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a b s t r a c t

Semi-supervised learning from data streams is widely considered as a highly challenging task to be
further researched. In this paper, a novel dual-model self-organizing fuzzy inference system composed
of two recently introduced evolving fuzzy systems (EFSs) is proposed for semi-supervised learning from
data streams in infinite delay environments. After being primed with a small amount of labelled data
during the warm-up period, the proposed model is able to continuously self-learn and self-expand
its knowledge base from unlabelled data on a chunk-by-chunk basis with minimal human expert
involvement. Thanks to its dual-model structure, the proposed model combines the merits of the
two EFS models such that it can continuously identify new prototypes from new pseudo-labelled
data to self-improve its knowledge base whilst keeping the impact of pseudo-labelled errors on its
decision-making minimized. Numerical examples based on various benchmark problems demonstrate
the efficacy of the proposed method, showing its strong potential in real-world applications by offering
higher classification accuracy over the state-of-the-art competitors whilst retaining high computational
efficiency.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Supervised learning and unsupervised learning are two hotly
esearched areas in the machine learning domain [1]. Supervised
earning methods [2] utilize a set of input data samples with the
orresponding output values to construct a predictive (classifica-
ion or regression) model that can estimate the outputs given new
nseen input samples. Unsupervised learning methods [3], on the
ther hand, attempt to disclose the underlying structure of the
nput samples and cluster them into different groups according
o their statistical characteristics without any output value being
rovided.
Semi-supervised learning [4,5], as a hybridization of super-

ised learning and unsupervised learning, is an important branch
f machine learning. Unlike supervised learning methods that
ften suffer from the labelling bottleneck due to the lack of suffi-
ient high-quality labelled training data, semi-supervised learn-
ng methods are capable of constructing a stronger predictive
odel from a greater amount of unlabelled data samples together
ith a smaller amount of labelled ones. As such, semi-supervised

earning methods require much less human labelling efforts than
upervised learning methods and can achieve greater prediction
erformance in the application scenarios, where labelled training
amples are scarce and expensive to obtain [6].

E-mail address: x.gu@kent.ac.uk.
ttps://doi.org/10.1016/j.asoc.2023.110053
568-4946/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
Mainstream semi-supervised classification methods can be
broadly divided into two categories, namely, inductive methods
and transductive methods [5]. Inductive methods generally ex-
tend supervised classifiers, e.g., support vector machine (SVM),
decision tree (DT), multi-layered perceptron (MLP), k-nearest
neighbour (kNN), to incorporate unlabelled data [7–10]. Their
primary goal is to construct a classifier from both labelled and
unlabelled data that can be used for classifying any new samples
in the same data space. Transductive methods are all graph-
based, and they do not produce predictive model but directly
predict the class labels of unlabelled samples presented during
the learning process. This is achieved by constructing a graph
structure from data connecting samples of similar characteristics
such that label information from labelled data can be gradually
propagated through graph edges to all unlabelled samples [11].
Hence, the key difference between inductive methods and trans-
ductive methods is that the former optimize the classifiers using
labelled and unlabelled data together, whilst the latter opti-
mize the predictions over unlabelled data directly based on the
labelled ones [5]. To date, the best examples of inductive meth-
ods include semi-supervised SVM (S3VM) [8], semi-supervised
extreme learning machine [12], self-training [13], co-training
[9,14], ensemble learning [15], etc., and well-known transductive
methods include local and global consistence (LGC) [16], Lapla-
cian SVM (LSVM) [17], greedy gradience max-cut (GGMC) [18],
anchor graph regularization (AGR) [19], efficient anchor graph
regularization (EAGR) [11], etc.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Wrapper methods, which include self-training, co-training and
ensemble learning, are among the most widely used approaches
for semi-supervised learning exploiting the idea of ‘‘pseudo la-
bel’’ [4,5]. A typical wrapper method iteratively trains one or mul-
tiple classifiers with the enlarged labelled training set augmented
by a group of selected unlabelled samples with high-confidence
predicted labels. These predicted labels produced by the clas-
sifiers are the so-called ‘‘pseudo labels’’. Compared with other
semi-supervised learning methods, wrapper methods are, gener-
ally, simpler and can be used to extend any given mainstream
classifiers in a straightforward manner by allowing unlabelled
samples to directly participate the model training process as a
part of the training set [20]. However, conventional wrapper
methods require both the original labelled samples and all the
pseudo-labelled samples to be presented to the classifiers at
each learning iteration. This requirement of iterative computa-
tion limits the conventional wrapper methods (as well as the
vast majority of alternative semi-supervised learning methods)
to offline application scenarios, making wrapper methods com-
putationally expensive. Another issue caused by iterative com-
putation is the inevitable error propagation, which may signifi-
cantly deteriorate the prediction accuracy of wrapper methods.
Although there have been a few wrapper methods proposed
recently that are designed for data stream classification, e.g., par-
simonious network (ParsNet) [21], skip-connected evolving re-
current network [22], self-evolving mutually-operative recurrent
network-based model [23], self-training hierarchical prototype-
based classifier (STHP) [20], weakly supervised scalable teacher
forcing network (WeScatterNet) [24], and semi-supervised self-
organizing fuzzy inference system (S3 OFIS) [25], semi-supervised
learning from data streams in infinite delay environments is still
widely considered as a highly challenging task, remaining under
researched [24,25].

In this paper, a novel duel-model semi-supervised
self-organizing fuzzy inference system (DMS3OF) is proposed for
tackling data stream classification problems in infinite delay envi-
ronments. DMS3OF employs the two recently introduced evolving
fuzzy systems (EFSs), namely, simplified self-organizing fuzzy
inference system (SOFIS+) [26] and self-organizing fuzzy belief
inference system (SOFBIS) [27] as its implementation basis. Both
EFS models have a transparent prototype-based system structure
and perform learning from data streams on a chunk-by-chunk
basis through a human interpretable process. By utilizing the
pseudo labelling technique, DMS3OF is able to continuously self-
expand its knowledge base from unlabelled streaming data in a
single pass, non-iterative, computationally efficient manner with
minimal human expertise involvement. Very importantly, thanks
to the unique semi-supervised learning scheme designed specifi-
cally for its dual-model structure, DMS3OF combine the merits of
both EFS models such that it is able to produce pseudo labels with
high precision whilst effectively limits error-propagation within
its knowledge base, thereby constructing a stronger prediction
model and achieving greater classification performance. To sum-
marize, key features of the proposed DMS3OF that differentiate
itself from mainstream semi-supervised learning methods are as
follows.

(1) A novel fuzzy inference system with a dual-model structure
to semi-supervised learn from data streams on a chunk-by-
chunk basis;

(2) A single-pass semi-supervised learning scheme designed
for the dual-model structure that combines the advantages
of the two EFS models;

(3) The capability to continuously self-improve the knowl-
edge base by capturing new prototypes from unlabelled
streaming samples with the most reliable pseudo labels;
2

(4) The stronger resistance to error propagation within the
knowledge base by confining pseudo-labelling errors to
only these prototypes directly affected.

The remainder of this paper is organized as follows. Section 2
summarizes the technical details of SOFIS+ and SOFBIS as the the-
oretical background of DMS3OF. The proposed DMS3OF is detailed
in Section 3. Numerical examples are presented in Section 4 as the
proof of concept. This paper is concluded by Section 5.

2. Preliminaries

In this section, technical details of SOFIS+ and SOFBIS are re-
called briefly to make this paper self-contained. Both SOFIS+ and
SOFBIS are supervised EFSs that learn from labelled training data
on a chunk-by-chunk basis. They serve as the implementation
basis of the proposed DMS3OF system.

First of all, let X =
{
x1, . . . , xK , xK+1, . . . , xK+J

}
xk =

[
xk,1, xk,2, . . . , xk,M

]T
∈ X) be a particular data stream in

M dimensional real space, RM , where K is the total number
f labelled data samples, J is the total number of unlabelled
ata samples and there is K ≪ J . The subscript k denotes the

time instance at which the kth data sample, xk is observed. It is
assumed that X is composed of data samples of C different classes,
where yk is the class label of xk and there is yk ∈ {1, 2, . . . , C}
(k = 1, 2, . . . , K + J). As this study considers the infinite delay
problems, only the class labels of the first K data samples are
assumed to be available for model initialization, namely, Y =
y1, y2, . . . , yk, . . . , yK }. The class labels of the remaining J data
amples, namely, xK+1, xK+2, . . . , xK+J are unknown. It is also
assumed that the data stream X continuously arrives in chunks,
denoted as X1, . . . ,XN ,XN+1, . . . ,XN+U . Out of the N + U data
chunks, the first N chunks are labelled ones with their corre-
sponding class labels denoted as Y1,Y2, . . . ,YN , and the other U
chunks are unlabelled ones. The cardinality of Xn is denotes as Ln,
and there are

∑N
n=1 Ln = K ,

∑U
n=N+1 Ln = J and

∑N+U
n=1 Ln = K+ J .

