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Abstract: The outbreak of the Coronavirus Disease 2019 (COVID-19) has put the resilience of a 8 

country’s healthcare infrastructure to the most severe test. The challenge of taking emergency measures to 9 

optimize the supply of medical resources and effectively meet the medical needs of residents is an important 10 

issue that needs to be resolved urgently in the prevention and control of public health emergencies. This paper 11 

analyzes cascading failures and optimization of the resilience of the hospital infrastructure system (HIS) with 12 

the presence of the COVID-19. It proposes a propagation model to describe the COVID-19 infectious process 13 

and establishes a cascading failure model of a HIS to analyze its failure mechanism. It also proposes a method 14 

for optimizing the resilience of HIS. Then the supplies and demands in maintaining the operations of HIS are 15 

studied, and a restoration strategy is obtained. Finally, simulation analysis of the spread of the COVID-19 is 16 

carried out to illustrate the applicability of the proposed method. 17 

Keywords: reliability; cascading failure; resilience; hospital infrastructure system; supply chain 18 

1. Introduction 19 

1.1. Background 20 

In December 2019, a coronavirus disease, which was later named as the COVID-19, was detected in 21 

Wuhan, Hubei Province, China, and then began spreading globally. It is transmitted mainly by respiratory 22 

droplets and physical contact and is highly contagious. It poses a tremendous threat to the lives and people’s 23 

health, and causes immense damage to economic and social development. As of 12:02 am, February 28, 2023 24 

(Greenwich time), there are 679,887,320 COVID-19 infected cases and 6,799,660 deaths relating to the 25 
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COVID-19 (Worldometer, 2023). The World Health Organization has listed the COVID-19 as a public health 26 

emergency of international concern. 27 

As the main part of a healthcare system for responding public health emergencies, hospital 28 

infrastructure systems (HIS’s) are directly responsible for the prevention and control of epidemics. A HIS is 29 

a complex system composed of medical staff and various types of medical resources interacting with each 30 

other and can be abstracted as a complex network consisting of all hospitals and their linkage relationships. 31 

At the beginning of the outbreak of the COVID-19, hospitals were overwhelmed with COVID-19 32 

patients and HIS’s struggled in coping with the surging medical demand. The outbreak of the COVID-19 33 

put the resilience of HIS’s to the test, and emergency management tools were therefore necessary in 34 

managing the performance and quantity of medical resources. To address the shortcomings and deficiencies 35 

revealed in the outbreak of the COVID-19, there is a need to conduct failure analysis of HIS’s and investigate 36 

post-disaster restoration strategies for HIS’s. This paper serves this purpose. 37 

1.2. Literature reviews 38 

The infectious disease dynamics model (IDD model) is an effective tool for the study of infectious 39 

diseases, on which there is an abundance of work ( Gao & Wang, 2022; Qian & Ukkusuri, 2021; Kermack & 40 

Mckendrick, 1927; Gao, Liu, Nieto &  Andrade, 2011; Enatsu, Messina, Nakata, Muroya, & Vecchio, 2012). 41 

In the literature, there are two main approaches to characterizing the dynamics of infectious diseases: the first 42 

one includes compartmental models and the second one models the disease propagation at the individual level 43 

over large-scale networks (Qian & Ukkusuri, 2021). Particularly, a compartmental model classifies the 44 

population under study into several states: susceptible (S), latent (E), infected (I), and recovered (R). The 45 

transition between the states of the subjects describes the process of virus propagation. A susceptible person, 46 

as a latent person, could be contracted by an infected person, which may then become a recovered one after 47 

being treated. Compartmental models include SIR (susceptible-infected-recovered) models, SIRS (susceptible-48 
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infected-recovered-susceptible) models, SEIR (susceptible-exposed-infected-removed) models, among others. 49 

Kermack & Mckendrick (1927) first proposed the SIR model in 1927, assumed that the number of people in 50 

the target area was constant and that people recovered from the virus will no longer infected, and divided the 51 

target population into three categories: susceptible (S), infected (I), and recovered (R). Enatsu, Messina, Nakata, 52 

Muroya, & Vecchio (2012) and Sekiguchi & Ishiwata (2010) studied discrete-time SIRS infectious disease 53 

kinetic models with time lags and non-linear incidence. They used mathematical induction, the principle of 54 

comparison of differential equations and the construction of appropriate Lyapunov functions, to obtain the 55 

conclusion that the disease is persistent when the underlying regeneration number is greater than one. 56 

Researchers have proposed complex network virus models based on compartmental models, and they 57 

treat individuals as nodes and connections between individuals as node-linked edges to study the virus 58 

propagation process on both homogeneous and non-homogeneous networks. Gagliardi & Alves (2010) studied 59 

the effect of small-world effect on virus propagation based on Cellular Automata (CA) and concluded that 60 

enhanced network small-world effect can accelerate the virus propagation rate, etc. Wang, Wang, Liu & Li 61 

(2014) studied an SIR epidemic model with demographics and time-delay on networks. According to Zhang 62 

& Jin (2011), the epidemic model has been considered networks with birth and death rates, where the basic 63 

reproductive threshold parameter is defined to show the dynamics of an epidemic. 64 

Most of the research on the cascading failures in a complex network has focused on quantitative analysis 65 

and applied research (Sheu et al., 2020; Whitman et al., 2017). Wang & Xiao (2016)  presented a cascade 66 

failure model based on an improved ant colony algorithm for a cluster-distributed supply chain network, taking 67 

into account the topology of the network, the flexibility of the nodes and the efficiency of the nodes. Zhou, 68 

Huang, Coit & Fel (2018) analyzed the process of network cascade failures from the perspectives of load 69 

dynamics and node dependence, respectively. Zheng, Gao & Zhao (2007) constructed a cascade failure model 70 

for scale-free networks that consider aggregation coefficients and congestion effects, and pointed out the 71 
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characteristics of network element coefficients with high sensitivity to failures. Rodríguez-Méndez, Ser-72 

Giacomi & HernándezGarcía (2017) investigated the characteristics of clustering coefficients in the cascade 73 

failure process of fluid networks and the impact on the scale of its failures. Linkov, Keenan & Trump (2021) 74 

reviewed research that applies risk, resilience, and strategy theories to civil, environmental, and public health 75 

in the context of COVID-19. Their work enables decision-makers to understand the systemic and sweeping 76 

nature of the COVID-19 pandemic. Hynes, Trump, Love & Linkov (2020) point out that COVID-19 can reduce 77 

the ability of critical systems to withstand shocks and can cause failures in one system to spread to another. 78 

Wells, Boden, Tseytlin & Linkov (2022) conducted a literature review on the resilience of critical infrastructure 79 

in the network science literature published between 2010 and 2021 under compounding failure. Guo et al. 80 

(2019) developed a cascade model that takes account of the project’s self-protection mechanism to examine a 81 

failure propagation process originated from a single task failure. 82 

There are many studies on maintenance optimization of complex systems (Broek, Teunter, Jonge & 83 

Veldman, 2021; Broek, Teunter, Jonge & Veldman, 2019; Keizer, Teunter & Veldman, 2017; Zhao et al., 2018), 84 

and resilience is an indicator to guide the maintenance of complex systems (Almoghathawi and Barker, 2019). 85 

The word "resilience" is originally derived from the Latin word "resiliere", meaning "to rebound", and is 86 

commonly used to indicate the ability of a system to sustain external and internal disruptions without 87 

interrupting the execution of system functions, or, if the function is disconnected, to fully recover the function 88 

rapidly (Hosseini, Barker & Ramirez-Marquez, 2016). Galaitsi et al. (2021) studied eight concepts, which 89 

characterize systems facing threats: adaptability, agility, reliability, resilience, resistance, robustness, safety, 90 

security, and sustainability. They found that resilience could only manifest when recovery is needed, and thus 91 

could complement concepts related to threat impact like resistance, robustness, safety, and security. Siskos & 92 

Burgherr (2022) proposed an elaborative multicriteria decision support methodological framework for the 93 

Evaluation of Electricity Supply Resilience, based on three major resilience dimensions including “resist”, 94 
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“restabilise” and “recover”. Ouyang (2017) proposed a mathematical framework to support resilience 95 

optimization of interdependent critical infrastructure system under the worst critical infrastructure system.  96 

