
LEVELS OF ALGEBRAICITY IN STABLE HOMOTOPY THEORIES

JOCELYNE ISHAK, CONSTANZE ROITZHEIM, AND JORDAN WILLIAMSON

Abstract. We study several different notions of algebraicity in use in stable homotopy
theory and prove implications between them. The relationships between the different
meanings of algebraic are unexpectedly subtle, and we illustrate this with several interesting
examples arising from chromatic homotopy theory.
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1. Introduction

When studying problems of a homotopical nature, a useful strategy is to reduce to algebra
and use insight there to make deductions in topology. Such a reduction often loses a lot of
information, but in some cases, the homotopy theory of interest can be completely modelled
algebraically. For example, Serre’s theorem shows that the homotopy theory of rational
spectra is equivalent to the category of graded Q-vector spaces. As such, one might say that
the category of rational spectra is algebraic. However, there are many different meanings
of algebraic in use in the community. One goal of this project is to clarify the relationship
between these different notions.
In this paper, we study several definitions of algebraicity, give some alternative characteriza-
tions of these definitions, and moreover explore the relations between them. Furthermore,
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we illustrate our results with many examples of interest, arising primarily from chromatic
homotopy theory.

Notions of algebraicity. Firstly we give an overview of the different definitions and what
behaviour they seek to capture. We will discuss some examples later on in this introduction.
Given a stable model category C, there are many levels on which one can measure how
algebraic it is. The strictest notion is to require that it is algebraic up to Quillen equivalence;
we say that a stable model category C is algebraic if it is Quillen equivalent to a ChZ-enriched
model category. This ensures that all higher homotopical information (for example, Toda
brackets) is determined by algebraic data. If C has a compact generator, then using Morita
theory [SS03b, Dug06] and machinery from [DS07], one can establish that C is algebraic if
and only if C is Quillen equivalent to modules over a DGA, see Theorem 3.11.
This notion of algebraicity is relatively well established but also technically quite strong, so
in order to get a richer, fuller picture we will weaken this notion to study other kinds of
algebraicity. Instead of requiring that all higher homotopical information is determined by
algebra, one can ask for only the triangulated structure of the homotopy category Ho(C) to
be. This amounts to asking that Ho(C) is triangulated equivalent to the derived category of
modules over a DGA (or a DG-category). If this is the case, we say that C is triangulated
algebraic.
Any stable model category carries a homotopical enrichment in spectra [Len12], and therefore
associated to any two objects X,Y ∈ C there is a homotopy mapping spectrum RHom(X,Y ).
One can ask for this homotopical enrichment to be determined in algebra; this amounts
to asking that the action of Ho(Sp) on Ho(C) factors over the derived category D(Z),
see Proposition 4.3. In this case, we say that C has a D(Z)-action. This furthermore implies
that RHom(X,Y ) is an HZ-module for all X,Y ∈ C.
The action of Ho(Sp) on Ho(C) also induces an action of the stable homotopy groups of
spheres. The less complex this action is, the closer to algebra one might consider C. One can
then examine the extremal case when the action of π>0(S) is trivial; in this case, we say that
C has a trivial Ho(Sp)-action.
In the course of studying these notions, we give some alternative characterizations of them.
Some of these characterizations have theoretical value in relating the different kinds of
algebraicity as we discuss later in this introduction, but some also give valuable criteria
for determining how algebraic a given example is. For example, if C has a single compact
generator, we can test if a Ho(Sp)-action on Ho(C) is trivial just on this compact generator,
see Proposition 4.11. Furthermore, we examine to what extent the triviality of an action can
be tested against only a small number of elements in π>0(S). We confirm this for a special
case in Theorem 4.18 and we conjecture that it holds more generally, see Conjecture 4.13.
Our first main result gives some equivalent characterizations of the aforementioned definitions.
For simplicity, in this introduction we only state the results for the category of modules over
a ring spectrum, and we refer the reader to the relevant sections in this paper for further
details and the more general statements.

Theorem. Let R be a ring spectrum.

(i) (3.15) The category R-mod is algebraic if and only if R is weakly equivalent to an
HZ-algebra as a ring spectrum.
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(ii) (4.3) If the category R-mod has D(Z)-action, the homotopy mapping spectra
HomR(M,N) are HZ-modules for all M,N ∈ R-mod.

(iii) (4.18) If R is E(1)-local at an odd prime p, then R-mod has trivial Ho(Sp)-action if
and only if R ∧L α1 = 0 where α1 ∈ π2p−3(L1S) denotes the Hopf element.

(iv) (4.21) If R is an element of a set of ring spectra which detects nilpotence in the sense
of Definition 4.20, then R-mod has trivial Ho(Sp)-action.

One might wonder if it is enough to require that the ring R is an HZ-module in part (i)
to detect algebraicity. We show in Theorem 5.14 that this condition is not sufficient, by
constructing a certain endomorphism ring spectrum which is an HZ-module but not an
HZ-algebra. Moreover, we use the above theorem to study several examples from chromatic
homotopy theory such as K(n)-mod and MU -mod; we refer the reader to Section 5 for the
full details, and to Table 1 for a summary of the examples we treat. For now, we give a
quick overview of some important motivating examples.
The simplest (non-trivial) example one might consider is the category of modules over
Morava K-theory K(n) for some 0 < n <∞, see Section 5.2. Since K(n)∗ is a graded field,
the universal coefficient spectral sequence collapses showing that there is a triangulated
equivalence Ho(K(n)-mod) ' D(K(n)∗). This shows thatK(n)-mod is triangulated algebraic.
However, this triangulated equivalence does not preserve higher homotopical information, and
one can show that K(n)-mod is not algebraic, and also that it does not have a D(Z)-action.
However, it does have a trivial Ho(Sp)-action by Proposition 4.21. Moreover, we use an
obstruction theory in the case of K(1) to illustrate more directly why it does not have a
D(Z)-action.
We study several other examples in detail too. In particular, we study the category L1Sp of
E(1)-local spectra and its exotic models, see Examples 5.5, 5.6 and 5.7. If we work at an odd
prime, then Franke [Fra96] as well as Patchkoria and Pstrągowski [PP21] have shown that the
category of E(1)-local spectra has an exotic model; that is, a category which is triangulated
equivalent to Ho(L1Sp) but for which there is no Quillen equivalence to L1Sp. We show that
Franke’s exotic model is algebraic in each of the senses described above. However, it is not
known whether Franke’s exotic model is unique; therefore, we also consider how algebraic a
general exotic model for L1Sp must be.
We also provide a detailed study of the category of modules over the endomorphism ring
spectrum E = Homku(HZ, HZ) where ku denotes the connective complexK-theory spectrum,
see Section 5.5. We show that the ring spectrum E is an HZ-module, but it is not an HZ-
algebra, nor is it weakly equivalent to an HZ-algebra as a ring spectrum. This result is the
key to unlocking further counterexamples; for instance, the category of E-modules has a
D(Z)-action, but is not algebraic.

Relating the different notions. As demonstrated by the examples discussed above, there
is a surprising amount of subtlety present in understanding the relations between these
different notions of algebraicity. The other main result for this paper is the following theorem
which relates the different notions of algebraicity.
Theorem. Let C be a stable model category.

(i) (4.5 and 5.15) If C is algebraic, then Ho(C) possesses a D(Z)-action. The converse
does not hold.

(ii) (4.10 and 5.10) If Ho(C) has a D(Z)-action, then it also has a trivial Ho(Sp)-action.
The converse does not hold.
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(iii) (3.14 and 5.10) If C is algebraic, then it is also triangulated algebraic. The converse
does not hold.

(iv) (5.5) Being triangulated algebraic does not imply D(Z)-action or trivial Ho(Sp)-action
in general.

For simplicity we illustrate the above theorem in the following diagram demonstrating which
implications between the different notions hold and which fail. The complexity of this
diagram highlights the importance of reconciling the different types of algebraicity which
appear in the field.

Algebraic

D(Z)-action Triangulated
algebraic

Trivial action

8 8
3 3

3 8

8 ?

8

8

In general, it is extremely difficult to determine whether Ho(C) is triangulated algebraic.
Schwede’s notion of n-order [Sch13] can sometimes give a measure to what extent this
is not the case but remains inconclusive for some examples, see Example 5.12. In some
cases, there is a general machinery to produce a triangulated equivalence to an algebraic
model, see Example 5.11, but failure to apply this machinery does still not rule out the
existence of another triangulated equivalence in general. Therefore, we can only conclude
that a characterization of triangulated algebraic model categories is likely to remain an open
problem for some time.

Conventions. A object X of a triangulated category T is said to be compact if [X,−]T
commutes with arbitrary coproducts. A full triangulated subcategory L of T is said to be
localizing if it is closed under arbitrary coproducts. An object X ∈ T is said to be a generator
if the smallest localizing subcategory of T containing X is the whole of T. If X is a compact
object in T then it is a generator if and only if the corepresentable [X,−]T detects trivial
objects, see for example [SS03b, Lemma 2.2.1]. When T has a compact generator (rather
than a set of compact generators) we say that T is monogenic.
We write Sp to denote a suitable monoidal model category of spectra such as symmetric
spectra or orthogonal spectra. We write S for the sphere spectrum.
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2. Shipley’s algebraicization theorem

In [Shi07], Shipley constructs a passage between ring spectra and differential graded algebras.
In this section, we give a summary of some of the main results of [Shi07] that will be needed in
later sections. Furthermore, we recall the construction of the Eilenberg-Mac Lane spectrum
associated to a DGA, which will be crucial for the rest of this paper.