Note that different data chunks are not necessarily of the same
size. The level of granularity for both SOFIS+ and SOFBIS is set as
G, which is externally controlled by users.

2.1. SOFIS+

2.1.1. General architecture and decision making policy
SOFIS+ is composed of C prototype-based fuzzy IF-THEN rules

in the following form [26]:

Rc
:

IF
(
x ∼ pc

1

)
OR
(
x ∼ pc

2

)
OR . . .OR

(
x ∼ pc

Pc
)

THEN (Dc)
(1)

where ‘‘∼’’ denotes the similarity; pc
k ∈ Pc represents the kth

prototype of the cth class; Pc stands for the collection of all
prototypes of the cth class; Pc is the cardinality of Pc ; Dc is the
conclusion ‘‘x belongs to class c’’.

As shown in Eq. (1), the cth fuzzy rule Rc consists of a number
of prototypes identified from data samples of the cth class. Each
rule corresponds to a particular class in the data. Prototypes
associated with each fuzzy rule are connected by logic ‘‘OR’’
connectives.

During the decision-making process, given an unlabelled sam-
ple x, the confidence score of the fuzzy rule Rc will be calculated
based on the squared L2 distance between x and the nearest
prototype associated with Rc [25,26]:

ωc (x) =
λc (x)∑C i

(2)

i=1 λ (x)
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here λc (x) = exp
(
−
∥x−pc

∗1∥
2
2

σ2
G

)
; σG is a data-driven kernel

width derived from data at the Gth level of granularity controlled

y users; ∥x− y∥2 =
√∑M

i=1 (xi − yi)2; pc
∗1 = argmin

p∈Pc
(∥x− p∥2)

(c = 1, 2, . . . , C).
Then, the class label of x is determined by the fuzzy rule that

produces the highest confidence score:

ŷ = c∗; c∗ = argmax
c=1,2,...,C

(ωc (x)) (3)

.1.2. Learning policy
The learning policy of SOFIS+ is described as follows. As afore-

entioned, SOFIS+ learns from data on a chunk-by-chunk basis.
OFIS+ begins a new learning cycle when a new data chunk
assuming the nth one, Xn) is available. Note that the processed
ata chunks will be discarded at the end of the learning cycles
uch that SOFIS+ can maintain its computation- and memory-
fficiency.
Stage 1. Prototype identification. Given a new data chunk Xn

nd the corresponding class labels Yn, SOFIS+ firstly derives the
ata-driven kernel width, σG from Xn using Eq. (4):

σG =

√∑n
j=1 Ljσ

2
j,G∑n

j=1 Lj
(4)

where there are (g = 1, 2, . . . ,G):

σn,g =

√∑Ln−1
j=1

∑Ln
k=j+1 wg,j,k

xn,j − xn,k
2
2∑Ln−1

j=1
∑Ln

k=j+1 wg,j,k
(5a)

wg,j,k =

{
1,

xn,j − xn,k

2 ≤ σn,g−1

0, else
(5b)

σn,0 =

√
2
∑Ln−1

j=1
∑Ln

k=j+1

xn,j − xn,k
2
2

(Ln − 1) Ln
(5c)

ext, SOFIS+ divides Xn into C different nonoverlapping subsets
enoted as X1

n, X2
n,. . . , XC

n according to Yn for prototype identifica-
ion, where Xc

n is composed of data samples of the cth class only
c = 1, 2, . . . , C). Given the cth subset Xc

n, the radius of area of
influence around each prototype of the cth class at the Gth level
of granularity, denoted as γ c

G is estimated by Eq. (6):

γ c
G =

√∑n
j=1 L

c
j

(
γ c
j,G

)2∑n
j=1 L

c
j

(6)

where Lcn is the cardinality of Xc
n; and there are (g = 1, 2, . . . ,G):

γ c
n,g =

√∑Lcn−1
j=1

∑Lcn
k=j+1 wc

g,j,k

xcn,j − xcn,k
2
2∑Lcn−1

j=1
∑Lcn

k=j+1 wc
g,j,k

(7a)

wc
g,j,k =

{
1,

xcn,j − xcn,k

2
≤ γ c

n,g−1

0, else
(7b)

γ c
n,0 =

√2
∑Lcn−1

j=1
∑Lcn

k=j+1

xcn,j − xcn,k
2
2

(Kn − 1) Kn
(7c)

ote that γ c
G is obtained in a similar way as σG. However, the

ey difference between γ c
G and σG is that γ c

G is derived based on
the mutual distances between data samples of the same class,
whilst σG is derived based on the mutual distances between data
samples of all classes. Both γ c

G and σG are directly calculated from
data and are guaranteed to be meaningful.
3

Then, the first prototype of the cth class is identified as the
first sample of Xc

n, namely, pc
n,Pcn
← xcn,1 (Pc

n ← 1). The support
of pc

n,Pcn
, namely, the number of data samples associated with it is

set as: Scn,Pcn ← 1. The remaining prototypes of the cth class are
identified one by one from the remaining samples of Xc

n using
Condition 1 (k = 1, 2, . . . , Lcn) [25,26]:

Cond. 1 :
if
(
min
p∈Pcn

(xcn,k − p

2

)
> γ c

G

)
then

(
Pc
n ← Pc

n ∪
{
xcn,k

}) (8)

where Pc
n denotes the collection of prototypes identified from Xc

n.
If xcn,k satisfies Condition 1, it represents a new data pat-

tern that is different from the known ones identified from Xc
n

previously and, thus, is added to Pc
n:

Pc
n ← Pc

n + 1; pc
n,Pcn
← xcn,k; Scn,Pcn ← 1 (9)

Otherwise (namely, Condition 1 is unsatisfied), xcn,k is used for
updating the nearest prototype within Pc

n:

pc
n,∗ ← pc

n,∗ +
xcn,k−p

c
n,∗

Scn,∗+1
; Scn,∗ ← Scn,∗ + 1 (10)

where pc
n,∗ = argmin

p∈Pcn

(xcn,k − p

2

)
.

After prototypes P1
n, P2

n, . . . ,PC
n have been identified from the

current data chunk, the current learning cycle enters the next
stage.

Stage 2. Rule base initialization/updating . Given P1
n, P2

n, . . . ,

PC
n available, SOFIS+ will initialize C fuzzy IF-THEN rules in the

form of Eq. (1) if Xn is the very first data chunk, namely, n = 1.
Otherwise, SOFIS+ will use P1

n, P2
n, . . . ,PC

n to update the existing
rule base. First, SOFIS+ will identify prototypes from Pc

n that
are distinctive from existing ones identified from historical data
chunks and add them to Pc using Condition 2 [25,26]:

Cond. 2 :
if
(
min
p∈Pc

(pc
n,j − p


2

)
> γ c

G

)
then

(
Pc
← Pc

∪
{
pc
n,j

}
; Pc

n ← Pc
n/
{
pc
n,j

}) (11)

where c = 1, 2, . . . , C; j = 1, 2, . . ., Pc
n .

After that, Condition 3 is used to identify these prototypes that
contribute to building more precise classification boundaries from
the remaining prototypes of Pc

n to join Pc [25,26]:

Cond. 3 :
if

(
min
p∈Pin

(pc
n,j − p


2

)
< 2γ i

G∀i ̸= c

)
then

(
Pc
← Pc

∪
{
pc
n,j

}
; Pc

n ← Pc
n/
{
pc
n,j

}) (12)

The prototypes selected by Condition 3 are these ones that are
spatially close to prototypes of other classes. By adding these
prototypes into the knowledge base, SOFIS+ can refine its classi-
fication boundaries, thereby improving its classification accuracy.

Once P1
n, P2

n, . . . ,PC
n have been merged into P1, P2, . . . ,PC and

the fuzzy rules R1,R2, . . . ,RC are updated with the latest pro-
totypes, the current learning cycle is completed and SOFIS+ en-
ters the next learning cycle if a new data chunk Xn+1 becomes
available.