Linkov et al. (2018) proposed a three-tier qualitative analysis framework for resilience assessment. The 97 

framework allows regulators to integrate resilience assessments with existing risk assessment protocols. 98 

Ransolin, Saurin and Formoso (2020) developed a framework for the integrated modelling of built environment 99 

and functional requirements, supporting the analysis of resilient performance. 100 

In the context of HIS’s, resilience refers to its ability to recover quickly from an attack by a health event. 101 

The continued operation of infrastructure is fundamental to people’s daily life, and optimizing the resilience 102 

of Hospital Infrastructure Systems is essential for the safety and health of the population (Barabadi, Ghiasi & 103 

Nouri, 2020). Studies on HIS resilience under emergencies can be found in the literature. Pishnamazzadeh, 104 

Sepehri & Ostadi (2020) proposed a model to assess hospital resilience based on a system dynamics approach. 105 

The model studied the effect of four Key Performance Indicators (KPI) of hospitals: patient satisfaction, patient 106 

waiting time, staff burnout and staff satisfaction on the resilience. Achour, Miyajima, Pascale & Price (2014) 107 

assessed the resilience of healthcare institutions under supply disruption, using data from hospitals in the 108 

aftermath of the 2003 Tohoku earthquake in Japan for validation. Tariverdi, Fotouhi, Moryadee & Miller-109 

Hooks (2018) proposed a hierarchical modeling concept to quantify the resilience of regional hospital response 110 

under disaster, and estimated resilience in terms of total patient waiting time and unserved patients. Zhang, 111 

Shi, Huang, Hua & Teunter (2021) studied policies for optimizing the inventory and capital reserves of 112 

emergency medical resources under the COVID-19. Samsuddin, Takim, Nawawi & Alwee (2018) measured 113 

hospital’s disaster resilience as the hospital’s ability to resist, absorb, accommodate and recover from the 114 

effects of a hazard in a timely and efficient manner. Additionally, they investigated the hospital preparedness 115 

attributes and resilience indicators and established relationship of preparedness attributes towards hospital’s 116 

resilience. Hassan and Mahmoud (2021) investigated the combined impact of wildfire and pandemic on a 117 
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network of hospitals, they combined wildfire data with varying courses of the spread of COVID-19 to evaluate 118 

the effectiveness of different strategies for managing patient demand. Li et al. (2020) developed a system 119 

dynamics model describing hospital functionality after earthquakes (SD-HFE) to simulate hospital 120 

functionalities, then the resilience assessment can then be conducted based on the functionality curve.  Grimaz, 121 

Ruzzene & Zorzini (2021) illustrated the RADAR-HF (Recon Analysis for Detecting the Actual situation and 122 

the improvement Requests, applied to Hospital Facilities) developed for the situational assessment of the 123 

physical environment of hospital facilities. Decision makers can use RADAR-HF to define comprehensive 124 

modernization strategies with resilience improvements, monitor the condition of facilities, and understand the 125 

effectiveness of interventions. Barasa, Mbau and Gilson (2018) performed a systematic review of empirical 126 

literature on organizational resilience, and made several observations that were relevant to nurturing the 127 

resilience of health systems. 128 

1.3. Knowledge gaps, novelty and contributions 129 

From the above literature review, there are some hospital resilience models that apply resilience theory in 130 

hospital management. There are four main categories of hospital resilience models in the literature: models 131 

based on a system dynamics approach to studying the relevant factors affecting resilience, models that assess 132 

resilience through different perspectives, models for optimizing resilience based on different optimization 133 

purposes, and models that develop informative decision support systems. This paper presents a resilience 134 

optimization model for hospitals based on a Markov decision process, which integrates the virus propagation 135 

process and a hospital cascading failure process. Then a hospital resilience optimization model is proposed, 136 

which can determine the restoration strategy of HIS’s at each period and can restore the hospital's ability to 137 

serve patients as soon as possible. 138 

It can be seen from literature review that the resilience and COVID-19 has been studied from different 139 

perspectives. However, there are some shortcomings in the above studies. First, studies on virus transmission 140 
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do not consider individual nodal heterogeneity. Second, the effect mechanism of virus propagation on the HIS 141 

state is not considered. Third, an HIS is treated as a two-state system, however an HIS is a multi-state system. 142 

Fourth, relevant studies did not investigate performing what restoration strategies for maximizing HIS 143 

resilience in the event of cascading failure. 144 

This paper aims to fill up these gaps and therefore makes the following contributions. 145 

(a) We propose a COVID-19 propagation model with node heterogeneity based on the SEIR model. The 146 

degree, activity capability and propagation capability of nodes are considered into the process of virus 147 

propagation by nodes, the propagation probability of nodes is proposed to study the propagation process of 148 

COVID-19 in the crowd based on SEIR model. 149 

(b) The hospital cascading failure model is proposed by using the hospital outbreak rate as an indicator 150 

of hospital cascading failures while taking into account the distribution of patient flow. This model can study 151 

the influence mechanism of spread of the COVID-19 on the supply and demand in maintaining the operations 152 

of hospital. In addition, the cascading model can also assess the loss to the hospital from the patient's 153 

perspective. 154 

(c) We apply the theory of resilience to manage HIS’s and propose a quantitative framework for 155 

resilience management. We propose a hospital resilience formula from the patient's perspective. The hospital 156 

resilience is the ratio of the number of patients transferred out of the hospital to the number of patients 157 

transferred in over a period of time, which can reflect the real-time resilience of the hospital and can quantify 158 

the hospital's ability to serve patients unaffected by unexpected events.  159 

(d) The paper considers a hospital as a polymorphic system and proposes an optimization model for HIS 160 

resilience based on the Markov process. Real-time restoration strategies can be determined based on the 161 

resilience optimization model. 162 
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1.4.  Overview 163 

This remainder of this paper is structured as follows. Section 2 proposes a COVID-19 propagation model 164 

considering node heterogeneity and studies the propagation process of the disease. Section 3 proposes a 165 

cascading failure model of a HIS under the COVID-19. Based on the load model, the cascading failure process 166 

of a HIS is portrayed. Section 4 takes a hospital infrastructure network after a node failure as the object to 167 

study the resilience optimization of HIS’s under the COVID-19. Section 5 takes HIS’s in two districts in a city 168 

as an example for simulation verification. Section 6 wraps up the paper and proposes future research. 169 

Supporting Information provides supplementary information on the Markov decision process modeling and 170 

some original data for simulation. 171 

2. A COVID-19 propagation model based on node heterogeneity 172 

2.1. Model indicators 173 

Crowd is abstracted as a scale-free network, denoted by 𝐺(𝑉, 𝑊). Residents are abstracted as individual 174 

nodes, denoted as 𝑉, and the connecting relationship between residents are abstracted as edges, denoted as 𝑊. 175 

There are 𝑁 nodes in the scale-free network, 𝑉 = {1, … , 𝑖, … , 𝑁}, the element 𝑖 in 𝑉 represents the 𝑖-th node. 176 

The adjacency matrix of 𝐺(𝑉, 𝑊) is represented by a matrix [𝑊𝑖𝑗]
𝑁×𝑁

, where 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑊𝑖𝑗 = 1 , if node 177 

𝑖 is connected to node 𝑗, 𝑊𝑖𝑗 = 0 otherwise. 178 

Nodes with different attributes have different actions. Considering the heterogeneity of nodes, the 179 

different attributes of nodes are described by a topological structure, activity ability and virus propagation 180 

ability of crowd network nodes. The establishment indicators are as follows. 181 

The degree of a node represents the structural centrality of the node and reflects the degree of mutual 182 

influence between the node and its neighboring nodes. It represents the number of links between a node and 183 

other nodes, and can reflect the number of people a person has contracted. The degree of node 𝑖 is defined by: 184 

𝐹𝑖 = ∑ 𝑊𝑖𝑗
𝑁
𝑗=1 ,                                                                (1) 185 
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where 𝑊𝑖𝑗  is the adjacency relationship between node 𝑖 and node 𝑗 , 𝑁 represents the number of nodes in 186 

𝐺(𝑉, 𝑊), and 𝐹𝑖 is the degree of node 𝑖. 187 

The activity of a node is paroxysmal, and the activity time interval can describe its activity ability (Li, 188 

