0

 , ad− bc = 1.

A Lagrangian has an SL(2) symmetry if it satisfies the symmetry condition,

vr (L) = 0 when L = 0

for r = a, b and c. In this example we assume we have a general Lagrangian that

satisfies this condition.

The normalization used in [25] is

g · u1
0 = 1, g · u1

1 = 0, g · u2
0 = 0,

which gives the values of the parameters on the frame as

a =
u2

1

u1
0u

2
1 − u1

1u
2
0

, b = − u1
1

u1
0u

2
1 − u1

1u
2
0

, c = −u2
0, d = u1

0.
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Also, the generating invariants are

κ1 =
ι
(
u2

2

)
S
(
ι
(
u2

1

)) =
u1

0u
2
2 − u1

2u
2
0

u1
1u

2
2 − u1

2u
2
1

, κ2 = ι
(
u2

1

)
= u1

0u
2
1 − u1

1u
2
0.

Any Lagrangian L with an SL(2) symmetry can be written in the invariant form

Lκ = Lκ
([
κ1
]
,
[
κ2
])

. To use (2.60), we need

ι

(
∂κ1

∂u1
0

)
= κ1, ι

(
∂κ1

∂u1
1

)
= −

(
κ1
)2
, ι

(
∂κ1

∂u1
2

)
=
κ1κ2

κ2
1

,

ι

(
∂κ1

∂u2
0

)
=

1

κ2
, ι

(
∂κ1

∂u2
1

)
= −κ

1

κ2
, ι

(
∂κ1

∂u2
2

)
=

1

κ2
1

,

ι

(
∂κ2

∂u1
0

)
= κ2, ι

(
∂κ2

∂u1
1

)
= 0, ι

(
∂κ2

∂u2
0

)
= 0, ι

(
∂κ2

∂u2
1

)
= 1.

Furthermore,

θ0 =

u1
0

u11
u10u

2
1−u

1
1u

2
0

u2
0

u21
u10u

2
1−u

1
1u

2
0

 ,

which can be shifted to find the matrices θj for all j. The formula for the invari-

antized Euler–Lagrange equations requires the values of the invariantized (2.31)

components of each θj for j = 0, 1, 2:

ι (θ0) =

1 0

0 1

 ,

ι (θ1) =

 0 − 1
κ2

κ2 κ1

 ,

ι (θ2) =

−κ21
κ2

−κ11
κ2

κ1κ2
1

κ11κ
1κ21−κ

2

κ21

 .

The components of the inverse matrices together with the invariantized deriva-

tives of the generating invariants give the values of the linear difference operators
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of the differential-difference syzygies by using (2.60):

H1
1 =

∑
j

ι

(
∂κ1

∂u1
j

)
ι
(

(θj)
1
1

)
Sj + ι

(
∂κ1

∂u2
j

)
ι
(

(θj)
2
1

)
Sj

= κ1 (id− S) ,

H1
2 =

∑
j

ι

(
∂κ1

∂u1
j

)
ι
(

(θj)
1
2

)
Sj + ι

(
∂κ1

∂u2
j

)
ι
(

(θj)
2
2

)
Sj

=
1

κ2
id− κ2(

κ2
1

)2 S2.

H2
1 =

∑
j

ι

(
∂κ2

∂u1
j

)
ι
(

(θj)
1
1

)
Sj + ι

(
∂κ2

∂u2
j

)
ι
(

(θj)
2
1

)
Sj

= κ2 (S + id) ,

H2
2 =

∑
j

ι

(
∂κ2

∂u1
j

)
ι
(

(θj)
1
2

)
Sj + ι

(
∂κ2

∂u2
j

)
ι
(

(θj)
2
2

)
Sj

= κ1S.

The adjoint of these can be found by using (2.56). Consequently, by (2.63), the

invariantized Euler–Lagrange equations are

(id− S−1)κ1Eκ1 (Lκ) + (id + S−1)κ2Eκ2 (Lκ) = 0,

−S−2

(
κ2(
κ2

1

)2 Eκ1 (Lκ)

)
+

1

κ2
Eκ1 (Lκ) + S−1

(
κ1Eκ2 (Lκ)

)
= 0.

(2.77)

When comparing (2.77) with Equation 2.11 found in [25] one will see the results

are the same. However, this is a simpler method of obtaining the result found in

[25].

Remark 2.7.1. The matrix ι (θ1), in this example, is the inverse of the Maurer–

Cartan matrix K0 = ρ1 ([u]) ρ0 ([u])−1 given in the paper [25] on O∆Es. This

occurs when the group action on the dependent variables is of the linear homo-

geneous form

g · uα0 = aα1u
1
0 + · · ·+ aαq u

q
0, α = 1, . . . , q.

When this happens, ι (θJ) =
(
ρJ ([u]) ρ0 ([u])−1

)−1
in general, which can be

written as shifts of concatenating Maurer–Cartan matrices K(i).
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2.8 Examples of different group actions

The action can have a significant impact on the difficulty of calculations in the

moving frame method for finding the invariant Euler–Lagrange equations. To

illustrate this consider the same Lagrangian (2.17) with different Lie group ac-

tions. In this section we use the additional variable t method, used throughout

the running example, to find the invariant Euler–Lagrange equations. Alterna-

tively, one could use the formulas for the invariant Euler–Lagrange equations

found in Section 2.6.

2.8.1 One-parameter group of translations

Example 2.8.1. We start with the most simple example of the moving frame

method, that is, a single translation, v3 in the infinitesimal generators (2.18).

The action of this translation on the original variables is

g : ui,j 7→ ũi,j = ui,j + a. (2.78)

Now using the normalization equation (2.16)

g · u0,0 = 0

the value of the parameter on the frame is

a = −u0,0.

Consequently, the invariantization (2.31) of ui,j is

ι (ui,j) = ui,j − u0,0,

and therefore, let the two generating invariants be

κ = ι (u1,1) = u1,1 − u0,0, λ = ι (u2,0) = u2,0 − u0,0.
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Now to write the Lagrangian (2.17) in terms of the generating invariants we need

ι (u1,−1) in terms of shifts of λ and κ. This is achieved by looking at

κ1,−1 = u2,0 − u1,−1

= λ− ι (u1,−1) ,

which gives

ι (u1,−1) = λ− κ1,−1.

Now using the replacement rule (Theorem 2.4.9) on the Lagrangian (2.17) gives

Lκ =
1

2
ln

∣∣∣∣(λ− κ) (λ− κ1,−1)

(κ1,−1)κ

∣∣∣∣.
Then the Euler operators (2.44) of Lκ with respect to the generating invariants

are

Eκ (Lκ) =
(λ− λ−1,1)κ− 2λ (λ−1,1)

2κ (κ− λ) (κ− λ−1,1)
,

Eλ (Lκ) =
−2λ+ κ1,−1 + κ

2 (κ− λ) (λ− κ1,−1)
.

Next to find the differential-difference syzygies (2.36) extend the action (2.78) to

the first-order jet space

g · dui,j (t)

dt
=

dui,j (t)

dt
.

Therefore, the Lie group action is trivial on the derivative u′i,j . Consequently, take

σ = u′0,0 to be the first-order generating invariant then each u′i,j can be written as

a direct shift of σ, or more precisely u′i,j = Si1Sj2σ. As a result, ι
(
u′i,j

)
= Si1Sj2σ.

Now the first derivative of the generating invariants with respect to the additional

variable t are

dκ

dt
= u′1,1 − u′0,0 = ι

(
u′1,1

)
− ι
(
u′0,0

)
= (S1S2 − id)σ = Hκσ,

dλ

dt
= u′2,0 − u′0,0 = ι

(
u′2,0

)
− ι
(
u′0,0

)
=
(
S2

1 − id
)
σ = Hλσ.
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Consequently, the two linear difference operators (2.60) are

Hκ = S1S2 − id, Hλ = S2
1 − id,

and their adjoint operators (2.56) are

H†κ = S−1
1 S−1

2 − id, H†λ = S−2
1 − id.

Then using the formula in Proposition 2.5.2, the invariantized Euler–Lagrange

equation is

H†λEλ (Lκ) +H†κEκ (Lκ) =
−2λ−2,0 + κ−1,−1 + κ−2,0

2 (κ−2,0 − λ−2,0) (λ−2,0 − κ−1,−1)

− −2λ+ κ1,−1 + κ

2 (κ− λ) (λ− κ1,−1)
− (λ− λ−1,1)κ− 2λ (λ−1,1)

2κ (κ− λ) (κ− λ−1,1)

+
(λ−1,−1 + λ−2,0)κ−1,−1 − 2λ−1,−1 (λ−2,0)

2κ−1,−1 (κ−1,−1 − λ−1,−1) (κ−1,−1 − λ−2,0)
.

2.8.2 Two-parameter group of translations

Example 2.8.2. Another easy example of the moving frame method involves

looking at the action of the two translations. The infinitesimal generators (2.18)

for these two translations are v3 and v4. The action of the translations on the

original variables is

g : ui,j 7→ ũi,j = ui,j + a+ b(−1)m+n+i+j . (2.79)

Now using the normalization equations (2.16)

g · u0,0 = 0, g · u1,0 = 0,

the values of the parameters on the frame are

a =
− (u0,0 + u1,0)

2
, b =

(−1)n+m (u1,0 − u0,0)

2
.
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Consequently, there are two different invariantizations (2.31) of ui,j depending

on the parity of i+ j. For i+ j even the invariantization is

ι (ui,j) = ui,j − u0,0,

and for i+ j odd the invariantization is

ι (ui,j) = ui,j − u1,0.

Now we concentrate on writing the Lagrangian (2.17) in terms of invariants

of this new Lie group action. Take the two generating invariants to be

λ = ι (u2,0) = u2,0 − u0,0, κ = ι (u0,1) = u0,1 − u1,0.

Unlike the running example, not all components of the invariantized Lagrangian

have been worked out in terms of these generating invariants and their shifts.

Here we still require ι (u1,−1) and ι (u1,1) in terms of the generating invariants

and their shifts. To find ι (u1,1) look at the shifted invariant

κ1,0 = u1,1 − u2.0 = ι (u1,1)− λ,

which after rearranging gives ι (u1,1) = κ1,0 +λ and in a similar manner the other

invariant is ι (u1,−1) = −κ0,−1. Using these identities along with ι (u0,0) = 0,

from the normalization, and ι (u2,0) = λ, by definition, the Lagrangian (2.17) is

written in terms of these invariants as

Lκ =
1

2
ln

∣∣∣∣ (κ1,0) (κ0,−1)

(λ+ κ0,−1) (κ1,0 + λ)

∣∣∣∣.
Then the Euler operators (2.44) of Lκ with respect to κ and λ are

Eκ (Lκ) =
κ (λ−1,0 + λ0,1) + 2 (λ−1,0) (λ0,1)

2κ (κ+ λ−1,0) (λ0,1 + κ)
,

Eλ (Lκ) =
−κ1,0 − 2λ− κ0,−1

2 (λ+ κ0,−1) (κ1,0 + λ)
.

Next to find the differential-difference syzygies (2.36) extend the action (2.79)
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to the first-order jet space, which gives

g · dui,j (t)

dt
=

dui,j (t)

dt
.

Similar to the one-parameter group of translations example (Example 2.8.1), the

Lie group action is trivial on the derivative u′i,j . Consequently, with σ = u′0,0,

each u′i,j can be written as a direct shift of σ, or u′i,j = Si1Sj2σ. As a result,

ι
(
u′i,j

)
= Si1Sj2σ. Now the first derivative of the generating invariants with

respect to the additional variable t are

dκ

dt
= u′0,1 − u′1,0 = ι

(
u′0,1

)
− ι
(
u′1,0

)
= (S2 − S1)σ = Hκσ,

dλ

dt
= u′2,0 − u′0,0 = ι

(
u′2,0

)
− ι
(
u′0,0

)
=
(
S2

1 − id
)
σ = Hλσ.

Consequently, the two linear difference operators (2.60) are

Hκ = S2 − S1, Hλ = S2
1 − id,

and their adjoint operators (2.56) are

H†κ = S−1
2 − S−1

1 , H†λ = S−2
1 − id.

Then using the formula in Proposition 2.5.2, the invariantized Euler–Lagrange

equation is

H†λEλ (Lκ) +H†κEκ (Lκ) =
κ1,0 + 2λ+ κ0,−1

2 (λ+ κ0,−1) (κ1,0 + λ)

− κ−1,0 + 2λ−2,0 + κ−2,−1

2 (λ−2,0 + κ−2,−1) (κ−1,0 + λ−2,0)
+
κ0,−1 (λ−1,−1 + λ) + 2 (λ−1,−1) (λ)

2κ0,−1 (κ0,−1 + λ−1,−1) (λ+ κ0,−1)

− κ−1,0 (λ−2,0 + λ−1,1) + 2 (λ−2,0) (λ−1,1)

2κ−1,0 (κ−1,0 + λ−2,0) (λ−1,1 + κ−1,0)

= 0.

This is slightly more complex when compared to the invariant Euler–Lagrange

equation (2.49) attained using the scaling and translation Lie group action.

In the following examples, the calculations of the different invariantized Euler–
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Lagrange equations get unwieldy. So, unless otherwise stated we show the results

for the linear difference operators (2.60), their adjoints (2.56) and the Euler oper-

ators (2.44) of the Lagrangian with respect to the relevant generating invariants.

Of course, the formula in Proposition 2.5.2 can then be used to find the invari-

antized Euler–Lagrange equation for each example.

2.8.3 Dependence on the independent variables

An example of a Lie group that depends on the independent variables has already

been given in Example 2.8.2. Nevertheless, it is appropriate to show a more

substantial example which uses the same Lagrangian (2.17).

Example 2.8.3. Consider the 4-parameter Lie group that has the infinitesimal

generators v1, v2, v3 and v4 from the possible infinitesimal generators (2.18).

The action of the group on ui,j can be written as

g : ui,j 7→ ũi,j = exp
(
a+ b (−1)m+n+i+j

)
ui,j + c+ d (−1)m+n+i+j . (2.80)

However, a more practical representation of the action is

ũi,j = exp (a)
(

cosh (b) + (−1)m+n+i+j sinh (b)
)
ui,j + c+ d (−1)m+n+i+j .

One possible choice of normalization equations (2.16) for this group action is

g · u0,0 = 0, g · u1,1 = 1, g · u1,0 = 1, g · u0,1 = 0,

where the value of the parameters, for this normalization, are

exp (a) cosh (b) =
1

u1,1 − u0,0
+

1

u1,0 − u0,1
,

exp (a) sinh (b) =
(−1)m+n

2

(
1

u1,1 − u0,0
− 1

u1,0 − u0,1

)
,

c = −1

2

(
u0,0

u1,1 − u0,0
+

u0,1

u1,0 − u0,1

)
,

d = −(−1)m+n

2

(
u0,0

u1,1 − u0,0
− u0,1

u1,0 − u0,1

)
.

This gives a similar split in the invariantization (2.31) of ui,j as the 2-parameter
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Lie group of translations has in Example 2.8.2. This is because the 4-parameter

Lie group depends on the parity of i+ j again. The invariantization of ui,j is

ι (ui,j) =
ui,j − u0,0

u1,1 − u0,0
, for i+ j even,

ι (ui,j) =
ui,j − u0,1

u1,0 − u0,1
, for i+ j odd.

In this example take κ = ι (u0,−1) and λ = ι (u2,0) as the generating invariants.

It follows that ι (u1,−1) = (λ− 1)κ1,0 +1 is the other relation needed to write the

invariantized Lagrangian in terms of the generating invariants and their shifts:

Lκ =
1

2
ln

∣∣∣∣κ1,0 (1− λ)− 1

κ1,0 − 1

∣∣∣∣.
Accordingly, the Euler operators (2.44) of Lκ with respect to κ and λ are

Eκ (Lκ) = − λ−1,0

2 (κ− 1) ((λ−1,0 − 1)κ+ 1)
,

Eλ (Lκ) =
κ1,0

2 + (2λ− 2)κ1,0
.

We now find the differential-difference syzygies. Firstly, the induced action is

g · u′i,j = exp
(
a+ b (−1)m+n+i+j

)
u′i,j , (2.81)

and applying the parameters on the frame to this gives the first-order invariants

ι
(
u′i,j
)

=
1

2

((
1 + (−1)i+j

) 1

u1,1 − u0,0
+
(

1− (−1)i+j
) 1

u1,0 − u0,1

)
u′i,j ,

for each i and j. Consequently, there are two different invariantizations (2.31) of

u′i,j , depending on the parity of i+ j, specifically

ι
(
u′i,j
)

=
u′i,j

u1,1 − u0,0
, for i+ j even,

ι
(
u′i,j
)

=
u′i,j

u1,0 − u0,1
, for i+ j odd.

The first-order generating invariant is then

σ =
u0,0

u1,1 − u0,0
.

64



2.8. EXAMPLES OF DIFFERENT GROUP ACTIONS

Looking at the derivative of the generating invariants with respect to t,

dκ

dt
=
u′0,−1 − u′0,1
u1,0 − u0,1

−
(u0,−1 − u0,1)

(
u′1,0 − u′0,1

)
(u1,0 − u0,1)2 ,

dλ

dt
=
u′2,0 − u′0,0
u1,1 − u0,0

−
(u2,0 − u0,0)

(
u′1,1 − u′0,0

)
(u1,1 − u0,0)2 ,

(2.82)

and using the replacement rule (Theorem 2.4.9) to invariantize (2.31) the right-

hand side of these equations gives

dκ

dt
= ι
(
u′0,−1

)
− κ ι

(
u′1,0

)
+ (κ− 1) ι

(
u′0,1

)
,

dλ

dt
= ι
(
u′2,0

)
− λ ι

(
u′1,1

)
+ (λ− 1) ι

(
u′0,0

)
.

(2.83)

A small complication arises here when the values ι
(
u′i,j

)
need to be found in

terms of the generating invariants and Si1Sj2σ. To find even ι
(
u′i,j

)
is fairly

straightforward and we continue as before by shifting σ in the original variables

by Si1Sj2 and then using the replacement rule. To find odd ι
(
u′i,j

)
one can simplify

the calculations by shifting ι
(
u′0,1

)
in the original variables by Si1Sj−1

2 and then

using the replacement rule and the identity

ι
(
u′0,1

)
=

S2σ

1− κ1,1 (1− λ0,1)
.

Once the values for all ι
(
u′i,j

)
are found in terms of the generating invariants

and Si1Sj2σ, they can be substituted into (2.83) giving the differential-difference

syzygies (2.36)

dκ

dt
=

(1− κ) (1 + (λ0,−1 − 1)κ1,−1)

1− κ1,−1 (1− λ0,−1)
S−1

2 σ − κ (λ0,−1 − 1) (1− κ)

1− (κ2,0) (1− λ1,0)
S1σ

+
κ− 1

1− (κ1,1) (1− λ0,1)
S2σ,

dλ

dt
=
− ((λ− 1)κ0,1 − λ− λ1,1 + 1) (λ0,2 − 1) (κ1,2)− (λ0,2) (λ1,1)

(1 + (λ0,2 − 1)κ1,2) (κ0,1 − 1)
S2

1σ

+
κ0,1 (1− λ) + λ+ λ1,1 − 1

(1 + (λ0,2 − 1)κ1,2) (κ0,1 − 1)
S2

1σ −
λ (κ1,2 − 1) (λ0,2 − 1)

(κ0,1 − 1) (1 + κ1,2 (λ0,2 − 1))
S1S2σ

+ (λ− 1)σ.
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Therefore, the linear difference operators (2.60) are

Hκ =
(1− κ) (1 + (λ0,−1 − 1)κ1,−1)

1− κ1,−1 (1− λ0,−1)
S−1

2 −
κ (λ0,−1 − 1) (1− κ)

1− (κ2,0) (1− λ1,0)
S1

+
κ− 1

1− (κ1,1) (1− λ0,1)
S2,

Hλ =
− ((λ− 1)κ0,1 − λ− λ1,1 + 1) (λ0,2 − 1) (κ1,2)− (λ0,2) (λ1,1)

(1 + (λ0,2 − 1)κ1,2) (κ0,1 − 1)
S2

1

+
κ0,1 (1− λ) + λ+ λ1,1 − 1

(1 + (λ0,2 − 1)κ1,2) (κ0,1 − 1)
S2

1 −
λ (κ1,2 − 1) (λ0,2 − 1)

(κ0,1 − 1) (1 + κ1,2 (λ0,2 − 1))
S1S2

+ (λ− 1) id,

and their adjoints (2.56)

H†κ =
(1− κ0,1) (1 + (λ− 1)κ1,0)

1− κ1,0 (1− λ)
S2 −

κ−1,0 (λ−1,−1 − 1) (1− κ−1,0)

1− (κ1,0) (1− λ)
S−1

1

+
κ0,−1 − 1

1− (κ1,0) (1− λ)
S−1

2 ,

H†λ =
− ((λ−2,0 − 1)κ−2,1 − λ−2,0 − λ−1,1 + 1) (λ−2,2 − 1) (κ−1,2)

(1 + (λ−2,2 − 1)κ−1,2) (κ−2,1 − 1)
S−2

1

+
− (λ−2,2) (λ−1,1) + κ−2,1 (1− λ−2,0) + λ−2,0 + λ−1,1 − 1

(1 + (λ−2,2 − 1)κ−1,2) (κ−2,1 − 1)
S−2

1

− λ−1,−1 (κ0,1 − 1) (λ−1,1 − 1)

(κ−1,0 − 1) (1 + κ0,1 (λ−1,1 − 1))
S−1

1 S−1
2 + (λ− 1) id.

The next example will explore a different normalization of the same group

action in Example 2.8.3 to show some of the subtle differences this can have on

the results. The new choice of normalization shows some computations can be

made simpler than those in Example 2.8.3.

Example 2.8.4. To start the new normalization equations (2.16) are

g · u0,0 = 0, g · u1,1 = 1, g · u1,0 = 1, g · u0,−1 = 0.

The only change from the previous normalization is the substitution of the nor-

malization equation g · u0,−1 = 0 for g · u0,1 = 0. This changes the parameters on
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the frame to

exp (a) cosh (b) =
1

u1,1 − u0,0
+

1

u1,0 − u0,−1
,

exp (a) sinh (b) =
(−1)m+n

2

(
1

u1,1 − u0,0
− 1

u1,0 − u0,−1

)
,

c = −1

2

(
u0,0

u1,1 − u0,0
+

u0,−1

u1,0 − u0,−1

)
,

d = −(−1)m+n

2

(
u0,0

u1,1 − u0,0
− u0,−1

u1,0 − u0,−1

)
.

Likewise, the invariantization (2.31) of ui,j changes to

ι (ui,j) =
ui,j − u0,0

u1,1 − u0,0
, for i+ j even,

ι (ui,j) =
ui,j − u0,−1

u1,0 − u0,−1
, for i+ j odd.

For this case let the two generating invariants be λ = ι (u2,0) and κ = ι (u0,1),

consequently, the invariant Lagrangian is

Lκ =
1

2
ln |1− (κ1,0)λ|,

and so the Euler operators (2.44) of Lκ with respect to κ and λ are

Eκ (Lκ) =
λ−1,0

2 (λ−1,0)κ− 2
,

Eλ (Lκ) =
κ1,0

2 (κ1,0)λ− 2
.

Now to find the differential-difference syzygies again we apply the values of the

parameters on the frame to the induced action (2.81), which gives the invariant

first-order derivatives

ι
(
u′i,j
)

=
1

2

((
1 + (−1)i+j

) 1

u1,1 − u0,0
+
(

1− (−1)i+j
) 1

u1,0 − u0,−1

)
u′i,j ,

for each i, j. As in Example 2.8.3 there are two different invariantizations (2.31)
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of u′i,j , depending on the parity of i+ j, specifically

ι
(
u′i,j
)

=
u′i,j

u1,1 − u0,0
, for i+ j even,

ι
(
u′i,j
)

=
u′i,j

u1,0 − u0,−1
, for i+ j odd.

The most advantageous part of this current normalization is its ease of moving

from the odd to even ι
(
u′i,j

)
. For example, with σ = ι (u0,0) it is clear to see

that

S−1
2 σ =

u′0,−1

u1,0 − u0,−1
= ι
(
u′0,−1

)
.

Here

dκ

dt
=
u′0,1 − u′0,−1

u1,0 − u0,−1
−

(u0,1 − u0,−1)
(
u′1,0 − u′0,−1

)
(u1,0 − u0,−1)2 ,

dλ

dt
=
u′2,0 − u′0,0
u1,1 − u0,0

−
(u2,0 − u0,0)

(
u′1,1 − u′0,0

)
(u1,1 − u0,0)2 ,

(2.84)

so

dκ

dt
= ι
(
u′0,1

)
− κ ι

(
u′1,0

)
+ (κ− 1) ι

(
u′0,−1

)
,

dλ

dt
= ι
(
u′2,0

)
− λ ι

(
u′1,1

)
+ (λ− 1) ι

(
u′0,0

)
.

(2.85)

After working out the values of relevant ι (ui,j), they can be substituted into

(2.85), giving the differential-difference syzygies (2.36)

dκ

dt
= −(κ1,1 − 1) (κ− 1)

(λ0,1) (κ1,1)− 1
S2σ −

κ (λ0,1 − 1) (κ− 1)

(λ0,1) (κ1,1)− 1
S1σ + (κ− 1) S−1

2 σ,

dλ

dt
= −(λ1,1 − 1) (λ− 1)

(κ2,1) (λ1,1)− 1
S2

1σ −
λ (κ2,1 − 1) (λ− 1)

(κ2,1) (λ1,1)− 1
S1S2σ + (λ− 1)σ.

Therefore, the linear difference operators (2.60) are

Hκ = −(κ1,1 − 1) (κ− 1)

(λ0,1) (κ1,1)− 1
S2 −

κ (λ0,1 − 1) (κ− 1)

(λ0,1) (κ1,1)− 1
S1 + (κ− 1) S−1

2 ,

Hλ = −(λ1,1 − 1) (λ− 1)

(κ2,1) (λ1,1)− 1
S2

1 −
λ (κ2,1 − 1) (λ− 1)

(κ2,1) (λ1,1)− 1
S1S2 + (λ− 1) id,
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and the adjoint (2.56) of these are

H†κ = −(κ1,0 − 1) (κ0,−1 − 1)

λ (κ1,0)− 1
S−1

2 −
κ−1,0 (λ−1,1 − 1) (κ−1,0 − 1)

(λ−1,1) (κ0,1)− 1
S−1

1

+ (κ0,1 − 1) S2,

H†λ = −(λ−1,1 − 1) (λ−2,0 − 1)

(κ0,1) (λ−1,1)− 1
S−2

1 −
λ−1,−1 (κ1,0 − 1) (λ−1,−1 − 1)

(κ1,0) (λ)− 1
S−1

1 S−1
2

+ (λ− 1) id.