2.1. Modules, monoids and adjoint lifting. Given a monoidal model category C, we
denote the category of monoid objects in C by Ring(C). Given S ∈ Ring(C), we write
S-mod(C) for the category of S-modules in C. If the underlying category is evident from the
context, we will instead write S-mod. Similarly, given a commutative monoid S in C, we
write S-alg(C) for the category of S-algebras in C. Under mild hypotheses, the categories of
monoids, modules over a monoid, and algebras over a commutative monoid admit model
structures in which the weak equivalences and fibrations are created by the forgetful functors
to C, see [SS00, Theorem 4.1].
Suppose we have a weak monoidal Quillen adjunction L : D � C : R in the sense of [SS03a,
Definition 3.6]. Since the right adjoint R is lax monoidal it preserves monoid objects.
Therefore by the adjoint lifting theorem (see also [SS03a, §3.3]) for every monoid A in C, the
Quillen adjunction (L,R) lifts to a Quillen adjunction

A-mod R(A)-mod
R

LA

between the categories of modules. We note that the functor LA is different to the underlying
functor L. When L is strong monoidal, the functor LA takes the form

LA(M) = L(M) ∧L(R(A)) A

for all M ∈ R(A)-mod.

2.2. Change of rings. Recall that given a map of commutative ring spectra θ : S → R the
restriction of scalars θ∗ : R-mod→ S-mod has a left adjoint θ∗ = R∧S − called extension of
scalars. Together these form a strong monoidal Quillen adjunction, and so given an R-algebra
A (i.e., a monoid in R-mod), there is an induced Quillen adjunction

θA∗ : θ∗(A)-mod(S-mod) � A-mod(R-mod) : θ∗

where θA∗ (X) = θ∗(X) ∧θ∗θ∗(A) A as described above.

Lemma 2.1. Let θ : S → R be a map of commutative ring spectra, and let A be an R-algebra.
The adjunction

θA∗ : θ∗(A)-mod(S-mod) � A-mod(R-mod) : θ∗

is a Quillen equivalence.
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Proof. Since the restriction of scalars θ∗ reflects weak equivalences, by [Hov99, Corollary
1.3.16], it is sufficient to show that the derived unit

ηM : M → θ∗θA∗M

is an isomorphism for all M ∈ Ho(θ∗(A)-mod). Consider the full subcategory L of
Ho(θ∗(A)-mod) consisting of the objects M for which the derived unit ηM is an isomorphism.
Since θ∗ and θA∗ are both exact, coproduct-preserving functors, the subcategory L is localizing.
The subcategory L also contains θ∗(A) since by definition of θA∗ we have

θ∗θA∗ (θ∗(A)) = θ∗
(
θ∗θ
∗(A) ∧θ∗θ∗(A) A

)
' θ∗(A).

Since θ∗(A) is a generator for θ∗(A)-mod, the localizing subcategory L is the whole of
Ho(θ∗(A)-mod) as required. �

2.3. Eilenberg-Mac Lane ring spectra associated to a DGA. We can associate to
any given DGA A a ring spectrum EML(A) called the Eilenberg-Mac Lane ring spectrum
associated to A. In this subsection, we give a brief summary of the construction of this ring
spectrum. This is based on [Shi07], and we refer the reader there for more details.

Let Ch+
Z denote the category of non-negatively graded chain complexes of abelian groups, and

sAb denote the category of simplicial abelian groups. Let Z̃S1 be the reduced free simplicial
abelian group on the simplicial circle S1 = ∆[1]/∂∆[1], and let Z[1] be the chain complex
which contains a single copy of Z in degree one. We can form the categories SpΣ(Ch+

Z ,Z[1])
and SpΣ(sAb, Z̃S1) of symmetric spectra over Ch+

Z and sAb as in [Hov01]. To ease notation
we will denote these categories as SpΣ(Ch+

Z ) and SpΣ(sAb) respectively.
There are Quillen equivalences [Shi07, Proposition 2.10]

(2.2) HZ-mod SpΣ(sAb) SpΣ(Ch+
Z ) ChZ

Z

U φ∗N

L D

R

which we briefly describe now. The functor U is induced by the forgetful functor from
simplicial abelian groups to simplicial sets and has a left adjoint Z. The pair (Z,U) is a
strong monoidal Quillen equivalence. The adjunction (L, φ∗N) is a weak monoidal Quillen
equivalence and is a stabilized version of the Dold-Kan correspondence. The right adjoint is
given by first applying the normalization functor

N : sAb→ Ch+
Z

levelwise, and then restricting scalars along the ring map

φ : SymCh+
Z

(Z[1])→ N

where N = N(SymsAb(Z̃S1)) and SymC : C → Fun(Σ, C) denotes the free commutative
monoid in the category of symmetric sequences. The functor

R : ChZ → SpΣ(Ch+
Z )

is defined by setting (RY )m = C0(Y ⊗ Z[m]), where C0 is the connective cover, and Z[m] is
the chain complex with a single copy of Z in degree m. This has a left adjoint D, and the
pair (D,R) forms a strong monoidal Quillen equivalence.
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By taking monoid objects in the Quillen equivalences of (2.2) and applying [SS03a, Theorem
3.12] one obtains Quillen equivalences

(2.3) HZ-alg Ring(SpΣ(sAb)) Ring(SpΣ(Ch+
Z )) DGAZ.

Z

U φ∗N

Lmon D

R

Taking composites of derived functors in (2.3) we obtain functors
H : DGAZ → HZ-alg and Θ: HZ-alg→ DGAZ

defined by H = ULmoncR and Θ = Dcφ∗NZc, where c denotes cofibrant replacement in the
appropriate category of monoids. Note that no fibrant replacements are necessary since each
of the right adjoints preserves all weak equivalences.
We now have the necessary background to recall the following important theorem of Shipley.

Theorem 2.4 ([Shi07, Corollary 2.15]).

(i) Let R be an HZ-algebra. Then R-mod(HZ-mod) 'Q Θ(R)-mod(ChZ).
(ii) Let A be a DGA. Then A-mod(ChZ) 'Q HA-mod(HZ-mod).

Definition 2.5. The Eilenberg-Mac Lane ring spectrum associated to a DGA A is defined
as EML(A) := θ∗(HA) where θ∗ denotes the restriction of scalars along the unit map
θ : S→ HZ.

In particular, if A is concentrated in degree 0, the spectrum EML(A) is the “classical”
Eilenberg-Mac Lane spectrum HA whose homotopy groups are

π0(HA) ∼= A and πi(HA) = 0 for i 6= 0.

Proposition 2.6. Let θ : S→ HZ be the unit map, and θ∗ denote the restriction of scalars
functor along θ.

(i) Let R be an HZ-algebra. Then (θ∗R)-mod(Sp) 'Q Θ(R)-mod(ChZ).
(ii) Let A be a DGA. Then A-mod(ChZ) 'Q EML(A)-mod(Sp).

Proof. For part (i), by Theorem 2.4 we have R-mod(HZ-mod) 'Q Θ(R)-mod(ChZ), and by
Lemma 2.1 we have R-mod(HZ-mod) 'Q (θ∗R)-mod(Sp). The proof of (ii) is similar. �

We end this section by recalling the relationship between HZ-modules and generalized
Eilenberg-Mac Lane spectra in the sense of [CG05].

Definition 2.7. A spectrum X is a generalized Eilenberg-Mac Lane spectrum if X is weakly
equivalent (as a spectrum) to ∨i∈ZΣiHAi where each Ai is an abelian group.

Proposition 2.8 ([CG05, Proposition 5.3]). A spectrum is a generalized Eilenberg-Mac Lane
spectrum if and only if it is weakly equivalent to an HZ-module.

Using the previous characterization of generalized Eilenberg-Mac Lane spectra one obtains
the following result.

Proposition 2.9. Let A be a DGA. The spectrum HA is a generalized Eilenberg-Mac Lane
spectrum. In other words, there is an equivalence of underlying spectra

HA '
∨
i∈Z

ΣiHAi

where Ai = Hi(A), the ith homology group of A.
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Proof. The spectrum HA is an HZ-algebra and hence an HZ-module, so the claim follows
from Proposition 2.8. �

We emphasize that the equivalence in the previous proposition is of underlying spectra, and
is not an equivalence of ring spectra or HZ-algebras.

3. Algebraic model categories and Morita theory

In this section we give a definition of algebraic model categories, and then use Morita
theory to give some key characterizations of algebraicity which we will require. We start
by recalling the definition of algebraic model categories, and then recall some tools from
Morita theory [SS03b, DS07]. We then use these tools to provide several characterizations of
algebraic model categories.

3.1. Algebraicity. Recall that given a monoidal model category V , another model category C
is said to be a V-enriched model category if the underlying category of C is enriched, tensored
and cotensored over V, and the model structures on C and V are suitably compatible,
see [GM20, §4.3] for instance. We write CV(−,−) for the object of V which gives the
enrichment of C over V.

Definition 3.1. A stable model category C is said to be algebraic if it is Quillen equivalent
to a combinatorial ChZ-enriched model category.

Remark 3.2. It is important to note that any ChZ-enriched model category is stable by
the analogue of [SS03b, Lemma 3.5.2]. As such if C is algebraic, then the combinatorial
ChZ-enriched model category Calg it is Quillen equivalent to is also stable. Therefore the
equivalence Ho(C) ' Ho(Calg) on homotopy categories is necessarily triangulated.

It will also be convenient to set terminology for a weaker notion of algebraicity.

Definition 3.3. Let C be a stable model category. We say that C is triangulated algebraic if
its homotopy category Ho(C) is triangulated equivalent to the stable category of a Frobenius
category. If Ho(C) is compactly generated, C is triangulated algebraic if and only if Ho(C) is
triangulated equivalent to the derived category D(A) of a dg-category A by [Kel06, Theorem
3.8].