Guo, Gao, Zhang & Zhang, 2018). The higher level of physical activity of a node has, the higher possibility of 189 

the node participating in the virus spreading process has. If the node is a susceptible person with a high level 190 

of physical activity, the probability of the spread of infection of this person is higher. If the node is an infected 191 

person, the level of physical activity of the person is directly proportional to its ability to infect others. Inactive 192 

nodes do not perform any activities, such as spreading viruses and seeking medical treatment. At the end of 193 

each time interval, the node will have an active time point, at which the node can spread the virus. The activity 194 

time interval sequence of node  𝑖  is 𝑇𝑖 = {𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑞𝑖
} , where 𝑡𝑖𝑧(𝑧 = 1,2, … 𝑞𝑖)  follows a normal 195 

distribution, and 𝑞𝑖 is the number of elements in 𝑇𝑖. The average value of the active time interval of node 𝑖 is 196 

taken as the active time interval of node 𝑖. The level of physical activity  𝐴𝑖 of node 𝑖 is the ratio of the average 197 

value of the activity time interval of node 𝑖 to the sum of the average value of the activity time interval of all 198 

nodes. 𝐴𝑖 represents the activity capacity of individual node 𝑖 related to the population, as shown in Eq. (2),  199 

𝐴𝑖 = − ln
∑ 𝑡𝑖𝑧

𝑞𝑖
𝑧=1 𝑞𝑖⁄

∑ (∑ 𝑡𝑖𝑧
𝑞𝑖
𝑧=1 𝑞𝑖⁄ )𝑁

𝑖=1

.                                                         (2) 200 

The nodes in the crowd network are different. Therefore, different nodes are considered to have different 201 

virus propagation abilities. For the propagation of the COVID-19, the propagation ability 𝑃𝑖  of node 𝑖  is 202 

assumed constant. Let 𝑃𝑖 be generated by a normally distributed random variable 𝑃, i.e., 𝑃~𝑁(𝜇𝑝, 𝜎𝑝
2), (𝑃𝑖 =203 

0 when 𝑃 < 0 and 𝑃𝑖 = 1 when 𝑃 > 0) (Zou, Towsley & Gong, 2004). 204 

The level of physical activity of a node will affect its ability of the spread of infection. Nodes with a high 205 

level of physical activity can promote the spread of the virus more efficiently than those with a lower level of 206 

physical activity (Xin, Gao, Wang, Zhen & Li, 2019). The effective propagation ability of node 𝑖 is 𝜎(𝑖), as 207 

shown in Eq. (3), 208 
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𝜎𝑖 = {
𝑃𝑖                 𝐴𝑖 ≥ 𝑎
 0          0 ≤ 𝐴𝑖 < 𝑎

,                                                 (3) 209 

where 𝑎 is the average of the activity capacity of all nodes, 𝑃𝑖 is the propagation ability of node 𝑖, 𝐴𝑖 is the 210 

activity capacity of node 𝑖, and 𝜎i is the effective propagation ability of node 𝑖. 211 

In the process of virus transmission, a person contracts the COVID-19 with a certain probability, and this 212 

probability is related to the number of people the person is exposed to and the effective transmission capacity 213 

of that person. The probability of transmission increases with the number of human contacts and the ability of 214 

effective transmission. Therefore, the propagation probability 𝛼(𝑖) of node 𝑖 can be expressed by 215 

𝛼𝑖 = 𝛼0 + ε𝐹𝑖𝜎𝑖,                                                             (4) 216 

where 𝛼0 is a given basic propagation probability, ε is a given parameter, and 0 < 𝛼𝑖 ≤ 1. 217 

2.2. The propagation model 218 

Combining the characteristics of the propagation process of COVID-19, the SEIR propagation model of 219 

COVID-19 is established. In the model, nodes have the following five states: 220 

• Susceptible state S: The node has not yet been infected with the virus. 221 

• Latent state L: The node has been infected by the virus and is asymptomatic but contagious. 222 

• Exposed state E: The node has been infected by the virus, is symptomatic and contagious. 223 

• Recovered state R: The node has recovered from COVID-19, is immune to further infection and is 224 

incontiguous. 225 

• Dead state D: The node has died with COVID-19 and is incontiguous. 226 

We take the crowd network as the object to establish a COVID-19 propagation model, as shown in Fig. 227 

1. 228 

S L E

R

D

β

η

γ

i
a

 229 

Fig. 1. The COVID-19 propagation model 230 
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Assume that the existence of edges between nodes is a condition for the realization of virus propagation, 231 

and nodes transferred to both cured and dead states will no longer participate in the network propagation 232 

process. Therefore, the state transition rules of nodes are as follows. 233 

In this paper, time is divided into identical periods. The states of individuals and hospital nodes in each 234 

period will be studied, with 𝑘 denoting the order of a period in the following. In each period, a susceptible 235 

state node 𝑖 is infected by its neighboring nodes with probability 𝛼𝑖, and then transitions to the latent state, 236 

which has the onset symptom with probability 𝛽 and then transitions into the exposed state. The exposed state 237 

node will be cured in the hospital with probability 𝛾 and then transitions to the recovered state. The exposed 238 

state node may die with the disease with probability of 𝜂. After transitioning to the recovered state and the 239 

dead state, the node is removed and does not participate in the propagation process in the crowd network. 240 

Considering node heterogeneity factors, the probability of a node being in each state at a time (𝑘 + 1) is then 241 

given by Eqs. (5)-(9). 242 

𝑃𝑖
𝑆(𝑘 + 1) = 𝑆𝑖

𝑆(𝑘)(1 − 𝛼𝑖) ,                                                                            (5) 243 

𝑃𝑖
𝐿(𝑘 + 1) = 𝑆𝑖

𝑆(𝑘)𝛼(𝑖) + 𝑆𝑖
𝐿(𝑘)(1 − 𝛽),                                                        (6) 244 

𝑃𝑖
𝐸(𝑘 + 1) = 𝑆𝑖

𝐿(𝑘)𝛽 + 𝑆𝑖
𝐸(𝑘)(1 − 𝛾)(1 − 𝜂),                                                (7) 245 

𝑃𝑖
𝑅(𝑘 + 1) = 𝑆𝑖

𝐸(𝑘)(𝛾 + 1),                                                                              (8) 246 

𝑃𝑖
𝐷(𝑘 + 1) = 𝑆𝑖

𝐸(𝑘)(𝜂 + 1),                                                                            (9) 247 

where propagation probability 𝛼(𝑖)  represents the probability of node 𝑖  spreading the virus. The exposed 248 

probability 𝛽 is the proportion of nodes that change from the latent state to the exposed state per period. The 249 

recovered probability 𝛾 is the proportion of nodes that change from the exposed state to the recovered state in 250 

a period. The probability 𝜂 of death is the proportion of nodes that change from the exposed state to the dead 251 

state per period. 𝑺𝑖(𝑘 + 1) = [𝑆𝑖
𝑆(𝑘 + 1), 𝑆𝑖

𝐿(𝑘 + 1), 𝑆𝑖
𝐸(𝑘 + 1), 𝑆𝑖

𝑅(𝑘 + 1), 𝑆𝑖
𝐷(𝑘 + 1)] is the state vector of 252 

the node  𝑖  at the 𝑘 -th period, where 𝑆𝑖
𝑆(𝑘 + 1), 𝑆𝑖

𝐿(𝑘 + 1), 𝑆𝑖
𝐸(𝑘 + 1), 𝑆𝑖

𝑅(𝑘 + 1), 𝑆𝑖
𝐷(𝑘 + 1) = 0, 1,  an 253 
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element equaling to 1 means that the node is at this state and an element equaling to 0 means that the node is 254 

not at this state. 𝑆𝑖
𝑆(𝑘 + 1) +  𝑆𝑖

𝐿(𝑘 + 1) +  𝑆𝑖
𝐸(𝑘 + 1) + 𝑆𝑖

𝑅(𝑘 + 1) + 𝑆𝑖
𝐷(𝑘 + 1) = 1 indicates that the node 255 

can only be at one of the five states in the 𝑘-th period. 256 

𝑷𝒊(𝑘 + 1) = [𝑃𝑖
𝑆(𝑘 + 1), 𝑃𝑖

𝐿(𝑘 + 1), 𝑃𝑖
𝐸(𝑘 + 1), 𝑃𝑖

𝑅(𝑘 + 1), 𝑃𝑖
𝐷(𝑘 + 1)]  is the probability vector of 257 

node 𝑖 at each state in the 𝑘-th period. These probabilities are normalized such that it indicates the probability 258 

of a node being at one of the five states, as shown in Eq. (10). 259 

𝑃𝑖
𝑆(𝑘) + 𝑃𝑖

𝐿(𝑘) + 𝑃𝑖
𝐸(𝑘) + 𝑃𝑖

𝐷(𝑘)+𝑃𝑖
𝑅(𝑘) = 1,                                                    (10) 260 

Time is divided into equal periods, and the state at any (𝑘 + 1)-th period is then given by: 261 

