
El-Giar, Osama and Hopkins, Tim (1992) A Generally Configurable Multigrid
Implementation for Transputer Networks. Technical report. I O S Press,
University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21034/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21034/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Generally Configurable Multigrid Implementation
for Transputer Networks

Osama El-Giar and Tim Hopkins
Computing Laboratory

University of Kent
Canterbury

Kent, CT2 7NF
U.K.

October 16, 1992

Abstract

This paper describes the performance of a multigrid method implemented
on a transputer-based architecture. We show that the combination of fast
floating-pointhardware, local memory and fast communication links between
processors provide an excellent environment for the parallel implementation
of multigrid algorithms. The gain in efficiency obtained by increasing the
number of processors is shown to be nearly linear and comparisons are made
with published figures for a parallel multigrid Poisson solver on an Intel iPSC
32-node hypercube.

1 Introduction

We discuss the design and implementation, in occam, of a highly efficient, parallel,
multigrid algorithm. The emphasis of this implementation is on simplicity and our
program does not require the complexities of, for example, the H-Gray codes of
Chan and Saad [3] or the shuffle operations of McBryan and Van de Veld [4] to
obtain efficiency.

We show that there is very little loss of efficiency due either to processors
becoming idle when coarser grids are being processed or in communication of data
between processors. The latter is due to the ability of transputers simultaneously
to compute and transfer data at a high rate (10 Mbits/sec).

1

Finally we present results for the solution of Poisson’s equation on progres-
sively finer grids using a Meiko Computing Surface and utilizing networks of up to
16 T800 processors. These results are compared with those obtained for a similar
problem by Briggs et al. [2] using an Intel iPSC 32�node hypercube.

2 A Brief Introduction to Multigrid Methods

We consider Poisson’s equation on a unit square with Dirichlet boundary conditions
as our model problem, i.e.,

uxx � uyy � �f in Ω � �0� 1�� �0� 1�

u � g on �Ω (1)

We define a regular grid of points �xi� yj� � �iΔx� jΔy�with Δx � 1��N � 1� and
Δy � 1��M � 1�; for simplicity we also assume that M � N . At each internal
point on this grid we define an approximation, uij , to the exact solution u�xi� yj�.
The derivatives in (1) are then replaced by the simple, second-order, five point
difference operator to give a linear system of the form

ui�1�j � 2uij � ui�1�j

�Δx�2 �
ui�j�1 � 2uij � ui�j�1

�Δx�2 � �fij �2�

with uij � g�xi� yj� for i � 0 or N or j � 0 or N , 1 � i� j � N � 1 and
fij � f�xi� yj�. A suitable ordering of the unknowns leads to a system of the form

�
��������

A �I

�I A �I
.

. �I

�I A

�
��������

�
��������

u1

u2
...
...

uN�1

�
��������
�

�
��������

f1

f2
...
...

fN�1

�
��������

where ui � �ui1� ui2� � � � � ui�N�1�
T , fi � �fi1� fi2� � � � � fi�N�1�

T , I is a unit matrix
of order N � 1 and

A �

�
��������

4 �1
�1 4 �1

.
. �1

�1 4

�
��������
�

2

The system is symmetric and block tridiagonal with tridiagonal diagonal blocks
and diagonal off-diagonal blocks.

Methods for solving such systems are divided into two categories; direct and
iterative. Direct solvers determine the solution to machine precision in a finite
number of steps. Examples of direct methods are Gaussian elimination and cyclic
reduction. Iterative methods, on the other hand, start with an initial guess at the
solution and by use of a simple updating procedure generate a sequence of ap-
proximations which, ideally, converge to the exact solution. Examples of iterative
methods are Gauss-Seidel and successive over-relaxation (SOR).

Multigrid is an iterative technique which attempts to improve upon deficiencies
inherent in the classical relaxation methods. These classical methods tend to
reduce the error in the approximation reasonably quickly for the first few iterations
after which the error decreases far more slowly. This is due to the smoothing
properties of the basic iterative scheme which is very effective at reducing the
high frequency components in the error vector whilst leaving the relatively low
frequency components unscathed. To combat this problem multigrid methods use
a sequence of grids Gk (with spacing Δx), Gk�1 (with spacing 2Δx) etc. The
coarsest grid, labelled G0, may consist of just a single unknown. Note that at
each stage the points in a grid are a subset of the points in any finer grids. For
many iterative schemes it is more efficient to reduce the low frequency modes by
computing on Gk�1 rather than on Gk.

Assuming for simplicity that we decide to use just two grids Gk andGk�1. We
first generate an initial guess to the approximate solution at each of our internal grid
points on Gk. A simple iterative method (e.g., Jacobi’s method) is then applied to
smooth out the high frequency error modes. Using a transfer function we generate
an approximation at the points of Gk�1. This transfer function is known as an
injection and in its simplest form consists of merely selecting the subset of values
from Gk. Iterating onGk�1 then quickly reduces the lower frequency modes and a
transfer function is then used to move back to the finer grid Gk. This interpolation
function needs to be carefully chosen so as neither to introduce nor magnify any
low frequency errors.