Remark 2.8.1. An interesting question arises from this example “can we find a

better choice of normalization equations and generating invariants than those in

Example 2.8.4 to give a less complex invariant Euler–Lagrange equation?” The

answer to that question is yes. If we choose two of the normalization equations

(2.16) to be those in the running example (2.25), that is,

g · u0,0 = 0, g · u1,1 = 1,

with the other two say,

g · u0,−1 = 0, g · u1,0 = 1.

Then using the same choice of generating invariants as in the running example,

κ = ι (u1,−1) and λ = ι (u2,0), we get the same invariant Euler–Lagrange equations

as in (2.49). Now why is this the case? Well for this choice of normalization the

invariants ι (ui,j) with even i + j are the same as those in the running example.

Therefore, the generating invariants κ and λ, and the recurrence relations for even

ι (ui,j) are the same as those in (2.32). So, the Lagrangian (2.17) reduces to the

same as before (2.46) and as a consequence has the same Euler operators (2.44)

with respect to the generating invariants (2.47). Additionally, as the relationship

between the generating invariants and ι (ui,j) for even i + j remains the same,

the adjoint operators also remain the same (2.48) meaning the invariant Euler–

Lagrange equations are the same as those in (2.49). Note that the choice of

normalization equations for i+ j odd does not matter in this example. We could
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have used

g · u2,−1 = 2 g · u1,2 = 0,

and the result would remain the same.

The same situation would happen in Example 2.8.2 if we had used the nor-

malization equation g ·u0,0 = 0 and generating invariants as in Example 2.8.1. In

this case Example 2.8.2 would have the same invariant Euler–Lagrange equations

as in Example 2.8.1.

Therefore, for Lagrangians like L in (2.17) with symmetries that depend on

(−1)m+n it might be worth considering only those symmetries without (−1)m+n

and taking the generating invariants to be of the same parity as the Lagrangian.

As this seems to find the best representation of the invariant Euler–Lagrange

equations for these particular types of group actions.

2.8.4 A semi-simple group action SL(2)

Example 2.8.5. Now consider the semi-simple group action of SL(2). The in-

finitesimal generators (2.18) of this action are v1, v3 and v5. However, by taking

the group action to be

g : ui,j 7→ ũi,j =
aui,j + b

cui,j + d
, where ad− bc = 1,

the adapted infinitesimal generators are

va = 2v1, vb = v3, vc = −v5.

Let the normalization equations (2.16) be

g · u1,1 = 1/2, g · u0,0 = 0, g · u1,−1 = −1/2.
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For this normalization the value of the parameters are

a =

√
− u1,1 − u1,−1

4u2
0,0 − 4u0,0u1,1 − 4u1,−1u0,0 + 4u1,1u1,−1

,

b = −
√
− u1,1 − u1,−1

4u2
0,0 − 4u0,0u1,1 − 4u1,−1u0,0 + 4u1,1u1,−1

u0,0,

c =
2u0,0 − u1,1 − u1,−1

2 (u0,0 − u1,−1) (u0,0 − u1,1)

√
− u1,1−u1,−1

4u20,0−4u0,0u1,1−4u1,−1u0,0+4u1,1u1,−1

,

d =
(−u1,1 − u1,−1)u0,0 + 2u1,1u1,−1

2 (u0,0 − u1,−1) (u0,0 − u1,1)

√
− u1,1−u1,−1

4u20,0−4u0,0u1,1−4u1,−1u0,0+4u1,1u1,−1

,

consequently, the invariantization (2.31) of ui,j is

ι (ui,j) = − (u0,0 − ui,j) (u1,1 − u1,−1)

(2u0,0 − 4u1,1 + 2ui,j)u1,−1 + (2u1,1 − 4ui,j)u0,0 + 2ui,ju1,1
.

This invariant can be hard to use, so instead let the generating invariants be

κ =
(u0,0 − u1,1) (u0,2 − u1,−1)

(u0,0 − u1,−1) (u0,2 − u1,1)
=

1 + 2ι (u0,2)

1− 2ι (u0,2)
,

λ =
(u0,0 − u1,1) (u2,0 − u1,−1)

(u0,0 − u1,−1) (u2,0 − u1,1)
=

1 + 2ι (u2,0)

1− 2ι (u2,0)
.

A similar trick for the generating invariants is used in the O∆E paper, [25], for

the SL(2) projective action. Accordingly, the invariants ι (u0,2) and ι (u2,0) can

be written in terms of generating invariants as

ι (u0,2) =
1

2

(
κ− 1

κ+ 1

)
, ι (u2,0) =

1

2

(
λ− 1

λ+ 1

)
,

and so the invariantized Lagrangian in terms of the generating invariants is

Lκ =
1

2
ln

∣∣∣∣ 1λ
∣∣∣∣.

Taking this normalization simplifies the invariant Lagrangian considerably. Con-

sequently, the Euler operators (2.44) of Lκ with respect to κ and λ are

Eκ (Lκ) = 0, Eλ (Lκ) = − 1

2λ
.
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As Eκ (Lκ) = 0, we only need to look at the derivative dλ/dt, which when

invariantized (2.31) is

dλ

dt
= −4λι

(
u′0,0

)
−(λ− 1)λ ι

(
u′1,1

)
+(λ− 1) ι

(
u′1,−1

)
+(λ+ 1)2 ι

(
u′2,0

)
. (2.86)

To find the form of the first-order differential invariants use the induced group

action on u′i,j ,

d (g · ui,j)
dt

=
u′i,j

(cui,j + d)2 ,

and then substitute the value of the parameters on the frame:

ι
(
u′i,j
)

= −
u′i,j (u1,1 − u1,−1)

4 (u0,0 − u1,−1) (u0,0 − u1,1)
.

Here

σ = ι
(
u′0,0

)
= −

u′0,0 (u1,1 − u1,−1)

4 (u0,0 − u1,−1) (u0,0 − u1,1)
,

is the generating first-order differential invariant. This leads to the differential-

difference syzygy (2.36)

dλ

dt
= −4λσ +

4λ (λ− 1) (κ1,1 − λ0,2) S1S2σ

(κ1,1 − 1) (κ− λ)
− 4 (λ− 1)λS1S−1

2 σ

κ1,−1 − 1

+
4 (λ− 1)2 (κ1,−1 − 1)λλ1,1 (κ1,1 − 1) (κ− λ) S2

1σ

τ ([κ] , [λ])
,

where

τ ([κ] , [λ]) = (κ) (λ1,1) (κ1,−1 − λ1,−1) (κ1,1 − 1)

− (κ1,−1 − 1) (κ1,1 − λ0,2) (λ)

+ [(λ1,−1 − 1)κ1,1 + (1− λ0,2)κ1,−1 + λ0,2 − λ1,−1] (λ1,1) (λ) .

Thus, the linear difference operator (2.60) is

Hλ = −4λ id +
4λ (λ− 1) (κ1,1 − λ0,2) S1S2

(κ1,1 − 1) (κ− λ)
− 4 (λ− 1)λS1S−1

2

κ1,−1 − 1

+
4 (λ− 1)2 (κ1,−1 − 1)λλ1,1 (κ1,1 − 1) (κ− λ) S2

1

τ ([κ] , [λ])
,
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and the corresponding adjoint operator (2.56) is

H†λ = −4λ id +
4 (λ−1,−1) (λ−1,−1 − 1) (κ− λ−1,1) S−1

1 S−1
2

(κ− 1) (κ−1,−1 − λ−1,−1)

− 4 (λ−1,1 − 1) (λ−1,1) S−1
1 S2

κ− 1

+
4 (κ−1,−1 − 1) (λ−2,0) (λ−1,1) (κ−1,1 − 1) (κ−2,0 − λ−2,0) S−2

1

τ † ([κ] , [λ])
,

with

τ † ([κ] , [λ]) = (κ−2,0) (λ−1,1) (κ−1,−1 − λ−1,−1) (κ−1,1 − 1)

− (κ−1,−1 − 1) (κ−1,1 − λ−2,2) (λ−2,0)

+ [(λ−1,−1 − 1)κ−1,1 + (1− λ−2,2)κ−1,−1 + λ−2,2 − λ−1,−1] (λ−1,1) (λ−2,0) .

Then as Eκ (Lκ) = 0, the invariantized Euler–Lagrange equation is

H†λEλ (Lκ) = 0.

As is shown in the examples the type of Lie subgroup used can have a signif-

icant impact on the resulting invariantized Lagrangian and invariantized Euler–

Lagrange equations. The calculations involved in the moving frame formulation

are also significantly more difficult for some Lie subgroups. For the Lagrangian

(2.17), possibly the best Lie subgroup, normalization equations and generating

invariants are given in the running example. (Here a 2-parameter Lie group of

scalings and translations is used.) The main advantage is this reduces the La-

grangian and Euler–Lagrange equation down to something quite simple. This

is something which the other Lie subgroups struggle to do. The more param-

eters used, (i.e., the larger the Lie subgroup) the further one can reduce the

Lagrangian down. For example, the SL(2) action reduces the Lagrangian (2.17)

to one generating invariant. However, this comes with the added difficulty of

a more complex group action and relation between the invariants resulting in a

complex expression for the adjoint linear difference operator.

Using a Lie subgroup with fewer parameters, like in Example 2.8.1, results

in nice expressions for the adjoint linear difference operators but does not sim-

73



CHAPTER 2. VARIATIONAL P∆ES: RECTANGULAR MESH

plify the Lagrangian significantly resulting in difficult expressions for the Euler

operators of the Lagrangian with respect to the generating invariants. Using Lie

subgroups which involve the independent variable (and partitioning) comes with

its own set of complications. The normalization equations need to be chosen so

that the invariantization (2.31) of ui,j on the odd (even) part of the lattice has

only variables ui,j from the odd (even) part.

It is currently not yet fully understood why using a particular Lie subgroup

will give better reductions of the invariant Euler–Lagrange equations. It appears

using the entire Lie group may in fact be the least optimal choice for some ex-

amples. As a result this topic deserves further investigation.

Different Lagrangians invariant under a particular Lie group will need a dif-

ferent choice of Lie subgroup, normalization equations and generating invariants.

Remark 2.6.6 helps find the best choice of these by allowing one to calculate the

adjoint operators (2.56) individually for different Lie subgroups, normalization

equations and generating invariants to find the most suitable choice for a partic-

ular invariant Lagrangian and its Euler operators. Importantly for P∆Es (with

two generating invariants) there exists a syzygy between the two generating in-

variants meaning if one has a solution to the Euler–Lagrange equation for either

generating invariant the solution for the other can be found (if one can solve the

resulting P∆E from the syzygy). One can find the solution to the original Euler–

Lagrange equation from either generating invariant, (however, for P∆Es this is

difficult.) For O∆Es the number of dependent variables is equal to the number

of generating invariants so there is no syzygy. Solving the Euler–Lagrange O∆Es

is discussed in Section 8 of paper by Mansfield et al. [26].

2.9 On infinitesimal and adjoint action

This section extends the ideas in the O∆Es paper by Mansfield et al. [26] to

P∆Es. For us to state the results for conservation laws, it is essential to introduce

the action of infinitesimal generators of a Lie group on a manifold, including

the adjoint action of the Lie group. Infinitesimal generators and some of their

properties have already been discussed in Section 2.4. Here we start with a more
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rigorous definition of the infinitesimal generator.

Definition 2.9.1. Let G × U → U be a smooth local Lie group action. If γ (t)

is a path in G with γ (0) = e, the identity element in G, then

v =
d

dt

∣∣∣∣
t=0

γ (t) · u (2.87)

is called the infinitesimal generator of the group action at u ∈ U , in the direction

γ′ (0) ∈ TeG, where TeG is the tangent space to G at e. In coordinates, the

components of the infinitesimal generator are Qα = v (uα) so

v = Qα
∂

∂uα
.

The infinitesimal generator is extended to the prolongation space Pn (Rq) by

the prolongation formula

v (uα) =
d

dt

∣∣∣∣
t=0

γ (t) · uαJ = QαJ = SJQ
α,

for all J in the domain (see Chapter 6 in [15]).

Therefore, in coordinates, the prolonged infinitesimal generator is

v = QαJ
∂

∂uαJ
, (2.88)

this is a generalization of (2.19).

Lemma 2.9.2. If a Lagrangian L (n, [u]) is invariant under the Lie group ac-

tion G ×M → M, the components of the infinitesimal generator of the group

action from Definition 2.9.1 form the characteristic of a variational symmetry of

L (n, [u]), as defined in Definition 2.2.1.

Proof. The Lagrangian L is invariant so

L (n, [u]) = L (n, g · [u])

for all g, where g ·[u] represents the action of the group on the dependent variables
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and finitely many of their shifts. Thus,

0 =
d

dt

∣∣∣∣
t=0

L (n, γ (t) · [u]) = v (L) = QαJ
∂L

∂uαJ
.

By Definition 2.2.1, the components Qα of the infinitesimal generator are the

components of the characteristic of a variational symmetry of L.

By the same reasoning as in the O∆Es paper [26] the elements γ′ (0) ∈ TeG

determine each of the infinitesimal generators, with the remainder of the path in

G being immaterial. A property of the tangent space TeG is that it is isomorphic

to the Lie algebra g, where g is the set of right-invariant vector fields on G.

The right-invariance yields a Lie algebra homomorphism from g to the set X of

infinitesimal generators of symmetries (see [28]). Further, if the group action is

faithful, that is, there are no group elements g (except the identity element) such

that g · u = u for all u ∈ U , then this is an isomorphism.

Now we provide details on how to obtain the adjoint representation of g

from [26]. Let G be an R-dimensional Lie group. The Lie group G can be

parameterized by a =
(
a1, ..., aR

)
in a neighbourhood of the identity, e, where the

general group element is Γ (a) and the identity element of the group is Γ (0) = e.

Let the action of G on the local coordinates, u =
(
u1, ..., uq

)
on U , be û = Γ (a)·u.

Varying the parameters ar one by one in the process above yields R infinitesimal

generators,

vr = Qαr (n,u) ∂uα , where Qαr =
∂ûα

∂ar

∣∣∣∣
a=0

. (2.89)

These form a basis for X . As the set of infinitesimal generators of symmetries,

X , is homomorphic to the Lie algebra, g, the adjoint representation of G on g

gives rise to the adjoint representation of G on X . Given g ∈ G, the adjoint

representation Adg is the tangent map on g induced by the conjugation h 7→

ghg−1. The corresponding adjoint representation on X is expressed by a matrix,

Ad (g) = (asr), which is obtained in the following way.

First calculate a basis for X ,

vr = Qαr (n,u) ∂uα , r = 1, ..., R.
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Then let ũ = g · u and define

ṽr = Qαr (n, ũ) ∂ũα , r = 1, ..., R.

Now to determine Ad (g), express each vr in terms of ṽ1, ..., ṽR and use the

identity

vr = asrṽs, where ṽs := vs|z 7→g·z=z̃ . (2.90)

As vr and ṽr are known for r = 1, . . . , R, one can read off the components

asr of the adjoint representation of g. Additionally, by regarding the infinitesimal

generators as differential operators and applying the left-hand side of the identity

(2.90) to each ũα in turn, one obtains via the chain rule

vr (ũα) =

(
∂ũα

∂uβ

)
Qβr (n,u) , (2.91)

where ∂ũα/∂uβ denotes the α row and β column component of the Jacobian

matrix. Similarly, applying the right-hand side of (2.90) to each ũα in turn gives

asrṽs (ũα) = asrQ
α
s (n, ũ) . (2.92)

Combining the results (2.91) and (2.92) yields

(
∂ũα

∂uβ

)
Qβr (n,u) = asrQ

α
s (n, ũ) . (2.93)

This identity is extended on to the prolongation space Pn (Rq) where points

in that space include coordinates of the form uK which lie in this domain.

The infinitesimal generators vr, prolonged to all variables uK for all K in the

domain, satisfy (2.90). Applying this identity to uJ gives the formula

(
∂ũαJ

∂uβJ

)
Qβr (n + J,uJ) = asrQ

α
s (n + J, ũJ) . (2.94)

2.10 Conservation laws

For ODEs [9, 11, 22], PDEs [10] and O∆Es [25, 26] it has been shown that in

general, the conservation laws are not invariant. However, they are equivariant
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and they can be written in terms of the invariants and the moving frame. For

P∆Es, the key result is that the R conservation laws can be written in the form

Dni{V
i
s a

s
r|g=ρ0([u])} = 0, r = 1, . . . , R, (2.95)

where asr|g=ρ0([u]) are the components of the adjoint representation of ρ0 ([u]) and

V i
s are invariants for each i.

We use the same reasoning as is given in the O∆Es paper by Mansfield et

al. in the calculation of the Euler–Lagrange equations and boundary terms. In

terms of the original variables, suppose that the dummy variable t effecting the

variation is a group parameter for G, under which the Lagrangian is invariant.

Then the resulting boundary terms yield conservation laws; this is the difference

version of Noether’s theorem (Theorem 2.2.2). So it is useful to identify t with a

group parameter by considering the following path in G:

t 7→ γr (t) = Γ
(
a1 (t) , . . . , aR (t)

)
, where ar (t) = t and al (t) = 0, l 6= r. (2.96)

We know that a 7→ Γ (a) expresses the general group element in terms of the

coordinates a. On this path, each (uα0 )′ at t = 0 is an infinitesimal generator,

from (2.89).

For the invariantized calculation, we follow essentially the same route to the

result, identifying the dummy variable effecting the variation with each group

parameter in turn. Remember that Lκ is a function of κ with each κβ a function

of u and their shifts. The dependent variables uα depend on t, so Lκ depends on

t. The identity

dLκ

dt
=
(
Hβα
)†

Ekβ (Lκ)σα + Div (Aκ) + Div (AH) ,

=
(
Hβα
)†

Ekβ (Lκ)σα + Dni

(
F iβ (n, [κ])

(
κβ
)′)

+ Dni
(
H i
α (n, [κ])σα

)
,

(2.97)

is given in the proof of Proposition 2.6.11 and is important here. Recall Remark

2.6.12 which states that Div (Aκ) is linear in
(
κβ
)′

and their shifts, while Div (AH)

is linear in σα and their shifts. As t is a group parameter and each κβ is invariant,

78



2.10. CONSERVATION LAWS

(
κβ
)′

= 0. As a consequence, (2.97) reduces to

(
Hβα
)†

Ekβ (Lκ)σα + Dni
(
H i
α (n, [κ])σα

)
= 0, (2.98)

so Dni
(
H i
α (n, [κ])σα

)
= 0 on all solutions of the invariantized Euler–Lagrange

equations, i.e., when (
Hβα
)†

Ekβ (Lκ) = 0. (2.99)

We now derive the conservation laws from this condition.

Proposition 2.10.1. Suppose that the conditions of Proposition 2.5.2 hold.

Write

H i
α (n, [κ])σα = Ci,Jα SJ (σα) (2.100)

where the H i
α (n, [κ]) come from Dni

(
H i
α (n, [κ])σα

)
and each Ci,Jα depends only

on n, κ and its shifts. Let Qαs be the component of the matrix of characteristics

corresponding to the dependent variable uα0 and the group parameter as. Then

the R conservation laws amount to

Dni
(
Ci,Jα SJ{ι (Qαs ) asr|g=ρ0([u])}

)
= 0. (2.101)

That is, to obtain the conservation laws, it is sufficient to make the replacement

σα 7→ {Q̃αs asr}|g=ρ0([u]) = ι (Qαs ) asr|g=ρ0([u]) (2.102)

in each Dni
(
H i
α (n, [κ])σα

)
, with Q̃αs = g ·Qαs (n,u) = Qαs (n, ũ).

Proof. Recall that

σα = ρ0 ([u]) · (uα0)′ =

(
d (g · uα0)

dt

) ∣∣∣∣
g=ρ0([u])

. (2.103)

To obtain the conservation laws, conflate t with the group parameter ar, making

the replacement

ρ0 ([u]) · (uα0)′ 7→ d

dt

∣∣∣∣
t=0

ρ0 ([u]) · γr (t) · uα0 (2.104)
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in Dni
(
H i
α (n, [κ])σα

)
, where γr (t) is the path defined in (2.96). For any g ∈ G

d

dt

∣∣∣∣
t=0

(g · γr (t) · uα0) =

∂ (g · γr (t) · uα0)

∂
(
γr (t) · uβ0

)
∣∣∣∣

t=0

(
d

dt

∣∣∣∣
t=0

γr (t) · uβ0
)

=
∂ (g · uα0)

∂uβ0

(
d

dt

∣∣∣∣
t=0

γr (t) · uβ0
)
.

(2.105)

Using (2.94) yields

d

dt

∣∣∣∣
t=0

(g · γr (t) · uα0) =
∂ (g · uα0)

∂uβ0
Qβr = Q̃αs a

s
r.

As a result, setting g = ρ0 ([u]), the required replacement is

σα 7→ ι (Qαs ) asr|g=ρ0([u]). (2.106)

By the prolongation formula SJ (ρ0 ([u])) = ρJ ([u]), the conservation laws

amount to

Dni
(
Ci,Jα (SJι (Qαs )) asr|g=ρJ([u])

)
= 0. (2.107)

As the adjoint is a group representation

als|g=ρJ([u]) ·
(
a−1
)s
r
|g=ρ0([u]) = alr|g=ρJ([u])ρ0([u])−1

(with a−1 the inverse adjoint matrix) is invariant, this leads to the following

corollary.

Corollary 2.10.2. The conservation laws for a difference frame may be written

in the form

Dni{V
i
s a

s
r|g=ρ0([u])} = 0, (2.108)

where V i
s are invariant components, specifically

V i
s = Ci,Jα (SJ (ι (Qαl )))

(
als|g=ρJ([u])ρ0([u])−1

)
. (2.109)

As the conservation laws depend only on the terms arising from Div (AH),
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the laws can be calculated for all Lagrangian in the relevant invariant class, in

terms of Eκα (Lκ), independently of the precise form that Lκ = Lκ (n, [κ]) takes.

Now using Proposition 2.6.5 we can derive a useful result for the divergence

term Div (AH).

Corollary 2.10.3. The divergence term Div (AH) is given by

Div (AH) =
∑
J

(SJ − id)

[
S−J

(
ι

(
∂κβ

∂uαJ

)
ι
(

(θJ)δα

)
Eκβ (Lκ)

)
σα
]
.

Proof. The divergence term is

Div (AH) = Eκβ (Lκ)
(
Hβασα

)
−
((
Hβα
)†

Eκβ (Lκ)

)
σα. (2.110)

The formulas for Hβα and
(
Hβα
)†

in Proposition 2.6.5 give

Eκβ (Lκ)
(
Hβασα

)
=
∑
J

Eκβ (Lκ) ι

(
∂κβ

∂uαJ

)
ι
(

(θJ)δα

)
SJσ

α,

(
Hβα
)†

Eκβ (Lκ)σα =
∑
J

S−J

(
Eκβ (Lκ) ι

(
∂κβ

∂uαJ

)
ι
(

(θJ)δα

))
σα,

Thus, substituting these into (2.110) gives the result.

Remark 2.10.4. Using the formulas for Hβα and
(
Hβα
)†

in Lemma 2.6.7 would

give

Div (AH) =
∑
J

(SJ − id)

[
ι

(
∂κβ−J
∂uα0

)(
S−JEκβ (Lκ)

)
σα

]
.

From this point we can use identities to write different (SJ − id)F in terms

of DniF
i, that is,

(SJ − id)F = Dn1F
1 + · · ·+ DnpF

p,

for each F i with i = 1, . . . , p. As a consequence, the terms H i
α and Ci,Jα in (2.100)

can be found.

Example 2.10.1. Here we find the conservation laws of the Lagrangian (2.17)

when considering the group action in the running example of a scaling and trans-

lation (2.23). First, we calculate the divergence term Div (AH), using the Euler
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operators of Lκ with respect to the generating invariants (2.47), linear difference

operators (2.42) and adjoint linear difference operators (2.48). Therefore,

Eκ (Lκ) (Hκσ) =
λ

2κ
S1S−1

2 σ − λ (1− λ)

2κ1,1 (κ− λ)
S1S2σ −

λ (κ− 1)

2κ (κ− λ)
σ,

Eλ (Lκ) (Hλσ) = −(κ− 1) (κ1,1 − λ1,1)

2κ1,1 (κ− λ)
S2

1σ −
λ (κ− 1)

2κ1,1 (κ− λ)
S1S2σ

+
κ− 1

2 (κ− λ)
σ,((

H†κ
)

Eκ (Lκ)
)

=
λ−1,1

2κ−1,1
σ − λ−1,−1 (1− λ−1,−1)

2κ (κ−1,−1 − λ−1,−1)
σ − λ (κ− 1)

2κ (κ− λ)
σ,((

H†λ
)

Eλ (Lκ)
)

= −(κ−2,0 − 1) (κ−1,1 − λ−1,1)

2κ−1,1 (κ−2,0 − λ−2,0)
σ − λ−1,−1 (κ−1,−1 − 1)

2κ (κ−1,−1 − λ−1,−1)
σ

+
κ− 1

2 (κ− λ)
σ.

Using (2.110) the divergence term is

Div (AH) = Eκ (Lκ) (Hκσ)−
((
H†κ
)

Eκ (Lκ)
)

+ Eλ (Lκ) (Hλσ)−
((
H†λ
)

Eλ (Lκ)
)

=
(
S1S−1

2 − id
)( λ−1,1

2κ−1,1
σ

)
+ (S1S2 − id)

(
−λ−1,−1

2κ
σ

)
+
(
S2

1 − id
)(
−(κ−2,0 − 1) (κ−1,1 − λ−1,1)

2κ−1,1 (κ−2,0 − λ−2,0)
σ

)
.

Now we need to write this in the form

Div (AH) = (S1 − id)G1 + (S2 − id)G2.