𝑺𝒊(𝑘 + 1) = 𝑀𝑢𝑙𝑡𝑖𝑅𝑒𝑎𝑙𝑖𝑧𝑒[𝑷𝒊(𝑘 + 1)].                                                         (11) 262 

where 𝑀𝑢𝑙𝑡𝑖𝑅𝑒𝑎𝑙𝑖𝑧𝑒[𝑃𝑖(𝑘 + 1)] is to randomly realize the state of node 𝑖 in the 𝑘-th period according to the 263 

probability distribution of 𝑷𝒊(𝑘 + 1). 264 

3. Cascading failure model of HIS’s 265 

3.1. Indicators of cascading failures of HIS’s 266 

Let the hospitals in the city be regarded as nodes, denoted as 𝐻. The traffic roads between hospitals are 267 

connected by edges, denoted as 𝐿. The hospital infrastructure network is established, denoted as 𝑈 = 𝐺(𝐻, 𝐿). 268 

Suppose there are 𝑀 hospital nodes and the adjacency matrix of 𝑈 is [𝑀𝑟𝑠]𝑀×𝑀. 𝑀𝑟𝑠 = 1 if the hospital node 269 

𝑟 and the hospital node 𝑠 have an edge (𝑟, 𝑠 ∈ 𝐻), 𝑀𝑟𝑠 = 0, otherwise. 270 

The node of a hospital is responsible for patients in its catchment area, which is defined as the area where 271 

residents live in. The nearest neighbor classification method is used to classify individual nodes to hospital 272 

nodes in its proximity, as shown in Fig.2. The number of residents served by hospital node 𝑟 is 𝐼𝑟. The patients 273 

with COVID-19 symptoms in the hospital catchment area will first choose that hospital for consultation, at 274 

this time, they enter ’HIS's as the load of the hospital node. 275 
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Fig. 2. The crowd in the hospital catchment area 277 

The hospital admission rate is defined as the proportion of the population from the latent state to the 278 

exposed state in the population in the hospital catchment area per period, and it is denoted as 𝜑𝑟. The hospital 279 

discharge rate is defined as the proportion of the population that transitions from an exposed state to a recovered 280 

state in the population in the hospital catchment area per period, and it is denoted as 𝜔𝑟. 281 

The outbreak rate  𝜇𝑟(𝑘)  is an indicator of the hospital load and is defined as the ratio of the hospital 282 

admission rate to discharge rate: 283 

𝜇𝑟(k) =
𝜑𝑟(𝑘)

𝜔𝑟(𝑘)
,                                                                    (12) 284 

The threshold of the outbreak rate is 1. If  𝜇𝑟(𝑘) >  1 then the hospital is said to be under attack. When 285 

the outbreak rate of a hospital node at one or more locations is larger than 1, the number of admissions is larger 286 

than the number of discharges and the total traffic flow of the hospital network rises, the corresponding hospital 287 

node is said to be under attack. 288 

The basic regeneration number refers to the ability to quantify the transmission of an infectious disease 289 

and is a macroscopic concept that is widely used in infectious disease models. The basic regurgitation number 290 

depends on the outbreak rate of a hospital. The basic regurgitation number is directly proportional to the 291 

outbreak rate in hospitals. The outbreak rate is the ratio of hospital admissions to discharges per unit time, 292 

representing the average level of outbreaks over time, and this indicator already incorporates the effects of 293 

fluctuations in demand. 294 

The state of a hospital is a comprehensive overall effect of the interaction of health staff and various types 295 
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of health care resources. A visual representation of the state of the hospital is the outbreak rate of the hospital. 296 

Under normal circumstances, hospital infrastructure is in equilibrium: the demand and supply of medical 297 

resources per unit of time are basically equal, the discharge rate is equal to the admission rate, and the outbreak 298 

rate is equal to 1. When the outbreak rate is greater than 1, the supply of medical resources per unit of time is 299 

insufficient, reflecting an active outbreak during this period. 300 

The node load 𝑄𝑟 and node capacity 𝐶𝑟 of the hospital are used to describe the workload of a node and 301 

working capacity in the process of network failures, respectively. The excess load 𝑑𝑟(𝑘) refers to the part of 302 

the node load exceeding the node capacity at the 𝑘-th period. 303 

𝑑𝑟(𝑘) = 𝑄𝑟(𝑘) − 𝐶𝑟,                                                       (13) 304 

where 𝑄𝑟(𝑘) is the workload of hospital node 𝑟 at the 𝑘-th period, 𝐶𝑟 is the working capacity of hospital node 305 

𝑟, 𝑑𝑟(𝑘) is the part of the node load exceeding the node capacity at the 𝑘-th period. 306 

The resources such as medical staff and beds in a hospital needs to include the construction cost and the 307 

needs of the surrounding residents. Therefore, it is assumed that the node capacity is proportional to the number 308 

of catchment clusters of the hospital 𝑟 (Albert, Jeong & Barabasi, 2001), 309 

𝐶𝑟 = 𝐼𝑟(1 + 𝜌0),                                                              (14) 310 

where 𝜌0 is an adjustable parameter that controls the capacity of the node, 𝜌0 ≥ 0, 𝐼𝑟 is the number of elements 311 

in the set 𝑅𝑟, 𝐶𝑟 is the capacity of hospital node 𝑟. 312 

3.2. Process analysis of cascading failures of HIS’s 313 

Combined with the reality of the crowd's action in terms of proximity to a hospital, the first choice of all 314 

people at the initial moment is the nearest hospital for the treatment of COVID-19. The crowd moves along 315 

the traffic roads between hospitals, and the crowd has access to information about traffic conditions and 316 

hospitals, including the traffic flow on the roads, the remaining capacity of the hospital, and the road structure 317 

at a given moment. Under normal circumstances, the number of admissions and number of people discharged 318 
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per period are the same, and the total traffic volume of the entire hospital network per period is a fixed value. 319 

When the outbreak rate of a hospital node at one or more locations exceeds a threshold, the number of 320 

admissions exceeds the number of discharges and the total traffic flow of the hospital network rises, the 321 

corresponding hospital node is said to be under attack. In this paper, interventions such as widespread 322 

disinfection and epidemic prevention propaganda are not considered. The only actions occurring in the 323 

population are daily activities, promptly seeking medical attention when symptoms are detected and choosing 324 

a hospital. 325 

In the process of cascading failures of hospital infrastructure networks, the hospital node has only normal 326 

and failed states. The normal state means that the hospital still has free medical resources. The failed state 327 

means that the hospital accepts too many patients and the node load 𝑄𝑟  exceeds node capacity 𝐶𝑟 . By 328 

comparing the node load and node capacity, the state of the hospital node can be judged. When the node load 329 

exceeds the capacity of the node and the number of medical resources is in short supply, the node will fail. 330 

Therefore, the specific process of node failures is as follows. When the outbreak rate of a node is greater 331 

than 1, the number of newly increased patients in the hospital is more than that of cured patients, thus 332 

generating a load increase. After the hospital receives the load increment, if the load of the node exceeds its 333 

capacity, the node fails; otherwise, the node is in a normal state. 334 

To reflect the actual supply and demand mechanism of the hospital, the load of the failed node is 335 

distributed according to the actual situation. When the number of patients admitted by a hospital reaches its 336 

saturation point, the hospital will continue to treat those patients that have already been admitted. The traffic 337 

road connecting the hospital with other hospitals will not be abandoned. As the hospital does not have extra 338 

beds, medical equipment or other resources, new patients cannot be admitted or treated there, and these patients 339 

will go to other hospitals for treatment. Those patients who are receiving treatment in the hospital will continue 340 

being treated. Therefore, the failed node is not removed, but acts as a transit node that no longer receives load. 341 
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The failed nodes can send out loads and can also be used as a transit node for other loads to move. Loads 342 

within the capacity of the node are received by the node and are no longer involved in the subsequent process. 343 