In practice we use a sequence of grids Gk, Gk�1, � � �, G0 where, in the
implemented code, G0 consists just of a single unknown which may be solved
for trivially. Hybrid methods, which use iterative techniques down to a certain
grid level and then a direct method to obtain a machine accurate solution, are also
possible. After any transfer between grids some smoothing of the approximation
thus obtained is performed.

Thus to specify a multigrid method we need to define

3

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

�� �
�
�

�
�
�
��

�
�
�
��

��

�
�
�

�
�
�
�� 8h

4h
2h
h

Figure 1: The FMV �2� 1� schedule applied to four levels of grids

1. an injection to transfer from a fine to a coarser grid,

2. an interpolation formula to transfer from a coarse to a finer grid,

3. a smoothing technique to be applied iteratively at each step (this may be
different at the interpolation and injection stages),

4. a schedule for transferring between grids.

There are many possible choices for these four stages (see Briggs [1] and Walsh
[5] for examples). Our implementation uses

1. half injection,

2. bilinear interpolation,

3. red-black relaxation,

4. the FMV �2� 1� schedule of grids (see Figure 1).

Details both of these terms and how the method is implemented in a sequential
form may be found in the excellent introduction to multigrid methods [1].

It is important to realise that multigrid methods have been successfully gen-
eralized to more complex equations than (1); for example self-adjoint, non-linear
and time dependent equations. In addition the multigrid idea has been applied to
other problem areas; for example image processing, control theory and quantum
electrodynamics.

3 Distributing the computation

The finest grid discretization is assumed to have N � �2m � 1� internal grid
points in each direction i.e., Δx � Δy � 1�2m. The region is then divided into
p � 2k, equal strips where p is the number of processes to be used. In the multigrid
hierarchy, i.e., from the finest to the coarsest grid, all grid points inside a process

4

region are assigned to that process. In addition grid points that lie on the boundaries
of process regions are assigned to the process to the left of the boundary.

All processes are computationally speaking identical and communicate with
their nearest neighbour processes to form a pipeline. This pipeline is then mapped
onto the available transputers. During the initialization phase each process cal-
culates its position within the pipeline and hence the subset of grid points it is to
work with. Note that, except for the simple cases where the pipeline consists of
either one or two processes, as the grid becomes coarser neighbouring points are
not contained within neighbouring processes. Processes which contain no points
for a particular grid are in a similar position to the sleeping nodes in the hypercube
implementation described by Briggs et al. [2]. The difference is that these occam
processes are required to transfer data between the processes containing active grid
points – they daydream rather than develop catalepsy! Each process keeps track
of the current level of calculation within the multigrid hierarchy and, since it has
computed its position in the pipeline and knows the number of internal points in
the finest grid, it can calculate whether it has active data or is in communication
only mode.

The left-hand process is used for communication with the outside world via
the two channels which are not connected to the pipeline. This process has its own
subset of grid points and performs the relevant multigrid calculations. In addition,
after each V -cycle this process receives error and residual information from all the
other processes and display it on the user’s terminal.

We present in some detail the steps involved in implementing the processes for
the relaxation step and the computation and display of the error norms and residuals.
The code is presented as pseudocode rather than occam for compactness.

PROC relax

� n denotes the number of grid points in the x- or y-direction including the
boundary points in the currently selected mesh.

� p denotes the number of processes being used. The maximum useful value
of p isN , the number of internal grid-lines in the finest mesh. If p � N then
some processes will idle throughout the computation.

For each relaxation step we recognize two basically different cases

1. �n�p � 1�: each strip contains at least one vertical line of points. The
following four steps are executed sequentially within each process

5

(a) values adjacent to the boundaries of process regions are exchanged in
parallel with their nearest neighbour processes. Note in the limiting
case �n�p � 1� the same values are sent both to the right and the left,

(b) relaxation is performed on all even points including those adjacent to
the boundaries of the process regions,

(c) exchange as in step 1a,

(d) as step 1b using odd points.

2. �n�p � 1� some processes contain no active grid values whilst others are
computing with a single vertical line of points.

if �n � 3� – we have reached the coarsest grid

� middle process �pn � p�2�

– receives, in parallel, single values from processes pn � 1,

– solves directly for the single unknown.

� processes to the right of centre (pn � p�2�

– receive boundary value from right-hand boundary and pass to left.

� processes to the left of centre (pn � p�2�

– receive boundary value from left-hand boundary and pass to right.

if �n � 3�

� for processes working with active points as 1 above,

� for processes containing no active points

– in parallel receive from left and right and send to right and left.