To do this we use the following identities

(
S1S−1

2 − id
)
F 1 = S1S−1

2 F 1 − F 1 = (S1 − id)
(
S−1

2 F 1
)

+ (S2 − id)
(
−S−1

2 F 1
)
,(

S2
1 − id

)
F 2 = S2

1F
2 − F 2 = (S1 − id)

(
S1F

2
)

+ (S1 − id)F 2,

(S1S2 − id)F 3 = S1S2F
3 − F 3 = (S1 − id)

(
S2F

3
)

+ (S2 − id)F 3.
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Thus, the key divergence term is

Div (AH) = (S1 − id)

(
λ−1,0

2κ−1,0
S−1

2 σ

)
+ (S2 − id)

(
− λ−1,0

2κ−1,0
S−1

2 σ

)
+ (S1 − id)

(
−(κ−1,0 − 1) (κ0,1 − λ0,1)

2κ0,1 (κ−1,0 − λ−1,0)
S1σ

)
+ (S1 − id)

(
−(κ−2,0 − 1) (κ−1,1 − λ−1,1)

2κ−1,1 (κ−2,0 − λ−2,0)
σ

)
+ (S1 − id)

(
−λ−1,0

2κ0,1
S1σ

)
+ (S2 − id)

(
−λ−1,−1

2κ
σ

)
,

from which we find the corresponding values of Ci,Jα (where α = 1 as we take

u = u1) are the following

C1,0,0
1 = −(κ−2,0 − 1) (κ−1,1 − λ−1,1)

2κ−1,1 (κ−2,0 − λ−2,0)
,

C1,0,1
1 = −λ−1,0

2κ0,1
,

C1,1,0
1 = −(κ−1,0 − 1) (κ0,1 − λ0,1)

2κ0,1 (κ−1,0 − λ−1,0)
,

C1,0,−1
1 =

λ−1,0

2κ−1,0
,

C2,0,−1
1 = − λ−1,0

2κ−1,0
,

C2,0,0
1 = −λ−1,−1

2κ
.

(2.111)

Note for P∆Es the values of Ci,Jα are not unique. To obtain the conservation laws

we need the invariantized (2.31) form of infinitesimals restricted to the variable

u

ι
(
Q1

1

)
= 0, ι

(
Q1

2

)
= 1,

and the components of the adjoint matrix on the frame:

a1
1|g=ρ0,0([u]) = 1, a1

2|g=ρ0,0([u]) = 0,

a2
1|g=ρ0,0([u]) =

u0,0

u1,1 − u0,0
, a2

2|g=ρ0,0([u]) =
1

u1,1 − u0,0
.
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Using the formula (2.101) gives the conservation laws

Dn1

{
C1,0,0

1

(
a2
j |g=ρ0,0([u])

)}
+ Dn1

{
C1,0,1

1

(
a2
j |g=ρ0,1([u])

)}
+

Dn1

{
C1,1,0

1

(
a2
j |g=ρ1,0([u])

)}
+ Dn1

{
C1,0,−1

1

(
a2
j |g=ρ0,−1([u])

)}
+

Dn2

{
C2,0,−1

1

(
a2
j |g=ρ0,−1([u])

)}
+ Dn2

{
C2,0,0

1

(
a2
j |g=ρ0,0([u])

)}
= 0,

for j = 1, 2. These expressions are complicated, so we omit writing them explic-

itly.
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Chapter 3

Extension to a non-rectangular

mesh

In this chapter, the results on variational problems for the rectangular mesh are

extended to a non-rectangular mesh. In particular, the snub square tiling, a type

of semi-regular tiling, is explored. We build on a new prolongation space for this

tiling due to Hydon [14], which is summarized in Section 3.1. This enables us to

explore the calculus of variations and its invariantization.

3.1 The prolongation space of the snub square tiling

Most of the current literature considers regular tilings of the plane, that is, tilings

using regular polygons (squares, equilateral triangles and regular hexagons). The

snub square tiling is a semi-regular tiling, that is, its tiling uses more than one

regular polygon. Considering such tilings aids the development towards looking

at completely free mesh, which would have possible applications in numerical

approximations. The material in this section is due to Hydon [14]. The base

points in the snub square mesh (see Figure 3.1) are the vertices of the snub square

tiling (see Figure 3.1b). Given an arbitrary base point, which is labelled 0, the

tiles touching 0 form the following arrangement, called the standard template

(see Figure 3.1a).

Definition 3.1.1. Neighbouring points (vertices) are connected via edges on the

graphs.
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0

65

13

2

74

(a) Standard template.

(b) Tiling1.

Figure 3.1: Snub square standard template and tiling.

Here we introduce steps which allow one to move along edges between different

points in a tiling.

Definition 3.1.2. A step, T, maps a tiling T of the plane to itself, i.e.,

T : T → T .

Steps can be applied more than once, r steps of T being denoted by Tr. Two

steps T1 and T2 are independent if and only if

Tr
1 (J) 6= T2 (J) , Ts

2 (J) 6= T1 (J)

for all r, s ∈ Z and where J represents a particular point in the tiling. We consider

tilings of the plane with at most two independent steps.

Steps we consider consist of a translation between neighbouring points, pos-

sibly followed by a rotation. In the regular square domain, the two independent

steps are the horizontal and vertical translations with no rotations for either. We

now define two independent steps for the snub square tiling. For a brief outline

of other regular and semi-regular tilings, see Appendix B.

The group of symmetries of the mesh include all translations from one point to

another (with a rotation following the translation to map the standard template

on the source point 0, to the standard template on the target.) The rotations

11-uniform n9 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n9.svg” is licensed under CC BY-SA 4.0. This image has been rotated and some
shapes have been added.
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3.1. THE PROLONGATION SPACE OF THE SNUB SQUARE TILING

are integer multiples of π/2. There are also reflections, but these are not used to

describe the prolongation space over 0.

Let T1 denote the translation from 0 to 1 followed by a rotation of π/2

clockwise, and let T2 denote the translation from 0 to 2 followed by a rotation of

π. On Figure 3.1a the step T1 is denoted by the blue arrow and T2 by the red

arrow. So 1 = T1 (0) and 2 = T2 (0). Moreover,

3 = T1T2 (0) ,

4 = T1T2T1T2 (0) ,

5 = T1T2T1T2T1T2 (0) ,

6 = T3
1 (0) ,

7 = T2
1 (0) ,

and

T4
1 = (T1T2)4 = T2

2 = id.

So applying T1 repeatedly to 0 gives the cycle

0 7→ 1 7→ 7 7→ 6 7→ 0,

clockwise around the right-hand square in the standard template, and similarly

applying T1T2 repeatedly cycles anticlockwise around the left-hand square:

0 7→ 3 7→ 4 7→ 5 7→ 0.

Additionally, applying T2 repeatedly cycles between 0 and 2.

A path between 0 and any other point J which may be anywhere in the mesh,

is obtained by applying Tk
1, k ∈ {1, 2, 3} and T2 successively to translate along

the edges between the tiles; this may produce a very long expression for the

path. Note that the order of the steps for the snub square tiling is important.

The steps for the snub square tiling do not commute, as T1T2 (0) 6= T2T1 (0).

Two different paths between 0 and J, P1 and P2 say, differ by a trivial path:

P2 (0) = P2

(
P−1

2 P1 (0)
)
, so P−1

2 P1 is a trivial path (either the identity or a cycle,
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i.e., a closed loop). For instance, if one goes from 0 to 6 in the standard template

via 5, the path is not P1 = T3
1 (0), but could be P2 = T2 (T1T2T1T2T1T2) (0).

Then P−1
2 P1 (0) is the trivial path

0 7→ 1 7→ 7 7→ 6 7→ 5 7→ 4 7→ 3 7→ 0,

which is a cycle (note some of this path goes off the standard template). The

identities T4
1 = (T1T2)4 = T2

2 = id, enable us to factor out such trivial paths: two

paths P1 and P2 are equivalent if and only if P−1
2 P1 = id (modulo the identities).

This means they produce a path between 0 and some point J in the tiling. In the

example above, P2 = T−1
1 (T1T2)4, where T−1

1 is equivalent to T3
1. Consequently,

P2 ≡ P1.

Using equivalence of paths enables one to write complicated paths in a shortest

possible form. Even then, the notation can be cumbersome.

For a function u (or, more generally, a difference form – yet to be defined)

on the mesh, the prolongation space over 0, Pn (U), is the product space giving

the values of u at all points in the mesh. Here, we are not thinking about any

particular function, but rather the space of all functions so uJ can take any value

in R (or C if needed). Here uJ is the value of u at the point J, that is, the

pullback of u by any translation from 0 to J. We talk about the path from 0

to J henceforth, as equivalent paths are counted as the same. We think of the

equivalence class of all paths which take 0 to J. It is important for the calculations

later that we use a single representation of a path from 0 to J.

The structure of the mesh (and hence the ability to distinguish difference

forms from arbitrary discrete forms) is built into this construction, as every path

consists of translations between successive adjacent points (and its points can be

labelled by a set of consecutive integers).

For the snub square tiling, T2 only occurs (in paths) raised to the first power,

whereas T1 can be raised to the power 1, 2 or 3. As in Chapter 2, T∗K denotes the

pullback by TK. To shorten the notation, write J in uJ as a sequence of colons

(:) representing T∗2 and digits k ∈ {1, 2, 3}, representing
(
Tk

1

)∗
. In this chapter

we mainly focus on the case of one dependent variable only. The extension to
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more dependent variables is trivial.

For instance, J = PJ (0), where PJ = T2T3
1T2T1T2T1, gives

uJ = P ∗Ju = T∗1T∗2T∗1T∗2
(
T3

1

)∗
T∗2u,

so uJ = u1:1:3: . Bear in mind that the indices used in going from 0 to J are read

from left to right in the pullback. Therefore, the pullback of PKPJ is P ∗JP
∗
K, and

so P ∗JP
∗
Ku = uJK, where JK represents the concatenation of indices, simplified

by the relations

:: = 0,

1 : 1 : 1 : 1 : = 0,

: 1 : 1 : 1 : 1 = 0,

3 : 3 : 3 : 3 : = 0,

: 3 : 3 : 3 : 3 = 0,

nm = n+m (mod 4) ;

any zeros that occur are deleted and simplification continues until no further

simplification is possible.

One can also use the identities

1 : 1 : 1 = : 3 : ,

3 : 3 : 3 = : 1 : ,

: 1 : 1 : = 3 : 3 ,

: 3 : 3 : = 1 : 1 ,

to keep the representation as short as possible.

In calculations, because we represent the paths from 0 to J with one repre-

sentation the pullback also only has one representation.
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3.2 The non-rectangular difference variational calcu-

lus

Much of the theory for P∆Es in Chapter 2 extends to the non-rectangular case,

with a few subtle differences. The main difference to consider is that the multi-

index J for the P∆Es is now described using a set of consecutive integers. As

much of the theory remains the same, a proof will be given only when required.

The equations hold for all n in Z2. Assume all equations are regular over Z2

[15]. Therefore, n is suppressed and uJ is used to represent u on the fibre nJ. The

J here is the set of integers in the pullback of the path PJ (from 0 to J). Taking

n to be the base point, we must find the Euler operators and Euler–Lagrange

equations in terms of shifts and derivatives. The identity operator remains the

same, that is,

id : n 7→ n, id : f (n) 7→ f (n) , id : uJ 7→ uJ,

but the shift operator becomes

SK : n 7→ nK, SK : f (n) 7→ f (nK) , SK : uJ 7→ uJK,

with K the set of integers in the pullback of the path by PK. If fnJ is a function on

the fibre nJ then the pullback is related to the shift operator by SKfn := T∗KfnK.

The variational problem is to find the extrema of a given functional

L [u] =
∑
n

L (n, [u]) ,

where the sum is over Z2. The extrema are found using

d

dε

∣∣∣∣
ε=0

L [u + εw] = 0,

for all w that vanish on the boundary (or in the appropriate limit, where the

domain is unbounded). It is simple to check that the variation of L (u) in the
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direction w is

d

dε

∣∣∣∣
ε=0

L [u + εw] =
∑
n

wαEuα (L) + Div (Au (n,w)) . (3.1)

Here

Euα = S−J
∂

∂uαJ
, Div (Au (n,w)) =

∑
J

(SJ − id)wαS−J

(
∂L

∂uαJ

)
,

with −J the set of integers in the pullback of the inverse path P−J (path from

J to 0). The divergence terms Div (Au) summed over the domain will only give

boundary terms which are assumed to disappear. Therefore, the extrema satisfy

the system of Euler–Lagrange equations

Euα (L) =
∑
n

S−J
∂L

∂uαJ
=
∑
n

∑
J

∂ (S−JL)

∂uα0
= 0,

and the Euler operator with respect to the original variable uα is

Euα = S−J
∂

∂uαJ
.

Divergence terms are in the kernel of the Euler operator, that is,

Euα (Div (A)) = 0,

for any divergence term Div (A). The systems of Euler–Lagrange equations over

n are

Euα (L) = S−J
∂L

∂uαJ
= 0, α = 1, . . . , q. (3.2)

Example 3.2.1. For an example consider the Lagrangian,

L = ln

(
u: − u0

u1 − u0

)
, (3.3)

and find the Euler–Lagrange equation. Using (3.2) the Euler–Lagrange equation

is

Eu (L) =
u: − u1

(u: − u0) (u1 − u0)
+ S−(1)

(
1

u0 − u1

)
+ S−(:)

(
− 1

u0 − u:

)
= 0
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u0

u3

u1

u:

Figure 3.2: Relevant points for Eu (L).

where S−(1) = S3 and S−(:) = S: , so

Eu (L) =
u: − u1

(u: − u0) (u1 − u0)
+

1

u3 − u0
− 1

u: − u0
= 0. (3.4)

Figure 3.2 shows all the points that are involved in the Euler–Lagrange equation

Eu (L) = 0.

Remark 3.2.1. The Euler–Lagrange equations can also be found using an addi-

tional independent variable t:

d

dt

∣∣∣∣
(uα)′=wα

L [u] = 0.

with (uα)′ = duα/dt. Alternatively, one could also use difference forms and a

vertical derivative, as described in Chapter 2.

3.3 Difference moving frames for a non-rectangular

mesh

The geometric setting for functions on the snub square tiling is represented by its

prolongation space. Coupling this prolongation space with the discrete moving

frame (Definition 2.4.13) leads to a difference moving frame. Therefore, let K

and ρ ([u]) denote the cross-section and frame on n, respectively.

Definition 3.3.1. A difference moving frame for the snub square tiling is a

discrete moving frame on the prolongation space Pn (U) where the cross-section
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over nJ is represented by SJK and this holds for all J.

Remark 3.3.2. This definition also applies to other tilings with two independent

steps (see Appendix B), not just the snub square tiling.

From this definition, a large amount of the content in Chapter 2 can be repli-

cated for the non-rectangular case. This includes all the definitions and propo-

sitions in Section 2.4 that follow after Definition 2.4.13 of the discrete moving

frame. The only change to make for these definitions and propositions is that the

multi-index J now represents the concatenation of indices in the pullback of the

path, PJ, from 0 to J. Therefore, the invariants Iα0,0 = ρ0 ([u]) · uα0 along with

the Maurer–Cartan invariants K(i) = (Siρ ([u])) ρ ([u])−1 with i = 1, :, and their

shifts, provide the set of all invariants. From here if one is using the additional

dummy variable method, the important differential-difference syzygies are still

dκβ

dt
= Hβασα.

These are then found using either method described in Section 2.4. Using differ-

ence forms, as defined in the next section, the linear difference operator

Hβα =
∑
J

ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

)
SJ

from Section 2.6 can be used. The adjoint of a linear difference operator is defined

in the same way as in Section 2.5. Therefore, the adjoint linear operator can be

found and is equivalent to

(
Hβα
)†

=
∑
J

S−J

(
ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

))
S−J,

found in Chapter 2.

3.4 Non-rectangular invariant Euler–Lagrange equa-

tions

To see how Proposition 2.6.5 and its proof carry over to the non-rectangular

case, all that remains is to understand how difference forms can be defined on a
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non-rectangular tiling. The following definition of difference forms is a standard

application of homology theory, developed by Hydon [13].

Let T be an edge-to-edge tiling of R2; this consists of points, edges and tiles

(which need not be the same shape as one another). The tiling splits R2 into

disjoint interiors of tiles, interiors of edges, and points. The points are the vertices

of the polygonal tiles, and the edges link neighbouring points.

The standard (anticlockwise) orientation on R2 leads to a compatible orien-

tation on each tile, which induces an orientation on the edges that bound the

tile; neighbouring tiles that share an edge induce opposite orientations on their

common edge.

Consider what can be deduced directly from the given tiling T . In the fol-

lowing, I is any index.

Let c
(0)
I be the point labelled I; the set of all fundamental 0-chains is the set

of all c
(0)
I . A 0-chain is a linear combination of fundamental 0-chains.

Let c
(1)
I be the edge labelled I, and let c

(2)
I be the tile labelled I; the set of all

fundamental r-chains is the set of all c
(r)
I , and an r-chain is a linear combination

of fundamental r-chains. The vector space of all r-chains is denoted by Λr (T )

Example 3.4.1. Consider the 2-tile system shown in Figure 3.3; taking orien-

tation into account, label the fundamental 2-tiles as c
(2)
1245 and c

(2)
234. The funda-

mental 1-chains are the edges c
(1)
12 , c

(1)
15 , c

(1)
23 , c

(1)
24 , c

(1)
34 and c

(1)
45 . The fundamental

0-chains are c
(0)
1 , c

(0)
2 , c

(0)
3 , c

(0)
4 and c

(0)
5 . The index used is a matter of convenience;

Cartesian coordinates would be just as well. The boundary of c
(2)
1245 is

∂c
(2)
1245 = c

(1)
12 + c

(1)
24 + c

(1)
45 − c

(1)
15 .

Here the assumed orientation of the fundamental 1-chains is from the smallest

index to the largest; if we had chosen to label the edge between points 1 and 5

as c
(1)
51 , with the orientation from the first index to the second, we would have

written c
(1)
51 in place of −c(1)

15 . Similarly ∂c
(2)
234 = c

(1)
23 + c

(1)
34 − c

(1)
24 . The boundary

operator ∂ acts on the fundamental 1-forms c
(1)
ij as follows: ∂c

(1)
ij = c

(0)
j − c

(0)
i .
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1

5

2

4

3

Figure 3.3: Two tiles of the snub square tiling.

Note that

∂
(
∂c

(2)
234

)
= ∂

(
c

(1)
23 + c

(1)
34 − c

(1)
24

)
=
(
c

(0)
3 − c

(0)
2

)
+
(
c

(0)
4 − c

(0)
3

)
−
(
c

(0)
4 − c

(0)
2

)
= 0.

Similarly, ∂2c
(2)
1245 = 0.

More generally, the boundary operator ∂ is defined as the linear map taking

each (oriented) r-chain to its boundary. This is a slight adaptation of what

happens for a triangular tiling (where every tile is a triangle). In that case, the

orientation of the triangle is shown by the ordering of its vertices c
(2)
ijk, and the

boundary operator gives

∂c
(2)
ijk = c

(1)
ij + c

(1)
jk − c

(1)
ik .

Similarly, ∂c
(1)
rs = c

(0)
s − c(0)

r , so that ∂2c
(2)
ijk = 0.

One can regard c
(2)
1245 in the example above as a chain consisting of c

(2)
124 + c

(2)
145,

so that the boundary is

∂
(
c

(2)
124 + c

(2)
145

)
= ∂c

(2)
124 + ∂c

(2)
145

=
(
c

(1)
12 + c

(1)
24 − c

(1)
14

)
+
(
c

(1)
14 + c

(1)
45 − c

(1)
15

)
= c

(1)
12 + c

(1)
24 + c

(1)
45 − c

(1)
15 ,

as expected. The internal ‘edge’, c
(1)
14 , which is not part of the tiling, is cancelled

out by the boundary operator.

The point is that ∂ : Λr (T ) 7→ Λr−1 (T ), r ≥ 1, is a familiar object, behaving

in exactly the same way as the boundary operator for simplicial homology. The
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coboundary operator for simplicial complexes is defined by (δω) (c) = (ω) (∂c),

where ω is an r-form and c is an (r + 1)-chain; brackets are used to indicate

the pairing between forms and chains. Note that if ω is an r-form and c is an

(r + 2)-chain, (
δ2ω
)

(c) = (δω) (∂c) = ω
(
∂2c
)

= 0,

so δ2 = 0.

The construction of the coboundary operator in the simplicial case suggests

how to deal with difference forms on a general tiling. Define the fundamental

r-forms ∆I
(r) dual to the fundamental r-chains. With the pairing indicated by an

integral sign, ∫
c
(r)
J

∆I
(r) = δIJ =


1, I = J,

0, I 6= J,

for all fundamental r-chains c
(r)
J .

Then an r-cochain is a linear combination of the fundamental r-cochains, with

coefficients in the same (abelian) group as the r-chains. So if c(r) = aJc
(r)
J , and

ω = bI∆
I
(r) is an r-cochain,

∫
c(r)

ω = aJbI

∫
c
(r)
J

∆I
(r) = aJbIδ

I
J = aJbJ.

The coboundary operator ∆ is defined by

∫
c(r+1)

∆ω =

∫
∂c(r+1)

ω,

for all c(r+1) ∈ Λr+1, which looks like Stokes’ Theorem, but merely expresses a

definition that is analogous to that for the simplicial coboundary operator. Let

Λr (T ) denote the vector space of r-cochains; then ∆ : ∆r (T ) 7→ ∆r+1 (T ) and

∆2 = 0.

For now, assume that the coefficients of chains and cochains are arbitrary real

numbers. A function f takes values on the vertices, so it can be regarded as a
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mapping f : Λ0 → R. So f = fi∆
i
(0), where fi ∈ R, and therefore

∫
c
(0)
j

f = fiδ
i
j = fj .

Similarly, a 1-form λ can be written as

λ = λij∆
ij
(1)

(as every edge can be indexed by the points it joins). Thus

∫
c
(1)
kl

λ = λijδ
ij
kl = λijδ

i
kδ
j
l = λkl.

By definition,

∫
c
(1)
kl

∆f =

∫
∂c

(1)
kl

f =

∫
c
(0)
l

f −
∫
c
(0)
k

f = fl − fk,

and therefore ∆f = (fl − fk) ∆kl
(1). Note that as ∆lk

(1) = −∆kl
(1), this would have

been written as ∆f = (fk − fl) ∆lk
(1) if we had chosen the indexing differently.

Similarly, for a given 2-form, η = ηI∆
I
(2), where ηI ∈ R,

∫
c
(2)
J

η = ηJ,

and ∫
c
(2)
J

∆λ =

∫
∂c

(2)
J

λ

defines ∆λ in terms of ∆I
(2). Given that some tiles may not be triangles, this

needs to be calculated case-by-case.

Example 3.4.2. (Example 3.4.1 Cont.)

For the 2-tile in Figure 3.3, the 2-forms are

η = η1245∆1245
(2) + η234∆234

(2) .

97



CHAPTER 3. EXTENSION TO A NON-RECTANGULAR MESH

In particular,

∫
c
(2)
1245

∆λ =

∫
c
(1)
12

λ+

∫
c
(1)
24

λ+

∫
c
(1)
45

λ−
∫
c
(1)
15

λ = λ12 + λ24 + λ45 − λ15,∫
c
(2)
234

∆λ =

∫
c
(1)
23

λ+

∫
c
(1)
34

λ−
∫
c
(1)
24

λ = λ23 + λ34 − λ24,

so

∆λ = (λ12 + λ24 + λ45 − λ15) ∆1245
(2) + (λ23 + λ34 − λ24) ∆234

(2)

Note that if

λ = ∆f

= (f2 − f1) ∆12
(1) + (f5 − f1) ∆15

(1) + (f3 − f2) ∆23
(1)

+ (f4 − f2) ∆24
(1) + (f4 − f3) ∆34

(1) + (f5 − f4) ∆45
(1)

then we obtain ∆2f = 0, as required.

Everything that has been done so far is coordinate-free. Functions are paired

with points, 1-forms are paired with edges, and 2-forms are paired with tiles. The

homology and cohomology groups will be exactly those that would be obtained

using a simplicial approach for any triangulation that uses the same set of vertices.

The above definition of difference forms enables us to find the invariantized

Euler–Lagrange equations for a Lie group invariant Lagrangian. The setup is the

same as before: suppose that we have a Lie group action G ×M → M , and a

difference frame for this action. Any group-invariant Lagrangian L (n, [u]) can be

written, in terms of the generating invariants κβ and their shifts κβJ = SJκ
β, as

Lκ (n, [κ]), for some finite number of shifts of the generating difference invariants.

Let the difference Euler operator with respect to κβ be the same as before, namely

Eκβ = S−J
∂

∂κβJ
,

where J (−J) is the concatenation of indices in the pullback of the path, PJ

(P−J), from 0 to J (J to 0).

Proposition 3.4.1. The invariantization of the original Euler–Lagrange equa-
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tions is

ι (Euα (L)) =
(
Hβα
)†

Eκβ (Lκ) , (3.5)

where (
Hβα
)†

=
∑
J

S−J

(
ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

))
S−J. (3.6)

Proof. The proof remains the same as the one in Proposition 2.6.5, however, the

difference forms are defined as above. Assuming an anti-clockwise orientation on

all the tiles means that tiles which share an edge will have that edge summed both

positively and negatively. Therefore, any divergence terms will vanish leaving

only boundary terms which are assumed to disappear.

Remark 3.4.2. In a similar manner to the rectangular case for the non-rectangular

case, the invariant Euler–Lagrange equations can also be written as

ι (Euα (L)) =
(
Hβα
)†

Eκβ (Lκ) ,

with (
Hβα
)†

=
∑
J

ι

(
∂κβ−J
∂uα0

)
S−J.

Therefore, as before there are two representations of the invariant Euler–Lagrange

equations as

∑
J

S−J

[
ι

(
∂κβ

∂uδJ

)
ι
(

(θJ)δα

)
Eκβ (Lκ)

]
=
∑
J

ι

(
∂κβ−J
∂uα0

)[
S−JEκβ (Lκ)

]
.

Example 3.4.3. Here we show how to find the invariant Euler–Lagrange equa-

tion of the Lagrangian

L = ln

(
u: − u0

u1 − u0

)
. (3.7)

This has several Lie symmetries including scaling and translations, for which the

action is

g · u = au+ b.

For the construction of the moving frame let the cross-section be given by the
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normalization equations (2.16)

g · u0 = 0, g · u1 = 1

which gives the value of the parameters

a =
1

u1 − u0
, b =

−u0

u1 − u0
. (3.8)

In this example, take the two generating invariants to be

κ1 = ι (u:) =
u: − u0

u1 − u0
, κ2 = ι (u2) =

u2 − u0

u1 − u0
.

In a similar manner to Remark 2.4.12 one can find recurrence relations that

determine all ι (uJ) in terms of shifts of the generating invariants.

Thus, the invariant form of the Lagrangian (3.7) is

Lκ = ln
(
κ1
)
. (3.9)

Therefore,

Eκ1 (Lκ) =
1

κ1
, Eκ2 (Lκ) = 0.