3.2. Morita theory. Morita theory is a well-known tool to classify stable model categories
with a compact generator in terms of modules over an endomorphism ring spectrum. However,
if the stable model category is algebraic in the sense of Definition 3.1, then it can be classified
using an endomorphism DGA. We start by recalling some key facts about Morita theory
from [SS03b, Dug06], then use the machinery developed in [DS07] to prove Theorem 3.11
which states that if C is an algebraic model category then it is Quillen equivalent to A-mod
for some well-defined DGA A.
A model category C is said to be spectral if it is a SpΣ-enriched model category, where SpΣ

denotes the category of symmetric spectra. Recall also that a model category C is said to be
presentable if it is Quillen equivalent to a combinatorial model category [Dug06, Theorem 4.3].
This is a mild condition on C which is almost always satisfied in practice. Dugger [Dug06,
Propositions 5.5 and 5.6] proved that every stable, presentable model category C is Quillen
equivalent to a spectral model category which we will denote by Csp.
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Definition 3.4. Let C be a stable, presentable model category, and let X be a bifibrant
object in C. We then define a (symmetric) ring spectrum hEnd(X) by

hEnd(X) = Csp
SpΣ(X,X)

where X is a bifibrant object of Csp which corresponds to X under the Quillen equivalence
C 'Q Csp, and Csp

SpΣ(−,−) denotes the enrichment of Csp in SpΣ.

Theorem 3.5 ([SS03b, Theorem 3.1.1], [Dug06, Theorem 8.1]). Let C be a monogenic,
stable, presentable model category with a bifibrant compact generator X. Then C is Quillen
equivalent to the category of module spectra over the ring spectrum hEnd(X).
Remark 3.6. As stated, the previous result appears in Dugger [Dug06], but the key ideas go
back to Schwede and Shipley [SS03b]. More precisely, Schwede and Shipley [SS03b, Theorem
3.8.2] show that if C is simplicial, cofibrantly generated, proper and stable, then it is Quillen
equivalent to a spectral model category Csp. One may then construct an endomorphism object
as in Definition 3.4. On the other hand, Dugger [Dug06, Propositions 5.5 and 5.6] shows
that if C is stable and presentable then it is Quillen equivalent to a spectral model category.
Dugger’s assumption of stable and presentable are more appropriate for our purposes since
any algebraic model category is by definition presentable.

Now if C is algebraic, then using [DS07] we may construct an endomorphism ring spectrum
in simplicial abelian groups denoted

hEndad(X) ∈ Ring(SpΣ(sAb))
for X ∈ C as we now recall. If C is algebraic, it is Quillen equivalent to a combinatorial
ChZ-model category Calg. The model category Calg is stable, combinatorial and additive
by [DS07, Corollary 6.9] and therefore is Quillen equivalent to a SpΣ(sAb)-model category
Cad by [DS07, Theorem 1.3, §8.2].
Definition 3.7. Let C be an algebraic model category and X be a bifibrant object in C. We
then define hEndad(X) ∈ Ring(SpΣ(sAb)) by

hEndad(X) = Cad
SpΣ(sAb)(X,X)

where X is a bifibrant object of Cad which corresponds to X under the Quillen equivalence
C 'Q Cad, and Cad

SpΣ(sAb)(−,−) denotes the enrichment of Cad in SpΣ(sAb).

Proposition 3.8 ([DS07, Proposition 1.5]). Let C be an algebraic model category and X ∈ C
be a bifibrant object. Then the endomorphism ring spectrum hEnd(X) is the Eilenberg-
Mac Lane spectrum associated to hEndad(X), that is,

θ∗U(hEndad(X)) ' hEnd(X).

In Section 2, we recalled how to construct an Eilenberg-Mac Lane spectrum associated
to a DGA. This construction passes through Ring(SpΣ(sAb)). Therefore, given an object
of Ring(SpΣ(sAb)) such as hEndad(X) as recalled from [DS07] in Definition 3.7 one may
produce a DGA as we now describe.
Using the functors described in (2.3) one can define functors

H′ : DGAZ → Ring(SpΣ(sAb)) and Θ′ : Ring(SpΣ(sAb))→ DGAZ

by H′ = LmoncR and Θ′ = Dcφ∗N where c denotes cofibrant replacement. We note that H′Θ′
and Θ′H′ are weakly equivalent to the identity functors since the adjunctions (Lmon, φ∗N)
and (D,R) are both Quillen equivalences [Shi07, Proposition 2.10] as described in Section 2.
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Definition 3.9. Let C be an algebraic model category, and X be a bifibrant object in C.
We may associate a DGA hEnddga(X) to X, defined by

hEnddga(X) = Θ′(hEndad(X)).

Proposition 3.10 ([DS07, Proposition 1.7]). Let C be a combinatorial ChZ-model category
whose homotopy category is compactly generated. Then for any bifibrant object X ∈ C, we
have hEnddga(X) ' CChZ(X,X) where CChZ(−,−) denotes the enrichment of C in ChZ.

We can now give the aforementioned characterization of algebraic model categories. The
reader may find it helpful to refer to Figure 1 for a schematic of the relations between the
different endomorphism objects before reading the following proof.

Theorem 3.11. Let C be a monogenic, algebraic model category, and write X for a bifibrant
compact generator. Then C is Quillen equivalent to the category of modules over the DGA
hEnddga(X).

Proof. We will show that there is a zig-zag of Quillen equivalences given by
C 'Q hEnd(X)-mod 'Q θ∗H(hEnddga(X))-mod 'Q hEnddga(X)-mod.

The first Quillen equivalence holds by Theorem 3.5 and the final Quillen equivalence by
Proposition 2.6. Therefore, it remains to justify the second Quillen equivalence. We have

θ∗H(hEnddga(X)) = θ∗HΘ′(hEndad(X)) by definition of hEnddga(X)
= θ∗UH′Θ′(hEndad(X)) since H = UH′ by definition
' θ∗U(hEndad(X)) as Θ′ and H′ are inverse equivalences
' hEnd(X)-mod by Proposition 3.8

and hence the second Quillen equivalence holds. �

By combining the previous theorem with Proposition 3.10 one obtains the following corollary.

Corollary 3.12. Let C be a monogenic, combinatorial, ChZ-enriched model category, and
write X for a bifibrant compact generator. Then C is Quillen equivalent to the category of
modules over the DGA CChZ(X,X). �

hEnd(X) hEndad(X) hEnddga(X) CChZ(X,X)

∈ ∈ ∈ ∈

Ring(SpΣ) Ring(SpΣ(sAb)) DGAZ DGAZ

forget
(3.8)

Θ′

(3.9) if C is
ChZ-enriched

(3.10)

'

Figure 1. The various endomorphism objects associated to a bifibrant object
X in an algebraic model category C and how they relate to one another.

3.3. Detecting algebraicity. We can now use the Morita theory results from above to give
several criteria for when stable model categories are algebraic. Firstly, we give the following
direct consequence of Theorem 3.11.

Theorem 3.13. Let C be a monogenic, stable model category. Then C is algebraic if and
only if C is Quillen equivalent to A-mod for a DGA A. �
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Proposition 3.14. Let C be a monogenic, stable model category. If C is algebraic then it is
triangulated algebraic.

Proof. By Theorem 3.13, if C is algebraic then C is Quillen equivalent to A-mod for a DGA
A and the derived equivalence is triangulated since the zig-zag of Quillen equivalences
of Theorem 3.11 only passes through stable model categories. Hence, C is triangulated
algebraic. �

Theorem 3.15. Let C be a monogenic, stable model category and write X for a bifibrant
compact generator. Then C is algebraic if and only if hEnd(X) is weakly equivalent to an
HZ-algebra as a ring spectrum.

Proof. If C is algebraic, then Proposition 3.8 shows that hEnd(X) is weakly equivalent to the
HZ-algebra UhEndad(X) as a ring spectrum. Conversely, if hEnd(X) is weakly equivalent
to an HZ-algebra R as a ring spectrum, then

C 'Q hEnd(X)-mod 'Q R-mod 'Q Θ(R)-mod

by Theorems 3.5 and 2.4. The object Θ(R) is a DGA and therefore by Theorem 3.13 it
follows that C is algebraic. �

In the case when C is the category of modules over a ring spectrum, we can give more explicit
versions of the previous results.

Corollary 3.16. Let R be a ring spectrum. Then R-mod is algebraic if and only if R is
weakly equivalent to an HZ-algebra as a ring spectrum. In particular, if R-mod is algebraic
then R is a generalized Eilenberg-Mac Lane spectrum in the sense of Definition 2.7.

Proof. The category R-mod is spectral with enrichment in spectra given by HomR(−,−).
Therefore the endomorphism object hEnd(R) associated to the compact generator R is just
R. The first claim then follows from Theorem 3.15. As for the second claim, if R-mod is
algebraic, then the first part of this corollary tells us that R is weakly equivalent to an
HZ-algebra and hence an HZ-module, and the result then follows from Proposition 2.8. �

Remark 3.17. It is reasonable to wonder if in Theorem 3.15 it is instead enough to require
that hEnd(X) is an HZ-module (since it is naturally a ring spectrum). In Theorem 5.14 we
give an example which shows that this is false.

4. Detecting algebraicity via Ho(Sp)-actions

For any stable model category C there is an action of Ho(Sp) on Ho(C). In this section we
will show that being algebraic implies that this Ho(Sp)-action factors over a D(Z)-action.
Furthermore, we will consider the notion of a trivial Ho(Sp)-action on Ho(C) and explore
how these concepts interact.