PROC calc and display errors

� we only present the case for n�p � 1 the extra logic required for the other
case is similar to the relaxation process. The left-most processor requires
some extra code as explained below. The following steps are performed in
sequence

1. Exchange values as in step 1a in the relaxation process.

2. Compute residuals and error norms.

3. Send required values to the left-hand process.

6

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

E
f
f
i
c
i
e
n
c
y

No. of Transputers

N = 7
N = 15
N = 31
N = 63
N = 127

Figure 2: With intermediate results – N � 7� 15� 31� 63� 127

4. In parallel, receive data from the right hand process and send it on to
the left-hand process, until all data computed to the right of the process
has been transmitted.

The left-most process needs only two channels to communicate with the
pipeline of processors; the other two are connected to the user’s display
and keyboard. This process receives all the error and residual values and
computes the necessary maximum values for display.

The interpolation and restriction processes have a similar structure to the re-
laxation step above.

4 Results

The resulting occam program has been tested on a number of examples of the form
(1) on grids with step sizes ranging from 1�8 to 1�256 using transputer networks
of size 2k for k � 0� 1� � � � � 4. We present just one example which is typical of the

7

results obtained. For this example we have used f�x� y� � 2�2 sin�x sin�y and
g � 0 in (1) above. The exact solution is u�x� y� � sin�x sin�y.

For a given value of N we plot the efficiency, ENp, against the number of
transputers in the network, p, where

ENp � t1��p�tp�

and tj is the time taken to execute the program when distributed over j transputers.
Figure 2 shows the results when the residual and error norms are displayed at

the end of each V -cycle. Figure 3 shows the effect of suppressing this intermediate
output – only the final values are displayed. The increase in performance is
explained by the fact that during the collection of data for displaying, processors
idle after passing on all values to their right. The second graph gives a better
picture of the effectiveness of the parallel implementation of the multigrid method
itself.

We note from these figures the dramatic decrease in efficiency when 16 trans-
puters are used to solve the N � 7 and N � 15 problems. This is because some of
the processors are idling for a large proportion of the computation. For the largest
problem, N � 127, the curve is very flat showing the very high performance gains
obtained by increasing the number of processors. It can be seen that the overhead
of computing on the coarser grids is extremely small. The decline in performance
caused by the idling of processors during the coarser grid computation can just be
seen for the N � 63 grid using 16 transputers.

Figure 4 shows a comparison graph for a solution of Poisson’s equation on the
Intel hypercube taken from Briggs et al. [2]. No details of the actual problem
solved are given in this reference. However it is clear that there is a far more
marked degradation in performance as more nodes are introduced into the solution
than for the transputer array.

5 Conclusion

We have presented an occam implementationof a multigrid algorithm which makes
very efficient use of the available processors. It is especially efficient for larger
problems when the increase in performance becomes almost linear with the number
of extra processors.

The implementation of the multigrid algorithm as a general occam process
means that the program is very easily adaptable to transputer pipelines of different
sizes. Having defined the equation to be solved only the number of processors

8

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

E
f
f
i
c
i
e
n
c
y

No. of Transputers

N = 7
N = 15
N = 31
N = 63
N = 127

Figure 3: Without intermediate results for N � 7� 15� 31� 63� 127

available and the size of the finest grid are required to start the program running.
No changes to the code are required.

With the large increases in the external memory now available on transputers
the approach taken in this paper would appear to be ideally suited to the solution
of three dimension problems. Code for this problem is close to completion.

6 Acknowledgements

We would like to acknowledge the help, guidance and useful discussions we have
had during this research with Peter Welch, Colin Willcock and Tony Curtis at UKC.
Thanks also to Peter for improving a first draft of this paper when he had much
more important thing to do!

References

[1] W. L. Briggs. A Multigrid Tutorial. SIAM, Phildelphia, 1987.

9

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

E
f
f
i
c
i
e
n
c
y

No. of Nodes

N = 7
N = 15
N = 31
N = 63
N = 127

Figure 4: Efficiency vs. number of hypercube nodes for N � 7� 15� 31� 63� 127

[2] W. L. Briggs, L. Hart, S. F. McCormick, and D. Quinlan. Multigrid methods
on a hypercube. In S. F. McCormick, editor, Multigrid Methods – Theory,
Applications, and Supercomputing, pages 63 – 84. Marcel Dekker, Inc, Basel,
1988.

[3] T. Chan and Y. Saad. Multigrid algorithms on the hypercube multiprocessor.
I.E.E.E. Trans. Comp., C-35(11):969 – 977, Nov 1986.

[4] O. McBryan and E. F. van de Velde. The multigrid method on parallel pro-
cessors. In W. Hackbusch and U. Trottenberg, editors, Proceedings of the 2nd
Conference on Multigrid Methods, Berlin, 1985. Springer Verlag.

[5] J. Walsh. Multigrid methods for elliptic equations. In A. Iserles and M. J. D.
Powell, editors, The State of the Art in Numerical Analysis, Oxford, 1987.
Clarendon Press.

10