Algorithmic procedure of the learning process of SOFIS+ is
summarized by Algorithm 1 [26].
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2.2. SOFBIS

2.2.1. General architecture and decision making policy
Unlike SOFIS+, which constructs C fuzzy IF-THEN rules from

ata with each rule corresponding to one particular class, SOFBIS
s composed of T fuzzy belief IF-THEN rules in the following form
k = 1, 2, . . . , T ) [27]:

Rk :
IF
(
x ∼ pk,1

)
AND

(
x ∼ pk,2

)
AND . . . AND

(
x ∼ pk,Pk

)
THEN

{
D, βk

}
(13)

here Pk is the number of prototypes associated with Rk; D =
D1,D2, . . . ,DC

]T ; βk =
[
β1
k , β

2
k , . . . , β

C
k

]T is the vector of belief
egrees; βc

k is the corresponding belief degree of the conclusion
c .
Similar to fuzzy IF-THEN rules as given in Eq. (1), each fuzzy

elief rule is also composed of a number of prototypes, but
hese prototypes are connected by logic ‘‘AND’’ connectives. This
ifference is caused by the unique decision-making scheme of
OFBIS that utilizes all the identified prototypes in decision-
aking. Another key difference between SOFBIS and SOFIS+ is

hat prototypes of SOFBIS are identified from data samples of
ll classes together and, due to the use of belief structure, each
rototype can belong to multiple classes at the same time. Thanks
o the two key improvements, SOFBIS can better handle the po-
ential class overlaps during prototype identification, and achieve
reater classification performance.
During decision-making, given a particular data sample x, the

ctivation of Rk is calculated as follows [27]:

k (x) =
ϑk (x)∑T (14)

j=1 ϑj (x)

4

where ϑk (x) =
∑Pk

i=1 ϑk,i (x) denotes the activation produced by
Rk; ϑk,i (x) is produced by Eq. (15) [27]:

ϑk,i (x) = exp(−

x− pk,i

2
1

δ2G
) (15)

and there is ∥x− y∥1 =
∑M

i=1 |xi − yi|; δG is a data-driven kernel
width derived from data at the Gth level of granularity. Hence, the
activation of Rk is calculated based on the L1 distance between x
and all the prototypes associated with Rk.

Then, the outputs of the fuzzy belief rules are integrated
together by Eq. (16):

β (x) =
T∑

k=1

βkϕk (x) (16)

and the class label of x is determined using Eq. (17):

ŷ = c∗; c∗ = argmax
c=1,2,...,C

(βc (x)) (17)

2.2.2. Learning policy
The learning policy of SOFBIS is presented in this section.

SOFBIS learns from data streams in a chunk-wise manner. A new
learning cycle starts given a new data chunk available, and the
data chunk is discarded after the learning cycle finishes.

Stage 1. Prototype identification. Given a new data chunk Xn
and the corresponding class labels Yn, SOFBIS firstly calculates the
L1 distances between any two data samples of Xn and obtains a
Ln× Ln dimensional distance matrix in the form of Eq. (18) [27]:

dn =

[xn,k − xn,j
2
1

]k=1 : Ln
j=1 : Ln

(18)

The local kernel width δn,G is derived from data in a similar way
as σn,G (Eq. (5a)):

δn,G =

√∑Ln−1
j=1

∑Ln
k=j+1 vg,j,k

xn,j − xn,k
2
1∑Ln−1

j=1
∑Ln

k=j+1 vg,j,k
(19)

where vg,j,k =

{
1,

xn,j − xn,k

1 ≤ δn,g−1

0, else
;

δn,0 =

√
2
∑Ln−1

j=1
∑Ln

k=j+1∥xn,j−xn,k∥
2
1

(Ln−1)Ln
. The data-driven kernel width δG

is updated as: δG =

√∑n
j=1 Ljδ2j,G∑n
j=1 Lj

. One can see from Eqs. (19) and

(5a) that the key difference between δn,G and δn,0 exists in the
types of distance employed to measure the spatial dissimilarity
between data samples.

Then, a sparse adjacency matrix is derived from dn via Eq.
(20) [27].

An =
[
An,k,j

]k=1 : Ln
j=1 : Ln

(20)

where An,k,j =

{
1,

xn,k − xn,j

1 ≤ δn,G

0, else
. Next, every data sam-

ple of the current chunk, xn,k is treated as a micro-cluster and
assigns membership degrees to neighbouring data samples in-
cluding xn,k itself using Eq. (21) (k, j = 1, 2, . . ., Ln):

µn,k,j =

⎧⎨⎩exp
(
−
∥xn,k−xn,j∥

2
1

δ2G,n

)
, An,k,j = 1

0, else
(21)

The membership degrees each data sample receives from its
neighbours are then aggregated together by Eq. (22):

µ̂n,k =

Ln∑
µn,k,j (22)
j=1
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Fig. 1. Dual-model architecture of DMS3OF.

ondition 4 is utilized to identify these data samples that have the
igher aggregated membership degrees than their neighbours as
rototypes, denoted as Qn [27]:

Cond. 4 :
if
(

µ̂n,k = max
j=1,2,...,Ln

(
An,k,jµ̂n,j

))
then

(
Qn ← Qn ∪

{
xn,k

}) (23)

Once Qn is identified from Xn, these prototypes are updated as
arithmetic means of all the data samples connected to them
locally to better represent the local patterns of data (∀xn,k ∈ Qn):

x̂n,k =

∑Ln
j=1 An,k,jxn,j∑Ln

j=1 An,k,j
(24)

he support of x̂n,k is obtained as Sn,k =
∑Ln

j=1 An,k,j and the belief
degrees associated with x̂n,k are derived by Eq. (25) [27]:

n,k =
1

Sn,k

⎡⎣ Ln∑
j=1

An,k,jI
(
yn,j = c

)⎤⎦T

c=1 : C

(25)

fter the updated prototypes, associated belief degrees and sup-
orts, denoted as Pn, Bn and Sn, have been obtained from Xn and
n, SOFBIS enters the next stage of the learning cycle.
Stage 2. Rule base initialization/updating. Given the learned

n, Bn and Sn from the current data chunk, SOFBIS initializes its
nowledge base first if there is n = 1:

P← Pn; B← Bn; S← Sn (26)

therwise, SOFBIS will use Pn, Bn and Sn to update its knowledge
ase.
Condition 5 is used to identify these prototypes from Pn that

epresent novel data patterns unseen in historical chunks to
xpand the knowledge base of SOFBIS (k = 1, 2, . . . , Pn; Pn is the
ardinality of Pn) [27]:

Cond. 5 :
if
(
min
p∈P

(pn,k − p

1

)
> δG

)
then

(
P← P ∪

{
pn,k

}) (27)

nce pn,k joins P, it is removed from Pn, and its associated
elief degrees βn,k and support Sn,k also join B and S after being
emoved from Bn and Sn.

After all the prototypes that satisfy Condition 5 have been
dded to P, the remaining prototypes of Pn are utilized for up-
ating the knowledge base using Eq. (28):

∗ ← p∗ +
Sn,k

(
pn,k − p∗

)
S∗ + Sn,k

; β∗ ← β∗ +
Sn,k

(
βn,k − β∗

)
S∗ + Sn,k

;

∗ ← S∗ + Sn,k (28)

here p∗ = argmin
p∈P

(p− pn,k


1

)
; β∗ and S∗ are the respective

elief degrees and support of p∗.
After P, B and S have been initialized/updated with Pn, Bn

nd S , fuzzy belief rules are constructed in the form of Eq. (13),
n

5

nd then SOFBIS continues to process the next data chunk Xn+1
y starting a new learning cycle. Algorithmic procedure of the
earning process of SOFBIS is summarized by Algorithm 2 [27].

3. Proposed DMS3OF model

General architecture of the proposed DMS3OF model is de-
picted in Fig. 1. As shown by Fig. 1, DMS3OF is composed of
the two EFS models, namely, SOFIS+ and SOFBIS, and a joint
decision-maker that determines the class labels of unlabelled data
samples based on predictions made by the two models. DMS3OF
is designed to perform online semi-supervised learning from data
streams on a chunk-by-chunk basis in a single pass manner,
and is capable of continuously self-expanding its knowledge base
with new prototypes identified from unlabelled data with only
minimal involvement of human expert inputs.

As aforementioned, DMS3OF is designed for the highly chal-
enging infinite delay problems [28], where only a small number
f labelled samples are available at the beginning of the learn-
ng process for the classification model to warm up. Hence, the
earning process of DMS3OF is divided into two stages. In the
irst stage, DMS3OF learns from labelled data chunks to prime
ts knowledge base in a supervised manner. In the second stage,
MS3OF utilizes unlabelled data chunks to self-expand its knowl-
dge base via exploiting the pseudo labelling technique.
It is worth noting that, instead of updating both EFS models

ith unlabelled data, DMS3OF utilizes SOFBIS to produce pseudo
labels and then augments SOFIS+ with the pseudo-labelled data.
There are two important reasons for exploiting such
semi-supervised learning scheme. First, thanks to its belief struc-
ture and unique decision-making scheme, SOFBIS can better
handles class overlaps and can achieve greater prediction accu-
racy than SOFIS+, even with limited training samples available.
Hence, pseudo labels produced by SOFBIS are more reliable and
accurate than SOFIS+. Second, SOFIS+ is less sensitive towards
pseudo-labelling errors and has stronger resistance to error prop-
agation than SOFBIS. This is because SOFIS+ will not update
prototypes learned from previous data chunks and only add pro-
totypes that represent different patterns from existing ones to the
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Fig. 2. Flowchart of the two-stage semi-supervised learning process of DMS3OF.
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nowledge base. In addition, SOFIS+ only uses the nearest proto-
ype of each class to produce the confidence scores, whilst SOFBIS
nvolves all prototypes to generate the belief degrees. As a result,
seudo-labelling errors propagate in SOFBIS more easily and
ould inevitably alter the classification boundaries unfavourably.

n contrast, pseudo-labelling errors are confined locally by SOFIS+
nd there is a much smaller chance that pseudo-labelling errors
an influence the overall decision-making of SOFIS+. Therefore, by
xploiting the aforementioned semi-supervised learning scheme,
MS3OF can assign pseudo labels to unlabelled samples with
reater accuracy whilst largely reduces the impact of pseudo-
abelling errors on the overall prediction accuracy, thereby consis-
ently self-improving itself from unlabelled data in a reliable way.
evertheless, both EFS models will be updated if more labelled
amples become available later during the learning process.