4.1. Actions of Ho(Sp) and D(Z). A useful structure to have on a stable model category C is
a tensor with spectra X∧A where X ∈ C and A ∈ Sp, and mapping spectra Hom(X,Y ) ∈ Sp
behaving in a homotopically useful way. This would mean asking for C to be a “spectral”
model category, which is a very strong assumption. However, it has been shown by [Len12]
that such a structure at least exists up to homotopy.
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Theorem 4.1 ([Len12, Theorem 6.3]). For every stable model category C, there is a bifunctor
− ∧L − : Ho(C)×Ho(Sp) −→ Ho(C)

making Ho(C) a closed module category over the stable homotopy category Ho(Sp) in the
sense of [Hov99, Definition 4.1.6]. For X ∈ C, we call the right adjoint

RHom(X,−) : Ho(C)→ Ho(Sp)
the homotopy mapping spectrum functor.

This action satisfies the expected properties, such as the following.

• The functor − ∧L − is exact in both variables.
• We have X ∧L S ∼= X for all X ∈ Ho(C).
• A Quillen functor C −→ D induces a Ho(Sp)-module functor Ho(C) −→ Ho(D).
• In particular, a Quillen equivalence induces an equivalence of Ho(Sp)-modules.

Remark 4.2. If C is itself a spectral model category, then the module structure from above
theorem agrees with the action derived from the spectral structure. This means that if
C is spectral and presentable, then hEnd(X) from Definition 3.4 is weakly equivalent to
RHom(X,X).

In light of the relationship between algebraicity and HZ-algebras explored in the previous
section, we now explore when the action of Ho(Sp) factors over D(Z).

Proposition 4.3. Let C be a stable model category. If the Ho(Sp)-module structure from
Theorem 4.1 factors over D(Z), then the homotopy mapping spectra RHom(X,Y ) are HZ-
modules for all X,Y ∈ C, and hence are generalized Eilenberg-Mac Lane spectra in the sense
of Definition 2.7.

Proof. Firstly, we know by [Shi07, Proposition 2.10] that ChZ is monoidally Quillen equivalent
to HZ-mod. Thus, having D(Z)-action is equivalent to the Ho(Sp)-action on C factoring
over Ho(HZ-mod) as follows. Consider the diagram

Ho(C)×Ho(Sp) −∧L−
//

Ho(C)×(−∧HZ)
��

Ho(C)

Ho(C)×Ho(HZ-mod)
−∧L−

44

By taking right adjoints, this is equivalent to having the following commutative diagram

Ho(C)op ×Ho(C)

RHom(−,−)
��

RHom(−,−)
// Ho(Sp)

Ho(HZ-mod)

55

where the arrow Ho(HZ-mod) → Ho(Sp) is the forgetful functor. Thus, we can see that
if the Ho(Sp)-action factors over a Ho(HZ-mod)-action, the homotopy mapping spectra
RHom(X,Y ) are HZ-modules for all X,Y in C. The final claim holds by applying Proposi-
tion 2.8. �

Remark 4.4. Conversely, by unravelling the definition, to obtain a D(Z)-action one needs
the following.
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• The homotopy mapping spectra RHom(X,Y ) are HZ-modules for all X and Y .
• The composition map RHom(Y,Z) ∧LHZ RHom(X,Y ) → RHom(X,Z) is a map of
HZ-modules.
• The unit map S→ RHom(X,X) factors over HZ.
• For f : A→ B in C, the induced maps of spectra RHom(X, f) and RHom(f, Y ) are
HZ-module maps.

We now show that algebraic model categories have a D(Z)-action.

Proposition 4.5. Let C be an algebraic model category. Then the Ho(Sp)-module structure
factors over D(Z).

Proof. Without loss of generality, we may assume that C is a ChZ-model category rather
than just Quillen equivalent to one, as Quillen equivalences induce isomorphic Ho(Sp)-
module structures on the respective homotopy categories. As C is a ChZ-model category by
assumption, Ho(C) is a closed D(Z)-module, so the claim follows. �

Corollary 4.6. A Quillen functor F : C −→ D between algebraic model categories induces a
functor Ho(C) −→ Ho(D) of closed D(Z)-module categories, i.e., the diagram

Ho(C)×Ho(Sp)
LF×Ho(Sp)

//

��

∧L

&&

Ho(D)×Ho(Sp)

��

∧L

xx

Ho(C)× D(Z)
LF×D(Z)

//

∧L

��

Ho(D)× D(Z)

∧L

��

Ho(C)
LF

// Ho(D)

commutes. �

4.2. Trivial actions. The action of the stable homotopy category induces an action of the
stable homotopy groups π∗(S) on the morphism groups in Ho(C)

π∗(S)⊗ [X,Y ]C∗ −→ [X,Y ]C∗
given by α⊗ ϕ = ϕ∧L α. Note that the stable homotopy groups act from the left, see [SS02,
Construction 2.4], and that the action is associative and unital. We can describe this action
explicitly using mapping spectra.

Lemma 4.7. Let ϕ ∈ [X,Y ]Ck, and α ∈ πi(S), i ≥ 0. Then α⊗ ϕ ∈ [X,Y ]Ci+k is adjoint to
the element

α ◦ f ∈ πi+k(RHom(X,Y )),
where f ∈ πk(RHom(X,Y )) is adjoint to ϕ.

Proof. Write ∧ instead of ∧L. By adjunction, we have that
πk(RHom(X,Y )) ∼= [ΣkX,Y ]C ,

so ϕ ∈ [ΣkX,Y ]C then corresponds to an element f ∈ πk(RHom(X,Y )). Thus,
ϕ ∧ α ∈ [Σi+kX,Y ]C .

By adjunction, this element ϕ ∧ α corresponds to an element
α⊗ f ∈ πi+k(RHom(X,Y )).

13



Let us now specify what this element α⊗ f is. The adjunction isomorphism gives us

ϕ = ε ◦ (X ∧ f) : ΣkX
X∧f−−−→ X ∧RHom(X,Y ) ε−→ Y,

where ε is the counit. The element α now acts on ϕ as
ϕ ∧ α = (ε ◦ (X ∧ f)) ∧ α

= ε ◦ ((X ∧ f) ∧ α)
= ε ◦ (X ∧ (α ◦ f)).

The second equality comes from the fact that the action is central in the sense that
(ϕ2 ◦ ϕ1) ∧ α = (ϕ2 ∧ α) ◦ ϕ1 = ϕ2 ◦ (ϕ1 ∧ α).

Furthermore, the last equality uses the associativity of the action ∧, however, we have to let
α act on f from the left rather than the right in the last step.
By the same construction we see that ε ◦ (X ∧ (α ◦ f)) is also adjoint to α ◦ f . Therefore, we
can conclude that

α ◦ f = α⊗ f
as claimed. �

Corollary 4.8. Let α ∈ πi(S) for i > 0. If the mapping spectrum RHom(X,Y ) is a
generalised Eilenberg-Mac Lane spectrum in the sense of Definition 2.7, then α⊗ f = 0 for
f ∈ [X,Y ]C∗ .

Proof. If E is an Eilenberg-Mac Lane spectrum (i.e., a spectrum with homotopy groups
concentrated in one degree), then α ◦ f = 0 for any α ∈ πi(S), i > 0 and f ∈ π∗(E) because
of degree reasons. Therefore, the same is true if E is a wedge of suspensions of Eilenberg-Mac
Lane spectra. �

Given a non-zero f ∈ [X,Y ]C and α ∈ πi(S) one sees that α ⊗ f = (α ⊗ idX) ◦ (idS ⊗ f).
Therefore α⊗ f = 0 if and only if X ∧L α = α⊗ idX = 0. As such, the previous corollary
suggests the following definition.

Definition 4.9. We say that Ho(Sp) acts trivially on Ho(C) if for all X ∈ Ho(C) and
α ∈ πi(S), i > 0 we have X ∧L α = 0.

We now record how trivial action relates to a D(Z)-action and to being algebraic.

Corollary 4.10. If the Ho(Sp)-action on Ho(C) factors over a D(Z)-action, then Ho(Sp)
acts trivially on Ho(C). In particular, if C is an algebraic model category, then Ho(Sp) acts
trivially on Ho(C).

Proof. By Lemma 4.7, the action of π∗(S) on mapping objects is given by precomposition with
the adjoint maps. If the Ho(Sp)-action factors over D(Z), this means that the mapping spectra
are products of Eilenberg-Mac Lane spectra by Proposition 4.3, and thus by Corollary 4.8
the action is trivial. If C is algebraic, then it has D(Z)-action by Proposition 4.5 so the
second claim follows. �

We can reduce the definition of trivial action to testing on a compact generator.

Proposition 4.11. Let C be a monogenic, stable, presentable model category with a bifibrant
compact generator G. Then Ho(Sp) acts trivially on Ho(C) if and only if G ∧L α = 0 for all
α ∈ πk(S), k > 0.
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Proof. Since C is stable and presentable, it is Quillen equivalent to a spectral model category
by [Dug06, Propositions 5.5 and 5.6]. As Quillen equivalences induce equivalent Ho(Sp)-
module structures, we may without loss of generality assume that C is spectral.
By Morita theory (c.f., Theorem 3.5) we have a Quillen equivalence

C mod-hEnd(G).
CSpΣ (G,−)

−∧hEnd(G)G

Now let X ∈ C. Since Quillen equivalences induce equivalent Ho(Sp)-module structures, we
have X ∧L α = 0 if and only if CSpΣ(G,X) ∧L α = 0.

Since G ∧L α = 0 by assumption, we also have

hEnd(G) ∧L α = CSpΣ(G,G) ∧L α = 0.