To find the invariant Euler–Lagrange equation, use the formula in Proposition

3.4.1. For this example, the relevant adjoint linear operator is

(
H1

1

)†
=
∑
J

S−J

(
ι

(
∂κ1

∂u1
J

)
ι
(

(θJ)1
1

))
S−J,

where u1 = u. The invariantization (2.31) of the nonzero partial derivatives gives

ι

(
∂κ1

∂u0

)
= κ1 − 1, ι

(
∂κ1

∂u1

)
= −κ1, ι

(
∂κ1

∂u:

)
= 1. (3.10)
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The values of the components ι (θJ) for J = 0, 1, : are

θ0 = u1 − u0,

θ1 = u2 − u1,

θ: = u:1 − u:,

and the invariantization (2.31) of these are

ι (θ0) = 1,

ι (θ1) = κ2 − 1,

ι (θ:) = ι (u:1)− κ1 = −κ
1

κ1
:

.

Therefore, the invariant form of the Euler–Lagrange equation is

(
H1

1

)†
Eκ1 (Lκ) =

κ1 − 1

κ1
−
(
κ2

3 − 1
)
− 1

κ1
, (3.11)

which can be checked by comparing with the invariantization of the original

Euler–Lagrange equation.
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Chapter 4

Differential-difference

variational problems

This chapter introduces and develops the invariant calculus of variations for

differential-difference equations (D∆Es). The first D∆E we consider has one

independent continuous variable, one independent discrete variable, one depen-

dent variable and a Lie group action on the dependent variable only. This is then

extended to D∆Es with more of each of these variables with the group action

still only on the dependent variables. Finally, the case where the group action is

on the independent variable or both variables is discussed for D∆Es with one of

each type of variable.

4.1 Differential-difference structure

This section summarizes the geometric setting for D∆Es by Peng and Hydon [32].

This paper resolves the extent to which a continuous symmetry can depend on the

discrete independent variables and dependent variables. D∆Es, like PDEs and

P∆Es, have independent and dependent variables. The distinction between these

variables leads to a geometric structure, the prolongation space, whose preser-

vation determines the class of transformations and, in particular, symmetries.

The prolongation structure of PDEs and P∆Es is well known, (see [26], [28]). A

combination of these structures gives rise to the structure for D∆Es. Restricting

attention to D∆Es on Rp × Zm (for other domains, treat these variables as local
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n n+ 1n− 1

x

u

Figure 4.1: The total prolongation space for a D∆E with one independent con-
tinuous variable, one independent discrete variable and one dependent variable
is T = R× Z× R. A representation is shown in this figure.

coordinates), the continuous independent variables are x =
(
x1, . . . , xp

)
∈ Rp, the

discrete independent variables are n =
(
n1, . . . , nm

)
∈ Zm, and the dependent

variables are u =
(
u1, . . . , uq

)
∈ Rq. The total space is T = Rq × Zm × Rq. As

an example Figure 4.1 shows a graph of the total space for one of each variable.

To avoid discussion of technicalities associated with singularities and other

discontinuities, from this point onwards all functions are assumed to be locally

smooth in each of their continuous arguments, for each n.

4.1.1 Differential structure

Given n ∈ Zm, a slice Tn = Rp ×{n}×Rq is a continuous space whose functions

u = f (x,n), restricted to this slice, can be prolonged by differentiation as many

times as is needed. Hence one can define the infinite jet space over n, denoted

by J∞ (Tn). The coordinates uαJ;0 with J =
(
j1, . . . , jp

)
represent the values of

the derivatives of the dependent variables, where each ji denotes the number of

derivatives with respect to xi. In particular, uα0;0 = uα and the first derivatives

of uα = fα (x,n) are represented by the coordinate values

u1i;0 =
∂fα (x,n)

∂xi
, i = 1, . . . p,

where 1i has 1 in the i-th entry and zero elsewhere. More generally, the action

of the first derivative with respect to xi on any differentiable function defined on

J∞ (Tn) is given by the operator

Di|J∞(Tn) :=
∂

∂xi
+ uαJ+1i;0

∂

∂uαJ;0

.
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It is enough to consider the jet space over a single (arbitrary) slice Tn as a

copy of this can be produced over every n. This is due to x and n being mutually

independent; consequently, the total jet space is

J∞ (T ) ∼= Zm × J∞ (Tn) .

4.1.2 Difference structure

The majority of the difference structure remains the same as in Section 2.1.

However, there are some important extensions to make for D∆Es. The total

space T is preserved by all translations

TK : T → T , TK : (x,n,u) 7→ (x,n + K,u) ,

with TL ◦ TK = TK+L for all K,L ∈ Zm. The total space is disconnected;

however, a connected representation is possible over each n. Using the pullback

T∗K, for all K, each slice can be prolonged to include coordinates on other slices.

The prolongation space, denoted P (Tn) includes all coordinates

uα0;K = T∗K
(
uα0;0|n+K

)
.

This difference prolongation structure must be preserved by every transformation.

To combine the differential and difference structure first extend the translation

operator TK to the total jet space:

TK : J∞ (T )→ J∞ (T ) , TK :
(
n,x, . . . , uαJ;0, . . .

)
7→
(
n + K,x, . . . , uαJ;0, . . .

)
.

Then the coordinates on the jet space over n + K can be pulled back to the

prolongation space over n in a similar way to the difference case. Therefore, the

space P (J∞ (Tn)) has coordinates

uαJ;K = T∗K
(
uαJ;0|n+K

)
and is a connected component on n of the total prolongation space denoted
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P (J∞ (T )) ∼= Zm × P (J∞ (Tn)) . The composition rule for translations gives

uαJ;K+L = T∗K
(
uαJ;L|n+K

)
.

In general, if f is a (locally smooth) function on P (J∞ (T )) with its restriction

to P (J∞ (Tn)) denoted by

fn
(
x, . . . , uαJ;L, . . .

)
:= f

(
x,n, . . . , uαJ;L, . . .

)
,

then the pullback of fn+K

(
x, . . . , uαJ;L, . . .

)
to P (J∞ (Tn)) is

T∗Kfn+K = f
(
x,n + K, . . . , uαJ;K+L, . . .

)
.

The shift operator,

SK : f
(
x,n, . . . , uαJ;L, . . .

)
7→ f

(
x,n + K, . . . , uαJ;L+K, . . .

)
,

mimics the action of the translation TK on P (J∞ (Tn)), with the same relation

SKfn = T∗Kfn+K as before. From here we use shifts to denote points on different

slices, that is, we use SK

(
uα0;0|n

)
or SKu

α
0;0 for T∗K

(
uα0;0|n+K

)
. Consequently,

the derivative with respect to xi on J∞ (T ) is represented on P (J∞ (Tn)) by the

total derivative

Di =
∂

∂xi
+ uαJ+1i;K

∂

∂uαJ;K

.

Crucially, all the total derivatives and shift operators commute:

DiDj = DjDi, DiSK = SKDi, SKSL = SLSK.

It is convenient to use the following shorthand notation for a product of total

derivatives:

DJ = Dj1

1 · · ·D
jp

p , where J =
(
j1, . . . , jp

)
.

The difference operators on the continuous space P (J∞ (Tn)) arise from the

ordering of each ni. For any index K =
(
k1, . . . , km

)
, the corresponding shift

operator is SJ = S
k1
1 · · · Skmm , where Si := S1i denotes the forward shift with
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respect to ni. Then the forward difference in the ni-direction is represented on

P (J∞ (Tn)) by the operator

Dni := Si − id,

where id is the identity mapping. A differential-difference divergence is an ex-

pression C of the form

C = DiF
i + DniG

i.

The formal adjoint of a linear operator H is the unique operator H† such that

fHg −
(
H†f

)
g = Div (AH) ,

where Div (AH) is a (differential-difference) divergence for all functions f and g

defined on the prolongation space P (J∞ (Tn)). Here the adjoint of the ith shift

operator, the ith differential operator and the identity operator are

S†i = S−1
i , D†i = −Di, id† = id,

respectively. The composition rule (H1H2)† = H†2H
†
1 determines the adjoint of a

product of linear operators. Thus, as the shift operators and differential operators

commute,

S†K = S−K, D†J = (−D)J := (−1)j
1+···+jp DJ.

4.1.3 Lie point transformations for differential-difference equa-

tions

This subsection identifies the constraints that must be satisfied by transforma-

tions of D∆Es. Using the passive viewpoint, that is, viewing a transformation as

a change of coordinates, a point transformation is a transformation of the total

space

Γ : T → T , Γ : (x,n,u) 7→ (x̂, n̂, û) .

Here we do not consider lattice transformations (see [15]), so n̂ = n. Every

one-parameter Lie group from the total space T to itself can be expressed in the
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form

x̂i = xi + εξi (x,n,u) +O
(
ε2
)
, ûα = uα + εηα (x,n,u) +O

(
ε2
)
. (4.1)

As such mappings change only x and u, they are represented on P (J∞ (Tn)) by

using the same shift operator SK in both the original and transformed coordi-

nates. Now we introduce an important theorem from Peng and Hydon [32] about

the allowable variables for each ξi.

Theorem 4.1.1. A one-parameter Lie group of mappings (4.1) prolongs to a

transformation group for P (J∞ (Tn)) if and only if each ξi is independent of n

and u.

Therefore, from Theorem 4.1.1, every one-parameter Lie group from T to

itself that preserves the prolongation structure is necessarily of the form

x̂i = xi + εξi (x) +O
(
ε2
)
, n̂i = ni, ûα = uα + εηα (x,n,u) +O

(
ε2
)
. (4.2)

As both continuous independent variables and dependent variables can be

acted on by a Lie point symmetry group, there is an increase in the potential

choice of normalization equations (2.16) in comparison to the P∆Es case. How-

ever, to make the calculations slightly simpler, we restrict the possible normal-

ization equations when a group action on an independent variable exists.

Definition 4.1.2. A projectable normalization is a normalization for which the

group parameters affecting the independent variables are written only in terms

of the independent variables.

A sufficient condition for this to happen is that the group action is free on

the space of independent continuous variables.

4.2 Differential-difference moving frames

The construction of a differential-difference moving frame is similar to that of

the difference moving frame. For a differential-difference moving frame, K and

ρ (x, [u]) denote the cross-section and frame on n, respectively.
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Definition 4.2.1. A differential-difference moving frame is a discrete moving

frame on the prolongation space P (J∞ (Tn)) and the cross-section over n + K is

represented by SKK and this holds for all necessary K.

Remark 4.2.2. In the differential case, it is often ideal to use the dependent

variables with the least number of derivatives for the normalization equations.

This advice extends to choosing the normalization equations of a cross-section in

the differential-difference case.

Remark 4.2.3. As stated in Chapter 2, discussion of research detailing conditions

under which an action will become free and regular is given in [3]. Results for

product actions are given by Boutin [6]. Additionally, results for a jet bundle

can be found in [8] by Fels and Olver, under a sufficiently large prolongation

(considering higher-order derivatives). Here we conjecture that similar results

hold for actions in the differential–difference space.

4.3 The differential-difference calculus of variations

The majority of D∆Es of interest have one independent continuous variable and

one independent discrete variable. Therefore, we initially consider D∆Es of this

type and also assume for simplicity there is only one dependent variable. If

one wants a formula for multiple dependent variables just replace u by uα in

the equations below. The Lagrangian in this case is L = L (x, n, [u]), where [u]

denotes finitely many derivatives and shifts of the original dependent variable

u. To find the Euler–Lagrange equations for the difference case one can use

difference forms or the additional dummy variable trick. The difference forms

method leads to the explicit formula of the invariant formulation of the Euler–

Lagrange equations in a more natural way. Therefore, the important horizontal

differential-difference forms are

ω = fj1,...,jm;i1,...,ik (x,n, [u]) dxj1 ∧ · · · ∧ dxjm ∧∆i1 ∧ · · · ∧∆ik .

From this point on, we use Dj (Sj) to denote j derivatives (shifts) for the case with

one independent continuous (discrete) variable. This is done so we can use the

Einstein summation convention and reduce the number of summation signs. The
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Euler–Lagrange equation in the original variables is obtained as follows (using

the exterior derivative (2.52))

dv
∑∫

L dx ∧∆ =
∑∫

dvL ∧ dx ∧∆

=
∑∫

∂L

∂uj;k
dvuj;k ∧ dx ∧∆

=
∑∫ [(

S−k
∂L

∂uj;k

)
dvuj;0 + Div (AS)

]
∧ dx ∧∆

=
∑∫ [(

D†jS−k
∂L

∂uj;k

)
dvu0;0 + Div (AD) + Div (AS)

]
∧ dx ∧∆

=
∑∫

Eu (L) dvu0;0 ∧ dx ∧∆.

(4.3)

The divergence terms arising from the summation and integration by parts are

Div (AS) and Div (AD), respectively. Hence the Euler–Lagrange equation is

Eu (L) = D†jS−k
∂L

∂uj;k
= 0, (4.4)

with D†j = (−1)j Dj .

Unlike in the difference case, it is important to consider the Lagrangian func-

tional and not just the Lagrangian itself. This is because Lie point symmetries

can act on the independent continuous variable meaning the differential form

component dx is not necessarily invariant. If there is a group action on the inde-

pendent continuous variable then the invariant differential form is ι (dx) = Jdx

with

J =

(
∂(g · x)

∂x

) ∣∣∣∣
g=ρ;k(x,[u])

, (4.5)

for all k ∈ Z when a projectable normalization (Definition 4.1.2) is used. Here

ρ;k (x, [u]) denotes k shifts of the moving frame ρ;0 (x, [u]). Therefore, the La-

grangian functional ∑∫
L (x, n, [u]) dx ∧∆

can also be written as

∑∫
L (x, n, [u]) ι (dx) ∧∆ (4.6)
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with L = J−1L. This form of the Lagrangian functional is helpful to find the

invariant formulation of the Euler–Lagrange equation when using a group action

on the independent variable. The Euler operator of L with respect to u can be

achieved using differential-difference forms

dv
∑∫

Lι (dx) ∧∆ =
∑∫

dvL ∧ ι (dx) ∧∆

=
∑∫

∂L

∂uj;k
dvuj;k ∧ ι (dx) ∧∆

=
∑∫ [(

S−k
∂L

∂uj;k

)
dvuj;0 + Div

(
AS

)]
∧ ι (dx) ∧∆

=
∑∫ [(

D†jS−k
∂L

∂uj;k

)
dvu0;0 + Div

(
AD
)]
∧ ι (dx) ∧∆

=
∑∫

Eu
(
L
)

dvu0;0 ∧ ι (dx) ∧∆.

(4.7)

This is not the Euler–Lagrange equation of L with respect to u. To find this, use

the identity

∂L

∂uj;k
=
∂
(
J−1L

)
∂uj;k

= J−1 ∂L

∂uj;k
+ L

∂J−1

∂uj;k︸ ︷︷ ︸
=0

= J−1 ∂L

∂uj;k
,

and the following relation from the Euler operator of L with respect to u

Eu
(
L
)

=
∑
j

(−1)j DjS−k

(
J−1 ∂L

∂uj;k

)
=
∑
j

(−1)j Dj

(
J−1S−k

∂L

∂uj;k

)

=
∑
j

j∑
l=0

(−1)j
(
j

l

)(
Dj−l

(
J−1

))(
DlS−k

∂L

∂uj;k

)
=
∑
j

(
(−1)j

(
J−1

)
DjS−k

∂L

∂uj;k

)

+
∑
j≥1

j−1∑
l=0

(−1)j
(
j

l

)(
Dj−l

(
J−1

))(
DlS−k

∂L

∂uj;k

)
= J−1Eu (L)

+
∑
j≥1

j−1∑
l=0

(−1)j
(
j

l

)(
Dj−l

(
J−1

))(
DlS−k

∂L

∂uj;k

)
.
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Rearranging gives

Eu (L) = JEu
(
L
)
− J

∑
j≥1

j−1∑
l=0

(−1)j
(
j

l

)(
Dj−l

(
J−1

))(
DlS−k

∂L

∂uj;k

)
= JEu

(
L
)
− P, (4.8)

with

P = J
∑
j≥1

j−1∑
l=0

(−1)j
(
j

l

)(
Dj−l

(
J−1

))(
DlS−k

∂L

∂uj;k

)
.

This will be used later to find the invariant formulation of the Euler–Lagrange

equations of L when a group action is on the independent variable.

The differential-difference form method is similar to the additional variable

t trick with duj;k/dt replacing dvuj;k. Just as in the difference form theory, the

terms ι (dvu0;0) and σ = ι (du0;0/dt) are equivalent in the different methods.

Having looked at the simple case, we now look at having more than one of each

variable.

For a D∆E with q dependent variables, p continuous independent variables

and m discrete independent variables, assume that the Lie group action on all

independent continuous variables is trivial, i.e., g · xi = xi, for all i = 1, . . . , p.

Consequently ι
(
dxi
)

= dxi, for all i = 1, . . . , p and L = L. Similar to Chapter 2

we use the notation (vol) for the volume form, that is,

vol = dx1 ∧ · · · ∧ dxp ∧∆1 ∧ · · · ∧∆m.

We again use differential-difference forms to find the Euler–Lagrange equa-
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tions in terms of the original variables:

dv
∑∫

L vol

=
∑∫

dvL ∧ vol

=
∑∫

∂L

∂uαJ;K

dvu
α
J;K ∧ vol

=
∑∫ (

S−K
∂L

∂uαJ;K

)
dvu

α
J;0 ∧ vol

=
∑∫ (

D†JS−K
∂L

∂uαJ;K

)
dvu

α
0;0 ∧ vol

=
∑∫

Euα (L) dvu
α
0;0 ∧ vol,

where D†J = (−1)|J|DJ and |J| = j1 + · · · + jp. Therefore, the Euler–Lagrange

equations are

Euα (L) = (−1)|J|DJS−K
∂L

∂uαJ;K

= 0.

If one needs to look at a D∆Es with a Lie group action on more than one in-

dependent continuous variable then the invariant differential forms and invariant

derivatives change slightly. So the invariant forms are

ι
(
dxi
)

=

(
∂
(
g · xi

)
∂xj

∣∣∣∣
g=ρ;K(x,[u])

)
dxj = J ijdx

j

for all multi-indices K and i, j = 1, . . . , p. Accordingly, the invariant derivatives

are

Di = J ji Dj ,

where J ji are the components of the inverse matrix J−1. Additionally, for group

actions on the independent variable ι (vol) 6= vol as

ι (vol) = ι
(
dx1
)
∧ · · · ∧ ι (dxp) ∧∆1 ∧ · · · ∧∆m.

In this case, the invariant calculations will become quite complex, so for simplicity

we focus on the first three cases and find the Euler–Lagrange equations in terms

of their invariants.
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4.4 Invariant formulation of the differential-difference

Euler-Lagrange equations

This section shows the calculations for the invariant Euler–Lagrange equations for

several different types of Lie group actions. First, we consider a group action on

the dependent variable only, and compare this with the difference case. The in-

variant formulation of the Euler–Lagrange equations when there is a group action

on the independent continuous variable only is discussed, restricting attention to

one of each type of variable for simplicity. Finally, we consider a Lie group action

on both the independent continuous variable and dependent variable. Again, we

only consider the case with one of each type of variable.

4.4.1 A group action on the dependent variable only

In this case, g · x = x, that is, the group action on the continuous indepen-

dent variables is trivial. Consequently, ι (dx) = dx and L = L. Therefore, let

Lκ (x, n, [κ]) = Lκ be the invariant Lagrangian written in terms of invariants,

with [κ] representing finitely many derivatives and shifts of κβ. The Euler oper-

ator with respect to κβ is

Eκβ = D†jS−k
∂

∂κβj;k
(4.9)

when the group action is trivial on the independent variable. The components

θj;k = DjSkθ0;0 = DjSk

 1

∂(g·u0;0)
∂u0;0

∣∣∣∣
g=ρ;0(x,[u])


are important for the calculations (similar to the difference case in Chapter 2).

Proposition 4.4.1. The invariantization of the original Euler–Lagrange equa-

tion with a group action on the dependent variable only is

ι (Eu (L)) =
(
Hβ
)†

Eκβ (Lκ)
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where

(
Hβ
)†

(f) =
∑
j

∑
k

j∑
i=0

(−1)i
(
j

i

)
DiS−k

(
ι

(
∂κβ

∂ui;j

)
ι (θj−i;k) f

)
.

Proof. The differential-difference forms approach is used; it is similar to the

method for the difference case in Chapter 2. The change of variables formula,

dvκ
β =

∂κβ

∂ui;j
dvui;j ,

is invariantized (2.31) to give

ι
(

dvκ
β
)

= ι

(
∂κβ

∂ui;j

)
ι (dvui;j) . (4.10)

Then we need to write ι (dvui;j) in terms of ι (dvu0;0) . As in the difference case,

the invariant differential form for i = j = 0 is

ι (dvu0;0) = ϑdvu0;0,

where

ϑ =
∂ (g · u0;0)

∂u0;0

∣∣∣∣
g=ρ;0(x,[u])

.

Let the reciprocal of ϑ be θ0;0 giving

dvu0;0 = θ0;0ι (dvu0;0) ,

similar to the difference formula found in Section 2.6.

The general Leibniz rule gives

dvuj;0 = Djdvu0;0 = Dj [θ0;0ι (dvu0;0)]

=

j∑
i=0

(
j

i

)
(Dj−iθ0;0) (Diι (dvu0;0))

=

j∑
i=0

(
j

i

)
θj−i;0 (Diι (dvu0;0)) .
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Applying k shifts to this gives

dvuj;k = Skdvuj;0 = Sk

[
j∑
i=0

(
j

i

)
θj−i;0 (Diι (dvu0;0))

]

=

[
j∑
i=0

(
j

i

)
(θj−i;k) (SkDiι (dvu0;0))

]
,

and invariantizing (2.31) this gives

ι (dvuj;k) =

j∑
i=0

(
j

i

)
ι (θj−i;k) ι (SkDiι (dvu0;0))

=

j∑
i=0

(
j

i

)
ι (θj−i;k) SkDiι (dvu0;0) .

Therefore, the invariantized change of variables formula (4.10) can be written as

ι
(

dvκ
β
)

=
∑
k

∑
j

ι

(
∂κβ

∂uj;k

) j∑
i=0

(
j

i

)
ι (θj−i;k) SkDiι (dvu0;0)

=
∑
k

∑
j

j∑
i=0

(
j

i

)
ι

(
∂κβ

∂uj;k

)
ι (θj−i;k) SkDiι (dvu0;0)

= Hβι (dvu0;0) .

The adjoint of this linear differential-difference operator acting on f is

(
Hβ
)†

(f) =
∑
j

∑
k

j∑
i=0

(
j

i

)
D†iS

†
k

(
ι

(
∂κβ

∂ui;j

)
ι (θj−i;k) f

)
.
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Consequently,

dv
∑∫

Lκι (dx) ∧∆ =
∑∫

dvL
κ ∧ ι (dx) ∧∆

=
∑∫

∂Lκ

∂κβj;k
dvκ

β
j;k ∧ ι (dx) ∧∆

=
∑∫ [(

S−k
∂Lκ

∂κβj;k

)
dvκ

β
j;0 + Div (BS)

]
∧ ι (dx) ∧∆

=
∑∫ [(

D†jS−k
∂Lκ

∂κβj;k

)
dvκ

β
0;0 + Div (BD)

]
∧ ι (dx) ∧∆

=
∑∫ [

Eκβ (Lκ)Hβι (dvu0;0)
]
∧ ι (dx) ∧∆

=
∑∫ [((

Hβ
)†

Eκβ (Lκ)

)
ι (dvu0;0) + Div (BH)

]
∧ ι (dx) ∧∆

=
∑∫ ((

Hβ
)†

Eκβ (Lκ)

)
ι (dvu0;0) ∧ ι (dx) ∧∆.

(4.11)

The divergence terms Div (BS), Div (BD) and Div (BH) all become boundary

terms which we assume disappear. As the vertical derivative is coordinate inde-

pendent,

∑∫
ι (Eu (L)) ι (dvu0;0)∧ ι (dx) ∧∆

=
∑∫ (

Hβ
)† (

Eκβ (Lκ)
)
ι (dvu0;0) ∧ ι (dx) ∧∆

and therefore

ι (Eu (L)) =
(
Hβ
)† (

Eκβ (Lκ)
)

As a result, the invariant Euler–Lagrange equation is

(
Hβ
)†

Eκβ (Lκ) =

∑
j

∑
k

j∑
i=0

(−1)i
(
j

i

)
(Di) S−k

(
ι

(
∂κβ

∂ui;j

)
ι (θj−i;k) Eκβ (Lκ)

)
= 0.

Example 4.4.1. Consider the Lagrangian

L =
u1;0

u0;1
,
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with the Lie group action

g · uj;k = auj;k, g · x = x.

Using the normalization equation (2.16) g · u0;0 = 1 gives

ι (uj;k) =
uj;k
u0;0

.

Let the two generating differential-difference invariants be

κ1 =
u0;1

u0;0
, κ2 =

u1;0

u0;0
.

The Lagrangian in terms of these generating invariants is

Lκ =
κ2

κ1
.

The partial derivatives of the generating invariants are

∂κ1

∂u0;0
= − u0;1

(u0;0)2 ,
∂κ1

∂u0;1
=

1

u0;0
,

∂κ2

∂u0;0
= − u1;0

(u0;0)2 ,
∂κ2

∂u1;0
=

1

u0;0
,

with invariantizations (2.31)

ι

(
∂κ1

∂u0;0

)
= −κ1, ι

(
∂κ1

∂u0;1

)
= 1, ι

(
∂κ2

∂u0;0

)
= −κ2, ι

(
∂κ2

∂u1;0

)
= 1.

The component

ϑ =
1

u0;0
,

has the inverse

θ0;0 = u0;0.

As a consequence,

θ1;0 = u1;0, θ0;1 = u0;1,

and the invariantizations (2.31) of the θ components are

ι (θ0;0) = 1, ι (θ1;0) = κ2, ι (θ0;1) = κ1.
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Finally, the Euler operators (4.9) of Lκ with respect to the generating invariants

are

Eκ1 (Lκ) = − κ2

(κ1)2 , Eκ2 (Lκ) =
1

κ1
,

and so using Proposition 4.4.5 yields

(
H1
)†

Eκ1 (Lκ) = ι

(
∂κ1

∂u0;0

)
ι (θ0;0) Eκ1 (Lκ) + S−1

(
ι

(
∂κ1

∂u0;1

)
ι (θ0;1) Eκ1 (Lκ)

)
=
κ2

κ1
−
κ2

0;−1

κ1
0;−1

,

(
H2
)†

Eκ2 (Lκ) = ι

(
∂κ2

∂u0;0

)
ι (θ0;0) Eκ2 (Lκ) + ι

(
∂κ2

∂u1;0

)
ι (θ1;0) Eκ2 (Lκ)

−D
(
ι

(
∂κ2

∂u1;0

)
ι (θ0;0) Eκ2 (Lκ)

)
= −κ

2

κ1
+
κ2

0;1

κ1
.