.1. Learning policy

The algorithmic procedure of the semi-supervised learning
rocess of DMS3OF is detailed as follows. For better illustra-
ion, the semi-supervised learning process is visualized by the
lowchart in Fig. 2. By default, the level of granularity for both
FS models is set the same as G. However, one may consider
sing different levels of granularity for the two models to achieve
reater performance, but the optimal setting would vary from
roblem to problem depending on the nature of data.
Stage 1. Supervised learning. In this stage, the two sub-models

f DMS3OF, namely, SOFIS+ and SOFBIS are trained with the
ata chunks, X1,X2, . . . ,XN and their corresponding class labels
1,Y2, . . . ,YN following the algorithmic procedures described by
lgorithms 1 and 2, respectively. Once the knowledge base has
een primed with labelled data, DMS3OF proceeds to the next
tage and starts to learn from unlabelled data chunks.
Stage 2. Semi-supervised learning via pseudo labelling. In this

tage, DMS3OF learns from unlabelled chunks to self-improve
ts knowledge base. Given a new data chunk available Xn(n >

), SOFBIS will produce the belief degrees to each sample of
n, denoted as βn =

{
β
(
xn,1

)
, β
(
xn,2

)
, . . . ,β

(
xn,Ln

)}
using

qs. (14)–(16). Then, SOFBIS will pass Xn and βn to SOFIS+ for
ugmenting the knowledge base.
After SOFIS+ receives Xn and βn, it will first identify the highly

onfident predictions as pseudo-labelled samples via Condition 6
k = 1, 2, . . . , Kn).

Cond. 6 :
if
(

max
j=1,2,...,C

(
β
(
xn,k

))
≥ γ0

)
then

(
X̂n ← X̂n ∪

{
xn,k

}
; Ŷn ← Ŷn ∪

{
ŷn,k

}) (29)

here γ0 is a threshold to identify these samples that SOFBIS
as strong belief towards their class labels; ŷ is the predicted
n,k

6

abel of xn,k derived from β
(
xn,k

)
by Eq. (17); X̂n is the set of

seudo-labelled data samples derived from Xn with Ŷn being the
orresponding pseudo labels. In this study, γ0 = 0.99, which
nables SOFIS+ to identify the most confident predictions made
y SOFBIS. For all the data samples that satisfy Condition 6, they
re added to X̂n and removed from Xn. The pseudo labels of these
amples are added to Ŷn.
For the remaining samples of Xn, SOFBIS is less confident on

ts predictions and the predicted labels it produces may be error-
rone. Using these predicted labels by SOFBIS as pseudo labels
f these samples to update SOFIS+ may introduce more pseudo-
abelling errors to the knowledge base. Hence, before utilizing
hese samples for expanding the knowledge base, SOFIS+ needs
o filter out these challenging samples whose class labels are
ifficult to predict based on the known data patterns learned from
istorical data. To do so, SOFIS+ will first predict the class labels of
he remaining samples of Xn using the current IF-THEN rule base.
owever, instead of using only the nearest prototypes to produce
he confidence scores, which is sensitive to outliers, SOFIS+ in
MS3OF model uses multiple nearest prototypes of each class
ogether to calculate the confidence score, thereby increasing the
obustness of its predictions towards noisy samples. In this study,
he nearest and the second nearest prototypes are considered and
he confidence scores of SOFIS+ to xn,k are produced by Eq. (30):

c
2

(
xn,k

)
=

λc
2

(
xn,k

)∑C
i=1 λi

2

(
xn,k

) (30)

here xn,k ∈ Xn; c = 1, 2, . . . , C;
c
2

(
xn,k

)
= exp(−∥

xn,k−pc∗1∥
2
2+∥xn,k−p

c
∗2∥

2
2

2σ2
G

); pc
∗1 = argmin

p∈Pc(xn,k − p

2

)
and pc

∗2 = argmin
p∈Pc ;p̸=pc

∗1

(xn,k − p

2

)
.

Based on the confidence scores, SOFIS+ utilizes Condition 7
to check whether the labels it produces on these samples are
coincident to the pseudo-labels produced by SOFBIS.

Cond. 7 :
if
(
ŷn,k = argmax

j=1,2,...,C

(
ω

j
2

(
xn,k

)))
then

(
X̂n ← X̂n ∪

{
xn,k

}
; Ŷn ← Ŷn ∪

{
ŷn,k

}) (31)

If xn,k satisfies Condition 7, it suggests that SOFIS+ agrees with
SOFBIS on the predicted label of xn,k. In such case, xn,k can be
used for augmenting SOFIS+ with its pseudo label ŷn,k. Otherwise,
it shows that SOFIS+ and SOFBIS are unable to agree on the class
label of xn,k. As a result, xn,k cannot be utilized for expanding the
knowledge base and has to be discarded.

Although it is possible to utilize data samples that fail to satisfy
Condition 6 or 7 for augmenting the model, DMS3OF would avoid
using these samples because the predicted pseudo labels are not
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Table 1
Key information of benchmark problems for experimental study.
Dataset #Samples #Attributes #Classes Characteristics

AB 4177 8 3 Stationary
AU 690 14 2 Stationary
EG 10000 13 2 Stationary
GP 9901 17 5 Stationary
IS 2520 19 7 Stationary
LR 20000 16 26 Stationary
MF 2000 649 10 Stationary
OR 5620 64 10 Stationary
PB 5472 10 5 Stationary
PR 10992 16 10 Stationary
PW 11055 30 2 Stationary
SB 6321 9 2 Stationary
SE 2310 19 7 Stationary
SH 1593 256 10 Stationary
TE 5500 40 11 Stationary
WI 4839 5 2 Stationary
SEA 120000 3 2 Nonstationary
HY 25000 4 2 Nonstationary
PMN 70000 784 10 Nonstationary
RMN 62000 784 10 Nonstationary
SU 5000000 18 2 Nonstationary
PH 1025010 10 10 Nonstationary

Caltech101 8677 Roughly
300 × 200 × 3

101 Stationary
Caltech256 29780 256 Stationary
reliable enough and may introduce extra errors to SOFIS+. With-
out having true labels, pseudo-labelling errors are more likely to
be accumulated in the system and cannot be corrected easily,
which will inevitably decrease the overall prediction accuracy of
DMS3OF severely. However, as aforementioned, if the true class
labels of these challenging samples become available later, these
samples can be used for augmenting SOFIS+ and SOFBIS.

After X̂n and Ŷn have been extracted from Xn and βn, they will
e used for improving SOFIS+ following the same algorithmic pro-
edure described in Algorithm 1. Once SOFIS+ has been updated
ith the pseudo-labelled samples, the current learning cycle is
ompleted and DMS3OF starts to process the next data chunk if
t is available (while setting n← n+ 1).

The learning policy of DMS3OF is summarized by Algorithm 3.

3.2. Decision-making policy

In the decision-making stage, for each unlabelled sample x,
MS3OF will determine its class label based on the confidence
cores produced by SOFIS+ and the belief degrees produced by
OFBIS jointly. This allows DMS3OF to combine the predictions
ade by both models, thereby incorporating the newly learned
nowledge from unlabelled data into decision-making. The class
7

label ŷ of x is obtained by Eq. (32).

ŷ = c∗; c∗ = argmax
c=1,2,...,C

(
ωc
2(x)+βc (x)

2

)
(32)

where ωc
2 (x) and βc (x) are obtained by Eqs. (16) and (30),

respectively.

4. Experimental investigation

4.1. Experimental configuration

To evaluate the performance of the proposed DMS3OF model,
numerical examples based on a wide range of benchmark prob-
lems are presented. In this study, 24 benchmark problems (in-
cluding 16 classical benchmarks, four synthetic large-scale ones,
two very large-scale ones and two visual ones) from UCI Machine
Learning Repository,1 Keel Dataset Repository,2 Scikit-Multiflow3

and Caltech Vision Lab4 are employed for experimental study,
which include (1) Abalone (AB); (2) Australian (AU) (3) Electri-
cal grid stability (EG); (4) Gesture phase segmentation (GP); (5)
Image segmentation (IS); (6) Letter recognition (LR); (7) Multiple
features (MF); (8) Optical recognition of handwritten digits (OR);
(9) Page-blocks (PB); (10) Pen-based recognition of handwritten
digits (PR); (11) Phishing websites (PW); (12) Shill bidding (SB);
(13) Segment (SE); (14) Semeion handwritten digit (SH); (15)
Texture (TE); (16) Wilt (WI); (17) SEA; (18) Hyperplane (HY) (19)
Permuted MNIST (PMN); (20) Rotated MNIST (RMN); (21) SUSY
(SU); (22) Poker Hand (PH); (23) Caltech101; and (24) Caltech256.
Key details of the 24 datasets are summarized by Table 1.