But CSpΣ(G,X)∧ α is a retract of CSpΣ(G,X)∧ CSpΣ(G,G)∧ α, as the spectrum CSpΣ(G,X)
is a module over CSpΣ(G,G). This implies that α also acts trivially on CSpΣ(G,X) and
therefore on X, as required. �

As well as reducing to checking trivial actions on a compact generator of Ho(C), it is natural
to ask whether or not we can reduce to checking just a small number of elements of π∗(S).
By [Coh68], the whole of π∗(S) is “generated” by the elements of Adams filtration 1 using
multiplication and higher Toda brackets: every θ ∈ π∗(S) that is not a Hopf element can be
written as a higher-order Toda bracket of matrices with values in (smaller degrees of) π∗(S).
Considering localization at each prime separately, for p = 2 the elements of Adams filtration
1 are the Hopf elements 2 ∈ π0(S), η ∈ π1(S), ν ∈ π3(S) and σ ∈ π7(S). For odd primes, the
only ones are p ∈ π0(S), α1 ∈ π2p−3(S).
This suggests the following definition.

Definition 4.12. We say that Ho(Sp) acts essentially trivially on Ho(C) if for all X ∈ Ho(C)
and α ∈ πi(S), i > 0, of Adams filtration 1 we have X ∧L α = 0. By the analogue of
Proposition 4.11, if C is monogenic, this is equivalent to G ∧L α = 0 for a compact generator
G, and α ∈ πi(S), i > 0, of Adams filtration 1.

We make the following conjecture relating essentially trivial actions with trivial actions. We
prove a special case of this as Theorem 4.18.

Conjecture 4.13. Let C be a stable model category. Then Ho(Sp) acts trivially on Ho(C)
if and only if Ho(Sp) acts essentially trivially on Ho(C).

Remark 4.14. One might think that the above conjecture can be proved using Cohen’s
theorem. However, this method fails mainly because of how the indeterminacy of n-fold
Toda brackets behave. More precisely, Cohen’s theorem [Coh68, Theorem 4.2] says that if
θ ∈ π∗(S) is not a Hopf element, then there is a Toda bracket of the form

〈f1, f2, · · · fn〉

containing θ, where
G1

f1−→ G2
f2−→ · · · fn−→ Gn+1,

G1 and Gn+1 are spheres and the other Gi are wedges of spheres. In particular, the fi can
be represented as matrices with entries in π∗(S) of degree strictly less than that of θ. We
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then have that
X ∧L θ ∈

〈
X ∧L f1, X ∧L f2, · · ·X ∧L fn

〉
.

It would then be the goal to prove that X ∧L θ = 0 if X ∧L α = 0 for all Hopf elements α by
induction on degree. At p = 2, assuming that X ∧L η, X ∧L ν and X ∧L σ are all trivial, one
can quickly prove that X ∧L θ = 0 for all θ in degrees 1 to 7. (At odd primes, the situation
is even simpler.) Thus, induction tells us that X ∧L θ is an element of a Toda bracket whose
entries are zeros and powers of p. As such, this Toda bracket contains zero. Sadly, this is
not enough to conclude that X ∧L θ itself has to be zero, as a long bracket as above can still
have nontrivial indeterminacy. (For example, the bracket 〈2, 0, 0, 2〉 in Ho(Sp) contains η2.)

4.3. Detecting trivial actions. In this section we give three criteria for checking whether
Ho(Sp) acts trivially on Ho(C). Firstly, in some cases we can detect trivial Ho(Sp)-action
already from homotopy groups.

Lemma 4.15. Let R be a ring spectrum and ι : S −→ R its unit map. If ι∗ : π∗(S) −→ π∗(R)
is zero in positive degrees, then Ho(R-mod) has trivial Ho(Sp)-action.

Proof. Let µ : R ∧L R −→ R be the multiplication map of R. By Proposition 4.11, we want
to check that R ∧L α = 0 for α ∈ πk(S), k > 0. We have

id ' µ ◦ ι : R ∼= R ∧L S −→ R ∧L R −→ R

by definition. Therefore, for α ∈ πk(S), k > 0, R ∧L α ' R ∧L (µ ◦ ι ◦ α) ' R ∧L (µ ◦ ι∗(α)),
which is zero by assumption. �

Corollary 4.16. Let R be a ring spectrum with πk(R) torsion-free for k > 0. Then
Ho(R-mod) has trivial Ho(Sp)-action. �

Corollary 4.17. For R = MU, BP, E(n), KU and their connective covers, Ho(R-mod)
has trivial Ho(Sp)-action. �

Our second criterion gives a positive answer to Conjecture 4.13 in the case when the homotopy
mapping spectra are E(1)-local at an odd prime.

Theorem 4.18. Let C be a stable model category for which the homotopy mapping spec-
tra RHom(X,Y ) are E(1)-local for all X and Y in C, for some fixed odd prime p. If
α1 ∈ π2p−3(L1S) acts trivially, then Ho(Sp) acts trivially on Ho(C).

Proof. If the homotopy mapping spectra are all E(1)-local, then the action of Ho(Sp) on
Ho(C) factors over the E(1)-local stable homotopy category Ho(L1Sp) [BR11a, Theorem
7.8], and we write [A,B]L1Sp for morphisms in Ho(L1Sp). Therefore it is sufficient to show
that Ho(L1Sp) acts trivially on Ho(C), because the action of the stable homotopy groups
factors as

π>0(S)⊗ [X,Y ]C

��

// [X,Y ]C .

π>0(L1S)⊗ [X,Y ]C

44

By assumption, X ∧L θ = 0 for all θ ∈ πi(L1S), i = 1, ..., 4p − 6 as the only nontrivial
homotopy in this range is the group π2p−3(L1S) = Z/p, which is generated by α1. We have
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short exact sequences of the form
0 −→ πi+1(L1S)/(p) −→ [M,L1S]i = [M,S]L1Sp

i −→ Γp(πi(L1S)) −→ 0,
where M denotes the mod p Moore spectrum and ΓpG the p-torsion of an abelian group G.
For degree reasons these short exact sequences take the form

0 −→ 0 −→ G −→ G −→ 0 or 0 −→ G −→ G −→ 0 −→ 0
in low degrees. Therefore, we can conclude that [M,S]L1Sp

i = 0 in degrees 0 ≤ i ≤ 2p− 5. In
addition, [M, S]L1Sp

2p−4 is generated by α1 ◦ pinch, and [M,S]L1Sp
2p−3 is generated by an element A

with A ◦ incl = α1.
We have a v1-self map v1 : Σ2p−2M →M which is an isomorphism in E(1)-homology as M
is rationally trivial. Therefore, there is a commutative diagram

[M,S]L1Sp
i [X ∧M,X]L1Sp

i

[M, S]L1Sp
i+2p−2 [X ∧M,X]L1Sp

i+2p−2 .

X∧L−

v∗1 ∼= (X∧Lv1)∗∼=

X∧L−

We have that [M, S]L1Sp
i = 0 in degrees 0 ≤ i ≤ 2p − 5, therefore the top arrow is zero in

those degrees. In degree 2p− 4, we have that
X ∧L (α1 ◦ pinch) = (X ∧L α1) ◦ (X ∧L pinch) = 0 ◦ (X ∧L pinch) = 0

by assumption. In degree 2p− 3, we have X ∧LA = 0 as by our previous calculation, X ∧LA
is zero if and only if X ∧L α1 is, because precomposition with the inclusion map induces an
isomorphism on the relevant homotopy groups. Thus, all in all, the top arrow is zero for
0 ≤ i ≤ 2p− 3. As the left hand arrow is an isomorphism, the bottom arrow has to be zero
to make the diagram commute. Iterating this step implies that X ∧L θ = 0 for all θ in the
non-negative degrees of [M, S]L1Sp. Altogether, we have that X ∧L − acts trivially on the
mod p parts of πi(L1S), i 6= 0, and also the rational parts of πi(L1S), i 6= 0, which are trivial.
Therefore, X ∧L θ is zero for all θ ∈ πi(L1S), i 6= 0 as desired. �

Remark 4.19. A similar argument shows that this is also true for the negative degree
elements; indeed the bottom map is zero for i+ 2p− 2 ≥ 0, so the top map is also the zero
map in this range and iterating this gives the claim. It is not necessary for the proof of
Theorem 4.18 as we only require the claim for positive degrees, but we leave this here in
case of a trivial π∗(L1S)-action being required for future results.

Let us now turn to another source of examples of trivial action.

Definition 4.20. A set of ring spectra {Ri}i∈I detects nilpotence if a map f : ΣkA −→ A

in Ho(Sp) for a finite spectrum A is nilpotent if and only if Ri ∧L f is zero for all i.
Proposition 4.21. Let {Ri}i∈I be a set of ring spectra which detects nilpotence. Then
Ho(Ri-mod) has trivial Ho(Sp)-action for all i.

Proof. By Proposition 4.11, Ho(Ri-mod) has trivial Ho(Sp)-action if and only if Ri ∧L θ = 0
for all θ ∈ πi(S), i > 0. Nishida’s nilpotence theorem [Nis73] shows that all positive degree
elements of π∗(S) are nilpotent and the claim follows. �

We will use the previous lemma to discuss examples relating to Morava K-theory and complex
cobordism in the next section.
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5. Examples and applications

In this section we explore trivial actions and algebraicity in various examples arising in stable
homotopy theory. Firstly, we explore the case of E(1)-local spectra together with exotic
models for it, and then we turn to other examples arising from chromatic homotopy theory.
Most of the examples we are dealing with are p-local stable model categories in the sense
that the action of Ho(Sp)-action factors over the p-local stable homotopy category Ho(Sp(p)).
In this case, one sees that C has a trivial Ho(Sp)-action if and only if the positive degree
elements of π∗(S(p)) act trivially. Similarly, C has an essentially trivial Ho(Sp)-action if and
only if the element α1 ∈ π2p−3(S) acts trivially (p > 2), or if the Hopf elements η, ν and σ
act trivially (p = 2).