Consequently, the invariantization of the Euler–Lagrange equation is

(
H1
)†

Eκ1 (Lκ) +
(
H2
)†

Eκ2 (Lκ) =
κ2

0;1

κ1
−
κ2

0;−1

κ1
0;−1

= 0.

For comparison, the original Euler–Lagrange equation (4.4) is

Eu (L) = D†jS−k
∂L

∂uj;k

= −D
(

∂L

∂u1;0

)
+ S−1

(
∂L

∂u0;1

)
=

u1,1

(u0;1)2 −
u1;−1

(u0;0)2 .

Therefore, the denominator has been reduced from a square term to a first-order

term in the invariantized Euler–Lagrange equation.

4.4.2 Multi-variable case with a group action on the dependent

variable only

Now consider the case with more than one of each type of variable, where the

group action on all the independent variables is trivial. Therefore, ι
(
dxi
)

= dxi
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and the Lagrangian functional can be written as

∑∫
L (x,n, [u]) vol =

∑∫
Lκ (x,n, [κ]) vol.

To help simplify the formula, we use the notation

∑
J≥I

(
J

I

)
=

j1∑
i1

· · ·
jp∑
ip

(
j1

i1

)
. . .

(
jp

ip

)
,

where J ≥ I means that jl ≥ il for l = 1, . . . , p. The Euler operator with respect

to κβ is

Eκβ = D†JS−J
∂

∂κβJ;K

.

Similarly, if

(ϑ)αδ =
∂
(
g · uα0;0

)
∂uδ0;0

∣∣∣∣
g=ρ;0(x,[u])

,

then θ0;0 = ϑ−1 and (θJ;K)δα = DJSK

(
ϑ−1

)δ
α
. This allows us to introduce the

proposition.

Proposition 4.4.2. The invariantization of the original Euler–Lagrange equa-

tions with a group action on the dependent variables only is

ι (Euα (L)) =
(
Hβα
)†

Eκβ (Lκ) ,

where

(
Hβα
)†

(f) =
∑
K

∑
J

∑
J≥I

(
J

I

)
D†IS−K

[
ι

(
∂κβ

∂uδJ;K

)
ι (θJ−I;K)δα f

]
.

Proof. Using differential-difference forms again, the change of variables formula

is

dvκ
β =

∂κβ

∂uδJ;K

dvu
δ
J;K

with invariantization (2.31)

ι
(

dvκ
β
)

= ι

(
∂κβ

∂uδJ;K

)
ι
(

dvu
δ
J;K

)
.

120
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Then the fundamental invariant differential-difference forms are

ι
(
dvu

α
0;0

)
= (ϑ)αδ dvu

δ
0;0,

so

dvu
δ
0;0 = (θ0;0)δα ι

(
dvu

α
0;0

)
.

Using the general Leibniz rule gives

dvu
δ
J;0 = DJdvu

δ
0;0 = DJ

[
(θ0;0)δα ι

(
dvu

α
0;0

)]
= D0,j2,...,jp

j1∑
i1

(
j1

i1

)(
θj1−i1,0,...,0;0

)δ
α
Di1ι

(
dvu

α
0;0

)
= . . .

=

j1∑
i1

· · ·
jp∑
ip

(
j1

i1

)
. . .

(
jp

ip

)(
θj1−i1,...,jp−ip;0

)δ
α
Dip . . . Di1ι

(
dvu

α
0;0

)
=
∑
J≥I

(
J

I

)
(θJ−I;0)δαDIι

(
dvu

α
0;0

)
.

Applying K shifts to this gives

dvu
δ
J;K = SK

∑
J≥I

(
J

I

)
(θJ−I;0)δαDIι

(
dvu

α
0;0

)
=
∑
J≥I

(
J

I

)
(θJ−I;K)δα SKDIι

(
dvu

α
0;0

)
,

and therefore

ι
(

dvu
δ
J;K

)
=
∑
J≥I

(
J

I

)
ι (θJ−I;K)δα ι

(
SKDIι

(
dvu

α
0;0

))
=
∑
J≥I

(
J

I

)
ι (θJ−I;K)δα SKDIι

(
dvu

α
0;0

)
.

Therefore,

ι
(

dvκ
β
)

=
∑
K

∑
J

∑
J≥I

(
J

I

)
ι

(
∂κβ

∂uδJ;K

)
ι (θJ−I;K)δα SKDIι

(
dvu

α
0;0

)
= Hβαι

(
dvu

α
0;0

)
,
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and so for any smooth function f ,

(
Hβα
)†
f =

∑
K

∑
J

∑
J≥I

(−1)|I|
(

J

I

)
DIS−K

[
ι

(
∂κβ

∂uδJ;K

)
ι (θJ−I;K)δα f

]
.

Consequently,

dv
∑∫

Lκ vol

=
∑∫

dvL
κ ∧ vol

=
∑∫

∂Lκ

∂κβJ;K

dvκ
β
J;K ∧ vol

=
∑∫ (

D†JS−K
∂Lκ

∂κβJ;K

)
dvκ

β
0;0 ∧ vol

=
∑∫

Eκβ (Lκ)Hβαι
(
dvu

α
0;0

)
∧ vol

=

(∑∫ (
Hβα
)†

Eκβ (Lκ)

)
ι
(
dvu

α
0;0

)
∧ vol.

As the vertical derivative is coordinate independent,

∑∫
ι (Euα (L)) ι

(
dvu

α
0;0

)
∧ vol =

∑∫ (
Hβα
)†

Eκβ (Lκ) ι
(
dvu

α
0;0

)
∧ vol.

So the adjoint of this linear differential-difference operator acting on Eκβ (Lκ)

gives the formula for the invariant Euler–Lagrange equations

(
Hβα
)†

Eκβ (Lκ) =∑
K

∑
J

∑
J≥I

(−1)|I|
(

J

I

)
DIS−K

[
ι

(
∂κβ

∂uδJ;K

)
ι (θJ−I;K)δα Eκβ (Lκ)

]
= 0.

This looks somewhat similar to the difference case in Proposition 2.6.5. In-

deed, if there are no derivatives this formula reduces to the one found in Propo-

sition 2.6.5.
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4.4.3 A group action on the independent variable only

Now assume that g · u0;0 = u0;0, so the group action on the dependent variable

is trivial. As now we consider a group action on the independent variable alone,

the invariant differential form is

ι (dx) = Jdx,

where a projectable normalization is used and

J =

(
∂ (g · x)

∂x

) ∣∣∣∣
g=ρ;k(x,[u])

.

The Lagrangian functional can also be changed from

∑∫
L (x, n, [u]) dx ∧∆

to its invariant form ∑∫
L (x, n, [u]) ι (dx) ∧∆

with L = JL where J = J−1. To find the invariant formulation of the Euler–

Lagrange equation of L, use the relation (4.8). Its invariantization (2.31),

ι (Eu (L)) = ι
(
Eu
(
L
))
− ι (P ) , (4.12)

is needed.

Proposition 4.4.3. The invariantization of the original Euler–Lagrange equa-

tion with a group action on the independent variable is

ι (Eu (L)) =
∑
j

ι
(
Hj
j

)
− P, (4.13)

where

Hj
j = (−1)j D

[
. . .
[
D︸ ︷︷ ︸

j times

[
Hj

0 J
]
. . .
]
J
]︸ ︷︷ ︸

j times

, Hj
0 = S−k

∂Lκ

∂κj;k
(4.14)
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and the correction term is

P =
∑
j≥1

j−1∑
l=0

(−1)j ι (Dj−l (J ))

l∑
s=0

(
l

s

)
ι (DsJ) ι

(
Dl−sS−k

(
∂Lκ

∂κβi;r

∂κβi;r
∂uj;k

))
.

Proof. To show this, we use (4.12) to split the calculation into two parts. First,

we find ι
(
Eu
(
L
))

in terms of invariants, then turn to finding ι (P ) in terms of

invariants. The normalization equation (2.16) must include the only independent

continuous variable x, so the Lagrangian will be of the form Lκ = Lκ (n, [κ]),

with the functional

∑∫
Lι (dx) ∧∆ =

∑∫
Lκι (dx) ∧∆. (4.15)

As there is an action on the independent continuous variables the derivatives

themselves are not necessarily invariant. The invariant differential operator is

D = JD. Therefore, by definition κ1;0 = Dκ0;0. The invariant differential op-

erator, like the differential operator, commutes with shifts (because the normal-

ization is projectable). (For more than one continuous independent variable, the

invariant differential operators do not necessarily commute; however, we do not

consider this case.) Using differential-difference forms, summation by parts, and

the first iteration of integration by parts one moves from the vertical derivative

of the Lagrangian functional to a formula involving the differential form dvκj−1;0

in the following way:

∑∫
dvL

κ ∧ ι (dx) ∧∆ =
∑∫

∂Lκ

∂κj;k
dvκj;k ∧ ι (dx) ∧∆

=
∑∫ (

S−k
∂Lκ

∂κj;k

)
dvκj;0 ∧ ι (dx) ∧∆

=
∑∫ (

S−k
∂Lκ

∂κj;k

)
Ddvκj−1;0 ∧ ι (dx) ∧∆

=
∑∫ (

S−k
∂Lκ

∂κj;k

)
J (Ddvκj−1;0) ∧ ι (dx) ∧∆

=
∑∫ [

D†
((

S−k
∂Lκ

∂κj;k

)
J
)]

dvκj−1;0 ∧ ι (dx) ∧∆.

As we only consider projectable normalizations the vertical derivative of ι (dx) is
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zero. Now introducing the components

Hj
0 = S−k

∂Lκ

∂κj;k
, Hj

1 = D†
[
Hj

0J
]

= −D
[
Hj

0J
]
,

Hj
2 = D†

[
Hj

1J
]

= D†
[
D†
[
Hj

0J
]
J
]

= D
[
D
[
Hj

0J
]
J
]
,

and more generally,

Hj
j = D†

[
. . .
[
D†︸ ︷︷ ︸

j times

[
Hj

0 J
]
. . .
]
J
]︸ ︷︷ ︸

j times

= (−1)j D
[
. . .
[
D︸ ︷︷ ︸

j times

[
Hj

0 J
]
. . .
]
J
]︸ ︷︷ ︸

j times

.

After the second iteration of integration by parts the vertical derivative of the

Lagrangian functional becomes

∑∫
dvL

κ ∧ ι (dx) ∧∆ =
∑∫ ∑

j

Hj
2dvκj−2;0 ∧ ι (dx) ∧∆

and after j iterations of integration by parts the formula becomes

∑∫
dvL

κ ∧ ι (dx) ∧∆ =
∑∫ ∑

j

Hj
j dvκ0;0 ∧ ι (dx) ∧∆.

Thus,

∑∫
ι (dvL

κ) ∧ ι (dx) ∧∆ =
∑∫ ∑

j

ι
(
Hj
j

)
ι (dvu0;0) ∧ ι (dx) ∧∆. (4.16)

This gives the equivalence

∑∫
ι
(
Eu
(
L
))
ι (dvu0;0)∧ ι (dx)∧∆ =

∑∫ ∑
j

ι
(
Hj
j

)
ι (dvu0;0)∧ ι (dx)∧∆,

(4.17)

which gives the first term ι
(
Eu
(
L
))

in the relation (4.12). The correction term

in the original variables is

P = J
∑
j≥1

j−1∑
l=0

(−1)j
(
j

l

)
(Dj−l (J ))

(
DlS−k

∂L

∂uj;k

)
.
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We now write the invariantization (2.31) of the last term,

ι

(
DlS−k

∂L

∂uj;k

)
,

in terms of the invariant Lagrangian. The original Lagrangian can be written as

L = JLκ, so

ι

(
DlS−k

∂L

∂uj;k

)
= ι

(
DlS−k

∂ (JLκ)

∂κi;r

∂κi;r
∂uj;k

)
,

and by the chain rule,

∂ (JLκ)

∂κi;r
= J

∂Lκ

∂κi;r
+

∂J

∂κi;r︸ ︷︷ ︸
=0

Lκ = J
∂Lκ

∂κi;r

(as we use a projectable normalization). Therefore,

ι

(
DlS−k

∂L

∂uj;k

)
= ι

(
DlS−k

(
J
∂Lκ

∂κi;r

∂κi;r
∂uj;k

))
= ι

(
Dl

(
JS−k

(
∂Lκ

∂κi;r

∂κi;r
∂uj;k

)))

and using the general Leibniz rule again gives

ι

(
DlS−k

∂L

∂uj;k

)
= ι

(
l∑

s=0

(
l

s

)
(DsJ)

(
Dl−sS−k

(
∂Lκ

∂κi;r

∂κi;r
∂uj;k

)))

=

l∑
s=0

(
l

s

)
ι (DsJ) ι

(
Dl−sS−k

(
∂Lκ

∂κi;r

∂κi;r
∂uj;k

))
.

Thus, the invariantized (2.31) correction term P = ι (P ) amounts to

P =
∑
j≥1

j−1∑
l=0

(−1)j
(
j

l

)
ι (Dj−lJ )

l∑
s=0

(
l

s

)
ι (DsJ) ι

(
Dl−sS−k

(
∂Lκ

∂κi;r

∂κi;r
∂uj;k

))
,

with ι (J) = 1 for a similar reason to ι (ϑ) = 1. Finally, using the relation (4.12)

for the Euler–Lagrange equation of L, the invariant formulation of the Euler–

Lagrange equation is

ι (Eu (L)) =
∑
j

ι
(
Hj
j

)
− P, (4.18)

with Hj
j , for each j ∈ Z+, and P as defined above.

126



4.4. INVARIANT DIFFERENTIAL-DIFFERENCE EULER–LAGRANGE EQUATIONS

Example 4.4.2. Consider the Lagrangian,

L =
u1;0

u0;1
,

with Lagrangian functional ∑∫
L dx ∧∆.

Using the group action

g · x = ax, g · u0;0 = u0;0,

and the normalization equation (2.16) g · x = 1, the Lagrangian and Lagrangian

functional become

L =
xu1;0

u0;1
and

∑∫
L ι (dx) ∧∆

respectively, as

ι (dx) =

(
∂ (g · x)

∂x

∣∣∣∣
g=ρ;0(x,[u])

)
dx =

dx

x
.

The invariantization (2.31) of uj;k is

ι (uj;k) = xjuj;k,

and the generating invariant is

κ = ι (u0;0) = u0;0.

For the invariant Euler–Lagrange equation, we need the terms H1
1 and H0

0 in

Proposition 4.4.3. The Lagrangian in terms of shifts and derivatives of the gen-

erating invariant is

Lκ =
κ1;0

κ0;1
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and therefore

H0
0 = S−1

(
∂Lκ

∂κ0;1

)
= − κ1;−1

(κ0;0)2 ,

H1
1 = D†

[
H1

0J
]

= −D
[
∂Lκ

∂κ1;0
x

]
= − 1

κ0;1
+

κ1;1

(κ0;1)2 .

The invariantization (2.31) of these leaves them unchanged so

ι
(
H0

0

)
= − κ1;−1

(κ0;0)2 , ι
(
H1

1

)
= − 1

κ0;1
+

κ1;1

(κ0;1)2 .

The correction term for this example is

P = (−1)

(
1

0

)
ι (D (x))

(
0

0

)
ι

(
1

x

)
ι

(
∂Lκ

∂κ1;0

∂κ1;0

∂u1;0

)
= −ι

(
∂Lκ

∂κ1;0

∂κ1;0

∂u1;0

)
= − 1

κ0;1
.

Therefore, the invariant Euler–Lagrange equation of L is

ι
(
H0

0

)
+ ι
(
H1

1

)
− P = − κ1;−1

(κ0;0)2 −
1

κ0;1
+

κ1;1

(κ0;1)2 −
(
− 1

κ0;1

)
= − κ1;−1

(κ0;0)2 +
κ1;1

(κ0;1)2 = 0.

Remark 4.4.4. The terms Hj
j and P are invariant here, however, the invariantiza-

tion operator is needed here to write these (using the replacement rule Theorem

2.4.9) in terms of shifts and invariant derivatives of the generating invariant.

4.4.4 A group action on all continuous variables

Here for a more general case, we assume that there is a group action on both the

independent continuous variable and the dependent variable. We also restrict

attention to actions for which a projectable normalization (Definition 4.1.2) is

possible and is used.

Proposition 4.4.5. The invariantization of the original Euler–Lagrange equa-

tion with a group action on both the independent and dependent variable is of
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the form

ι (Eu (L)) =
∑
j

(
Hβ
)†
ι
(
Hj
j,β

)
− P

where
(
Hβ
)†

is a linear differential-difference operator,

Hj
j,β = (−1)j D

[
. . .
[
D︸ ︷︷ ︸

j times

[
Hj

0,β J
]
. . .
]
J
]︸ ︷︷ ︸

j times

, Hj
0,β = S−k

∂Lκ

∂κβj;k
, (4.19)

and the correction term is

P =
∑
j≥1

j−1∑
l=0

(−1)j ι (Dj−l (J ))

l∑
s=0

(
l

s

)
ι (DsJ) ι

(
Dl−sS−k

(
∂Lκ

∂κβi;r

∂κβi;r
∂uj;k

))
.

Proof. Again, use (4.12) to split the calculations into two parts. First find

ι
(
Eu
(
L
))

. Here using that Lκ (n, [κ]) = Lκ = L,

∑∫
Lι (dx) ∧∆ =

∑∫
Lκι (dx) ∧∆.

Then

dv
∑∫

Lκι (dx) ∧∆ =
∑∫

dvL
κ ∧ ι (dx) ∧∆

=
∑∫

∂Lκ

∂κβj;k
dvκ

β
j;k ∧ ι (dx) ∧∆

=
∑∫

∂Lκ

∂κβj;k
SkDjdvκβ0;0 ∧ ι (dx) ∧∆.

As we only consider projectable normalizations the vertical derivative of ι (dx) is

zero. Summation by parts gives

dv
∑∫

Lκι (dx) ∧∆ =
∑∫ (

S−k
∂Lκ

∂κβj;k

)
Djdvκβ0;0 ∧ ι (dx) ∧∆,

and integrating by parts, the terms

Hj
0,β = S−k

∂Lκ

∂κβj;k
, Hj

1,β = −D
[
Hj

0,βJ
]
, . . . ,

Hj
j,β = (−1)j D

[
. . .
[
D
[
Hj

0,βJ
]
. . .
]
J
]
,
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reappear. After several iterations, we obtain

dv
∑∫

Lκι (dx) ∧∆ =
∑∫ ∑

j

Hj
j,βdvκ

β
0;0 ∧ ι (dx) ∧∆.

Then using the replacement rule (Theorem 2.4.9) to invariantize this gives

dv
∑∫

Lκι (dx) ∧∆ =
∑∫ ∑

j

ι
(
Hj
j,β

)
ι
(

dvκ
β
0;0

)
∧ ι (dx) ∧∆. (4.20)

Recall that

dvκ
β
0;0 =

∂κβ0;0

∂ui;l
dvui;l,

so

ι
(

dvκ
β
0;0

)
= ι

(
∂κβ0;0

∂ui;l

)
ι (dvui;l) .

Again,

ι (dvu0;0) =

(
∂ (g · u0;0)

∂u0;0

∣∣∣∣
g=ρ;0(x,[u])

)
dvu0;0

= ϑdvu0;0

and so

dvu0;0 = θ0;0ι (dvu0;0) ,

with θ0;0 = ϑ−1. Then by shifting by l, taking the ith derivative and using the

general Leibniz rule gives

dvui;l =

i∑
r=0

(
i

r

)
θi−r;l (DrSlι (dvu0;0)) ,

as before. Invariantizing (2.31) this gives

ι (dvui;l) =

i∑
r=0

(
i

r

)
ι (θi−r;l) ι (DrSlι (dvu0;0)) ,

but as the derivatives are not invariant here, the term DrSlι (dvu0;0) is not invari-

ant. It is possible to find ι (DrSlι (dvu0;0)) in terms of the invariant derivatives,
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shifts and ι (dvu0;0), but this can involve some arduous calculations. By letting

Hβι (dvu0;0) = ι

(
∂κβ0;0

∂ui;j

)
ι (dvui;l) ,

the linear differential-difference operator Hβ is

Hβι (dvu0;0) =
∑
r

∑
l

i∑
r=0

(
i

r

)
ι

(
∂κβ0;0

∂ui;l

)
ι (θi−r;l) ι (DrSlι (dvu0;0)) ,

and so

dv
∑∫

Lκι (dx) ∧∆ =
∑∫ ∑

j

ι
(
Hj
j,β

)
Hβι (dvu0;0) ∧ ι (dx) ∧∆.

The last step is to take the adjoint of the linear differential-difference operator

Hβ in the formula above, to give the formula for the invariantization of the Euler

operator of L with respect to u:

dv
∑∫

Lκι (dx) ∧∆ =
∑∫ ∑

j

(
Hβ
)†
ι
(
Hj
j,β

)
ι (dvu0;0) ∧ ι (dx) ∧∆.

Hence,

∑∫
ι
(
Eu
(
L
))
ι (dx) ∧∆ =

∑∫ ∑
j

(
Hβ
)†
ι
(
Hj
j,β

)
ι (dvu0;0) ∧ ι (dx) ∧∆.

For the correction term, we use the same calculations as in the proof of the

previous proposition and find that

P =
∑
j≥1

j−1∑
l=0

(−1)j ι (Dj−l (J ))

l∑
s=0

(
l

s

)
ι (DsJ) ι

(
Dl−sS−k

(
∂Lκ

∂κβi;r

∂κβi;r
∂uj;k

))
,

where there is more than one generating invariant for this case. With these

results, the invariant formulation of the Euler–Lagrange equation of L is found

from (4.12) in the same way as before.

This formula for the invariant Euler–Lagrange equation is less explicit than

the others that we have found. So here is an example of how one could use this

formula.
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Example 4.4.3. Consider the Lagrangian

L =
u1;0

u0;1

with the Lagrangian functional

∑∫
L dx ∧∆.

Here use the 2-parameter Lie group action

g · x = bx, g · u0;0 = au0;0,

with the normalization equations (2.16),

g · x = 1, g · u0;0 = 1.

The invariantization (2.31) of uj;k is

ι (uj;k) =
xjuj;k
u0;0

and the two generating invariants are

κ1 = ι (u1;0) =
xu1;0

u0;0
, κ2 = ι (u0;1) =

u0;1

u0;0
.

The Lagrangian functional can be written as

∑∫
L ι (dx) ∧∆,

with

L =
xu1;0

u0;1
, ι (dx) =

dx

x
.

However, for us the important invariant form of the Lagrangian and Lagrangian

functional is

Lκ =
κ1

κ2
and

∑∫
Lκ ι (dx) ∧∆.

Using the formula in Proposition 4.4.5 the first step is to find the terms Hj
j,β in

132



4.4. INVARIANT DIFFERENTIAL-DIFFERENCE EULER–LAGRANGE EQUATIONS

this example. As there are no shifts or derivatives of the generating invariants,

ι
(
H0

0,1

)
= H0

0,1 =
1

κ2
, ι

(
H0

0,2

)
= H0

0,2 = − κ2

(κ2)2 . (4.21)

Next we need the adjoint of the linear differential-difference operators Hβ for

β = 1, 2. Using the method in the proof of Proposition 4.4.5,

dvκ
1 =

∂κ1

∂u0;0
dvu0;0 +

∂κ1

∂u1;0
dvu1;0

= ι

(
∂κ1

∂u0;0

)
ι (dvu0;0) + ι

(
∂κ1

∂u1;0

)
ι (dvu1;0)

with

ι (dvu1;0) = ι (θ1;0) ι (dvu0;0) + ι (θ0;0) ι (Dι (dvu0;0)) .

Then the identity D = JD gives

ι (Dι (dvu0;0)) = ι (J (Dι (dvu0;0))) = ι (Dι (dvu0;0)) = Dι (dvu0;0) ,

and therefore

dvκ
1 = ι

(
∂κ1

∂u0;0

)
ι (θ0;0) ι (dvu0;0)

+ ι

(
∂κ1

∂u1;0

)
[ι (θ1;0) ι (dvu0;0) + ι (θ0;0)Dι (dvu0;0)]

=

[ [
ι

(
∂κ1

∂u0;0

)
ι (θ0;0) + ι

(
∂κ1

∂u1;0

)
ι (θ1;0)

]
id

+

[
ι

(
∂κ1

∂u1;0

)
ι (θ0;0)

]
D
]
ι (dvu0;0)

= H1ι (dvu0;0) .

The adjoint of the operator H1 on a smooth function f is

(
H1
)†

(f) =

[
ι

(
∂κ1

∂u0;0

)
ι (θ0;0) + ι

(
∂κ1

∂u1;0

)
ι (θ1;0)

]
f

−D
[
ι

(
∂κ1

∂u1;0

)
ι (θ0;0) f

]
−D (J )

[
ι

(
∂κ1

∂u1;0

)
ι (θ0;0) f

]
.
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Also,

dvκ
2 = ι

(
∂κ2

∂u0;0

)
ι (θ0;0) ι (dvu0;0) + ι

(
∂κ2

∂u0;1

)
ι (θ0;1) Sι (dvu0;0)

=

[
ι

(
∂κ2

∂u0;0

)
ι (θ0;0) id + ι

(
∂κ2

∂u0;1

)
ι (θ0;1) S

]
ι (dvu0;0)

= H2ι (dvu0;0) ,

so (
H2
)†

(f) =

[
ι

(
∂κ2

∂u0;0

)
ι (θ0;0) f

]
+ S−1

[
ι

(
∂κ2

∂u0;1

)
ι (θ0;1) f

]
.

Putting together the necessary components,

ϑ =
∂ (g · u0;0)

∂u0;0

∣∣∣∣
g=ρ;0(x,[u])

=
1

u0;0
,

and hence

θ0;0 = u0;0, θ1;0 = u1;0, θ0;1 = u0;1,

with invariantizations (2.31)

ι (θ0;0) = 1, ι (θ1;0) = κ1, ι (θ0;1) = κ2.

Then J = x, so D (J ) = 1. Finally,

∂κ1

∂u0;0
= − xu1;0

(u0;0)2 ,
∂κ1

∂u0;0
=

x

u0;0
,

∂κ2

∂u0;0
= − u0;1

(u0;0)2 ,
∂κ1

∂u0;1
=

1

u0;0
,

and their invariantizations (2.31) are

ι

(
∂κ1

∂u0;0

)
= −κ1, ι

(
∂κ1

∂u0;0

)
= 1, ι

(
∂κ2

∂u0;0

)
= κ2, ι

(
∂κ1

∂u0;1

)
= 1.