The load in excess of the node's capacity is seen as not being admitted to the hospital and needs to be 344 

redistributed. 345 

Patients who have not been admitted by a hospital are more likely to choose the nearest hospital with 346 

more remaining capacity as the destination. Considering travel time and remaining capacity together, the 347 

attractiveness index of hospital 𝑠  in case of node 𝑟  failure is proposed as 𝐴𝑠 . To maximize the benefit of 348 

moving the excess load to other normal nodes for treatment, the redistribution method considering the 349 

destination selection is carried out, as shown in Eqs. (15)-(17), 350 

𝐴𝑠
𝑟(𝑘) =

𝐶𝑠−𝑄𝑠(𝑘)

𝑇𝑟→𝑠
,   ,                                                                              (15) 351 

𝛿𝑟→𝑠(𝑘) =
𝐴𝑠

𝑟(𝑘)

∑ 𝐴𝑠
𝑟(𝑘)𝑠∈𝐻1(𝑘)

,                                                                        (16) 352 

and 353 

∑ 𝛿𝑟→𝑠(𝑘)𝑠∈𝐻1(𝑘) = 1,                                                                          (17) 354 

where 𝐴𝑠
𝑟(𝑘) is the index of attractiveness of node 𝑠 to failed node 𝑟 proposed in this paper, 𝐶𝑠 is the capacity 355 

of hospital node 𝑠, 𝑄𝑠(𝑘) is the load of hospital node 𝑟 at the 𝑘-th period, 𝑇𝑟→𝑠 is the shortest travel time from 356 

failed node 𝑟 to node 𝑠, 𝛿𝑟→𝑠(𝑘) is the ratio of the amount of load traveling from the failed node 𝑟 to node 𝑠 357 

to the amount of excess load of node 𝑟 , 𝐻1(𝑘) is the set of normal hospital nodes at the 𝑘-th period. 358 

All excess loads depart from the currently failed node and satisfy the starting traffic conservation 359 

condition. 360 

𝑑𝑟→𝑠(𝑘) = 𝑑𝑟(𝑘)𝛿𝑟→𝑠(𝑘),                                                                  (18) 361 

and 362 

∑ 𝑑𝑟→𝑠(𝑘)𝑠∈𝐻1(𝑘) = 𝑑𝑟(𝑘),                                                                  (19) 363 

where 𝑑𝑟(𝑘) represents the excess load that needs to be removed from the failed node 𝑟 at the 𝑘-th period. 364 
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𝑑𝑟→𝑠(𝑘) represents the excess load that needs to be moved from the failed node 𝑟 to the node 𝑠 at the 𝑘-th 365 

period. 366 

After selecting the destination node for all the excess load, it is necessary to continue selecting the shortest 367 

path to the destination node to complete the flow distribution. The BPR impedance function is used to describe 368 

the crowding effect. Impedance is related to travel time and road congestion, as shown in Eq. (20). 369 

𝑇𝑎(𝑥𝑎) = 𝑇𝑎(0) (1 + 𝜌1 (
𝑥𝑎

𝐶𝑎
)

𝜌2
),                                                    (20) 370 

where 𝑇𝑎(𝑥𝑎) is the actual travel time of the selected route section 𝑎. 𝑇𝑎(0) is the travel time when no one 371 

passes by on road section 𝑎. 𝑥𝑎 is the excess load of the selected road section 𝑎,𝑥 is the set of excess loads for 372 

all sections,𝑥𝑎 > 0. 𝐶𝑎 is the traffic capacity of section 𝑎. 𝜌1 and 𝜌2 are adjustable parameters. 373 

Based on Eqs. (15) - (20) and the user balance distribution model, the distribution method is constructed, 374 

as shown in Eqs. (21)-(23), 375 

min 𝑍(𝑥) = min ∑ ∫ 𝑇𝑎(𝑤)𝑑𝑤
𝑥𝑎

0𝑎∈𝐴 ,                                              (21) 376 

∑ ℎ𝑟→𝑠
𝑙 (𝑘)𝑙∈𝐿𝑟→𝑠

= 𝑑𝑟→𝑠(𝑘),                                                            (22) 377 

and 378 

𝑥𝑎 = ∑ ∑ 𝐷𝑟→𝑠
𝑎,𝑙

𝑟,𝑠∈𝑉 (𝑘)𝑙∈𝐿𝑟→𝑠
ℎ𝑟→𝑠

𝑙 (𝑘),                                           (23) 379 

where 𝐴 is the set of road sections, and 𝑇𝑎(𝑤) is the impedance function on section 𝑎. Eq. (21) represents the 380 

shortest sum of travel time for all sections. 𝐿𝑟→𝑠 is the set of feasible routes between nodes 𝑟 and s, 𝑙 is one of 381 

the routes in 𝐿𝑟→𝑠 , ℎ𝑟→𝑠
𝑙 (𝑘)  is the excess load of the 𝑙 -th route between nodes 𝑟  and s  at the 𝑘 -th period, 382 

ℎ𝑟→𝑠
𝑙 (𝑘) ≥ 0，Eq. (22) indicates that the excess load from node 𝑟 to 𝑠 is the sum of the excess load of all 383 

possible routes. 𝐷𝑟→𝑠
𝑎,𝑙 (𝑘) represents whether the 𝑙-th route between nodes 𝑟 and s chooses road section 𝑎 at the 384 

𝑘-th period, if the 𝑙-th route contains road section 𝑎, then 𝐷𝑟→𝑠
𝑎,𝑙 (𝑘) = 1; otherwise, 𝐷𝑟→𝑠

𝑎,𝑙 (𝑘) = 0. 385 

When the user balance distribution reaches its equilibrium, all the individuals in excess load will choose 386 

the route with the shortest travel time. There will be a situation where the travel time of all selected routes is 387 
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fixed, and the travel time of the selected route is less than that of all unselected routes. After the load is 388 

redistributed, if the load of the new node exceeds the capacity, the node fails, and the cascading failure 389 

continues occurring. 390 

3.3. Cascading failure model of HIS’s 391 

The specific implementation phases of the cascading failure model of a HIS network are as follows. 392 

Phase 1: At the initial moment, a small number of individuals are randomly selected to be set as patients 393 

at the latent state and begin to spread the virus. The hospital infrastructure network is established. According 394 

to the nearest neighbor classification method, the population is classified to different hospital nodes. 395 

Phase 2: Determine the state of all patient nodes. Patients with an infected state enter their associated 396 

hospital node in the catchment area according to the nearest neighbor classification. If there is no failure in the 397 

corresponding hospital node, the patient load can enter the associated hospital smoothly. If the associated 398 

hospital node has failed, the infected person is regarded as overloaded and enters phase 5. 399 

Phase 3: Whether the hospital node outbreak rate exceeds the threshold or not is judged. When the 400 

outbreak rate 𝜇𝑟 of one or more hospital nodes exceeds the threshold, the hospital nodes can be regarded as 401 

being attacked. If the outbreak rate of all hospital nodes is lower than the threshold, no node will be attacked. 402 

Phase 4: Determining whether a hospital node is failed under attacked or not. The corresponding hospital 403 

node is attacked and the number of new patients entering the hospital network increases. The load increment 404 

of the hospital network will go to the attacked hospital node 𝑟. When the load 𝑄𝑟 of the attacked hospital node 405 