In this study, for Caltech101 and Caltech256 datasets, pre-
trained AlexNet [29] and VGG-VD-16 [30] models are employed
for feature extraction. Given a particular image I, a 1 × 4096
dimensional activation vector will be extracted from the first
fully connected layer of each model, and the two activation vec-
tors extracted by AlexNet and VGG-VD-16 are then combined
to a 8192 × 1 dimensional discriminative representation using

1 https://archive.ics.uci.edu/ml/index.php
2 https://sci2s.ugr.es/keel/datasets.php
3 https://scikit-multiflow.github.io/
4 http://www.vision.caltech.edu/datasets/

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
https://scikit-multiflow.github.io/
http://www.vision.caltech.edu/datasets/
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Table 2
Influence of G on DMS3OF.
Dataset Meas. 4 5 6 7 8 9 10 11 12

EG err 0.358 0.306 0.237 0.222 0.215 0.214 0.214 0.218 0.223
texe 0.605 0.643 0.766 0.956 1.179 1.314 1.368 1.465 1.464

GP err 0.477 0.393 0.356 0.329 0.299 0.282 0.270 0.262 0.259
texe 0.483 0.626 0.759 0.748 0.906 0.982 1.125 1.226 1.348

LR err 0.705 0.493 0.304 0.175 0.136 0.128 0.131 0.136 0.140
texe 0.850 1.240 2.055 3.021 3.559 3.761 3.883 3.970 4.165

PR err 0.086 0.053 0.030 0.021 0.017 0.016 0.016 0.016 0.016
texe 0.610 0.755 0.956 1.129 1.305 1.441 1.561 1.609 1.654

PW err 0.104 0.098 0.092 0.083 0.079 0.082 0.090 0.089 0.089
texe 0.904 1.012 1.160 1.231 1.408 1.607 1.642 1.634 1.682
Table 3
Influence of L on DMS3OF.
Dataset Meas. 10 50 100 200 500 1000 1500 2000 3000

EG err 0.231 0.215 0.214 0.213 0.213 0.214 0.214 0.213 0.213
texe 1.433 1.521 1.158 1.149 1.231 1.381 1.262 1.299 1.402

GP err 0.381 0.283 0.280 0.279 0.281 0.282 0.281 0.281 0.280
texe 2.115 1.247 1.106 1.023 0.9750 1.036 1.078 1.126 1.205

LR err 0.343 0.128 0.126 0.127 0.129 0.128 0.128 0.130 0.131
texe 18.418 7.076 4.778 3.517 3.079 3.872 4.025 4.229 4.299

PR err 0.045 0.018 0.018 0.017 0.017 0.016 0.016 0.016 0.017
texe 4.535 1.548 1.051 1.083 1.415 1.502 1.582 1.633 1.645

PW err 0.077 0.081 0.082 0.081 0.081 0.082 0.083 0.083 0.083
texe 2.228 1.404 1.231 1.304 1.509 1.673 1.772 1.827 1.886
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Eq. (33). This representation, denoted as x will be used as the
eature vector of the image for running numerical experiments.

=

[
AN (I)
∥AN (I)∥

,
VN (I)
∥VN (I)∥

]T
(33)

here AN (I) and VN (I) are the activation vectors extracted from
lexNet and VGG-VD-16 models, respectively.
The numerical examples presented in this paper are con-

ucted on a desktop with dual core i7 processor 3.80 GHz × 2
nd 32.0 GB RAM. The algorithms are developed using MAT-
ABR2021b platform. For fair comparison, all the results reported
n this section are obtained as the average of 10 Monte Carlo
xperiments to allow a certain degree of randomness.
Since this paper considers infinite delay problems, in run-

ing the experiments, labelled training samples are only pre-
ented to DMS3OF for initialization during the warm-up stage.
hen, DMS3OF performs semi-supervised learning from unla-
elled training samples to self-update its knowledge base and
elf-evolve its structure. To simulate the online learning environ-
ent, only one data chunk is presented to DMS3OF at a time.
or simplicity, all the data chunks are assumed to be of the
ame size, L. However, if the amount of remaining unprocessed
abelled/unlabelled samples is less than L, all the remaining sam-
les will be used as the final labelled/unlabelled data chunk.
nless specifically declared otherwise, by default, the level of
ranularity, G and the chunk size, L for DMS3OF are set as G = 9
nd L = 1000.
It will be demonstrated by the numerical examples presented

n Section 4.4 that, with the default parameter setting, DMS3OF
utperforms the state-of-the-art methods on a variety of bench-
ark problems. However, in practice, users may use the default
etting as the baseline to adjust the externally controlled param-
ter, G to achieve the desired results on the given problems with
he specific requirements. The amount of data fed to DMS3OF
ach time, namely, chunk size L can be adjusted as well. Ex-
erienced users may further consider setting the parameters of
he two EFS models differently and assigning them a different
et of weights in the final decision-making to maximize the
erformance of DMS3OF. In so doing, one can expect a great
 i

8

mprovement in the classification performance of DMS3OF, but
his would require some prior knowledge of the problem, and the
est setting always varies according to the nature of data.

.2. Sensitivity analysis

In this section, sensitivity analysis is performed to evaluate the
nfluences of the two externally controlled parameters, G and L
n the performance of DMS3OF. The following five benchmark
atasets, namely, EG, GP, LR, PR and PW are employed for sen-
itive analysis thanks to their relatively larger sizes, allowing a
ider value range of the chunk size that can be chosen for run-
ing the experiments. In these experiments, 10% of data samples
re randomly selected as labelled training set and the remaining
0% are used as the unlabelled one.
First, the influence of G on the prediction performance of the

roposed model. During the experiments, the value of G varies
rom 4 to 12, and L = 1000. The results obtained by DMS3OF at
ifferent levels of granularity are reported in Table 2 in terms of
lassification error (err) and training time consumption (texe, in
econds), where the lowest classification error per dataset is in
old.
Next, the influence of L on the prediction performance of the

roposed model. During the experiments, the value of L varies
rom 10 to 3000, and G = 9. The results obtained by DMS3OF with
ifferent chunk sizes are reported in Table 3 in terms of err and
exe (in seconds), where the lowest classification error per dataset
s in bold.

It can be observed from Tables 2 and 3 that both externally
ontrolled parameters, namely, G and L have some mild influence
n the prediction performance of DMS3OF. In general, given a
reater level of granularity, G, DMS3OF is able to achieve better
rediction accuracy with more prototypes being identified from
ata. However, a larger knowledge base can also reduce the
omputational efficiency, leading to more resources consumed for
raining. A greater G also increases the risk of overfitting. Whilst
he chunk size, L has less impact on DMS3OF as long as its value

s greater enough (i.e., L ≥ 50).
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Fig. 3. Ablation analysis results in terms of texe (in seconds).
Table 4
Ablation analysis results.
Dataset Ratio DMS3OF DMSOF ∆ % Ratio DMS3OF DMSOF ∆ %

AB

10%

0.480 0.483 +0.6%

20%

0.481 0.479 −0.4%
AU 0.414 0.420 +1.5% 0.387 0.391 +1.0%
EG 0.214 0.216 +0.9% 0.201 0.201 +0.0%
GP 0.282 0.289 +2.5% 0.218 0.224 +2.8%
IS 0.097 0.114 +17.5% 0.070 0.076 +8.6%
LR 0.128 0.144 +12.5% 0.080 0.090 +12.5%
MF 0.061 0.079 +29.5% 0.052 0.061 +17.3%
OR 0.026 0.032 +23.1% 0.018 0.021 +16.7%
PB 0.076 0.074 −2.6% 0.066 0.066 +0.0%
PR 0.016 0.020 +25.0% 0.012 0.014 +16.7%
PW 0.082 0.089 +8.5% 0.067 0.070 +4.5%
SB 0.012 0.012 +0.0% 0.006 0.006 +0.0%
SE 0.101 0.121 +19.8% 0.075 0.082 +9.3%
SH 0.179 0.186 +3.9% 0.136 0.139 +2.2%
TE 0.037 0.046 +24.2% 0.026 0.031 +19.3%
WI 0.035 0.036 +2.9% 0.026 0.027 +3.9%