5.1. E(1)-local spectra and exotic models. In this section we study our algebraicity
results in the case of E(1)-local spectra L1Sp and exotic models for it. Recall that a stable
model category C is said to be an exotic model for L1Sp if it is not Quillen equivalent to
L1Sp but does carry a triangulated equivalence as in the proposition below.

Proposition 5.1. Let Φ: Ho(L1Sp) ∼−→ Ho(C) be a triangulated equivalence that is not
derived from a Quillen functor, and let p > 2. Then Ho(Sp) acts essentially trivially on
Ho(C).

Proof. By [Roi07, Proposition 6.7], X ∧ α1 = 0 for X = Φ(L1S
0). As X is a compact

generator of Ho(C), the claim follows from Proposition 4.11. �

Remark 5.2. One might imagine that Theorem 4.18 can be applied in the previous corollary
to deduce that Ho(Sp) acts trivially on Ho(C). However, [Roi07] shows that the mapping
spectra in any exotic model are not E(1)-local.

Note that the existence of such a triangulated equivalence Φ for odd primes has been shown
by [Fra96, Pat17b, PP21] (the latter two papers correcting some gaps in the former). Next
we recall the definition of Franke’s exotic model for E(1)-local spectra; we refer the reader
to [Fra96, Roi08, BR11b] for more details. We then turn to examining the exotic model in
more detail with regards to algebraicity.
Given a Grothendieck abelian category A, a self-equivalence T : A → A and an integer N ,
a twisted chain complex (of period N) is a chain complex X ∈ Ch(A) together with an
isomorphism αX : TX → ΣNX. A map of twisted chain complexes f : X → Y is a chain map
which is compatible with the specified isomorphisms αX and αY . We denote this category
by Ch(T,N)(A). There is an adjunction

(5.3) Ch(A) Ch(T,N)(A).
P

U

It is also helpful to note that if A is monoidal with unit object 1, then (under some mild
hypotheses) the category Ch(T,N)(A) is isomorphic to the category of P1-modules in Ch(A).
Fix an odd prime p. Franke’s exotic model for E(1)-local spectra is the category of twisted
chain complexes of period 1 over the abelian category A = E(1)∗E(1)-comod, of comodules
over the flat Hopf algebroid E(1)∗E(1). We denote this category by Fr1,p. This category
admits several model structures, see [BR11b] for details. Firstly, Fr1,p admits an injective
model structure and this presents the homotopy theory of interest. As such, we will refer to
Fr1,p with the injective model structure as “Franke’s category”. However, the injective model
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structure is not monoidal in general (nor ChZ-enriched) and so for our purposes we are
interested in the quasi-projective model structure, which is Quillen equivalent to the injective
model structure as well as a monoidal model category. We briefly recall the construction of
the quasi-projective model structure as in [BR11b, §6] now.
The category Ch(E(1)∗E(1)-comod) admits a relative projective model structure in the sense
of [CH02] by taking the projective class generated by the dualizable E(1)∗E(1)-comodules,
see also [Hov04] for more details. This can be right-lifted along the adjunction (5.3) to
produce the relative projective model structure on Fr1,p. This model structure has fewer
weak equivalences than the quasi-isomorphisms, so it does not present Franke’s exotic model.
Instead, left Bousfield localizing the relative projective model structure on Fr1,p produces the
quasi-projective model structure, in which the weak equivalences are the quasi-isomorphisms.

Proposition 5.4. Franke’s category Fr1,p is an algebraic model category.

Proof. Firstly, the underlying category of Fr1,p is locally presentable by [Bor94, Theorem
5.5.9] as Ch(E(1)∗E(1)-comod) is locally presentable. The quasi-projective model structure
on Fr1,p is cofibrantly generated by construction, and hence is combinatorial. We write
Hom(−,−) for the internal hom in Fr1,p and note that this also provides the enrichment
in ChZ via the forgetful functor. Now, let i : A ↪→ X be a cofibration and p : E � B be a
fibration in the quasi-projective model structure on Fr1,p. We must show that

Hom(i∗, p∗) : Hom(X,E)→ Hom(X,B)×Hom(A,B) Hom(A,E)

is a fibration in ChZ which is moreover acyclic if either i or p is acyclic.
Since the quasi-projective model structure on Fr1,p is monoidal by [BR11b, Corollary 6.7],
we have that Hom(i∗, p∗) is a quasi-projective fibration which is acyclic if either i or p is. By
definition, Hom(i∗, p∗) is also a quasi-projective fibration in Ch(E(1)∗E(1)-comod) which is
acyclic if either i or p is. It follows that it is also a fibration in the relative projective model
structure which is acyclic if either i or p is, since the quasi-projective model is a left Bousfield
localization of the relative projective model. Any fibration (resp., weak equivalence) in the
relative projective model is a surjection (resp., quasi-isomorphism) by [Hov04, Proposition
2.1.5]. Therefore Hom(i∗, p∗) is a surjection which is a quasi-isomorphism if either i or p is
acyclic, as required.
We have now shown that the quasi-projective model structure on Fr1,p is combinatorial,
ChZ-enriched, and is Quillen equivalent to the injective model structure. Therefore the
injective model structure on Fr1,p is indeed algebraic. �

We now summarize the relationships between the various versions of algebraicity studied
above for E(1)-local spectra and Franke’s category.

Example 5.5 (E(1)-local spectra). Consider the category of E(1)-local spectra at a fixed
prime p ≥ 3. Since there is a triangulated equivalence Ho(L1Sp) ' Ho(Fr1,p) one sees that
L1Sp is triangulated algebraic. As

HFp ∧ L1S ' L1(HFp) ' 0

(see [Gut10, §5.2]), L1S is not an HZ-module. If it were, then by Proposition 2.8

L1S '
∨
i∈Z

ΣiHπi(L1S),
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and therefore smashing with HFp could not be trivial as for example π2p−3(L1S) = Z/p. It
then follows from Corollary 3.16 and Proposition 4.3 that L1Sp is neither algebraic nor has
D(Z)-action. Finally, Ho(Sp) does not act trivially on Ho(L1Sp) as α1 acts nontrivially.

Example 5.6 (Franke’s exotic model Fr1,p). Consider Franke’s exotic model Fr1,p for E(1)-
local spectra at an odd prime. This is algebraic by Proposition 5.4, and hence is triangulated
algebraic, has D(Z)-action and has trivial Ho(Sp) action by Proposition 3.14, Proposition 4.5
and Corollary 4.10 respectively.

Example 5.7 (General exotic models for E(1)-local spectra). Finally we consider the case
of a general exotic model for L1Sp at an odd prime; that is, we consider a stable model
category C which has a triangulated equivalence Φ: Ho(L1Sp)→ Ho(C) that is not derived
from a Quillen functor. The existence of Φ shows that C is triangulated equivalent to Franke’s
category Fr1,p and hence C is triangulated algebraic. Proposition 5.1 shows that C also
has essentially trivial Ho(Sp)-action. Unlike the case of Franke’s exotic model described in
Example 5.6, we do not know whether an arbitrary exotic model of L1Sp is algebraic or has
a D(Z)-action.

5.2. Morava K-theory. In this example we consider the category of K(n)-modules. We
work at some implicit prime p.
Let K(n) denote the Morava K-theory spectrum for 0 < n < ∞. We see that K(n) is
not an HZ-module since HFp ∧K(n) ' 0 [Rav84, Theorem 2.1(i)]; if K(n) were an HZ-
module spectrum, then its underlying spectrum would be a wedge of suspensions of HFp by
Proposition 2.8, and in particular HFp ∧K(n) would be nontrivial.
Since {K(n)}0≤n≤∞ detects nilpotence by [HS98, Theorem 3], the homotopy category of
modules over the nth Morava K-theory K(n) has a trivial action of the stable homotopy
category by Proposition 4.21. However, we just noted (and will calculate explicitly for n = 1
later in this subsection) that for 0 < n <∞ that K(n) is not an HZ-module. Therefore by
Corollary 3.16 and Proposition 4.3, we see that K(n)-mod is neither algebraic, nor has a
D(Z)-action. This illustrates that being algebraic and having D(Z)-action are both stronger
properties than having trivial Ho(Sp)-action.
We also know that

π∗ : Ho(K(n)-mod) −→ D(K(n)∗)
is a triangulated equivalence. This is because K(n) is a “field” in the sense that all modules
over K(n) are equivalent to a wedge of suspensions of K(n) itself [Rav92], while on the other
side the analogue holds for a differential graded module over K(n)∗. Of course, K(n)∗-mod
is algebraic, whereas we just illustrated why K(n)-mod is not, which in particular means
that they are not Quillen equivalent, as pointed out by [SS02, Remark 2.5]. The triangulated
equivalence Ho(K(n)-mod) ' D(K(n)∗) makes K(n)-mod triangulated algebraic.
We can see the extent to which K(1)-mod fails at being algebraic in the following obstruction
theory.
Given a spectrum E, we would like to examine if there is a map from an Eilenberg-Mac Lane
spectrum A with the correct homotopy groups to E. There is always a map from the
respective Moore spectrum to E. An Eilenberg-Mac Lane spectrum is constructed from a
Moore spectrum by attaching cells, and we can see whether an already existing map from a
CW-spectrum to E lifts over the CW-spectrum with new cells attached. Note that we are
just considering maps of spectra, not ring maps.
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In more detail, we would like to see if there is a map

ΣiH(πi(E)) −→ E

inducing a πi-isomorphism. If there is such a map for all i, then it assembles to a weak
equivalence ∨

i∈Z
ΣiH(πi(E)) −→ E.