𝑟 is higher than its capacity 𝐶𝑟, the hospital node 𝑟 is failed. The failed node is processed so that it no longer 406 

receives load. The ability to transport loads is still retained, so that the loads within the capacity range are 407 

absorbed, and the excess loads are redistributed. If the load of all nodes is less than the capacity, no failed 408 

nodes will be generated. 409 

Phase 5: Destination node selection and flow distribution for excess load. The user balance distribution 410 
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method considering destination selection is used to redistribute the excess load. Select a new hospital node 411 

with a shorter arrival time and more remaining capacity as the destination for the excess load, and select the 412 

shortest path to the new hospital node to complete the flow distribution. 413 

Phase 6: Whether the failure is terminated is judged. If the load of all nodes after redistribution does not 414 

exceed the node capacity, the failure is terminated. If there is a new node whose load is greater than the capacity 415 

of the node after redistribution, a new failed node will be generated, the hospital network will be updated, and 416 

phase 2 will be returned. 417 

In the above six phases, phase 1 is executed at the initial moment, phase 2 - phase 6 are executed once in 418 

each time period. 419 

4. Resilience optimization model for HIS’s 420 

4.1. Restoration of hospital 421 

The analysis in this section is only for failed nodes. Node restoration is defined as the process of bringing 422 

a failed node back to a normal state. If the failed node is restored only by increasing the node capacity, the 423 

failed node can certainly continue to receive more patients in a short period, and the performance of the node 424 

will be improved in a short period. However, its outbreak rate remains unacceptably high, with far more new 425 

hospital admissions than new hospital discharges per period. The node load will inevitably exceed the node 426 

capacity again within a limited time. Therefore, in order to restore failed nodes, restoration measures to reduce 427 

the outbreak rate and increase node capacity should be implemented at the same time. The specific measures 428 

are as follows. 429 

1) Improving the hospital discharge rate 𝜔𝑟 by increasing the production of medical resources such as 430 

personal protective equipment (PPE) and disinfectants. This type of medical resources will be consumed in a 431 

short period and needs to be supplied to hospitals at a high frequency. By increasing the inventory of such 432 

resources of the failed node, the outbreak rate can be reduced. The failed node can be gradually restored to a 433 
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normal state. 434 

2) Increasing the node capacity of a hospital by requisitioning hotels near the hospital and establishing 435 

temporary hospitals. As the capacity of the node increases, the node can accommodate more patients, thereby 436 

reducing the number of loads transferred out of the node. The capacity that can be added to each hospital node 437 

is a finite fixed value. 438 

Only one node can be restored within a period, and other nodes will not take any measures. After a node 439 

has been performed multiple restoration measures, the outbreak rate gradually decreases until it drops below 440 

1, and the node is gradually restored to a normal state. 441 

4.2. The restoration benefits of hospital 442 

When the outbreak rate of hospital node 𝑟 is greater than 1, the number of new hospital admissions is 443 

greater than that of new hospital discharges per period. The difference between the number of new hospital 444 

admissions and the number of new hospital discharges is the restoration demand of hospital node 𝑟 . The 445 

restoration demand of hospital node 𝑟 is denoted as ∆𝐷𝑟(𝑘), which can account for the net increase of patients 446 

in a hospital node per period, as shown in Eq. (24). 447 

∆𝐷𝑟(𝑘) = (𝜑𝑟(𝑘) − 𝜔𝑟(𝑘))𝑁𝑟,                                                            (24) 448 

where 𝑁𝑟 represents the number of residents in the catchment area of the hospital node 𝑟, 𝜑𝑟(𝑘) is the 449 

hospital admission rate of node 𝑟 at the 𝑘-th period, 𝜔𝑟(𝑘) is the hospital discharge rate of node 𝑟 at the 𝑘-th 450 

period. 451 

Between phases 4 and 5 of cascading failure model in Section 3.3, restoration actions are to be executed 452 

on the failed node, i.e., increase the hospital node capacity. There are 3 cases after performing the restoration 453 

actions, as shown below. 454 

(1) Action effect 1. Non-executing measures were implemented on the failed hospital nodes. All the excess 455 

loads are transferred to other normal hospitals. The transfer-out load of node 𝑟 is ∆𝐷𝑟(𝑘) = ∑ 𝑑𝑟→𝑠(𝑘)𝑠∈𝐻1
. 456 
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∑ 𝑑𝑟→𝑠(𝑘)𝑠∈𝐻1
 represents the excess load transferred from the node 𝑟 to the normal nodes at the 𝑘-th period. 457 
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Fig. 3. Action effect 1 459 

(2) Action effect 2. After performing restoration measures on the failed node, the node has a transfer-out 460 

load and a transfer-in load. 461 
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Fig. 4. Action effect 2 463 

After performing restoration measures on the failed node, the capacity of the failed hospital increased by 464 

∆𝐶𝑟(𝑘). The newly added capacity ∆𝐶𝑟(𝑘) is less than ∆𝐷𝑟(𝑘), the loads d𝑟𝑖 that cannot be accommodated by 465 

node 𝑟  is used as the transfer-out load to hospital node 𝑖 . In this case, ∆𝑌𝑟(𝑘)  is the transfer-in load and 466 

∆𝑌𝑟(𝑘) = ∆𝐶𝑟(𝑘). ∑ 𝑑𝑟→𝑠(𝑘)𝑠∈𝐻1
 represents the excess load transferred from the node 𝑟 to the normal node s 467 

at the 𝑘-th period, ∑ 𝑑𝑟→𝑠(𝑘)𝑠∈𝐻1
+ ∆𝑌𝑟(𝑘) = ∆𝐷𝑟(𝑘). 468 

(3) Action effect 3. After performing restoration measures on the failed node, the node only has a transfer-469 

in load. 470 
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Fig. 5. Action effect 3 472 

After performing restoration measures on the failed node, the capacity of the failed node increases. The 473 

newly added capacity ∆𝐷𝑟(𝑘) is able to accommodate the full restoration demand and there may be spare 474 

capacity that can be used to accommodate the load 𝑑𝑠→𝑟 that people transferred from other failed nodes. In 475 

this case, ∑ 𝑑𝑠→𝑟(𝑘)𝑠∈𝐻2
+ ∆𝑌𝑟(𝑘) = ∆𝐶𝑟(𝑘) , and ∆𝑌𝑟(𝑘) = ∆𝐷𝑟(𝑘) .∆𝑌𝑟(𝑘)  are the amount of transfer-in 476 

load of hospital node 𝑟 from itself, ∑ 𝑑𝑠→𝑟(𝑘)𝑠∈𝐻2
 represents the excess load transferred from the failed node 477 

s to node 𝑟 at the 𝑘-th period. 478 

A node transfers patients to other nodes, indicating that the node is not capable of receiving all patients 479 

within its catchment area and can be considered a loss of performance for that node. If the node is able to meet 480 

the access needs of all patients within its catchment area, or even accept patients from other nodes, this can be 481 

considered as an increase in performance for that node. Therefore, the loss of performance of a node can be 482 

expressed in terms of transfer-out load. The more transfer-out load, the more performance loss. The increase 483 

in the performance of a node can be expressed in terms of transfer-in load. The more transfer-in load, the more 484 

performance increase. 485 

Resilience theory is used to describe the ability of nodes to cope with emergencies, as well as to quantify 486 

the cumulative effect of restoration measures on node performance recovery over previous periods. 487 

In this paper, the hospital node resilience is defined as the ratio of the cumulative performance gain to the 488 

performance loss of a node at the 𝑘-th period. The greater the ratio, the greater the resilience of the node. The 489 
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resilience of hospital node 𝑟 at the 𝑘-th period is calculated as shown in Eq. (25). 490 

𝑔𝑟(𝑘) = ∑
∆𝑌𝑟(𝑝)+∑ 𝑑𝑠→𝑟(𝑝)𝑠∈𝐻2

∑ 𝑑𝑟→𝑠(𝑝)𝑠∈𝐻1

𝑘
𝑝=0 ,                                               （25） 491 

where 𝑘  is an integer, and 𝑘 > 0 , 𝑔𝑟( 𝑘)  denotes the resilience of hospital node 𝑟  at the 𝑘 -th period. 492 

∆𝑌𝑟(𝑝) represents the transfer-in load from itself at the 𝑝 -th period, 𝑝  is an integer, 𝑝 > 0.   ∑ 𝑑𝑠→𝑟(𝑝𝑠∈𝐻2
) 493 

represents the excess load transferred from the failed node s to node 𝑟  at the 𝑝 -th period. 494 

∑ 𝑑𝑟→𝑠(𝑝)𝑠∈𝐻1
 represents the excess load transferred from the node 𝑟 to the normal node s at the 𝑝-th period. 495 

From equation (25), we can see that hospital resilience 𝑔𝑟(𝑘)  increases with ∆𝑌𝑟(𝑝) ,  ∑ 𝑑𝑠→𝑟(𝑝)𝑠∈𝐻2
 , and 496 

decreases with ∑ 𝑑𝑟→𝑠(𝑝)𝑠∈𝐻1
 . The capacity and speed of access to a hospital can affect all these three 497 

indicators, resilience as an inherent property of hospitals, can be improved by implementing two kinds of 498 

restoration measures in Section 4.1. 499 

4.3. Resilience optimization of HIS’s based on Markov decision process 500 

In the restoration process, the states of the nodes are not merely normal and failed, the restoration process 501 

with gradually decreasing outbreak rate can be discretized into multiple states with different outbreak rates 502 