Avg. 0.140 0.148 +5.7% 0.120 0.124 +3.3%
AB

30%

0.478 0.477 −0.2%

40%

0.473 0.474 +0.2%
AU 0.374 0.376 +0.5% 0.370 0.379 +2.4%
EG 0.199 0.196 −1.51% 0.197 0.193 −2.0%
GP 0.187 0.191 +2.1% 0.168 0.172 +2.4%
IS 0.057 0.060 +5.3% 0.049 0.051 +4.1%
LR 0.062 0.068 +9.7% 0.051 0.055 +7.8%
MF 0.046 0.050 +8.7% 0.041 0.044 +7.3%
OR 0.015 0.017 +13.3% 0.014 0.016 +14.3%
PB 0.063 0.065 +3.2% 0.059 0.061 +3.4%
PR 0.009 0.010 +11.1% 0.008 0.008 +0.0%
PW 0.054 0.057 +5.6% 0.048 0.050 +4.2%
SB 0.005 0.005 +0.0% 0.003 0.004 +33.3%
SE 0.062 0.067 +8.1% 0.049 0.052 +6.1%
SH 0.114 0.116 +1.8% 0.096 0.099 +3.1%
TE 0.020 0.024 +20.0% 0.017 0.018 +5.9%
WI 0.023 0.023 +0.0% 0.021 0.022 +4.8%

Avg. 0.111 0.113 +1.8% 0.104 0.106 +1.9%
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4.3. Ablation analysis

In this section, ablation analysis is performed to demon-
trate the effectiveness of the proposed semi-supervised learning
cheme designed for DMS3OF. In this analysis, the performance
of DMS3OF is compared against a supervised learning model
with the same architecture as DMS3OF but without the semi-
supervised learning mechanism. Hence, this new competitive
model is named as duel-model self-organizing fuzzy inference
system (DMSOF). In this example, the aforementioned 16 classical
benchmark datasets are employed for performance evaluation,
where the ratio of data being used as labelled training samples
varies from 10%, 20%, 30% and 40% (and the remaining samples
are used as unlabelled ones). The performances of DMS3OF and
MSOF obtained from the numerical experiments are reported by
able 4 in terms of err . The performance improvements in per-
entage are given by Table 4 following the common practice [9].
9

The average results are tabulated in Table 4 as well for clarity.
The average training time consumptions (in seconds) of DMS3OF
and DMSOF over the 16 benchmark datasets under different split
ratios are depicted in Fig. 3.

It can be observed from Table 4 that DMS3OF outperforms
MSOF in the vast majority of cases, especially when the ratio
f labelled training samples is low (e.g., 10%). In particular, the
verage classification performance of DMS3OF over the 16 bench-
ark datasets is improved by 5.7%, 3.3%, 1.8% and 1.9% with the

raining-testing split ratio set as 1:9 (10%), 2:8 (20%), 3:7 (30%)
nd 4:6 (40%), respectively. This demonstrates the effectiveness
f the proposed DMS3OF model. In addition, one can see from
ig. 3 that, the computational complexity of DMS3OF is also
ery low. Its computational efficiency is on the same level as its
upervised competitor, namely, DMSOF. It takes less than 0.15
s for DMS3OF to process one data sample whilst DMSOF takes
pproximately 0.1 ms for each sample.
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Table 5
Performance comparison between DMS3OF and 12 state-of-the-art semi-supervised learning methods under the training-testing split
ratio of 1:9.
Algorithm AB AU EG GP IS LR MF OR

DMS3OF 0.480 0.414 0.214 0.282 0.097 0.128 0.061 0.026
TMPM 0.469 0.158 0.020 0.532 0.166 0.482 0.078 0.090
LGC 0.463 0.180 0.361 0.286 0.108 0.142 0.021 0.034
GGMC 0.521 0.319 0.122 0.526 0.198 0.423 0.023 0.053
EAGR 0.501 0.429 0.341 0.345 0.168 0.154 0.126 0.027
AGRK 0.498 0.430 0.343 0.372 0.170 0.173 0.143 0.027
AGRL 0.477 0.401 0.269 0.363 0.173 0.144 0.115 0.020
LSVM 0.471 0.427 0.285 0.380 0.164 0.170 0.102 0.023
STHP 0.507 0.402 0.278 0.400 0.196 0.139 0.101 0.024
S3 OFIS 0.499 0.398 0.262 0.285 0.127 0.961 0.108 0.029
TrikNN 0.481 0.404 0.241 0.353 0.178 0.208 0.145 0.035
TriDT 0.501 0.184 0.001 0.350 0.086 0.302 0.121 0.200
TriMLP 0.477 0.180 0.088 0.506 0.233 0.955 0.072 0.182

Algorithm PB PR PW SB SE SH TE WI

DMS3OF 0.076 0.016 0.082 0.012 0.101 0.179 0.037 0.035
TMPM 0.108 0.118 0.080 0.027 0.193 0.218 0.027 0.071
LGC 0.052 0.022 0.127 0.021 0.132 0.181 0.029 0.054
GGMC 0.656 0.068 0.283 0.024 0.210 0.220 0.034 0.472
EAGR 0.326 0.017 0.118 0.014 0.188 0.214 0.039 0.171
AGRK 0.291 0.019 0.116 0.021 0.196 0.220 0.045 0.190
AGRL 0.371 0.017 0.104 0.068 0.180 0.161 0.038 0.282
LSVM 0.094 0.026 0.132 0.007 0.174 0.165 0.117 0.054
STHP 0.091 0.021 0.108 0.016 0.212 0.163 0.035 0.045
S3 OFIS 0.075 0.019 0.643 0.013 0.137 0.209 0.043 0.035
TrikNN 0.067 0.032 0.103 0.021 0.183 0.207 0.048 0.040
TriDT 0.049 0.109 0.082 0.013 0.108 0.433 0.155 0.033
TriMLP 0.087 0.398 0.086 0.028 0.244 0.338 0.390 0.056
4.4. Performance demonstration

In this section, the performance of DMS3OF is compared with
number of state-of-the-art approaches on the aforementioned
4 classification problems.
First, the classification performance (in err) of DMS3OF is

compared with the following nine popular single-model semi-
supervised classification methods on the 16 classical benchmark
problems with the split ratio set as 1:9, namely, 10% of data
samples are used as labelled training samples and the remaining
ones are used as unlabelled ones.
(1) Transductive minimax probability machine (TMPM) [6];
(2) LGC classifier [16];
(3) GGMC classifier [18];
(4) EAGR classifier [11];
(5) AGR classifier with kernel weights (AGRK) [19];
(6) AGR classifier with local anchor embedding weights (AGRL)
[19];
(7) LSVM [17];
(8) S3 OFIS [25], and;
(9) STHP classifier [20].

In running the experiments, the values of two externally con-
trolled parameters, λ and ρ of TMPM are selected from the
candidate set [10−4, 10−3, . . . , 104

] as recommended by [6], and
0% of the labelled training samples are used as the validation set
o help the model determine the best parameter setting for each
roblem; the parameters of LGC and GGMC are set as α = 0.99

and µ = 0.01, respectively, as suggested by [16,18]; and both LGC
and GGMC use the kNN graph with k = 5; EAGR, AGRK and AGRL
identify a total of 0.1K anchors from data (K is the total number
of data samples); the number of the closest anchors s is set as
s = 3; the iteration number of local anchor embedding is set to
be 10 for AGRL [19]; for LSVM, three different parameter settings
are considered, namely, (i) σ = 10, µI = 1, µA = 10−6, k = 15
(recommended by [31]), (ii) σ = 10, µI = 0.5, µA = 10−6, k =
15 and (iii) σ = 1, µI = 1, µA = 10−6, k = 15 and the best
result (the lowest err) on each dataset is reported; STHP uses
the following parameter setting: γ = 1.1 and H = 6 [20];
0

10
the parameters of S3 OFIS are set as G = 10 [25]; the chunk
size for STHP and S3 OFIS is set as L = 1000. It is worth noting
that different from the other seven competitive methods, both
STHP and S3 OFIS are designed for semi-supervised learning from
data streams on a chunk-by-chunk basis. Hence, STHP and S3 OFIS
follow the same online learning setting as DMS3OF.

In addition to the nine single-model competitors, one of the
best known multi-model semi-supervised framework, tri-training
[9] is also involved in performance comparison on the 16 bench-
mark problems. In this example, three different main stream
classifiers, namely, kNN, DT and MLP are employed as the base
classifiers, resulting in three different tri-training models, de-
noted by TrikNN, TriDT and TriMLP. In the experiments, k is set
to be 5 for kNN; the maximum number of split for DT is set as
K −1; MLP has a three-layer structure and there are 128 neurons
in its hidden layer.

The performances (in err) of DMS3OF and 12 competitors on
the unlabelled data samples of each problem are reported by
Table 5, where the best results (lowest err per dataset) are in
bold. The same experiments are repeated under the split ratios
of 2:8, 3:7 and 4:6, and the results obtained by DMS3OF and 12
competitors per dataset per split ratio are tabulated in Tables 6–8.