Without loss of generality, let i = 0 and define A := H(πi(E)). Then A = colimkA
(k),

where A(1) is the π0(E)-Moore spectrum, and A(k+1) is obtained from A(k) via attaching
(k+ 1)-cells to kill the k-homotopy groups of A(k). In other words, we have the exact triangle∨

φ∈πk(A(k))

ΣkS ∨φ−−→ A(k) −→ A(k+1) −→
∨

Σk+1S.

We can always construct a map A(1) −→ E, via the following.

Let G = π0(E). Then A(1) is the Moore spectrum MG, constructed via an exact triangle∨
S ρ−→

∨
S −→ A(1) = MG −→

∨
ΣS,

where the first wedge of sphere runs over the relations in G and the second wedge over the
generators, see [BR20, Example 7.4.7]. We extend this to a diagram∨

S
ρ
//
∨
S //

f0=(∨g)
��

A(1) //

||

∨
ΣS,

E

where g runs over the generators of π0(E) = [S, E]. By construction, f0 ◦ ρ = ∨g ◦ ρ = 0.
Therefore, the dotted arrow exists, and we have a map f1 : A(1) −→ E.

If we have a map fk : A(k) −→ E, then this extends to a map fk+1 : A(k+1) −→ E if and only
if the composite ∨

ΣkS ϕ=∨φ−−−−→ A(k) fk−→ E

is zero. Therefore, the obstruction for the existence of fk lies in

ϕ∗[A(k), E] = {f ◦ ϕ | f ∈ [A(k), E]}.

In particular, if all those cosets are trivial, then we have the desired map f : A −→ E.

Now let us examine ϕ∗[A(k), E] in the case of E = RHom(X,X), where X is a compact
generator of the stable model category C. The map fk ◦ϕ is adjoint to the map F ◦ (X ∧L ϕ),
where

F = ε ◦ (X ∧L fk) ∈ [X ∧L A(k), X]C

is adjoint to fk and
ε : X ∧L RHom(X,X) −→ X

is the counit of the adjunction. Therefore we can say that the obstruction for the existence of

fk+1 : A(k+1) −→ RHom(X,X)

lies in
(X ∧L ϕ)∗

(
[X ∧L A(k), X]C

)
.
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For RHom(X,Y ), the obstructions lie in

(X ∧L ϕ)∗
(
[X ∧L A(k), Y ]C

)
.

Therefore, by Corollary 4.8 we have the following.

Proposition 5.8. If there is a D(Z)-action on Ho(C), then

(X ∧L ϕ)∗
(
[X ∧L A(k), Y ]C

)
= 0

for all k. �

Example 5.9. Let us return to our example of Morava K-theory and C = K(1)-mod. As
noted at the beginning of the section, we are working p-locally. We would like to use the
obstruction theory to construct a map

A = HZ/p −→ E = HomK(1)(K(1),K(1)) ∼= K(1).
As K(1) is not an Eilenberg-Mac Lane spectrum, we will see exactly where this fails. Note
that K(1)∗ = Fp[v1, v

−1
1 ] with |v1| = 2p − 2, so in particular π0(K(1)) = Z/p, which is

generated by the unit ι : S −→ K(1). By the method described earlier, we have the following
commutative diagram, in which M is the mod-p Moore spectrum.

S S M = A(1) ΣS

K(1)

p incl

ι

pinch

ῑ

The long exact sequence of homotopy groups tells us that the next nontrivial homotopy
group of M is

incl∗ : π2p−3(S)
∼=−→ π2p−3(M),

so π2p−3(M) ∼= Z/p is generated by incl ◦ α1. Furthermore, with regards to the obstruction
theory, we have that

M = A(1) = A(2) = · · · = A(2p−3).

To work out the next obstruction, we look at the following diagram.

Σ2p−3S A(2p−3) = M A(2p−2) Σ2p−2S

K(1)

incl◦α1 F

ῑ

G

ι̃

As we have that π2p−3(K(1)) = 0, the map ῑ ◦ incl ◦ α1 is zero for degree reasons, and the
dotted map ι̃ exists. The next step of the obstruction is to investigate the existence of the
dotted arrow in this diagram.∨

Σ2p−2S A(2p−2) A(2p−1) ∨
Σ2p−1S

K(1)

∨φ

ι̃

To find out what ι̃ ◦ (∨φ) is, we need to know π2p−2(A(2p−2)). We apply the long exact
sequence of homotopy groups to the exact triangle defining A(2p−2) and obtain

π2p−2(Σ2p−3S) (incl◦α1)∗−−−−−−→ π2p−2(M) F∗−→ π2p−2(A(2p−2)) G∗−−→ π2p−2(Σ2p−2S) (incl◦α1)∗−−−−−−→ π2p−3(M).
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Clearly, the first term of this sequence is trivial, so F∗ is an injection.
The long exact sequence of homotopy groups tells us that π2p−3(M) ∼= Z/p is generated by
incl ◦ α1, so the final map of the previous sequence has kernel pZ, which is also the image of
G∗.
Again, we use the long exact sequence of homotopy groups to find out that

pinch∗ : π2p−2(M) −→ π2p−3(S)
is an isomorphism, and we know that π2p−3(S) ∼= Z/p is generated by the element α1.
Therefore, π2p−2(M) ∼= Z/p is generated by an element x with pinch ◦ x = α1. As

α1 = pinch ◦ v1 ◦ incl
by [Roi07, Section 6.2], we have that π2p−2(M) is generated by v1 ◦ incl.
As F∗ is an injection, we know that F ◦v1 ◦ incl 6= 0. Thus, we need to calculate ι̃◦F ◦v1 ◦ incl.
By construction, ι̃ ◦ F = ῑ. By [Rav92, Lemma 6.1.4], we have that ῑ ◦ v1 = v1 ◦ ῑ, so

ι̃ ◦ F ◦ v1 ◦ incl = ῑ ◦ v1 ◦ incl = v1 ◦ ῑ ◦ incl = v1 ◦ ι.

This is precisely the generator of π2p−2(K(1)) and hence not trivial. Therefore, the obstruction
to extend ι̃ to A(2p−1) is nonzero, and we arrive at the expected result that there is no
nontrivial map from HZ/p to K(1), thus revisiting the result that K(1) is not an Eilenberg-
Mac Lane spectrum. In particular, the category ofK(1)-modules does not carry a D(Z)-action.
An analogous calculation holds for k(1) instead of K(1).
It is a subject for future research to see if the obstruction theory can be exploited further to
determine the level of algebraicity of some other examples.

We now summarize the key findings of this section in the following example.

Example 5.10. For any 0 < n < ∞, the Morava K-theory spectrum K(n) is not an
HZ-module and therefore the category K(n)-mod is neither algebraic nor has D(Z)-action.
However, there is a triangulated equivalence Ho(K(n)-mod) ' D(K(n)∗) making K(n)-mod
triangulated algebraic. The category K(n)-mod also has trivial Ho(Sp)-action. On the
other hand, the category K(n)∗-mod is algebraic. As such, the triangulated equivalence
on homotopy categories between K(n)-mod and K(n)∗-mod cannot be lifted to a Quillen
equivalence.

5.3. Further examples from chromatic homotopy theory. In this subsection, we
explore some other examples, which arise from the work of [Pat12, Pat17a, Pat17b, PP21].
In general, it is difficult to establish whether a model category is triangulated algebraic,
if it is not already algebraic itself. In other words, we are looking for model categories
with an algebraic “exotic model”, like those from the Franke-style machinery. In the rest of
this subsection we explore some more triangulated algebraic examples arising in chromatic
homotopy theory.

Example 5.11. From [PP21, Corollary 8.3] there are triangulated equivalences between
each of the following model categories and an algebraic model category. Note that these
are all corollaries from the same general theorem, which gives a triangulated equivalence
between Ho(R-mod) and D(π∗(R)) under certain conditions on π∗(R) related to sparseness
and global dimension. Since these have different behaviour with regards to the action of
Ho(Sp), we split up these examples into three types.

23



(1) E(1)-local examples:
• E(1)-modules for p > 2, π∗(E(1)) = Z(p)[v1, v

−1
1 ], |v1| = 2p− 2;

• KO(p)-modules for p > 2, π∗(KO(p)) = Z(p)[v, v−1], |v| = 4;
• KU(p)-modules for p > 2, π∗(KU(p)) = Z(p)[β, β−1], |β| = 2.

For a ring spectrum R, the homotopy mapping spectra of R-modules are of course
R-modules themselves and as such, they are also R-local spectra [Rav84, Proposition
1.17(a)]. A spectrum is KU(p)-local if and only if it is KO(p)-local if and only if it is
E(1)-local [Rav84, Theorem 8.14]. As such in each of these examples the homotopy
mapping spectra are E(1)-local, and hence the category has trivial Ho(Sp)-action by
Theorem 4.18 since α1 acts trivially for degree reasons.

(2) Examples via nilpotence:
• modules over connective Morava-K-theory k(n) for 0 < n < ∞ with pn > 2,
where k(n)∗ = Fp[vn], |vn| = 2pn − 2.

We claim that the set {k(n)}0≤n≤∞ detects nilpotence and therefore each k(n)-mod
has trivial Ho(Sp)-action by Proposition 4.21. In order to show this, we will prove
that a set {Ri} of ring spectra detects nilpotence if for all 0 ≤ n ≤ ∞, there exists
an i such that K(n)∗(Ri) 6= 0. The argument for this is a slight modification of
that of [HS98, Proof of Corollary 5]. Let f : ΣkA → A be a map of finite spectra.
Since K(n) is a field, K(n) ∧ Ri is a wedge of suspensions of K(n), and therefore
if Ri ∧L f = 0 for all i it follows that K(n) ∧L f = 0 for all n. Since {K(n)}0≤n≤∞
detects nilpotence by [HS98, Theorem 3] it follows that f is nilpotent, and hence
that {Ri} detects nilpotence. Since k(n) ∧K(n) 6' 0 [Rav84, Theorem 2.1(e)], the
previous criterion coupled with Proposition 4.21 shows that k(n)-mod has trivial
action.