(Zeng, Fang, Zhai & Du ,2021) Let 𝑆(𝑘) be the state of the node at the 𝑘-th period, which is used to reflect the 503 

restoration degree of the hospital, 𝑆(𝑘)  ∈  𝑆 = {0,1,2, . . . , 𝑚}.The larger the value, the larger the outbreak rate 504 

of the node. 𝑆(𝑘) = 𝑚 corresponds to the level of outbreak rate when the node fails, 𝑆(𝑘) = 0 means the node 505 

is in a normal state, corresponding to the level of node outbreak rate less than or equal to 1. The process of 506 

node state transition during the restoration process is shown in Fig. 6. 507 
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 508 

Fig. 6. the process of node state transfer during the restoration process 509 

In order to optimize the resilience of hospital nodes, the Markov decision process (MDP) approach is 510 
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used. The MDP is of the form of a quadruplet: {𝑆, (𝐵(𝑖), 𝑖 ∈ 𝑆), 𝑃, 𝑅}. (See Supporting Information for details 511 

on modeling the Markov decision process). 512 

𝑅(𝑘) = {𝑟(𝑖, 𝑏), 𝑏 ∈ 𝐵(𝑖), 𝑖 ∈ 𝑆} , 𝑟(𝑖, 𝑏)  is the reward function, 𝑅(𝑘)  denotes the expected reward 513 

received by the node when is in state 𝑖 at the 𝑘-th period and takes action 𝑏. In this paper, 𝑅(𝑘) is defined as 514 

the sum of the resilience of all nodes at the 𝑘-th period, and the formula is as shown in Eq. (26), 515 

𝑅(𝑘) = ∑ 𝑔𝑟(𝑘)𝑟∈𝐻 = ∑ ∑
∆𝑌𝑟(𝑝)+∑ 𝑑𝑠→𝑟(𝑝)𝑠∈𝐻2

∑ 𝑑𝑟→𝑠(𝑝)𝑠∈𝐻1

𝑘
𝑝=0𝑟∈𝐻                                         (26) 516 

With the objective of maximizing the sum of the resilience of all nodes, the node restoration strategy is 517 

found for each moment, as in Eq. (27), 518 

max 𝑅(𝑘) = ∑ 𝑔𝑟(𝑘) = ∑ ∑
 ∆𝑌𝑟(𝑝)+∑ 𝑑𝑠→𝑟(𝑝)𝑠∈𝐻2

∑ 𝑑𝑟→𝑠(𝑝)𝑠∈𝐻1

𝑘
𝑝=0𝑟∈𝐻𝑟∈𝐻 ,                                        (27) 519 

where 𝑘  is an integer, and 𝑘 > 0 , 𝑔𝑟( 𝑘)  denotes the resilience of hospital node 𝑟  at the 𝑘 -th period. 520 

∆𝑌𝑟(𝑝) represents the transfer-in load from itself at the 𝑝 -th period. 𝑝  is an integer, 𝑝 > 0.  ∑ 𝑑𝑠→𝑟(𝑝𝑠∈𝐻2
) 521 

represents the excess load transferred from the failed node s to node 𝑟  at the 𝑝 -th period. 522 

∑ 𝑑𝑟→𝑠(𝑝)𝑠∈𝐻1
 represents the excess load transferred from the node 𝑟 to the normal node s at the 𝑝-th period, 523 

𝐻 represents the set of all the hospital nodes, 𝑅(𝑘) is the resilience of HIS’s, which is also the reward function 524 

of HIS’s. 525 

Based on the COVID-19 propagation model, the cascading failure model and the resilience optimization 526 

model, we can obtain the Markov reward process-based framework for resilience optimization of HIS’s against 527 

COVID-19, as shown in Fig. 7. 528 
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 529 

Fig. 7. the Markov reward process-based framework for resilience optimization of HIS’s against COVID-19 530 

5. Application 531 

5.1. Data and methods of simulation 532 

Real data from Lucheng District and Ouhai District of Wenzhou City, Zhejiang Province, China, are used 533 

as examples for simulation. To avoid disclosing national security information, we name Wenzhou city as CityA, 534 

Lucheng district as district A, and Ouhai district as District B.  There are two districts, 𝐴1 and 𝐴2, in City 𝐴, 535 

for example. There are six hospitals in District 𝐴1 and four in District 𝐴2, with the number of hospital beds 536 

shown in Table 1S (shown in Supporting Information). 537 

For the research, the population data of each street in City 𝐴  was used to reflect the reality of the 538 

population distribution. The administrative centers of street settlements were used as a proxy for the center of 539 

gravity of the population. 14 street townships are within the area of District 𝐴1, and 13 street townships are 540 
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within the area of District 𝐴2, as shown in Table 2S (shown in Supporting Information), with data from the 541 

2019 Statistical Yearbook of the Bureau of Statistics of City 𝐴. 542 

After collecting the data, an agent-based simulation model is built using a software package entitled 543 

Anylogic to realize the crowd virus propagation and hospital node cascading failure process. Pathmind, which 544 

is a SaaS platform that enables businesses to apply reinforcement learning to real-world scenarios without data 545 

science expertise, was integrated to enable MDP driven node resilience optimization. The simulation process 546 

is as follows. 547 

Step 1: Constructing a hospital infrastructure network for Districts 𝐴1 and 𝐴2 in city 𝐴, as shown in Fig. 548 

8. The blue building icons in the GIS map represents hospitals, which are connected to each other by roads. 549 

 550 

Fig. 8. Map of Districts 𝐴1 and 𝐴2, city 𝐴 551 

A network of hospital infrastructure in Districts 𝐴1 and 𝐴2 in City 𝐴 is created, using the hospitals as 552 

nodes and connecting roads as edges, as shown in Fig. 9. 553 
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 554 

Fig.9.Hospital infrastructure network in Districts 𝐴1 and 𝐴2 555 

Step 2: Refinement of the agent. To achieve the virus propagation and cascading failure process under the 556 

COVID-19 outbreak, the internal attributes and functions of community and hospital agents are set. As shown 557 

in Fig. 10, the left community agent has different area names, area population and contains people agent, which 558 

represents the residential population. The right hospital agent has two attributes of node names and node 559 

capacity. Four variables are set for the hospital agent: the number of current patients, whether it is in a failed 560 

state or not, the hospital admission rate and hospital discharge rate that are set to record the operation of each 561 

node. The node load is represented by the current number of patients and is used to determine whether or not 562 

the node status is failed in the state diagram on the right. 563 

 564 

Fig.10. Community agent (left) and Hospital agent (right) 565 

As shown in Fig. 11, for each person within the community agent, the number of daily contacts, action 566 

capacity and spread capacity differ, as shown by the parameters in the Fig. 11. The yellow state diagram on the 567 

right indicates the spread of the virus within the population. After going through the susceptible, latent and 568 
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infectious states, individuals in the infectious state will call the function findHos to find the nearest hospital 569 

node that has not failed and will travel along the traffic path. Based on the proposed load allocation model as 570 

shown in Eqs. (21)-(23), the function findHos in this paper is defined to allocate traffic for failed hospital nodes. 571 

The infectious individual reaches the node and begins treatment, and then enters the death state with certain 572 

probability, or the cure state with a delay. 573 

 574 

Fig. 11. People agent within Community agent 575 

The cascading failure process is mainly reflected by the function findHos. When the findHos function is 576 

called by an infectious individual, all hospital nodes are stored in the set normalHos in Fig. 11 and the nearest 577 

node is found in the set. If the nearest hospital node enters a failed state, it is removed from the set and the 578 

search for the most suitable node in the set is continued with the objective of being the closest and smallest. 579 

Consideration of traffic impedance along the route is omitted here. After finding the most suitable node, calling 580 

all of the functions is completed, the infectious individual travels to the most suitable node. 581 

Step 3: Outputting node attribute value data during cascading failures and integrate Pathmind for 582 

resilience optimization. Four metrics including the admission rate, the discharge rate, the node load, and 583 

whether the node is disabled, are recorded and output for each period of the hospital node. The data is randomly 584 

taken at the 15-th, 35-th and 55-th periods, respectively. The nodes were divided into six states based on the 585 

outbreak rate of nodes in different ranges, as shown in Table 3S (shown in Supporting Information ). 586 