Using

dv
∑∫

Lκι (dx) ∧∆ =
∑∫ ∑

j

(
Hβ
)†
ι
(
Hj
j,β

)
ι (dvu0;0) ∧ ι (dx) ∧∆,

gives the invariantization (2.31) of the Euler operator of L with respect to u.
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As

(
H1
)†
ι
(
H0

0,1

)
=

[
ι

(
∂κ1

∂u0;0

)
ι (θ0;0) + ι

(
∂κ1

∂u1;0

)
ι (θ1;0)

]
ι
(
H0

0,1

)
−D

[
ι

(
∂κ1

∂u1;0

)
ι (θ0;0) ι

(
H0

0,1

)]
−D (J )

[
ι

(
∂κ1

∂u1;0

)
ι (θ0;0) ι

(
H0

0,1

)]
=
[
−κ1 · 1 + 1 · κ1

]( 1

κ2

)
−D

[
1 · 1 · 1

κ2

]
− 1 ·

[
1 · 1 · 1

κ2

]
= −D

(
1

κ2

)
− 1

κ2

= −κ
1

κ2
+
κ1

0;1

κ2
− 1

κ2
,

and

(
H2
)†
ι
(
H0

0,2

)
=

[
ι

(
∂κ2

∂u0;0

)
ι (θ0;0) ι

(
H0

0,2

)]
+ S−1

[
ι

(
∂κ2

∂u0;1

)
ι (θ0;1) ι

(
H0

0,2

)]
= −κ2 · 1 ·

(
− κ1

(κ2)2

)
+ S−1

[
1 · κ2 ·

(
− κ1

(κ2)2

)]
=
κ1

κ2
−
κ1

0;−1

κ2
0;−1

,

the invariantization (2.31) of Eu
(
L
)

is the following

(
H1
)†
ι
(
H0

0,1

)
+
(
H2
)†
ι
(
H0

0,2

)
=
κ1

0;1

κ2
− 1

κ2
−
κ1

0;−1

κ2
0;−1

.

The correction term P for this example is

P = −ι

(
∂Lκ

∂κ1
0;0

∂κ1
0;0

∂u1;0

)

= − 1

κ2
.

Therefore, the invariant formulation of the Euler–Lagrange equation for L is

(
H1
)†
ι
(
H0

0,1

)
+
(
H2
)†
ι
(
H0

0,2

)
− P =

κ1
0;1

κ2
−
κ1

0;−1

κ2
0;−1

.
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Chapter 5

Reductions of ordinary

difference equations

This chapter broadens the moving frame symmetry reduction method to different

types of O∆Es that have a Lie group action involving the independent variable.

Additionally, the applicability of the method is extended by showing how it works

for partitioned O∆Es. A comprehensive comparison of this method and canonical

coordinates is also given.

5.1 Introduction to moving frame reductions

This chapter aims to show how to reduce and solve O∆Es, systems of O∆Es and

partitioned O∆Es using moving frames. This chapter follows closely the method

used by Benson and Valiquette [4] on O∆E reductions. In [4], a given O∆E is

reduced multiple times by a technique called inductive moving frames, which was

developed in several different papers [4, 18, 30, 33, 34]. This technique and the

general method of moving frame reductions are outlined in this chapter.

Benson and Valiquette’s approach does not allow the O∆E to depend explic-

itly on the independent variable. This limits the applicability of the method as

many O∆Es have this property. Also, the current literature does not address par-

titioned O∆Es, for which the group action may differ between partitions. Here

we extend the method to O∆Es that depend on the independent variable and

show how to apply the method for partitioned O∆Es in an example. Further-
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more, we discuss some of the benefits and disadvantages of using moving frames

in comparison to the canonical coordinates method, which is described in [15].

Many O∆Es require multiple reductions to solve them. The key component

for multiple symmetry reductions using inductive moving frames or canonical

coordinates is the existence of a solvable Lie symmetry group which leaves the

O∆E invariant.

Definition 5.1.1. Let G̃ be an r-dimensional Lie group with Lie algebra g. The

Lie group G̃ is said to be solvable if there exists a chain of Lie subgroups

{e} = G(0) ⊂ G(1) ⊂ G(2) ⊂ · · · ⊂ G(r−1) ⊂ G(r) = G̃ (5.1)

such that for l = 1, . . . , r, G(l) is a l-dimensional subgroup of G̃ and G(l−1) is a

normal subgroup of G(l). At the infinitesimal level, the Lie algebra g is solvable

if there exists a chain of Lie subalgebras

{0} = g(0) ⊂ g(1) ⊂ g(2) ⊂ · · · ⊂ g(r−1) ⊂ g(r) = g,

such that for l = 1, . . . , r, dim g(l) = l and g(l−1) is a ideal of g(l), that is,[
g(l−1), g(l)

]
⊂ g(l−1). Here [ , ] represents the Lie bracket, see [28].

We use the difference prolongation space (with one independent variable) as

described in Section 2.1. Consequently, when we construct a moving frame it is

a difference moving frame over a particular fixed n (see Section 2.4).

Let G = G(s+1) in a solvable chain (5.1) and let H = G(s) in the same chain.

The Lie group action of H on the prolongation space Pn (R) is obtained by pulling

back the action h · u, h ∈ H, on the total space to Pn (R).

A moving frame for H is given by the set of normalization equations

KH = {unl = cl | l = 1, . . . , s = dimH}, with nl ∈ Z for all l, (5.2)

defining its coordinate cross-section (2.29). Then, let ρH ([u]) be the correspond-

ing right moving frame, and let ιH denote the induced invariantization map with

ιH (ul) = ρH ([u]) · ul, (5.3)
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denoting the H-normalized invariants.

The key observation to make for inductive moving frames is that

g · ul =
(
gh−1

)
h · ul = g̃ · (h · ul) , g̃ = gh−1 ∈ G. (5.4)

This means the group G naturally acts on the H-lifted invariants (h · ul), for

all h ∈ H, and more importantly the Lie group G acts on the H-normalized

invariants (5.3) as follows

g̃ · ιH (ul) = g̃ ·
(
ρH ([u]) · ul

)
. (5.5)

To implement the moving frame construction for G, let

KG = {ιH (un1) = c1, . . . , ι
H (uns) = cs, ι

H (uns+1) = cs+1} ⊂ KH (5.6)

be the cross-section (2.29) of the Lie group action (5.4). Here it is easier to work

with the group action of G in (5.5) than in (5.4) because the first s equations

in (5.6) are constant under invariantization (2.31) by H. Accordingly, the first s

constants remain the same as in (5.2). Solving the normalization equations

g̃ ·
(
ιH (un1)

)
= c1, . . . , g̃ ·

(
ιH (uns+1)

)
= cs+1,

for g̃ ∈ G gives the right moving frame ρ̃G : KH → G. The right moving frame

ρG : Pn (Z)→ G corresponding to the original Lie group action (5.4) is then

ρG ([u]) = ρ̃G ([u]) ρH ([u]) .

Here is a simple example of how to use the inductive moving frame construction.

Example 5.1.1. Let G be the group generated by the infinitesimal generators

∂u and u∂u, and let H be the subgroup generated by the infinitesimal generator

∂u. The action of the Lie (sub)group H is

g · u = u+ b, b ∈ R.
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Let the cross-section (2.29) for H be

KH = {u0 = 0}. (5.7)

This gives the value of the parameter on the frame as b = −u0. Therefore, the

H-normalized invariants are

ιH (ul) = ul − u0,

for l ∈ Z. Now the action of the Lie group G is

g · u = au+ b, where a ∈ R+.

Using the cross-section (2.29) for G given by

KG = {ιH (u0) = 0, ιH (u1) = 1}

the equations we need to solve for the parameters are

g̃ · ιH (u0) = ã (u0 − u0) + b̃ = 0, g̃ · ιH (u1) = ã (u1 − u0) + b̃ = 1.

This yields

ã =
1

u1 − u0
, b̃ = 0.

So, the invariants of the group G are

ιG (ul) = ρG ([u]) · ul = ρ̃G ([u]) ρH ([u]) · ul = ρ̃G ([u]) · (ul − u0) =
ul − u0

u1 − u0
.

It is easy to check this gives the same result as the moving frame with the coor-

dinate cross-section KG = {u0 = 0, u1 = 1}.

A schematic of the inductive moving frame construction is shown in Figure

5.1. (As the cross-sectionKG is a submanifold of the cross-sectionKH it is difficult

to give an accurate visual representation of this method in two dimensions.)

For the symmetry reduction algorithm, the subgroup H is a normal subgroup

of G, so the quotient group G/H induces an action on the space of H-normalized
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Pn (R) KH KG

ρ̃GρH

ρG

Figure 5.1: Inductive moving frame.

invariants (5.3). This action is obtained symbolically by looking at the partial

cross-section

K̃H = {ιH (un1) = c1, . . . , ι
H (uns) = cs}.

Solving the normalization equations,

g̃ · ιH (un1) = c1, . . . , g̃ · ιH (uns) = cs,

for the group parameters of the normal subgroup H, one obtains a partial moving

frame ρ̃H : K̃H → H ⊂ G. Then the action of the quotient Lie group G/H on

the H-normalized invariants is obtained by substituting the values of the partial

moving frame ρ̃H ([u]) into (5.5).

The partial cross-section K̃H is a direct result of the cross-section in KH

(5.2). When considering group actions that depend explicitly on the independent

variable, it is important to note that the partial moving frame on Pn (R) depends

on the independent variable n. Therefore, when finding the action of the quotient

Lie group G/H on the H-normalized invariants one substitutes the values of

the partial moving frame ρ̃H ([u]) = ρ̃0
H ([u]) (over n) into (5.5), as this is the

moving frame associated to the partial cross-section. The Lie group does not

change the discrete variable n; thus, n is a fixed value in the partial moving

frame calculations.

Remark 5.1.2. The normalized invariants ι0 (u1) and ι1 (u1) are related by the

recurrence relation

ι1 (u1) = K0 · ι0 (u1) , (5.8)
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where K0 = ρ1 ([u]) ρ0 ([u])−1 and the product operator (·) in (5.8) stands for the

group product in G. Note that K0 denotes K(1) (in the notation used in previous

chapters), as there is only one independent variable. The normalized invariants

ι0 (u−1) and ι−1 (u−1) are related by the recurrence relation

ι0 (u−1) = K−1 · ι−1 (u−1) , (5.9)

where K−1 = S−1K0. In general, Kj = SjK0 is the jth shift of the Maurer–

Cartan invariant K0. Thus, for l ≥ 1, the recurrence relations are the following:

ι0 (ul) = K−1
0 K−1

1 . . .K−1
l−2K

−1
l−1 · ιl (ul) ,

ι0 (u−l) = K−1K−2 . . .K−(l−1)K−l · ι−l (u−l) .
(5.10)

Consequently, the normalized invariants ι0 (ul), with l ∈ Z, can be expressed

in terms of shifts of the normalized invariant ι0 (u0) and shifts of the Maurer–

Cartan invariant K0 (or its inverse). For convenience, let mj = K−1
j (in line with

Benson and Valiquette’s notation).

Therefore, when ι0 (u0) is a phantom invariant, that is when ι0 (u0) = c (a

constant), the recurrence relations (5.10) provide expressions for all normalized

invariants ι0 (ul) in terms of the Maurer–Cartan invariant K0 (or m0) and its

shifts as follows. For l ≥ 1,

ι0 (ul) = m0m1 . . .ml−2ml−1 · c,

ι0 (u−l) = K−1K−2 . . .K−(l−1)K−l · c.
(5.11)

5.2 Symmetry reduction using moving frames

By incorporating the moving frame machinery into the symmetry reduction al-

gorithm, it is possible to implement the algorithm without relying on the co-

ordinate expressions for the canonical variables and the difference invariants.

First, we explain how to do this by describing the constructions for O∆Es with

a one-dimensional Lie symmetry group. We then extend this to O∆Es with a

multi-parameter solvable Lie symmetry group.
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5.2.1 One-parameter symmetry groups

We use what is known about the canonical coordinates method (see [15]) to

help describe the moving frame method. Doing this will also show some of the

similarities and differences between the two approaches. Consider a kth order

O∆E,

F (n, u0, . . . , uk) = 0, (5.12)

that is invariant under the action of a one-parameter Lie point symmetry group.

The local action of this one-parameter Lie group is induced by the flow of the

infinitesimal generator v = Q (n, u) ∂u, that is,

g · u0 = exp [εv] · u0, g ∈ G.

Here ε is the parameter that we use below for the moving frame. In the canonical

coordinates method, one seeks an equivariant component, s0, and an invariant

component r0, which satisfy

g · s0 = s0 + ε, g · r0 = r0. (5.13)

To find these one can use the formula

s0 =

∫
1

Q (n, u0)
du0

for the equivariant component and then for the invariant component

r0 = s1 − s0, (as g · s1 − g · s0 = s1 − s0) .

Note that other forms of the equivariant and invariant components are

s̃ = s+ a (r) , r̃ = b (r) ,

where a and b are smooth functions and b is invertible. For the moving frame

method, the equivariant component is the moving frame ρ0 ([u]). To show this we

go through in detail the calculations for the moving frame. Let the cross-section
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(2.29) be

K = {u0 = ĉ1},

with normalization equation (2.16) g ·u0 = ĉ1, which must be solved for the group

parameter ε = ρ0 ([u]) . Then, for the general group element g parameterized by

ε,

ρ0 (g · [u]) = ρ0 ([u]) g−1 = ρ0 ([u])− ε.

For the cross-section with ĉ1 = 0 the canonical coordinate is s0 = −ρ0 ([u]). The

invariant component for the moving frame is, up to a sign, the inverse Maurer–

Cartan invariant

m0 = ρ0 ([u]) ρ1 ([u])−1 = ρ0 ([u])− ρ1 ([u]) ,

with ρ1 ([u]) = Sρ0 ([u]). This is invariant for the same reason as r0 is in the

canonical coordinates method, that is,

ρ0 ([u])− ε− (ρ1 ([u])− ε) = ρ0 ([u])− ρ1 ([u]) = m0.

To reduce the O∆E the (normalized) invariants ι0 (ul), for l = 1, . . . , k, are writ-

ten in terms of k − 1 shifts of the inverse Maurer–Cartan invariants. Using the

recurrence relations (5.11) and the fact that the group product is addition, the

recurrence relations (5.11) become

ι (ul) = [m0 + m1 + · · ·+ ml−2 + ml−1] · ĉ1, (5.14)

Finally by invariantizing (2.31) the O∆E, (5.12), and using the recurrence

relations (5.14) we obtain the (k − 1)th order reduced O∆E

F 1 (n,m0, . . . ,mk−1) = 0. (5.15)

All the computations are performed symbolically meaning without relying on

the coordinate expressions (in terms of u and n) of canonical variable (moving

frame) or the difference invariants (Maurer–Cartan invariants). Therefore, the
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three

different

orbits

K

O (z)

O (z) ∩ K
zρ (z)

ρ (z) = (ρ (z))−1

U

Figure 5.2: Right and left moving frame defined by a cross-section.

coordinate expressions for the moving frame ρ0 ([u]), the invariants

ι0 (ul) , l = 0, . . . , k,

and different shifts of the Maurer–Cartan invariant are unnecessary to find the

reduced O∆E (5.15).

From here to find the solution u0 = f (n) of the original O∆E (5.12) one needs

the solution to the reduced O∆E (5.15). For first-order O∆Es (i.e. equations of

the form F (n, u0, u1) = 0) the moving frame method reduces to the solution for

m0. For other O∆Es there may be other methods to find the solution for m0,

including but not restricted to multiple symmetry reductions (as explained in the

next subsection). By construction of the right moving frame, ĉ1 = ρ0 ([u]) · u0.

Therefore, the solution is u0 = ρ0 ([u]) · ĉ1, where ρ0 ([u]) = ρ0 ([u])−1 is the left

moving frame (see Figure 5.2). As the group product is the usual sum, its inverse

is the additive inverse, so

m0 = ρ0 ([u])− ρ1 ([u]) = ρ1 ([u])− ρ0 ([u]) . (5.16)

Equation (5.16) is called the reconstruction equation for the left moving frame

ρ0 ([u]). Once m0 is known, (5.16) yields a first-order linear difference equation

for ρ0 ([u]). The general solution to the reconstruction equation (5.16) is

ρ0 ([u]) = c1 + σl{ml;n0, n},
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where c1 is an arbitrary constant of integration and

σl{ml;n0, n} =



∑n−1
l=n0

ml, n > n0,

0, n = n0,

−
∑n0−1

l=n ml, n < n0.

Therefore, the general solution to the O∆E (5.12) is

u0 = ρ0 ([u]) · ĉ1 = [c1 + σl{ml;n0, n}] · ĉ1.

Example 5.2.1. We show how to solve a first-order O∆E which depends on n.

This example comes from [15], where canonical coordinates are used to solve it.

The O∆E is

u1 =
u0 − n
nu0 − 1

, n ≥ 2, (5.17)

and is invariant under the group action

g · u0 = −e
2(−1)nεu0 − e2(−1)nε + u0 + 1

e2(−1)nεu0 − e2(−1)nε − u0 − 1
, (5.18)

coming from the characteristic Q(n, u) = (−1)n
(
u2

0 − 1
)
. Here we are interested

in the solution for n ≥ 2 with u0 = u (2). Let the cross-section (2.29) be

K = {u0 = 0}.

This means that ι0 (u0) = 0 and Sι0 (u0) = ι1 (u1) = 0. Invariantizing (2.31) u1

and using the recurrence relations for the Maurer–Cartan equations (5.14) gives

ι0 (u1) = m0 · ι1 (u1)

= m0 · 0

=
1− e2(−1)n+1m0

e2(−1)n+1m0 + 1
.

Therefore, the reduced O∆E is

1− e2(−1)n+1m0

e2(−1)n+1m0 + 1
= n,
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which is the invariantization of the original O∆E (5.17). Solving for, m0, the

inverse Maurer–Cartan invariant is

m0 =
(−1)n+1

2
Log

(
1− n
n+ 1

)
,

where Log is the principal value of the complex logarithm:

Log (z) = ln (|z|) + iArg (z) , Arg (z) ∈ (−π, π] .

The fact that n ≥ 2 means that (1− n) / (n+ 1) < 0, which implies

m0 =
(−1)n+1

2

(
ln

(
n− 1

n+ 1

)
+ iπ

)
,

by the formula for a complex logarithm (see Example 2.10 in [15]). To find the

solution u0 to the original O∆E we first need to solve m0 = ρ1 ([u])− ρ0 ([u]) for

ρ0 ([u]) = c1 + σk

{
(−1)k+1

2

(
ln

(
k − 1

k + 1

)
+ iπ

)
; 2, n

}
= c1 +

(−1)n

2

(
ln

(
n− 1

n

)
+
iπ

2

)
. (5.19)

Then using u0 = ρ0 ([u]) · 0 gives

u0 =
1− e2(−1)nρ0([u])

e2(−1)nρ0([u]) + 1
, (5.20)

the general solution of the O∆E (5.17) when substituting in the left moving

frame (5.19), ρ0 ([u]). However, we are looking for the solution for n ≥ 2 with

u0 = u (2). This needs to be split into two cases. This is because of the form of

the left moving frame ρ0 ([u]) which is

ρ0 ([u]) =
(−1)n

2
Log

(
1− u0

u0 − 1

)
, (5.21)

from the rearranged formula of the general solution (5.20). The first case we look

at is when (1− u0) / (u0 + 1) > 0. So, first to find the value of the constant c1

in terms of u (2), compare the left moving frame (5.19) with the formula (5.21)

for the left moving frame ρ0 ([u]), with u0 = u (2). This gives the value of the
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constant

c1 =
1

2
ln

(
2 (1− u (2))

u (2) + 1

)
− iπ

4
.

Substituting this into the equation for the left moving frame ρ0 ([u]) (5.19) gives

ρ0 ([u]) =
1

2
ln

((
n− 1

n

)(−1)n (2 (1− u (2))

u (2) + 1

))
+
iπ

2

(
(−1)n + 1

2

)
.

Then by substituting this into the equation for u0 (5.20) the solution is

u0 =
1− n−1

n

(
2(1−u(2))
u(2)+1

)(−1)n

exp
(
iπ
(

1−(−1)n

2

))
n−1
n

(
2(1−u(2))
u(2)+1

)(−1)n

exp
(
iπ
(

1−(−1)n

2

))
+ 1

. (5.22)

The solution can be written as

u0 =


(u(2)+1)n+2(u(2)−1)(n−1)
(u(2)+1)n−2(u(2)−1)(n−1) , n even ,

2(1−u(2))n+(u(2)+1)(n−1)
2(1−u(2))n−(u(2)+1)(n−1) , n odd .

(5.23)

For the case when (1− u0) / (u0 + 1) < 0,

c1 =
1

2
ln

(
2 (u (2)− 1)

1 + u (2)

)
+
iπ

4
.

so from (5.19),

ρ0 ([u]) =
1

2
ln

((
n− 1

n

)(−1)n (2 (u (2)− 1)

1 + u (2)

))
+
iπ

2

(
(−1)n − 1

2

)
.

Finally, (5.20) gives the solution

u0 =
1− n−1

n

(
2(u(2)−1)

1+u(2)

)(−1)n

exp
(
iπ
(

1+(−1)n

2

))
n−1
n

(
2(u(2)−1)

1+u(2)

)(−1)n

exp
(
iπ
(

1+(−1)n

2

))
+ 1

. (5.24)

This is equivalent to u0 found in the formula (5.22). As expected, the solution by

moving frames agrees with what is found using the canonical coordinates method

in [15].

Remark 5.2.1. Any canonical coordinate s0 that meets the requirement that one

must be able to invert the map from u0 to s0 (at least, for all points (n, u) that
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occur in any solution of the original O∆E and satisfy Q (n, u) 6= 0) is called

compatible with the O∆E (see [15]). In the moving frame method, we can take

the inverse of the right moving frame to give us the solution u0 = ρ0 ([u]) · ĉ1.

Therefore, if we can find a cross-section that works in some domain U effectively,

we have a compatible canonical coordinate with the O∆E on U .

5.2.2 Solvable symmetry groups

Now we show how to reduce and solve an O∆E with a multi-parameter solvable

Lie group using the moving frame method. This time the kth order O∆E

A (n, u0, . . . , uk) = 0, (5.25)

is invariant under an r-dimensional solvable symmetry group G. Let (5.1) be

a corresponding chain of normal subgroups. At the infinitesimal level, let g be

the corresponding r-dimensional solvable Lie algebra spanned by the infinitesimal

generators v1, . . . ,vr such that

g(j) = span{v1, . . . ,vj}, j = 1, . . . , r.

Here let Gj denote the one-parameter Lie group for the infinitesimal generator

vj . The local group action of this one-parameter Lie group is induced by the flow

of vj :

gj · ul = exp (εjvj) · ul, gj ∈ Gj , l ∈ Z.

Using the chain of solvable groups (5.1) the first reduction of the O∆E (5.25)

is done using the one-parameter Lie group G1 = G(1). Therefore, let the cross-

section of the one-parameter group action G1 be K1 = {u0 = ĉ1}, with ρ1
0 ([u]) the

corresponding right moving frame and ι10 denoting the induced invariantization

map. Also the corresponding Maurer–Cartan invariant is m1
0 = ρ1

0 ([u])− ρ1
1 ([u]).

To find the order k − 1 reduced O∆E we invariantize (2.31) the kth order O∆E

(5.25) by ι10 and use the recurrence relations

ι10 (ul) =
[
m1

0 + m1
1 + · · ·+ m1

l−2 + m1
l−1

]
· ĉ1, l ≥ 1,
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to obtain

F 1
(
n,m1

0, . . . ,m
1
k−1

)
= 0. (5.26)

Nothing up to this point has changed from the one-parameter group case.

For a second iteration of the symmetry reduction algorithm use the one-

parameter group G2 ' G(2)/G(1) to reduce the order of the reduced O∆E (5.26).

To find the induced action of G2 on the G1-normalized invariants apply the

inductive moving frame construction. Once the G2-action on ι10 (ul) is known for

l = 1, . . . , k, the action on the inverse Maurer–Cartan invariant m1
0 is deduced

from ι10 (u1) = m1
0·ĉ1. Then for the G2-action on the first k−1 forward shifts of m1

0,

i.e., g2 ·m1
l for l = {0, 1, . . . , k−1}, take shifts of the action on m1

0, i.e., Sl
(
g2 ·m1

0

)
.

This allows us to implement the moving frame construction a second time. Let

K2 = {m1
0 = ĉ2} be a cross–section, ρ2

0

([
m1
])

the corresponding right moving

frame, ι20 the induced invariantization map, and m2
0 = ρ2

0

([
m1
])
− ρ2

1

([
m1
])

the

corresponding Maurer–Cartan invariant. Invariantizing (5.26) with respect to ι20,

we obtain the order k − 2 reduced O∆E

F 2
(
n,m2

0, . . . ,m
2
k−2

)
= 0.

Reducing this O∆E using G3 ' G(3)/G(2), followed by G4 and so on up to Gr

will leave in the end an order k − r reduced equation

F r
(
n,mr

0, . . . ,m
r
k−r
)

= 0. (5.27)

At each iteration of the symmetry reduction algorithm by moving frames a cross-

section is introduced. Therefore, in the end, there are r cross-sections (2.29)

K1 = {u0 = ĉ1}, Kl+1 =

{
ml

0 = ĉl+1

}
,

with normalization equations

g1 · u0 = ĉ1, g2 ·m1
0 = ĉ2, . . . , gr ·mr−1

0 = ĉr,
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for l = 1, . . . , r − 1,. There are also r associated right moving frames

ρr0
([
mr−1

])
, . . . , ρ2

0

([
m1
])
, ρ1

0 ([u])

and consequently r inverse Maurer–Cartan invariants

ml
0 = ρl0

([
ml−1

])
− ρl1

([
ml−1

])
, m1

0 = ρ1
0 ([u])− ρ1

1 ([u]) , (5.28)

for l = 2, . . . , r.

If k = r then the original O∆E (5.25) reduces to the solution for mk
0. If k < r

then one can use the first k symmetries to reduce to mk
0. If k > r then one needs

to solve the resulting O∆E for mr
0 to then find the solution to the original O∆E

(5.25). In all these cases the method can be stopped if one can find a solution

for an inverse Maurer–Cartan invariant along the way.