(3) Other examples:
• E(n)-modules for 2p − n > 3, where π∗(E(n)) = Z(p)[v1, . . . , vn−1, vn, v

−1
n ],

|vi| = 2pi − 2;
• modules over the truncated Brown-Peterson spectrum BP 〈n〉 for 2p− n > 4,
BP 〈n〉∗ = Z(p)[v1, · · · , vn], |vi| = 2pi − 2.

By Corollary 4.17, these examples have trivial Ho(Sp)-action.

All of the above examples are triangulated algebraic. However, in each case R is not a
generalized Eilenberg-Mac Lane spectrum (see [Pat12, Appendix A] for details), and hence by
Corollary 3.16 and Proposition 4.3, none of the above are algebraic nor have a D(Z)-action.

5.4. Complex cobordism. In this section, we consider the example of the complex cobor-
dism spectrum MU , and investigate what kinds of algebraicity MU -mod enjoys.
Example 5.12. Since {MU} detects nilpotence by [DHS88, Theorem 1] it follows from
Proposition 4.21 that Ho(MU -mod) has trivial Ho(Sp)-action. (Alternatively, this also follows
from Corollary 4.17.) One sees that MU -mod is not algebraic by Corollary 3.16; if MU were
an HZ-algebra then any MU -module would be an HZ-module by restriction of scalars but
this fails for example for K(n), see Example 5.10. One can also see that MU -mod does not
have a D(Z)-action as follows. The homotopy mapping spectrum HomMU (MU,K(n)) ' K(n)
is not an HZ-module, and so by Proposition 4.3 the action of Ho(Sp) does not factor over
D(Z).
To the best of the authors’ knowledge, whether or not MU -mod is triangulated algebraic
is an open question. Schwede has introduced the n-order of a triangulated category as an
invariant; the n-order of a triangulated algebraic category is infinite [Sch13, Theorem 2.1],
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but the converse need not hold. The category Ho(MU -mod) has infinite n-order [Sch13,
Example 1.8], so this invariant is not conclusive in this example.

5.5. Endomorphisms of HZ over ku. In this section we explore an interesting example
which shows (amongst other things) that having a D(Z)-action is weaker than being algebraic.
Let ku denote the connective complex K-theory spectrum, and recall that ku∗ = Z[β] where
β is the Bott element in degree 2. By killing homotopy groups, there is a ring map ku→ HZ.
Note moreover that HZ is a compact ku-module since it is equivalent (as a ku-module) to
the Koszul spectrum

ku//β = cofib(Σ2ku
β−→ ku).

In this example we consider the endomorphism ring spectrum E = Endku(HZ). Before we
can discuss what types of algebraicity the category of E-modules enjoys we require some
preparatory results.
There is a ring map c : ku→ EndE(HZ) adjoint to the action map of ku on HZ, called the
double centralizer.

Lemma 5.13. The map c : ku→ EndE(HZ) is an equivalence; in the language of [DGI06,
§4.16], the map ku→ HZ is dc-complete.

Proof. The double centralizer may be identified with the β-completion Λβ(ku) of ku [DG02]
(also see [Gre18, §6.C]) so it suffices to show that ku is β-complete. There is a spectral
sequence [GM95, 3.3]

E2
s,t = Hβ

s (ku∗)t =⇒ πs+t(Λβ(ku))
where Hβ

∗ (ku∗) denotes the local homology groups of ku∗ at the ideal (β) in the sense
of [GM92]. Since the coefficient ring Z of ku∗ = Z[β] is in degree 0 and β is in degree 2, one
sees that Z[β] agrees with the power series ring ZJβK by comparing homogeneous parts. As
such, ku∗ = Z[β] is β-adically complete, and thus the local homology groups are

Hβ
s (ku∗) =

{
ku∗ s = 0
0 otherwise

by [GM92, Theorem 4.1]. Therefore the spectral sequence collapses at the E2-page to show
that ku is β-complete, and hence that c is an equivalence. �

Using the previous lemma, we now show that whilst the endomorphism ring spectrum E is
an HZ-module, it is not an HZ-algebra.

Theorem 5.14. The endomorphism ring spectrum E = Homku(HZ, HZ) is an HZ-module,
but is not weakly equivalent to an HZ-algebra as a ring spectrum.

Proof. There is a ring map HZ→ E which is adjoint to the map HZ ∧ku HZ→ HZ. This
gives E the structure of an HZ-module by restriction.
We now suppose that E is an HZ-algebra and produce a contradiction. If E were an HZ-
algebra, then EndE(HZ) would also be an HZ-algebra. If this were the case, then we would
have a commutative diagram

S ku

HZ EndE(HZ)

ι

c
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since S is initial. As c is an equivalence by Lemma 5.13, this would mean that the unit map
of ku factors over HZ, which is false as [HZ, ku] is zero in degree zero. This is well-known
but for completeness we recall the argument in Lemma 5.16 below. As such, E cannot be
weakly equivalent to an HZ-algebra as a ring spectrum. �

We now turn to relating the above observations to algebraicity statements.

Example 5.15. Consider the HZ-cellularization of ku-modules which we denote by
CellHZ(ku-mod). This is sometimes called the right Bousfield localization at HZ and
denoted by RHZ(ku-mod). The homotopy category of this model category is the localizing
subcategory Locku(HZ) of ku-modules generated by HZ, and HZ is a compact generator
for it [GS13, Corollary 2.6]. By Morita theory we have a Quillen equivalence

CellHZ(ku-mod) 'Q mod-E ,

see [DG02, Theorem 2.1] and [BR14, Theorem 8.7]. Since E is spectral with enrichment given
by HomE(−,−), we have hEnd(E) = E . Since E is not weakly equivalent to an HZ-algebra as
a ring spectrum by Theorem 5.14, we see that CellHZ(ku-mod) and mod-E are not algebraic
by Theorem 3.15.
We now show that mod-E (and hence CellHZ(ku-mod)) has a D(Z)-action. There exists a ring
map θ : HZ→ E adjoint to the map HZ∧kuHZ→ HZ. The category Ho(mod-E) is enriched,
tensored and cotensored over itself, and hence is enriched, tensored and cotensored over D(Z)
via extension and restriction of scalars along the ring map θ, see [Rie14, 3.7.11] for instance.
Therefore mod-E has a D(Z)-action. This shows that the converse to Proposition 4.5 is
false, because we have found a model category with D(Z)-action which is not algebraic.
Furthermore, we can also see from Corollary 4.10 that mod-E has a trivial Ho(Sp)-action.
We have also computed the homotopy groups of E , but they do not satisfy the hypotheses
of [Pat12, Pat17a, Pat17b, PP21] regarding global dimension and sparseness, so we cannot
draw any conclusions about whether or not mod-E is triangulated algebraic at this stage.
We finish this example with a lemma we needed for Theorem 5.14.

Lemma 5.16. The group [HZ, ku]0 is trivial.

Proof. Firstly, we note that the connective cover functor is right adjoint to the inclusion of
the full category of connective spectra into spectra. Thus,

[HZ, ku]∗ = [HZ,KU ]∗ = KU∗(HZ),

which is of course 2-periodic. There is a short exact sequence

0→ Ext1
Z(KU−1(HZ),Z)→ KU0(HZ)→ HomZ(KU0(HZ),Z)→ 0,

see [HS14], so we need to calculate KU∗(HZ). We note that LKUHZ = HQ [Gut10,
Proposition 5.2], so

KU∗(HZ) = KU∗(LKUHZ) = π∗(HQ ∧KU),

which is Q in even degrees and zero in odd degrees. Putting this into the previous short exact
sequence yields that [HZ,KU ]even = HomZ(Q,Z) = 0 and [HZ,KU ]odd = Ext1

Z(Q,Z). �
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5.6. Summary of our findings. In this subsection we summarize the main findings of this
paper. Figure 2 shows a summary of how the different notations of algebraicity relate, and
Table 1 recaps the properties of the various examples studied.

Algebraic

D(Z)-action Triangulated
algebraic

Trivial action

(5.15)

8

(5.10)

8

(4.5) (3.14)

(4.10) (5.5)
8

(5.10)

8

?

(5.10)

8

(5.10)8

Figure 2. Summary of the relations between different notions of algebraicity.
The implications which hold are in black, whereas those that fail are in red.

It is hard to imagine that the implication from trivial action to triangulated algebraic does
hold, but the authors could not find a counterexample at the moment. The same applies
to the implication from D(Z)-action to triangulated algebraic. Of course, if the dotted
implication in the diagram does hold, then D(Z)-action would imply triangulated algebraic.
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Category Algebraic D(Z)-
action

Triangulated
algebraic

Trivial
action

Essentially
trivial action Ref.

L1Sp (p > 2) 8 8 3 8 8 5.5

Franke’s exotic model
for L1Sp (p > 2) 3 3 3 3 3 5.6

General exotic models
for L1Sp (p > 2) ?© ?© 3 ?© 3 5.7

K(n)∗-mod 3 3 3 3 3 5.10

K(n)-mod (0 < n <∞) 8 8 3 3 3 5.10

E(1)-mod (p > 2)
KO(p)-mod (p > 2)
KU(p)-mod (p > 2)

8 8 3 3 3 5.11

k(n)-mod
(0 < n <∞ and pn > 2) 8 8 3 3 3 5.11

E(n)-mod (2p− n > 3)
BP 〈n〉-mod (2p− n > 4) 8 8 3 3 3 5.11

MU -mod 8 8 ?© 3 3 5.12

CellHZ(ku-mod) 8 3 ?© 3 3 5.15
Table 1. Summary of examples
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