Assign value to the probability 𝑃(𝑗|𝑖, 𝑏)of transferring to state 𝑗 after doing act 𝑏 in state 𝑖, please see 587 
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Supporting Information. 588 

Using the Pathmind Helper to introduce MDP into Anylogic. Pathmind Helper is an AnyLogic pallette 589 

item. Drop Pathmind Helper into the model and use it to add MDP functions. Starting from the selected moment, 590 

the current state of the node, the outbreak rate is observed and the node is made to behave. Let only one node 591 

be restored at a period, and calculate the marginal benefit of making the action at each moment. 592 

Step 4: Uploading the simulation model to the Pathmind cloud. Train the model with the objective of 593 

maximizing the resilience of all nodes to obtain the best action strategy. Download the strategy trained by 594 

Pathmind and verify the optimum in Anylogic. 595 

5.2. Analysis of simulation results 596 

The results of the cascading failure are shown in Figs.12, 13, and 14, respectively, in which the black 597 

character icon represents the infectious individuals, the black character icon walking on the road indicates that 598 

the infectious individuals have left their places of residence to go to the hospital to seek treatment. The red 599 

building icons represent failed hospital nodes, the blue ones represent normal hospital nodes, and the yellow 600 

ones represent population residences. The number of failed hospital nodes increases with time, from 2 at the 601 

15-th period to 3 at the 35-th period and finally to 5 at the 55-th period, causing the cascading failure effect. 602 

 

Fig. 12. Cascading failure results at 

the 15-th period 

 

Fig. 13. Cascading failure results at 

the 35-th period 

 

Fig. 14. Cascading failure results 

at the 55-th period 

As can be seen in Figures 12-14, if restoration actions are not implemented, an HIS will suffer from 603 

serious cascading failures. Therefore, it is necessary to implement restoration actions for the HIS in time. Take 604 

https://help.pathmind.com/en/collections/163739-configuring-pathmind-with-anylogic
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the cascading failure case at the 35-th period as an example and calculate the optimal restoration strategy for 605 

resilience. The failed nodes at the 35-th period are hospitals 5, 9 and 10, respectively. All three nodes, which 606 

are in state 5, have an outbreak rate greater than 1.2. With the objective of maximizing the sum of the resilience 607 

of all nodes, based on the MDP, the restoration strategy is obtained, as shown in Table 1. The actions are [1, 0, 608 

0], [0, 1, 0] and [0, 0, 1], respectively, representing the restoration measures performed on hospitals 5, 9 and 609 

10 in the current step, respectively. Which node we should repair at each step? The question is addressed by 610 

the restoration strategy in Table 1. Only one failed node is repaired at each step and the node state changes at 611 

the next step. Since the change of the hospital state is a stochastic process, a total of 15 steps of restoration 612 

strategy are taken to restore all three failed nodes to normal state 0. From Table 1, the nodes 9, 5, 9, 5, 10, 9, 613 

9, 10, 5, 5, 10, 10, 5, 10, and 10 are repaired at steps 0-14, respectively. 614 

Table 1. The MDP-based restoration strategies for optimal resilience at the 35-th period 

Step State of the 

Hospital 5 

State of the 

Hospital 9 

State of the 

Hospital 10 

Strategy (effective at 

the next step) 

0 5 5 5 [0,1,0] 

1 5 3 5 [1,0,0] 

2 4 3 5 [0,1,0] 

3 4 2 5 [1,0,0] 

4 2 2 5 [0,0,1] 

5 2 2 4 [0,1,0] 

6 2 1 4 [0,1,0] 

7 2 0 4 [0,0,1] 

8 2 0 3 [1,0,0] 

9 2 0 3 [1,0,0] 

10 1 0 3 [0,0,1] 

11 1 0 2 [0,0,1] 

12 1 0 2 [1,0,0] 
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13 0 0 2 [0,0,1] 

14 0 0 1 [0,0,1] 

15 0 0 0  

The line graph shown in Fig. 15 provides a visual illustration of the restoration measures for the 35th 615 

period, with actions 1, 2 and 3 representing the execution of restoration strategies for hospitals 5, 9 and 10, 616 

respectively, in the current step. 617 

 618 

Fig. 15. MDP-based resilience optimization restoration strategy at the 35-th period 619 

The restoration effect after applying the optimal action strategy is shown in Figs. 16, 17 and 18, 620 

respectively. The red buildings in the figure represent failed nodes, the green ones represent nodes that have 621 

been restored to a normal state and the blue ones represent normal nodes that have never failed. It can be seen 622 

that hospital 9 is restored to normal, then hospital 5 is restored to normal, and finally hospital 10 is restored to 623 

normal. 624 

 

Fig. 16. Hospital 9 returns to 

normal 

 

Fig. 17. Hospital 5 returns to 

 normal 

 

Fig. 18. Hospital 10 returns to 

 normal 
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After applying the optimal action strategy, a graph illustrating the changes between node states during the 625 

MDP-based resilience optimal restoration process is shown in Fig. 19. 626 

 627 

Fig. 19. State changes of nodes during MDP-based resilience optimal restoration process 628 

From Fig. 19, we can see the state change of the three failed nodes in the 35-th period. We can see that 629 

node 9 is the first to return to its normal state, node 5 is the second to return to its normal state, and node 10 is 630 

the last to return to its normal state. 631 

6. Conclusions and future work 632 

6.1. Research content 633 

This paper used the Markov decision process to analyze the resilience of HIS under the attack of the 634 

COVID-19. First, a COVID-19 propagation model based on node heterogeneity was developed, and a 635 

cascading failure model for HIS’s based on the virus propagation model was developed. Then, based on the 636 

virus propagation model and the cascading failure model, a resilience optimization model for HIS’s was 637 

established, which provides a framework for restoration of hospital infrastructure in response to public health 638 

emergencies. Finally, this paper illustrated the applicability of the model proposed in this paper with a real 639 

case, which is beneficial for readers to clearly understand the performance change of HIS before and after the 640 

occurrence of an emergency event and how to develop a remediation strategy. 641 

6.2. Managerial implication 642 

The results of this paper can provide a useful reference to people in the emergency management of HIS. 643 

First, if the failed node is not repaired in time, the HIS undergoes cascading failures. Therefore, hospital 644 
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managers should assess the states of their HIS’s in time and take timely measures such as increasing beds and 645 

speeding up access for medical treatment to reduce losses. 646 

Second, managers should focus on the state of the hospital. A hospital is a single node of HIS on the one 647 

hand, and a system of staffs, patients and various medical resources interacting with each other on the other 648 

hand. There are many indicators to evaluate the state of a HIS from different perspectives. In this paper, we 649 

proposed the concept of the outbreak rate to evaluate the hospital states from the patients’ perspective, which 650 

can measure the attacks on the HIS’s over a period of time. Therefore, hospital managers should not only 651 

consider the number of admitted patients, but also the number of discharged patients. In addition, three 652 

scenarios of hospitals after maintenance were discussed to provide a basis for managers to evaluate the actual 653 

status of HIS’s. 654 

Third, managers of a HIS should focus on the performance of the hospital infrastructure network when 655 

making decisions on restoration. When making maintenance decisions, there are many optimization objectives. 656 

Resilience, as an indicator of a system's ability to withstand external risks, can reduce the risks associated with 657 

the inevitable disruption of systems. Determining the restoration measures based on the resilience optimization 658 

model can ensure the maximum resilience of the HIS, i.e., the maximum capacity of the HIS to serve patients 659 

after a disaster. Therefore, managers of HIS’s can manage risk with the goal of optimizing the resilience of the 660 

entire system. 661 

6.3. Future work 662 

The study of the propagation characteristics of COVID-19 in this paper did not consider realistic factors 663 

such as isolation interventions and information dissemination or the multiple failed states of nodes during 664 

cascading failures. Those limitations will be studied in the future. Based on the study, further research can be 665 

conducted on the following concerns: 666 

(1) Introduce isolation interventions into the virus transmission model in the study. 667 
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 668 

(2) Consider the state of the hospital as a continuous variable in the study of hospital resilience. 669 

(3) Introduce importance measures in the study to determine the maintenance priority of different 670 

hospitals. 671 

(4) Study the impact of different types of maintenance measures on hospital resilience. 672 
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