Suppose that mr
0 is the general solution for the reduced O∆E (5.27). The

solution u0 to the original O∆E (5.25) is obtained using an iterative form of the

reconstruction procedure in the one-parameter case. First, solve the reconstruc-

tion equation

ρr1
([
mr−1

])
− ρr0

([
mr−1

])
= mr

0

for the left moving frame ρr0
([
mr−1

])
. Then, using the cross-section of the left

moving frame ρr0
([
mr−1

])
and the definition of the left moving frame gives

mr−1
0 = ρr0

([
mr−1

])
· ĉr,

where the group product is the action of Gr on mr−1
0 . Knowing mr−1

0 allows us to

solve the reconstruction equation for ρr−1
0

([
mr−2

])
. Iterating the reconstruction

procedure enables us to obtain the left moving frames

ρr−1
0

([
mr−2

])
, ρr−2

0

([
mr−3

])
, . . . , ρ1

0 ([u]) .

Once ρ1
0 ([u]) is known, the solution to the original O∆E (5.25) is u0 = ρ1

0 ([u]) · ĉ1.
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Example 5.2.2. The second-order O∆E,

u2 =
(n+ 1)u0u1

(n+ 1)u1 + 2u0
, (5.29)

has two symmetries with infinitesimal generators

v1 = nu2
0∂u0 , v2 = u0∂u0 .

These symmetries are commutative and their group actions are

g1 · u0 =
u0

1− nε1u0
, g2 · u0 = eε2u0,

respectively. We start the reduction with the first symmetry group G1 = G(1)

(containing g1) and use the cross-section K1 = {u0 = 1} which gives the following

recurrence relations

ι10 (u0) = 1,

ι10 (u1) = m1
0 · ι11 (u1)

= m1
0 · 1

=
1

1− (n+ 1)m1
0

,

ι10 (u2) = m1
0m

1
1 · ι12 (u2)

= m1
0m

1
1 · 1

=
1

1− (n+ 2)
(
m1

0 + m1
1

) .
Invariantizing (2.31) the O∆E (5.29) with respect to ι10 gives the reduced O∆E

m1
1 = −m1

0n
2 + m1

0n+ 2

n2 + 3n+ 2
. (5.30)

For the second iteration we use the one-parameter group G2 ' G(2)/G(1). The

action of this one-parameter group G2 on the inverse Maurer–Cartan invariants

is found by looking at the partial cross-section K = {ι10 (u0) = 1}, which has the
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normalization equation (2.16)

g · ι10 (u0) =
1

eε2

ι10(u0)
+ ε̃1n

= 1.

Using ι10 (u0) = 1, solving for the group parameter of G(1) yields the partial

moving frame parameter

ε̃1 =
1− eε2
n

.

From

g · ι10 (u1) =
1

eε2

ι10(u1)
+ ε̃1 (n+ 1)

,

we can use the partial moving frame parameter and recurrence relations to get

g · ι10 (u1) = − n

eε2m1
0n

2 + eε2m1
0n+ eε2 − n− 1

. (5.31)

Comparing (5.31) with

g · ι10 (u1) =
1

1− (n+ 1) g ·m1
0

,

yields

g ·m1
0 =

eε2m1
0n

2 + eε2m1
0n+ eε2 − 1

n (n+ 1)
.

As a consequence,

g ·m1
1 =
−1 +

(
m1

1n
2 + 3nm1

1 + 2m1
1 + 1

)
eε2

n2 + 3n+ 2
.

Using the cross-section K2 = {m1
0 = 0} gives the recurrence relations

ι20
(
m1

0

)
= 0,

ι20
(
m1

1

)
=
−1 + em

2
0

n2 + 3n+ 2
.

Therefore, invariantizing (2.31) the reduced O∆E (5.30) by ι20 gives after simpli-

fication

m2
0 = iπ.
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We now reconstruct the solution to the original O∆E by using the relation

m2
0 = ρ2

1

([
m1
])
− ρ2

0

([
m1
])

to solve for the left moving frame:

ρ2
0

([
m1
])

= c1 + σk{iπ; 1, n}

= c1 + (n− 1) iπ.

Then using m1
0 = ρ2

0

([
m1
])
· 0 implies that

m1
0 =

eρ
2
0([m

1]) − 1

n (n+ 1)

=
−ec1 (−1)n − 1

n (n+ 1)
.

Finally, using the relation m1
0 = ρ1

1 ([u])− ρ1
0 ([u]), it follows that

ρ1
0 ([u]) = c2 + σk

{
−ec1 (−1)k − 1

k (k + 1)
; 1, n

}
=

1

n

(
− ec1 (−1)n Ψ

(
n

2
+

1

2

)
n+ ec1 (−1)n nΨ

(n
2

)
+ ec1 (−1)n + (−2 ln (2)n+ n) ec1 − n+ 1

)
+ c2,

where Ψ (n) is the digamma function; consequently, the solution is

u0 = ρ1
0 ([u]) · 1

=
1

1− nρ1
0 ([u])

= −
(
− ec1 (−1)n Ψ

(
n

2
+

1

2

)
n+ ec1 (−1)n nΨ

(n
2

)
+ ec1 (−1)n + n ((−2 ln (2) + 1) ec1 + c2 − 1)

)−1

.

5.3 Higher-order examples

In this section, the moving frame method of symmetry reduction is used to reduce

and solve two third-order O∆Es. For the first example, we reduce the O∆E by its

two symmetries and find that the resulting reduced O∆E is of a particular solvable

form. For the second example, a three-parameter symmetry group completely

reduces the O∆E. For both, iterating the reconstruction procedure gives the

solution to the original O∆E.

154



5.3. HIGHER-ORDER EXAMPLES

Example 5.3.1. The O∆E

u3 =
u1 (u2 − u0)

u2 − 2u0
(5.32)

has two Lie symmetries given by the infinitesimal generators

v1 = u0∂u0 , v2 = (−1)n u0∂u0 . (5.33)

This Lie group is commutative, giving us a choice of which symmetry to start

with (see Hydon [16] for further details). We start by reducing with the first

symmetry which has the group action,

g1 · uk = eε1uk, ε1 ∈ G1,

and take the cross-section (2.29) to be

K1 = {u0 = 1}.

This implies that

ι10 (u0) = 1,

ι10 (u1) = em
1
0 ,

ι10 (u2) = em
1
0+m1

1 ,

ι10 (u3) = em
1
0+m1

1+m1
2 .

These recurrence relations allow us to invariantize (2.31) the O∆E (5.32) with

respect to ι10, which gives the reduced O∆E

em
1
1+m1

2 =
em

1
0+m1

1 − 1

em
1
0+m1

1 − 2
. (5.34)

The action of G2 ' G(2)/G(1) on the inverse Maurer–Cartan invariants is

found using the partial cross-section K = {ι10 (u0) = 1} with normalization equa-

tion (2.16)

g · ι10 (u0) = eε̃1+ε2(−1)nι10 (u0) = 1.
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Using ι10 (u0) = 1 and solving for the group parameter of G1

(
G(1)

)
yields

ε̃1 = ε2 (−1)n+1 .

From,

g · ι10 (u1) = eε̃1+ε2(−1)n+1
ι10 (u1) ,

substituting the partial moving frame parameter and recurrence relations gives

g · ι10 (u1) = e−2ε2(−1)n+m1
0

= g · em1
0 .

As a result, g ·m1
0 = m1

0− 2ε2 (−1)n. For the calculations the group action on

em
1
0 is not only sufficient but also more convenient than the group action on m1

0.

Accordingly, the action of the second group on em
1
1 and em

1
2 is

g · em1
1 = e2ε2(−1)n+m1

1 , g · em1
2 = e−2ε2(−1)n+m1

2 .

Next by choosing the cross-section K2 = {m1
0 = 0}, the recurrence equations

for the exponentials of the inverse Maurer–Cartan invariants are

ι20

(
em

1
0

)
= 1,

ι20

(
em

1
1

)
= e2m2

0(−1)n ,

ι20

(
em

1
2

)
= e2(m2

0+m2
1)(−1)n+1

.

Therefore, to find the final reduced O∆E invariantize (2.31) the reduced O∆E

(5.34) by ι20, and substitute in the recurrence relations above and simplify:

e2m2
1(−1)n+1

=
e2m2

0(−1)n − 1

e2m2
0(−1)n − 2

. (5.35)

Using the substitution v0 = e2m2
0(−1)n , we see that this is a Riccati equation,

which is an equation of the form

v1 =
av0 + b

v0 + c
, a, b, c ∈ R.
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The solution to a Ricatti equation is obtained by using the substitution

v0 =
w0

w1
+ a,

and solving the resulting linear O∆E, (see [27]). Here using the substitution

v0 = e2m2
0(−1)n the Ricatti equation is

v1 =
v0 − 1

v0 − 2
,

and if we linearize using the substitution

v0 =
w0

w1
+ 1, (5.36)

this gives the linear O∆E

w2 + w1 − w0 = 0.

The solution to this linear O∆E is

w0 = c1

(
−1−

√
5

2

)n
+ c2

(
−1 +

√
5

2

)n
,

which is substituted into (5.36) to find

v0 =
c1

(
−1−

√
5

2

)n−1
+ c2

(
−1+

√
5

2

)n−1

c1

(
−1−

√
5

2

)n+1
+ c2

(
−1+

√
5

2

)n+1 . (5.37)

This splits the example into two cases, that is, c1 6= 0 and c1 = 0. When c1 6= 0,

the solution for m2
0 is

m2
0 =

(−1)n

2
ln


(
−1−

√
5

2

)n−1
+ k1

(
−1+

√
5

2

)n−1

(
−1−

√
5

2

)n+1
+ k1

(
−1+

√
5

2

)n+1

 ,

with k1 = c2/c1. Using the relation m2
0 = ρ2

1

([
m1
])
− ρ2

0

([
m1
])

and observing
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that

m2
0 =

(−1)n

2
ln


(
−1−

√
5

2

)n
+ k1

(
−1+

√
5

2

)n
(
−1−

√
5

2

)n+1
+ k1

(
−1+

√
5

2

)n+1


− (−1)n−1

2
ln


(
−1−

√
5

2

)n−1
+ k1

(
−1+

√
5

2

)n−1(
−1−

√
5

2

)n
+ k1

(
−1+

√
5

2

)n
 ,

allows us to solve for the left moving frame:

ρ2
0

([
m1
])

=
(−1)n−1

2
ln


(
−1−

√
5

2

)n−1
+ k1

(
−1+

√
5

2

)n−1(
−1−

√
5

2

)n
+ k1

(
−1+

√
5

2

)n
+ k2.

As ι20
(
m1

0

)
= 0,

m1
0 = ρ2

0

([
m1
])
· 0

= 2ρ2
0

([
m1
])

(−1)n+1

= ln


(
−1−

√
5

2

)n−1
+ k1

(
−1+

√
5

2

)n−1(
−1−

√
5

2

)n
+ k1

(
−1+

√
5

2

)n
+ 2k2 (−1)n+1 .

From here solve the Maurer–Cartan invariant

m1
0 = ρ1

1 ([u])− ρ1
0 ([u])

= ln

 1(
−1−

√
5

2

)n
+ k1

(
−1+

√
5

2

)n


− ln

 1(
−1−

√
5

2

)n−1
+ k1

(
−1+

√
5

2

)n−1

+ 2k2 (−1)n+1 ,

for ρ1
0 ([u]) to obtain the left moving frame

ρ1
0 ([u]) = ln

 1(
−1−

√
5

2

)n−1
+ k1

(
−1+

√
5

2

)n−1

+ k2 (−1)n + k3.

Finally, using ι10 (u0) = 1 implies that the solution, for c1 6= 0, to the original
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O∆E (5.32) is

u0 = ρ1
0 ([u]) · 1

= eρ
1
0([u])

=
exp (k2 (−1)n + k3)(

−1−
√

5
2

)n−1
+ k1

(
−1+

√
5

2

)n−1 .

For the case when c1 = 0, (5.37) and v0 = e2m2
0(−1)n gives

m2
0 = (−1)n+1 ln

(
−1 +

√
5

2

)
.

Using the relation m2
0 = ρ2

1

([
m1
])
− ρ2

0

([
m1
])

, the left moving frame is

ρ2
0

([
m1
])

=
(−1)n

2
ln

(
−1 +

√
5

2

)
+ k4.

The inverse Maurer–Cartan invariant is

m1
0 = ρ2

0

([
m1
])
· 0

= 2ρ2
0

([
m1
])

(−1)n+1

= − ln

(
−1 +

√
5

2

)
+ 2k4 (−1)n+1 .

Therefore, the left moving frame is

ρ1
0 ([u]) = − ln

(
−1 +

√
5

2

)
n+ k4 (−1)n + k5.

So the solution for c1 = 0 of the original O∆E (5.32) is

u0 = ρ1
0 ([u]) · 1

= exp
(
ρ1

0 ([u])
)

=

(
−1 +

√
5

2

)−n
exp (k4 (−1)n + k5) .
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Hence, the full solution to (5.32) is

u0 =


exp(k2(−1)n+k3)(

−1−
√
5

2

)n−1
+k1

(
−1+

√
5

2

)n−1 , c1 6= 0,

(
−1+

√
5

2

)−n
exp (k4 (−1)n + k5) , c1 = 0,

(5.38)

with k1 = c2/c1.

Example 5.3.2. Here we show how to reduce the third-order O∆E

u3 = u1 +
1

u2 − u0
, (5.39)

and solve for the original variable u0. This O∆E has three symmetries whose

infinitesimal generators are

v1 = ∂u0 , v2 = (−1)n ∂u0 , v3 = (−1)n u0∂u0 .

To begin the reduction we need to start with the first symmetry which has

the group action

g1 · u0 = u0 + ε1, ε1 ∈ G1.

Using the cross-section K1 = {u0 = 0} gives

ι10 (u0) = 0,

ι10 (u1) = m1
0,

ι10 (u2) = m1
0 + m1

1,

ι10 (u3) = m1
0 + m1

1 + m1
2.

These recurrence relations allow us to invariantize (2.31) the O∆E (5.39) with

respect to ι10, to find the reduced O∆E

m1
1 + m1

2 =
1

m1
0 + m1

1

. (5.40)

To iterate the algorithm a second time we use the action G2 ' G(2)/G(1). Using
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the partial moving frame K = {ι10 (u0) = 0} the normalization equation (2.16) is

g · ι10 (u0) = ι10 (u0) + ε̃1 + (−1)n ε2 = 0,

solving for the parameter in G1

(
G(1)

)
gives

ε̃1 = ε2 (−1)n+1 .

Then looking at

g · ι10 (u1) = ι10 (u1) + ε̃1 + (−1)n+1 ε2,

substituting the recurrence relations and ε̃1 yields

g ·m1
0 = m1

0 − 2 (−1)n ε2.

Therefore,

g ·m1
1 = m1

1 + 2 (−1)n ε2, g ·m1
2 = m1

2 − 2 (−1)n ε2.

Now using the cross-section K2 = {m1
0 = 0},

ι20
(
m1

0

)
= 0,

ι20
(
m1

1

)
= 2 (−1)nm2

0,

ι20
(
m1

2

)
= 2 (−1)n+1 (m2

0 + m2
1

)
.

Then if we invariantize (2.31) the reduced O∆E (5.40), with respect to ι20, this

gives the second reduced O∆E

m2
1 = − 1

4m2
0

. (5.41)

This reduced O∆E is solvable, but to find a further reduced O∆E we use the

algorithm a third time by considering the group action G3 ' G(3)/G(2). Us-

ing the partial moving frame K = {ι20
(
ι10 (u0)

)
= 0, ι20

(
ι10 (u1)

)
= 0} the first
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normalization equation (2.16) is

g · ι20
(
ι10 (u0)

)
= e(−1)nε3ι20

(
ι10 (u0)

)
+ ε̂1 + ε̂2 (−1)n = 0, (5.42)

and using ι20
(
ι10 (u0)

)
= 0 (as ι10 (u0) = 0) implies that

ε̂1 = ε̂2 (−1)n+1 . (5.43)

The second normalization equation is

g · ι20
(
ι10 (u1)

)
= e(−1)n+1ε3ι20

(
ι10 (u1)

)
+ ε̂1 + ε̂2 (−1)n+1 = 0,

and using ι20
(
ι10 (u1)

)
= 0 (as ι10 (u1) = m1

0 and ι20
(
m1

0

)
= 0) implies that

ε̂1 = ε̂2 (−1)n . (5.44)

Comparing the equations (5.43) and (5.44) it is clear to see that ε̂1 = ε̂2 = 0, and

so considering ι20
(
ι10 (u2)

)
yields the group action

g ·m2
0 = eε3(−1)nm2

0.

Note this action can also be found by considering the quotient group action

G(3)/G(1) which yields the normalization equation (2.16)

g · ι10 (u0) = eε3(−1)nι10 (u0) + ε̃1 + ε2 (−1)n = 0

with solution

ε̃1 = ε2 (−1)n+1 .

Therefore,

g · ι10 (u1) = eε3(−1)n+1
ι10 (u1) + ε̃1 + ε2 (−1)n+1

= eε3(−1)n+1
m1

0 − 2ε2 (−1)n

= g ·m1
0.
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From here the cross-section K2 = {m1
0 = 0} is used which has the associated

partial cross-section K = {ι20
(
m1

0

)
= 0} with normalization equation (2.16)

g · ι20
(
m1

0

)
= eε3(−1)n+1

ι20
(
m1

0

)
− 2ε̃2 (−1)n = 0.

This normalization equation yields ε̃2 = 0. Hence considering ι10
(
m1

1

)
and using

the recurrence relations achieves the same result.

By taking the final cross-section to be K3 = {m2
0 = 1}, we obtain

ι30
(
m2

0

)
= 1,

ι30
(
m2

1

)
= em

3
0(−1)n+1

.

Invariantizing (2.31) the reduced O∆E (5.41) with respect to ι30, the final reduced

O∆E is

em
3
0(−1)n+1

= −1

4
. (5.45)

We start the reconstruction procedure by solving the above equation for m3
0:

m3
0 = (−1)n ln (4) + (−1)n+1 iπ.

Using the relation m3
0 = ρ3

1

([
m2
])
− ρ3

0

([
m2
])

gives

ρ3
0

([
m2
])

= c1 + σk{(−1)k ln (4) + (−1)k+1 iπ; 0, n}

= c1 +

(
(−1)n − 1

2

)
iπ + ln (2)

(
(−1)n+1 + 1

)
.

As m2
0 = ρ3

0

([
m2
])
· 1, it follows that

m2
0 = exp

(
c1 (−1)n +

(
1− (−1)n

2

)
iπ + ln (2) ((−1)n − 1)

)
= 2(−1)n−1 (sinh (c1) + (−1)n cosh (c1)) .
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Consequently,

ρ2
0

([
m1
])

= c2 + σk{2(−1)k−1
(

sinh (c1) + (−1)k cosh (c1)
)

; 0, n}

= c2 + sinh (c1)

(
−3 (−1)n

16
+

5n

8
+

3

16

)
+ cosh (c1)

(
−5 (−1)n

16
+

3n

8
+

5

16

)
.

Then m1
0 = ρ2

0

([
m1
])
· 0 gives

m1
0 = 2 (−1)n+1

(
c2 + sinh (c1)

(
−3 (−1)n

16
+

5n

8
+

3

16

)
+ cosh (c1)

(
−5 (−1)n

16
+

3n

8
+

5

16

))
.

Finally, using m1
0 = ρ1

1 ([u])− ρ1
0 ([u]) the solution for the left moving frame is

ρ1
0 ([u]) = c3 + σk

{
2 (−1)k+1

(
c2 + sinh (c1)

(
−3 (−1)k

16
+

5k

8
+

3

16

)

+ cosh (c1)

(
−5 (−1)k

16
+

3k

8
+

5

16

))
; 0, n

}
=

((1 + 3n) cosh (c1) + (5n− 1) sinh (c1) + 8c2) (−1)n

8

+
(5n− 1) cosh (c1)

8
+

(1 + 3n) sinh (c1)

8
− c2 + c3.

Therefore, the solution to the original O∆E (5.39) is

u0 = ρ1
0 ([u]) · 0

= ρ1
0 ([u])

=
((1 + 3n) cosh (c1) + (5n− 1) sinh (c1) + 8c2) (−1)n

8

+
(5n− 1) cosh (c1)

8
+

(1 + 3n) sinh (c1)

8
− c2 + c3.

5.4 Reductions of systems

Now we discuss the moving frame reduction theory for systems of O∆Es. This

theory for group actions that do not depend on n was again developed by Benson

and Valiquette [4]. We extend the method to systems of O∆Es with group ac-

tions that depend on the independent variable. The systems we consider depend
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on shifts of the dependent variables u0 =
(
u1

0, . . . , u
q
0

)
and potentially the inde-

pendent variable n. Here we only consider systems of O∆Es invariant under a

one-parameter Lie group. It is possible to use a solvable group to achieve multiple

reductions; however, the notation becomes cumbersome. Let

Fα (n,u0,u1, . . . ,uk) = 0, α = 1, . . . , q, (5.46)

be a system of O∆Es invariant under a one-parameter Lie group action. The Lie

group must act on at least one dependent variable. Without loss of generality

assume the group acts on the dependent variable u1 (among maybe others). As

before, we start the moving frame construction by choosing a cross-section (2.29)

K = {u1
0 = ĉ1}.

Then, as the group action may act on other dependent variables, we introduce

the order zero invariants

t0 =
(
t10, t

2
0, . . . , t

q−1
0

)
=
(
ι10
(
u2

0

)
, . . . , ι10 (uq0)

)
.

The recurrence relations from before are replaced with the equations

ι10
(
u1
l

)
=
[
m1

0 + m1
1 + · · ·+ m1

l−2 + m1
l−1

]
· (c, tl)

With these, all invariants ι10 (ul) can be written in terms of shifts of the inverse

Maurer–Cartan invariants m1
0 and shifts of the order zero invariants t0. Then as

before, we invariantize (2.31) the system of O∆Es (5.46) to find the new reduced

system of O∆Es

F 1
α

(
m1

0, . . . ,m
1
k−1, t0, t1, . . . , tk

)
= 0, α = 1, . . . , q. (5.47)

This new system of O∆Es is reduced by one for the inverse Maurer–Cartan

invariants. From here if there are more Lie group symmetries one can reduce this

system of O∆Es further using the method for solvable groups (see Section 5.2).

If a general solution to the reduce O∆E (5.47) is found, that is,
(
m1

0, t0

)
then the
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reconstruction procedure can be applied. Therefore, solving the reconstruction

equation m1
0 = ρ1

1 ([u]) − ρ1
0 ([u]) for the left moving frame ρ1

0 ([u]), the general

solution to the original system (5.46) is

u1
0 = ρ1

0 ([u]) · c, u2
0 = ρ1

0 ([u]) · t10, . . . , uq0 = ρ1
0 ([u]) · tq−1

0 .

Now consider an example of a system that is dependent on the independent

variable n.

Example 5.4.1. Let f± = 2± (−1)n and consider the system of O∆Es

x1 =
f+x0 − 3y0

f+x2
0 + f−y2

0

, y1 =
3x0 + f−y0

f+x2
0 + f−y2

0

, (5.48)

which has a two-dimensional abelian Lie group. The characteristics of this Lie

group are linear homogeneous in x and y:

Q =
(
Q(x), Q(y)

)
, Q(x) = c̃1(−1)nx− c̃2f−y, Q

(y) = c̃1(−1)ny + c̃2f+x,

where c̃1 and c̃2 are arbitrary constants. The group action of the two-parameter

Lie group is (x0, y0) 7→ (x̃0, ỹ0) where

x̃0 = exp{ε2(−1)n}

{
cos(ε1)x0 −

√
f−
f+

sin(ε1)y0

}
,

ỹ0 = exp{ε2(−1)n}

{√
f+

f−
sin(ε1)x0 + cos(ε1)y0

}
.

(5.49)

Here ε1 and ε2 are the Lie group parameters. Note that f+f− = 3 and Sf± = f∓,

which will be used in the calculations. To start the reduction of this system we

take the cross-section K1 = {y0 = 0}. The recurrence relations for this cross-
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section are then

ι10 (y0) = 0,

ι10 (y1) =

√
f−
f+

sin
(
m1

0

)
t11,

ι10 (x0) = t10,

ι10 (x1) = cos
(
m1

0

)
t11.

Now we use these to invariantize (2.31) the system of O∆Es (5.49), with respect

to ι10, which gives the following reduced system of O∆Es

cos
(
m1

0

)
t11 =

1

t10
,

√
f−
f+

sin
(
m1

0

)
t11 =

3

f+t10
. (5.50)

Next, instead of using the second symmetry, we seek two equations, one of which

only depends on the inverse Maurer–Cartan invariant, m1
0, and another which

only depends on the order zero invariant and its first shift, i.e., t10 and t11. This

can be done at any stage during the process so long as we can find the order zero

invariants and Maurer–Cartan invariants explicitly. The first of these equations

is

cot
(
m1

0

)
=

ι10 (x1)√
f+
f−
ι10 (y1)

=
1√
3
.

This gives

m1
0 =

π

3
+ k1π, where k1 ∈ Z.

Therefore, using the relation m1
0 = ρ1

1 ([x] , [y])− ρ1
0 ([x] , [y]),

ρ1
0 ([x] , [y]) =

(
1

3
+ k1

)
πn+ c1.

Also (
t11
)2

= ι10 (x1)2 +
f+

f−
ι10 (y1)2 =

4(
t10
)2 .

We seek real-valued solutions, which correspond to the positive square root:

t11 =
2

t10
. (5.51)
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Next to find the solution to the original system of O∆Es (5.48) one must find

the solution for the order zero invariant t10. By taking the natural logarithm we

obtain

v1 + v0 = ln (2) , (5.52)

where v0 = ln
(
t10
)
. Then using that

ln (2) =
1

2
ln (12) +

1

2
ln

(
1

f+f−

)

the O∆E

v1 + v0 =
1

2
ln (12) +

1

2
ln

(
1

f+f−

)
has the general solution

v0 =
1

2
ln

(
1

f+

)
+

1

4
ln (12) + b1 (−1)n .