For visual clarity, the average performance ranks of DMS3OF
and the 12 competitors over the 16 benchmark problems under
the four different training-testing split ratios are visualized in
Fig. 4. Note that, the ranking is conducted per dataset per split
ratio based on the err rates of the methods involved in perfor-
mance comparison, where the method achieving the lowest err is
ranked the first place (1st) and the method reporting the highest
err is ranked the last place (13th). Hence, under each split ratio,
DMS3OF and the 12 competitors are ranked 16 times in total, and
the average ranks are given by the figure. The average err rates of
the semi-supervised learning methods involved in this example
per split ratio are presented in Fig. 5, and the corresponding
average training time costs (in seconds) are also presented in
Fig. 6.

It can be seen from Tables 5–8, Figs. 4 and 5 that DMS3OF
is able to produce highly accurate classification results on the
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Table 6
Performance comparison between DMS3OF and 12 state-of-the-art semi-supervised learning methods under the training-testing split
ratio of 2:8.
Algorithm AB AU EG GP IS LR MF OR

DMS3OF 0.481 0.387 0.201 0.218 0.070 0.080 0.052 0.018
TMPM 0.463 0.141 0.014 0.510 0.148 0.462 0.045 0.072
LGC 0.463 0.179 0.362 0.253 0.097 0.119 0.021 0.030
GGMC 0.493 0.230 0.114 0.432 0.146 0.315 0.024 0.037
EAGR 0.497 0.387 0.317 0.299 0.147 0.118 0.108 0.022
AGRK 0.495 0.366 0.319 0.336 0.153 0.137 0.130 0.023
AGRL 0.479 0.356 0.260 0.325 0.150 0.107 0.102 0.017
LSVM 0.465 0.406 0.226 0.348 0.117 0.110 0.092 0.019
STHP 0.511 0.390 0.273 0.363 0.143 0.091 0.078 0.019
S3 OFIS 0.503 0.387 0.260 0.204 0.085 0.961 0.086 0.020
TrikNN 0.480 0.356 0.233 0.284 0.131 0.129 0.111 0.025
TriDT 0.502 0.182 0.000 0.277 0.070 0.238 0.086 0.145
TriMLP 0.471 0.159 0.094 0.509 0.235 0.952 0.054 0.171

Algorithm PB PR PW SB SE SH TE WI

DMS3OF 0.066 0.012 0.067 0.006 0.075 0.136 0.026 0.026
TMPM 0.119 0.111 0.079 0.027 0.139 0.166 0.020 0.062
LGC 0.048 0.022 0.109 0.019 0.102 0.161 0.027 0.054
GGMC 0.615 0.063 0.222 0.020 0.152 0.200 0.031 0.464
EAGR 0.317 0.013 0.096 0.010 0.153 0.165 0.034 0.173
AGRK 0.286 0.014 0.096 0.015 0.155 0.171 0.039 0.193
AGRL 0.306 0.014 0.090 0.044 0.158 0.142 0.034 0.251
LSVM 0.089 0.020 0.109 0.004 0.132 0.146 0.088 0.054
STHP 0.095 0.015 0.085 0.011 0.155 0.132 0.024 0.045
S3 OFIS 0.071 0.014 0.818 0.005 0.094 0.159 0.030 0.027
TrikNN 0.058 0.020 0.091 0.009 0.133 0.182 0.040 0.033
TriDT 0.042 0.078 0.068 0.006 0.075 0.370 0.123 0.026
TriMLP 0.091 0.417 0.080 0.028 0.229 0.280 0.392 0.057
Table 7
Performance comparison between DMS3OF and 12 state-of-the-art semi-supervised learning methods under the training-testing split
ratio of 3:7.
Algorithm AB AU EG GP IS LR MF OR

DMS3OF 0.478 0.374 0.199 0.187 0.057 0.062 0.046 0.015
TMPM 0.457 0.143 0.013 0.531 0.122 0.462 0.042 0.063
LGC 0.463 0.183 0.362 0.244 0.091 0.114 0.020 0.029
GGMC 0.491 0.175 0.108 0.378 0.126 0.248 0.022 0.036
EAGR 0.488 0.366 0.296 0.273 0.125 0.098 0.087 0.019
AGRK 0.487 0.363 0.299 0.314 0.132 0.115 0.106 0.020
AGRL 0.472 0.371 0.254 0.302 0.133 0.094 0.087 0.016
LSVM 0.467 0.379 0.211 0.329 0.103 0.090 0.092 0.018
STHP 0.504 0.391 0.266 0.343 0.115 0.074 0.065 0.017
S3 OFIS 0.504 0.389 0.258 0.167 0.062 0.961 0.069 0.019
TrikNN 0.484 0.355 0.228 0.245 0.102 0.097 0.085 0.018
TriDT 0.498 0.178 0.000 0.232 0.060 0.215 0.074 0.138
TriMLP 0.473 0.162 0.087 0.499 0.233 0.952 0.049 0.163

Algorithm PB PR PW SB SE SH TE WI

DMS3OF 0.063 0.009 0.054 0.005 0.062 0.114 0.020 0.023
TMPM 0.130 0.107 0.078 0.027 0.125 0.143 0.015 0.056
LGC 0.046 0.018 0.099 0.019 0.091 0.165 0.026 0.054
GGMC 0.633 0.030 0.173 0.020 0.133 0.198 0.029 0.443
EAGR 0.325 0.011 0.083 0.008 0.137 0.142 0.028 0.167
AGRK 0.289 0.012 0.085 0.013 0.141 0.148 0.032 0.185
AGRL 0.282 0.011 0.084 0.033 0.145 0.140 0.032 0.226
LSVM 0.086 0.015 0.099 0.004 0.118 0.143 0.072 0.054
STHP 0.089 0.011 0.070 0.009 0.119 0.114 0.019 0.041
S3 OFIS 0.063 0.010 0.083 0.004 0.070 0.141 0.023 0.024
TrikNN 0.054 0.014 0.081 0.006 0.104 0.150 0.029 0.028
TriDT 0.039 0.066 0.062 0.005 0.062 0.329 0.104 0.024
TriMLP 0.092 0.400 0.081 0.027 0.226 0.245 0.408 0.055
16 benchmark problems under the four different training-testing
split ratios, ranked the top place among the semi-supervised
learning methods involved in the experiments. It is interesting
to notice from Fig. 4 that the performance of DMS3OF keeps
mproving with more labelled training data being given at the
raining phase as its average performance rank increases with
higher ratio of labelled training samples. The average error

ates of DMS3OF on are also lower than the 12 state-of-the-art
competitors under the split ratios of 2:8, 3:7 and 4:6, and is only
0.002 higher than LGC under the split ratio of 1:9. In addition,
11
one can see from Fig. 5 that the training time consumption of
DMS3OF is also on the same level as the most computationally
efficient competitors, e.g., EAGR, AGRL, LSVM, S3 OFIS, TrikNN and
TriDT. This example demonstrates the superior performance of
the proposed DMS3OF.

Next, the classification performance of DMS3OF is tested on
four synthetic large-scale benchmark problems, namely, SEA, HY,
PMN and RMN, and compared with the state-of-the-art results re-
ported in the literature. Following the common practice, 1%, 0.8%,
1.4% and 2% of data in the respective four datasets are randomly
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Table 8
Performance comparison between DMS3OF and 12 state-of-the-art semi-supervised learning methods under the training-testing split
ratio of 4:6.
Algorithm AB AU EG GP IS LR MF OR

DMS3OF 0.473 0.370 0.197 0.168 0.049 0.051 0.041 0.014
TMPM 0.463 0.144 0.012 0.530 0.119 0.449 0.030 0.058
LGC 0.462 0.184 0.362 0.242 0.086 0.107 0.020 0.029
GGMC 0.484 0.163 0.105 0.353 0.105 0.194 0.022 0.033
EAGR 0.481 0.363 0.283 0.256 0.118 0.087 0.083 0.017
AGRK 0.483 0.346 0.286 0.298 0.122 0.104 0.098 0.018
AGRL 0.468 0.358 0.252 0.288 0.123 0.086 0.085 0.016
LSVM 0.465 0.362 0.200 0.323 0.099 0.099 0.102 0.020
STHP 0.494 0.397 0.258 0.325 0.095 0.062 0.058 0.015
S3 OFIS 0.502 0.374 0.256 0.140 0.052 0.961 0.063 0.016
TrikNN 0.476 0.356 0.225 0.219 0.083 0.078 0.074 0.017
TriDT 0.499 0.166 0.000 0.203 0.050 0.191 0.067 0.126
TriMLP 0.481 0.158 0.087 0.502 0.234 0.957 0.043 0.160