Taking the exponential of this gives the solution for the order zero invariant:

t10 =
4
√

12√
f+

eb1(−1)n . (5.53)

Finally, using the identities x0 = ρ1
0 ([x] , [y]) · t10 and y0 = ρ1

0 ([x] , [y]) · 0 allows us

to find the solutions

x0 = cos
(
ρ1

0 ([x] , [y])
)
t10 =

4
√

12√
f+

cos

((
1

3
+ k1

)
πn+ c1

)
eb1(−1)n ,

y0 = sin
(
ρ1

0 ([x] , [y])
)
t10 =

4
√

12√
f−

sin

((
1

3
+ k1

)
πn+ c1

)
eb1(−1)n ,

for k1 = {0, 1}. The case k1 = 1 does not solve the system, so the only solution

is

x0 =
4
√

12√
f+

cos
(πn

3
+ c1

)
eb1(−1)n ,

y0 =
4
√

12√
f−

sin
(πn

3
+ c1

)
eb1(−1)n .
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5.5 Partitioned equations

As defined in [15] a partitioned O∆E is an O∆E of the form,

uqL = w
(
n, u0, uL, u2L, . . . , u(q−1)L

)
, (5.54)

where n, L, q ∈ Z. An O∆E of this form can be split into L O∆Es of the form

u(l)
q = w

(
mL+ l, u

(l)
0 , u

(l)
1 , u

(l)
2 , . . . , u

(l)
(q−1)

)
, (5.55)

where m, L, l, q ∈ Z and u(l) (m) = u (mL+ l). One can apply the moving

frames method for a solvable Lie group to find the solutions u
(l)
0 for each of the

L O∆Es separately. Then the solution to the original O∆E is

u0 =


u

(0)
0 , where n(0) = Lm,

...

u
(L−1)
0 , where n(L−1) = Lm+ (L− 1) .

To illustrate the method of moving frame reductions for partitioned O∆Es

consider the following example.

Example 5.5.1. Let the O∆E be

u4 =
2(u2)2

u0 + (1 + (−1)n)u2
. (5.56)

This O∆E can be split into the two O∆Es

u
(0)
2 =

2
(
u

(0)
1

)2

u
(0)
0 + 2u

(0)
1

, (5.57)

u
(1)
2 =

2
(
u

(1)
1

)2

u
(1)
0

. (5.58)

Both of these O∆Es are symmetric under the scaling symmetry with the

infinitesimal generator

v = u∂u
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and the group action

g · u = eεu.

These two O∆Es are completely separate; therefore, we could use two different

cross-sections (2.29) for the moving frame reduction. However, here we use the

same cross-section for both O∆Es, namely K = {u(0)
0 = u

(1)
0 = 1}. This leads to

the recurrence relations

ι10

(
u

(l)
0

)
= 1,

ι10

(
u

(l)
1

)
= em

(l)
0 ,

ι10

(
u

(l)
2

)
= em

(l)
0 +m

(l)
1 ,

for l = {0, 1}. Invariantizing (2.31) the odd partitioned O∆E (5.58) with respect

to ι10 gives the reduced O∆E

em
(1)
1 = 2em

(1)
0 .

This is a simple linear O∆E for em
(1)
1 , which has the solution

m
(1)
0 = n(1) ln (2) + k1.

Using the relation m
(1)
0 = ρ

(1)
1

([
u(1)

])
− ρ(1)

0

([
u(1)

])
gives

ρ
(1)
0

([
u(1)

])
= ln

(√
2
)
n(1)

(
n(1) − 1

)
+ k1n

(1) + c1.

Then

u
(1)
0 = ρ

(1)
0

([
u(1)

])
· 1

= eρ
(1)
0 ([u(1)])

= k2

(√
2
)n(1)(n(1)−1) (

ek1n
(1)
)
,

where k2 = ec1 . This is the solution for the odd part of the lattice.

The even partitioned O∆E (5.57), invariantized (2.31) with respect to ι10,
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simplifies to a Ricatti equation :

em
(0)
1 =

em
(0)
0

em
(0)
0 + 1

2

.

Using the same method as in Example 5.3.1 gives the solution

m
(0)
0 = ln

(
b22n

(0)

b1 + b22n
(0)+1

)
. (5.59)

We can simplify this by letting k3 = b2/b1. However, as before this splits the

problem into two cases, the first being when b1 6= 0. Using the reconstruction

equation m
(0)
0 = ρ

(0)
1

([
u(0)

])
−ρ(0)

0

([
u(0)

])
we then try to solve for the left moving

frame ρ
(0)
0

([
u(0)

])
. This cannot be solved easily in closed form so we leave it as

ρ
(0)
0

([
u(0)

])
= σk

{
ln

(
k32k

1 + k32k+1

)
; 0, n(0)

}
+ k4. (5.60)

Then to find the solution for the even part when b1 6= 0 we use

u
(0)
0 = ρ

(0)
0

([
u(0)

])
· 1

= eρ
(0)
0 ([u(0)]).

For the second case, when b1 = 0, the inverse Maurer–Cartan invariant is

m
(0)
0 = ln

(
1

2

)
,

which gives

ρ
(0)
0

([
u(0)

])
= ln

(
1

2

)
n(0) + k5.

Thus,

u
(0)
0 = ρ

(0)
0

([
u(0)

])
· 1

=

(
1

2

)n(0)
ek5 .
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Therefore, for the even part of the lattice, the solution is

u
(0)
0 =


eρ

(0)
0 ([u(0)]), for b1 6= 0,(

1
2

)n(0)
ek5 , for b1 = 0,

where ρ
(0)
0

([
u(0)

])
= σk

{
ln
(

k32k

1+k32k+1

)
; 0, n(0)

}
+ k4.

Finally, we can give the solution for u0 as a piecewise solution as follows

u0 =


eρ

(0)
0 ([u(0)]), for b1 6= 0, where n(0) = 2m,(

1
2

)n(0)
ek5 , for b1 = 0,

k2

(√
2
)n(1)(n(1)−1)

(
ek1n

(1)
)
, where n(1) = 2m+ 1,

with ρ
(0)
0

([
u(0)

])
= σk

{
ln
(

k32k

1+k32k+1

)
; 0, n(0)

}
+ k4. Another way in which this

can be represented is as follows

u0 = u
(0)
0 πE (n) + u

(1)
0 πO (n) ,

where πE (n) = (1 + (−1)n) /2 and πO (n) = (1− (−1)n) /2.

In this example, the even and odd partitions admit the same symmetry group.

This is not necessarily true for general partitioned equations.

5.6 Comparison with canonical coordinates

The moving frame method gives an alternative to canonical coordinates for re-

ducing and solving O∆Es. Despite some of their similarities, there are also some

important differences between the two methods. The first of these is in how each

calculates the equivariant component. For the canonical coordinates method, to

find the equivariant component there is an integration step using the formula

s0 =

∫
1

Q (n, u)
du.

By contrast, the moving frame method makes use of the fact that the frame itself

is an equivariant component. This makes the choice of cross-section, defined by
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the normalization equations (2.16), comparable to the integration step for the

canonical coordinates method. Therefore, one of the potential benefits of the

moving frame method is that there is no integration step to be done. A possible

disadvantage of the moving frame method is the need to pick a normalization

equation. Is there a best choice of the normalization equation? To answer this

question it is wise to do the calculations for an arbitrary constant, ĉ1, and then

see what the resulting O∆E will look like for different values of the constant.

If the resulting O∆E is solvable for a particular value then it is sensible to use

that. For most simple examples, both the integration step and choice of the

cross-section (2.29) are particularly easy. But some examples may be easier to

solve by one of the two methods.

Next, we consider compatibility. For this, we need to summarise some of the

calculations of Example 5.2.1 using the canonical coordinates method. In this

example the canonical coordinate s0 is valid but the coordinate s1 is not as it

becomes complex, therefore, there is no compatible s0 that exists on R. This is

due to the fact that if |u0| is greater (less) that 1 then |u1| is less (greater) than

1 (with u 6= 1/n). To overcome this problem in [15] the canonical coordinate

s0 (n, u) =
(−1)n

2
Log

(
u0 − 1

u0 + 1

)
=


(−1)n

2 ln
(
u0−1
u0+1

)
, u0−1

u0+1 > 0;

(−1)n

2

(
ln
(

1−u0
u0+1

)
+ iπ

)
, u0−1

u0+1 < 0;

is used. Therefore, as no real-valued compatible s0 exists to get passed this

problem one needs to extend the space from the reals, R, to the complex numbers,

C. This splits the problem in to two cases where the canonical coordinate s0 is

different depending on if (u0 − 1) / (u0 + 1) is positive or negative. Looking back

at the moving frame approach the extension to complex numbers is more natural

as the inverse Maurer–Cartan invariant is always complex. It is also unnecessary

at this stage to consider the two different cases. In fact, it is only necessary

when finding the solution to the initial value problem with u0 = u (2). Whether

(u0 − 1) / (u0 + 1) is positive or negative the O∆E amounts to

s1 − s0 =
(−1)n+1

2

(
ln

(
n− 1

n+ 1

)
+ iπ

)
,
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which is the same as the inverse Maurer–Cartan invariant m1
0. From here to find

the general solution in both methods one solves the O∆E above for s0 or the left

moving frame ρ0 ([u]). Then in the moving frame method, we look at the left

moving frame and the original cross-section to find the solution for u0. In the

canonical coordinates method one writes the equivariant canonical coordinates,

s0, in terms of u0 and solves for u0. In this case, there are two equivariant

canonical coordinates, s0; therefore, both need to be checked.

Finally, for solvable Lie groups, the action of the inherited symmetries on the

invariants is found differently for each method. In the moving frame method, the

inductive moving frame is used to find the Lie group action on the inverse Maurer-

Cartan invariants. For the canonical coordinates method, one has to find the new

canonical coordinates for each reduced O∆E. To do this a new characteristic is

found by applying the unused symmetry generators to the invariant r0. If the

symmetry is inherited then this is of the form

v (r0) = f (n, r0) ,

and the new characteristic is Q = f (n, r0). The equivariant and invariant com-

ponents are then found in the usual manner.
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Chapter 6

Conclusions and further

research

In this thesis, we have explored several different applications of difference moving

frames. To begin with, we looked at extending the theory on variational prob-

lems for O∆Es to P∆Es on a rectangular mesh. This includes the problem of

finding the Euler–Lagrange equations directly in terms of invariants. This led to

several new discoveries in the form of Proposition 2.6.5 and Lemma 2.6.7 giving

direct formulas for the invariant Euler–Lagrange equations for P∆Es. Then by

creating a difference prolongation space for the non-rectangular case (with two

independent steps) we were able to look at variational problems for this case and

found that the resulting formula remains essentially the same (Proposition 3.4.1).

(The difference prolongation space for two independent steps is new, however.)

Then we extended this approach to D∆Es and found the invariant formulation

of the Euler–Lagrange equations for several different types of Lie group actions

(Proposition 4.4.1, 4.4.2, 4.4.3 and 4.4.5).

Finally, we examined the problem of finding the solutions to O∆Es using

moving frames. Benson and Valiquette had already looked at the problem and

produced a method which works in lots of examples. However, two considerations

that were not looked at were when the Lie group depends on the independent

variable and partitioned O∆Es. So we extended the applicability of the method

to include these considerations, with several examples to illustrate this.

Some potential research ideas which could be looked into in the future include
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the following.

• Develop a Maple package for the difference (differential-difference) invariant

Euler–Lagrange equations, in which one can choose the normalization and

generating invariants. This would lead to a quicker computation of the best

reduction.

• The difference prolongation space for non-rectangular mesh could be ex-

tended to a completely free mesh. This would have several applications,

particularly for finite difference approximations of PDEs.

• Obtain the general formula for all differential-difference invariant Euler–

Lagrange equations. In this thesis the formula for a group action on only

one independent continuous variable has been found. However, a formula

for a group action on more than one independent continuous variable has

not been found. Neither has a formula been found for group actions on

both variables where there is more than one group action on the inde-

pendent variables. Additionally, one can drop the need for a projectable

normalization (Definition 4.1.2) allowing for more Lie group actions. The

general formula could potentially be found using a similar method to that in

the paper by Kogan and Olver [19] with the differential-difference structure

in the paper by Peng and Hydon [32].

• Develop the invariant differential-difference variational bicomplex. This can

potentially be used to examine the form of the equivariant conservation

laws.

• Develop a Maple package for symmetry reductions using moving frames.

This would need to include finding the best set of normalization equations

at each stage.

• Find an equivariant formulation for conservation laws of D∆Es.
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Appendix A

Additional details

A.1 Symmetry condition applied to the Lagrangian

The Lagrangian (2.17) in the running example is

L =
1

2
ln

∣∣∣∣(u2,0 − u1,1) (u1,−1 − u0,0)

(u2,0 − u1,−1) (u1,1 − u0,0)

∣∣∣∣.
Using the symmetry condition (2.20) and (2.19) for v1 we have

v1 (L) = u0,0
∂L

∂u0,0
+ u2,0

∂L

∂u2,0
+ u1,1

∂L

∂u1,1
+ u1,−1

∂L

∂u1,−1
.

The partial derivatives are given in (2.22). Consequently,

v1 (L) = − u0,0 (u1,1 − u1,−1)

2 (u0,0 − u1,−1) (u0,0 − u1,1)

+
u2,0 (u1,1 − u1,−1)

2 (u1,1 − u2,0) (u1,−1 − u2,0)
+

u1,1 (u0,0 − u2,0)

2 (u1,1 − u2,0) (u0,0 − u1,1)

− u1,−1 (u0,0 − u2,0)

2 (u0,0 − u1,−1) (u1,−1 − u2,0)

= 0

Similar calculations can be done for the other infinitesimal generators vi for

i = 2, . . . , 6 (2.18).
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APPENDIX A. ADDITIONAL DETAILS

A.2 Lagrangians equivalent up to a divergence

The Lagrangians L (2.17) and L0 (2.21) are equivalent up to a divergence. To

prove this we find the divergence term Div (A), such that,

L = L0 + Div (A) .

Here we see that

Div (A) = L− L0

=
1

2
ln

∣∣∣∣(u2,0 − u1,1) (u1,−1 − u0,0)

(u2,0 − u1,−1) (u1,1 − u0,0)

∣∣∣∣− ln

∣∣∣∣u1,0 − u0,1

u1,1 − u0,0

∣∣∣∣
=

1

2
ln

∣∣∣∣(u2,0 − u1,1) (u1,−1 − u0,0) (u1,1 − u0,0)

(u2,0 − u1,−1) (u1,0 − u0,1)2

∣∣∣∣.
After some rearranging, we see the divergence term can be written in the form

Div (A) = (S1 − id)

(
1

2
ln |u1,0 − u0,1|

)
+ (S2 − id)

(
−1

2
ln |u1,−1 − u0,0|

)
+
(
S1S−1

2 − id
)(
−1

2
ln |u1,1 − u0,0|

)
.

A.3 Checking the invariant Euler–Lagrange equations

The invariant Euler–Lagrange equation is

H†λEλ (Lκ) +H†κEκ (Lκ) =
λ−1,1

2 (κ−1,1)
+
κ− λ−1,−1 − 1

2κ

− (κ−2,0 − 1) (κ−1,1 − λ−1,1)

2 (κ−2,0 − λ−2,0)κ−1,1

= 0.

(A.1)

In the original variables,

κ = ι (u1,−1) =
u1,−1 − u0,0

u1,1 − u0,0
, λ = ι (u2,0) =

u2,0 − u0,0

u1,1 − u0,0
.
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Therefore,

λ−1,1 =
u1,1 − u−1,1

u0,2 − u−1,1
, κ−1,1 =

u0,0 − u−1,1

u0,2 − u−1,1
,

λ−2,0 =
u0,0 − u−2,0

u−1,1 − u−2,0
, κ−2,0 =

u−1,−1 − u−2,0

u−1,1 − u−2,0
,

λ−1,−1 =
u1,−1 − u−1,−1

u0,0 − u−1,−1
.

Substituting these into (A.1) yields

H†λEλ (Lκ) +H†κEκ (Lκ) =

(u1,1 − u1,−1 − u−1,1 − u−1,−1)u2
0,0 + (−2u−1,−1u1,1 + 2u1,−1u−1,1)u0,0

(u0,0 − u−1,1) (u0,0 − u1,−1) (u0,0 − u−1,−1)

+
((u1,1 − u−1,1)u1,−1 + u−1,1u1,1)u−1,−1 − u1,1u1,−1u−1,1

(u0,0 − u−1,1) (u0,0 − u1,−1) (u0,0 − u−1,−1)
.

(A.2)

The original Euler–Lagrange equation is

Eu (L) =
1

u1,1 − u0,0
− 1

u−1,1 − u0,0
− 1

u1,−1 − u0,0
+

1

u−1,−1 − u0,0
= 0. (A.3)

The invariants

ι (u0,0) = 0, ι (u1,1) = 1, ι (u−1,1) =
u−1,1 − u0,0

u1,1 − u0,0
,

ι (u1,−1) =
u1,−1 − u0,0

u1,1 − u0,0
, ι (u−1,−1) =

u−1,−1 − u0,0

u1,1 − u0,0
,

are used to find the invariantization (2.31) of (A.3),

ι (Eu (L)) = 1− 1

ι (u−1,1)
− 1

ι (u1,−1)
+

1

ι (u−1,−1)

=
(u1,1 − u1,−1 − u−1,1 − u−1,−1)u2

0,0 + (−2u−1,−1u1,1 + 2u1,−1u−1,1)u0,0

(u0,0 − u−1,1) (u0,0 − u1,−1) (u0,0 − u−1,−1)

+
((u1,1 − u−1,1)u1,−1 + u−1,1u1,1)u−1,−1 − u1,1u1,−1u−1,1

(u0,0 − u−1,1) (u0,0 − u1,−1) (u0,0 − u−1,−1)
.

(A.4)

Hence, comparing (A.2) and (A.4) gives

H†λEλ (Lκ) +H†κEκ (Lκ) = ι (Eu (L)) .
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Appendix B

Other regular and semi-regular

tilings

B.1 Path generators for various tilings

In this section, we explore how one can find a basis for describing paths in various

regular (Figure B.1 and B.2) and semi-regular (Figure B.3, B.4, B.5, B.6 and B.7)

tilings of the plane. To do this, we give one choice of the two independent steps

needed for each of the different tilings. For the different tilings there are several

choices for the two independent steps. The regular square tiling and stub square

tiling have already been explained in detail and so are left out of this section.

Included in the explanation of each tiling will be a figure of the basic shape

which tessellates the plane, and the tiling itself. On the figures of the basic shape,

arrows in blue and red describe the translation component of the two independent

steps. The base point, which is the point we apply the steps from, is labelled

0. The other important points are ones that the two steps map 0 to; these are

labelled by the number of the step. On the figures, neighbours are joined by

edges. The regular square tiling is an example of a locally rectangular tiling,

which means it has 4 neighbours for each point.
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Triangle tiling

0

2

1

(a) Standard template.

(b) Tiling1.

Figure B.1: Triangle standard template and tiling.

The two independent steps (see Figure B.1a) for the triangle tiling are the trans-

lation from 0 to 1, along the horizontal edge of the upright triangle, and the

translation from 0 to 2, along the edge angled π/3 anti-clockwise from the hori-

zontal edge. To get to all points in the tiling (see Figure B.1b) we can take steps

and inverse steps of these two translations. These steps are similar to how we

move around the square mesh as they do not require a rotation component.

11-uniform n11 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n11.svg” is licensed under CC BY-SA 4.0.
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Hexagonal tiling

2

10

(a) Standard template.

(b) Tiling2.

Figure B.2: Hexagonal standard template and tiling.

For the only other regular tiling of the plane, the first step is from 0 to 1 (along

the horizontal edge of the hexagon) followed by a rotation π/3 clockwise. The

second step is from 0 to 2 (along the edge angled 2π/3 anti-clockwise from the

horizontal edge) followed by a rotation by π. We always look at the image (see

Figure B.2a) from the point of view with 0 in the bottom left corner of a hexagon

(Figure B.2b).

21-uniform n1 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n1.svg” is licensed under CC BY-SA 4.0.
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Truncated square tiling

0
1

2

(a) Standard template.

(b) Tiling3.

Figure B.3: Truncated square standard template and tiling.

For the truncated square tiling (Figure B.3b), the first step is from the point 0

to 1 (along the horizontal edge between the square and octagon) followed by a

rotation of π/2 clockwise. The second step is from 0 to 2 (between two octagons

angled 3π/4 anti-clockwise from horizontal) followed by a rotation of π. We

always look at the image (Figure B.3a) from the point of view with 0 in the

bottom left corner of the octagon. This tiling is very similar to the snub square

tiling, as both have one step which used twice takes one back to the same point

and another step that when it is used four times takes one back to the same point.

31-uniform n2 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n2.svg” is licensed under CC BY-SA 4.0.
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Snub trihexagonal tiling

2

10

(a) Standard template.

(b) Tiling4.

Figure B.4: Snub trihexagonal standard template and tiling.

For the snub trihexagonal tiling (Figure B.4b), the first step is from 0 to 1 (along

the horizontal edge between the hexagon and the top triangle) followed by a

rotation of π/3 clockwise. The second step is from 0 to 2 (along the edge angled

π/3 anti-clockwise from the horizontal edge) followed by a rotation of 2π/3 anti-

clockwise. We always look at the image (Figure B.4a) from the point of view

with 0 in the top left corner of the hexagon.

41-uniform n10 by Tomruen, was retrieved from the site ”https://commons.wikimedia.org/
wiki/File:1-uniform_n10.svg” and is licensed under CC BY-SA 4.0.
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Truncated hexagonal tiling

2

0 1

(a) Standard template.

(b) Tiling5.

Figure B.5: Truncated hexagonal standard template and tiling.

For the truncated hexagonal tiling (Figure B.5b), the first step is 0 to 1 (along

the horizontal edge between the triangle and dodecagon) followed by a rotation

of 2π/3 anti-clockwise. The second step is from 0 to 2 (along the edge between

two dodecagons at an angle of 5π/6 clockwise from the horizontal edge) followed

by a rotation of π. We always look at the image (Figure B.5a) from the point of

view with 0 in the bottom left corner of the top triangle.

51-uniform n4 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n4.svg” is licensed under CC BY-SA 4.0.
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Trihexagonal tiling

2

10

(a) Standard template.

(b) Tiling6.

Figure B.6: Trihexagonal standard template and tiling.

For the trihexagonal tiling (Figure B.6b), the first step is from 0 to 1 (along the

horizontal edge of the triangle) then a rotation of π/3 clockwise. The second step

is 0 to 2 (along the edge angled π/3 anti-clockwise from the horizontal edge) then

a rotation π/3 anti-clockwise. We always look at the image (Figure B.6a) from

the point of view with 0 in the bottom left corner of a triangle.

61-uniform n7 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n7.svg” is licensed under CC BY-SA 4.0.
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Rhombitrihexagonal tiling

2

10

(a) Standard template.

(b) Tiling7.

Figure B.7: Rhombitrihexagonal standard template and tiling.

For the rhombitrihexagonal tiling (Figure B.7b), the first step is 0 to 1 (along

the horizontal edge) then a rotation by π/3 clockwise. The second step is from

0 to 2 (vertically up the square edge) then a rotation by 2π/3 anti-clockwise.

We always look at the image (Figure B.7a) from the point of view with 0 in the

bottom left corner of the square.

As stated at the start, for most of these tilings there are other choices for the

two steps to move around the plane. However, the ones chosen here represent

possibly the easiest choices for the different tilings.

71-uniform n6 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n6.svg” is licensed under CC BY-SA 4.0.
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Semi-regular tilings not considered

(a) Elongated triangular tiling8.
(b) Truncated trihexagonal tiling9.

Figure B.8: The other semi-regular tilings.

The elongated triangular tiling (Figure B.8a) is the only tiling which we have

looked at so far which requires 3 different steps to create all possible paths. The

main reason for this is that there are three types of edges. There are edges

between squares and squares; triangles and triangles; and squares and triangles.

There is no way to describe one of these edges in terms of the other two, because

of the way they tessellate the plane. Therefore, as we only consider tilings which

need two independent steps, this example is omitted from the discussion.

The other semi-regular tiling (Figure B.8) of the plane the method does not

work for is the truncated trihexagonal tiling (Figure B.8b). For this, one needs

to use reflections which we do not consider due to the need to preserve the

orientation of the mesh. Reflections could potentially be used but would make

the calculations more complex.

For the prolongation space, we restrict attention to tilings with only two

independent steps.

B.2 Prolongation space for two independent steps

The two independent steps T1 and T2 are of two types. The first type is a

translation without an ensuing rotation. For this type of step the only k ∈ Z such

81-uniform n8 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n8.svg” is licensed under CC BY-SA 4.0.

91-uniform n3 by Tomruen, retrieved from ”https://commons.wikimedia.org/wiki/File:
1-uniform_n3.svg” is licensed under CC BY-SA 4.0.
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that Tk
r = id is k = 0. This type of step is used in triangle tilings and regular

square tilings. The other type of step is a translation followed by a rotation. This

type of step takes us along a closed path (either an edge or polygon) meaning

there exists k ∈ Z+/{1} such that Tk
r = id. This variety of step is used for all

the other types of regular and semi-regular tilings we consider.

The steps map the tiling to itself, so their inverses exist at every point in the

tiling. The inverse of the step which is a translation only is just a translation

in the opposite direction, i.e., (Tr)
−1 = T−1

r . For a step which is a translation

followed by a rotation, the inverse step is the opposite rotation followed by a

translation back in the opposite direction, i.e., (Tr)
−1 = Tk−1

r , where Tk
r = id.

A path between 0 and any other point J, which may be anywhere in the tiling,

is obtained by applying the steps Tr successively to move along edges between

vertices in the tiling. Two paths P1 and P2 differ by a trivial path (either the

identity or a cycle, i.e., a closed loop) if and only if they map 0 to the same point

J. Note there may be multiple ways one can get from 0 to J in the tiling, but, it

is important for the calculations that only one path is used to describe each path

from 0 to any other vertex J in the tiling.

Using the equivalence of paths enables one to write complicated paths in a

shortest-possible form.

For a function u (or, more generally, a difference form) on the tiling, the

prolongation space over the base point n is the product space giving the values

of u at all points in the tiling. Here we are not thinking about any particular

function, but rather the space of all functions, so each uJ can take any value in R

(or C if needed). The variable uJ is the value of u at the point nJ. The pullback

of u on nJ by a path PJ is uJ on n. The general notation of the pullback by PK

is P ∗K. For u on nJ where J = r . . . r︸ ︷︷ ︸
k times

the pullback by Tk
r is

(
Tk
r

)∗
u = uJ on n.

We use the snub square tiling case as an example of this new notation.

Example B.2.1. Let u be a function on nJ, where the path from 0 to J is

PJ = T2T3
1T2T1T2T1. Then the pullback of u by PJ is the function

uJ = P ∗Ju = T∗1T∗2T∗1T∗2
(
T3

1

)∗
T∗2u = u1:1:3: ,
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on n. Using the general notation this is

uJ = u12121112.

The indices used in going from 0 to J are read left to right in the pullback.

Therefore, the pullback of PKPJ is P ∗JP
∗
Ku = uJK, where JK represents the con-

catenation of indices, simplified by whatever relations apply. If fnJ is a function

on nJ, the pullback is related to the shift operator as follows: SKfn := T∗Kfnk.
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