Algorithm PB PR PW SB SE SH TE WI

DMS3OF 0.059 0.008 0.048 0.003 0.049 0.096 0.017 0.021
TMPM 0.133 0.107 0.077 0.029 0.119 0.135 0.011 0.057
LGC 0.047 0.017 0.099 0.019 0.093 0.158 0.025 0.054
GGMC 0.656 0.016 0.149 0.020 0.119 0.180 0.026 0.442
EAGR 0.314 0.010 0.076 0.008 0.129 0.133 0.022 0.161
AGRK 0.295 0.011 0.078 0.014 0.131 0.139 0.026 0.175
AGRL 0.278 0.010 0.077 0.025 0.138 0.129 0.028 0.210
LSVM 0.084 0.012 0.095 0.004 0.122 0.130 0.059 0.054
STHP 0.096 0.010 0.061 0.008 0.110 0.102 0.017 0.045
S3 OFIS 0.056 0.008 0.073 0.003 0.056 0.125 0.018 0.023
TrikNN 0.051 0.011 0.073 0.004 0.092 0.134 0.024 0.025
TriDT 0.036 0.057 0.057 0.005 0.053 0.319 0.099 0.023
TriMLP 0.088 0.398 0.081 0.026 0.216 0.223 0.386 0.056
Table 9
Classification performance comparison on four synthetic large-scale problems.
Algorithm SEA HY PMN RMN

DMS3OF 0.023 0.088 0.106 0.096
SCARGCKNN 0.219 0.218 0.667 0.762
SCARGCSVM 0.174 0.181 0.670 0.791
ParsNet 0.120 0.132 0.537 0.515
DEVDAN 0.215 0.344 0.633 0.710
S3OFIS+ 0.040 0.092 0.104 0.098

selected to build the labelled training set and the remaining data
samples are used as unlabelled training samples [21]. The classi-
fication performance (in err) of DMS3OF on the four large-scale
roblems are reported in Table 9. In addition, its performance on
he four problems is further compared with the following state-
f-the-art approaches under the same experimental protocols: (1)
tream classification algorithm guided by clustering with kNN
SCARGCKNN) [32]; (2) stream classification algorithm guided
y clustering with SVM (SCARGCSVM) [32]; (3) ParsNet [21];
4) deep evolving denoising autoencoder (DEVDAN) [33] and (5)
3 OFIS [25]. The classification results by the five comparative
pproaches are also tabulated in Table 9, where the best results
re in bold. Note that, the results by SCARGCKNN, SCARGCSVM,
arsNet and DEVDAN are obtained directly from [21] and the
esults by S3 OFIS is obtained from [25].

Then, the classification performance of DMS3OF is evaluated
n two very large-scale datasets (SU and PH). Following the com-
on practice [24], the training-testing split ratio for both datasets

s set as 1:4, namely, 25% of the data are randomly selected as
abelled training samples and the rest are used as unlabelled ones.
he performance of DMS3OF in terms of accumulated one-chunk

ahead prediction error is reported in Table 10 and compared
with the following three approaches designed for very large-scale
classification problems, namely, (1) WeScatterNet [24]; (2) Scal-
able teacher-forcing network [34] and (3) Scalable parsimonious
network based on fuzzy inference system (SPANFIS) [35]. The
12
Table 10
Classification performance comparison on two very large-scale problems.
Algorithm SU PH

DMS3OF 0.217 0.425
WeScatterNet 0.243 0.499
ScatterNet 0.246 0.499
SPANFIS 0.243 0.500

results by WeScatterNet, ScatterNet and SPANFIS presented in
Table 10 are the best results reported [24] obtained with different
parameter settings under the same experimental protocol.

One can see from Tables 9 and 10 that the proposed DMS3OF
outperforms the state-of-the-art approaches on five out of the
six large-scale classification problems (including two very large
ones), demonstrating its strong potential as a semi-supervised
learning method for large-scale data stream learning.

Finally, DMS3OF is tested on two well-known image classifi-
cation problems, namely, Caltech101 and Caltech256. Following
the common practice [36], for Caltech101, 15 and 30 images
are randomly selected from each class respectively to build the
labelled training set and the remaining images are used as the
unlabelled training images. For Caltech256, 15, 30,46 and 60
images are randomly selected from each class respectively as the
labelled training images, and the rest are used as unlabelled ones.
The classification performance (in err) of DMS3OF on Caltech101
and Caltech256 are reported in Tables 11 and 12, and the selected
state-of-the-art results obtained from the literature are also given
for a better evaluation.

It is shown by Tables 11 and 12 that DMS3OF is able to predict
class labels on the unlabelled images with great accuracy on
both challenging image classification problems. Despite that both
datasets have a large number of classes, which makes pseudo-
labelling a particularly difficult task, and only the pretrained
AlexNet and VGG-VD-16 models are employed for feature extrac-
tion without fine tuning, the classification accuracy of DMS3OF

surpasses the most of the state-of-the-art approaches involved
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Fig. 4. Average performance rank comparison between DMS3OF and 12 competitors (the lower the better).
n comparison, only being outperformed by SWSS-VGG [43] on
altech256.
From the above systematic experimental studies (conducted

ver a variety of benchmark and real-world problems), one can
onclude that the proposed DMS3OF model is superior to the
tate-of-the-art approaches for semi-supervised classification
rom data streams in infinite delay environments, by offering
13
greater classification accuracy. In addition, it is highly computa-
tionally efficient, taking less than 0.15 ms to process one data
sample as suggested by Fig. 3. Fig. 6 also shows that the compu-
tational efficiency of DMS3OF is at a high level, comparable to the
most efficient alternative methods involved in the performance
comparison. Very importantly, all the experiments carried out
and numerical results reported in this section are obtained using
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Fig. 5. Average classification error comparison between DMS3OF and 12 competitors (the lower the better).
he previously specified parameter setting without any tuning for
erformance optimization. As aforementioned, one may further
mprove the classification performance of DMS3OF by adjusting
he parameter setting.
14
5. Conclusion and future works

In this paper, a novel semi-supervised learning fuzzy infer-
ence system that comprises two cutting-edge zero-order EFS
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Fig. 6. Average training time cost comparison between DMS3OF and 12 competitors (the lower the better).
models, namely, SOFIS+ and SOFBIS, called DMS3OF is presented
for data stream learning in infinite delay environments. After
being primed with labelled data samples, DMS3OF can effec-
tively learn from unlabelled streaming data chunk-by-chunk by
15
exploiting the pseudo-labelling technique for greater classifica-
tion performance. Thanks to its duel-model structure and the
specially designed semi-supervised learning scheme, DMS3OF is
able to combine the merits of the two EFS models such that
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Table 11
Classification performance comparison on Caltech101.
Algorithm 15 30

DMS3OF 0.115 ± 0.018 0.085 ± 0.018
DEFEATnet [37] 0.287 ± 0.006 0.224 ± 0.010
ICAC [38] 0.285 ± 0.006 0.234 ± 0.008
CASE-LLC-SVM [39] 0.360 ± 0.004 0.286 ± 0.012
CEC [40] 0.255 ± 0.007 0.211 ± 0.006
CEC-CNN [40] – 0.139 ± 0.007
YCbCr-SIFT+LSC+ELM [41] 0.274 ± 0.007 0.220 ± 0.005
SPFF [36] 0.325 0.255
DSDPL [42] 0.292 0.232

it continuously self-improves its knowledge base by generat-
ing high-quality pseudo-labelled data from unlabelled samples
whilst effectively preventing pseudo-labelling errors from affect-
ing decision-making. Numerical examples on a wide range of
benchmark problems demonstrate the superior performance of
DMS3OF over the state-of-the-art approaches.

There are several considerations for future works. First, to
suppress error propagation, the current DMS3OF model only up-
dates SOFIS+ model with pseudo-labelled samples. This is because
pseudo-labelling errors can easily propagate within SOFBIS due
to its belief structure and unique decision-making mechanism.
It would be beneficial to modify SOFBIS such that it can self-
update from pseudo-labelled samples to augment its knowledge
base whilst being less impacted by pseudo-labelling errors on
decision-making. With such modification, DMS3OF can achieve
even greater classification accuracy. Second, DMS3OF requires
users to specify the level of granularity. Although this is not a
user- and problem-specific parameter and can be determined
without prior knowledge of the problem, the performance of
DMS3OF can be unfavourably affected if its value is not set prop-
erly. Therefore, it would be helpful to develop an automated
approach to self-determine the most suitable setting based on
the statistical characteristics of the data. However, this is a highly
challenging task considering the nonstationary nature of data
streams.
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Table 12
Classification performance comparison on Caltech256.
Algorithm 15 30 45 60

DMS3OF 0.355 ± 0.015 0.306 ± 0.006 0.288 ± 0.005 0.278 ± 0.009
CEC [40] 0.608 ± 0.004 0.552 ± 0.003 0.521 ± 0.003 –
CEC-FV [40] 0.595 ± 0.004 0.503 ± 0.004 0.512 ± 0.003 –
SWSS-DeCAF [43] 0.385 ± 0.004 0.323 ± 0.007 0.302 ± 0.005 0.272 ± 0.004
SWSS-VGG [43] 0.306 ± 0.005 0.264 ± 0.005 0.252 ± 0.004 0.237 ± 0.005
DGFLP [44] 0.359 0.308 – –
LR-GCC-FV [45] 0.586 ± 0.004 0.509 ± 0.003 – –
SPFF [36] 0.667 ± 0.001 0.623 ± 0.003 0.599 ± 0.003 0.567 ± 0.002
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