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Abstract

Molecular dynamics computer simulations of small liquid drops are reported.
Systems of between 60 and 1300 particles have been studied, each comprising of a
central drop that is allowed to come to equilibrium with its surrounding vapour. Two
common potential models have been used for the interactions between particles, the
Lennard-Jones 12-6 form and the Stockmayer potential (LJ 12-6 plus a point dipole
moment). Simulations for the Stockmayer fluid have been performed with p%ea> =1
and p¥eo®=3. For both potentials, relatively long cut-offs have been employed so

that “tail” corrections are unnecessary.

Results are given for the size and density profiles of such drops over a range of
temperatures. The Kelvin equation for the excess vapour pressure outside a curved
interface is investigated as a means of determining the surface tension, v, for a given
fluid. Calculations using simulation results, in conjunction with the known coexistence
vapour pressure, lead to a value of y which is consistent with previous measurements
of this quantity. This technique is seen to work best with large drops near the triple
point, and though such simulations are currently quite expensive the increasing power

of computers could make this a viable method for finding the surface tension.

The surface width of the liquid vapour interface in these systems is analysed as a
function of temperature. Comparisons of the width with theoretical calculations for
this quantity show that a significant discrepancy exists. This difference can be

explained in terms of the contribution of surface oscillations (capillary waves) to the
width.

The dielectric properties of Stockmayer drops have been studied via
measurements of the mean square moment within spheres about the centre of mass of
the system. It is found that values of the static dielectric constant, €, , for the “bulk”
liquid within the drops are consistent with previous results obtained by Adams and
Adams for homogeneous systems, at least for p%eo> = 1. For the more strongly polar
fluid, with p%/eo> = 3, it may be that systems of more than 450 particles are necessary

to determine the liquid value of €, , but more work is required on this point.
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In addition to determining €, within the drops, it is shown that measured data for
the mean square moment as a function of radius can be explained in terms of a
(scalar) dielectric constant that depends on r. A dielectric profile of similar width and
position to the density profile is obtained.

Measurements have also been made of the time dependent correlations of the
total moment within spherical volumes about the centre of mass. In principle the
dynamic dielectric constant can be obtained from these functions. However, it has not

been possible to obtain consistent results for €(w) from the data reported here and

some of the reasons for this are examined.




Chapter One: Introduction - Computer simulation of liquids

1.1. Introduction

From a theoretical point of view the liquid state represents a very difficult topic to
treat satisfactorily. Statistical mechanics can provide expressions for many important
properties of a liquid in terms of the partition function, Z, which is related to the
interaction potential, @y, of the N molecules comprising the sample. However, the
direct evaluation of these expressions is impossible, due to the vast number of
integrations that would have to be performed and the complexity of the interaction

potential for real liquids.

Despite the problems, a great deal of progress has been made in the
understanding of liquid behaviour through various approximate theories. Perhaps the
best known, and most useful, are those based on integral equations, such as the
Percus-Yevick (PY) and hypernetted chain (HNC) approximations. Even these
methods can become virtually intractable when the actual many-body form of the
interaction potential in real liquids is considered, and further approximations still have

to be made.

An alternative (though often complfmentary) method to relate physical properties
of a liquid to the molecular interaction potential is that of computer simulation. The
advent of high speed digital computers has made it possible to take a given form for
®y and calculate typical configurations for a (very small) sample of such a
“theoretical” fluid. Properties of this liquid can be found from averages over these

configurations.

This thesis is concerned with computer simulations that have been performed on
small liquid drops in equilibrium with surrounding vapour. These systems allow us to
study properties of the highly curved liquid vapour interface, and results on the

stability and structure of the drops are reported, along with calculations of the surface



tension by an unusual route.

One of our prime considerations in choosing to study drops was, however, to yield
an effectively isolated liquid sample (the coexistence vapour density being very low).
This has some potential advantages for the calculation of the propeities of dielectric

fluids, which we investigate.

In this introductory chapter a very brief review is given of computer simulation
methods, and some of the previous work that has been made on the liquid vapour
interface and free clusters of molecules. This is followed by an outline of the
organization of the whole thesis. The chapter is concluded by a section on the reduced

units that have been employed throughout this work.

1.2. Computer simulations of the liquid state

1.2.1. Molecular dynamics

The molecular dynamics (MD) method that we have used here dates back to the
work of Alder and Wainwright! in 1957, and is described in a number of books and
review articles?:3. Basically, the positions, and other relevant coordinates, of a small
number of molecules are set up in some chosen initial configuration by the computer
programme. Using the given form of the interaction potential, @y, the forces acting
on each molecule can then be calculated and the equations of motion integrated to
find the time evolution of the system. Properties of the liquid are then calculated as

time averages over this system (effectively a micro-canonical ensemble).

The above outline of the method omits the various difficulties involved, not the
least of which i1s the form to be used for the molecular interaction potential. It is

nearly always assumed that this can be expressed as a sum over pair potentials,

Dy = D &(r;—r;,8,—€);) (1.1)

i<j

where the r; and the ), are respectively the position and orientation of molecule i.
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This ignores the effect of many-body contributions, such as the triple dipole (Axilrod-
Teller) dispersion potential®, which have been shown to be non-negligible for real
liquids. However, the high cost (in computer time) of including such terms has limited ‘
their use. Instead it is common to use an “effective” pair potential for ¢(r,{2). For ‘
example, the LJ12-6 potential, &(r) = 4€[(o/r)2—(o/r )], is used as a model for a ‘
liquid of simple spherical molecules, such as argon. The true potential between two
argon atoms is, in fact, known to differ significantly from the LJ12-6 form®, but by
choosing suitable values for the parameters € and o, quite good agreement can be \
achieved between simulation and measured data for the real liquid. The reason for
this is that the LJ potential used happens to approximate the effective interaction that
is really the sum of the pair interactions plus the contributions of higher order terms.
For argon the values usually taken for the potential are® € = 119.8K and
o = 0.3405nm, determined from data on the second virial coefficient (other methods

give slightly different values, with € in the range’ 116 - 119.8K).

The most time consuming part of MD simulations is usually the calculation of the
forces from the potential, so it is advantageous to use as simple a form for ®y as |
possible, from this point of view. Even using the 1J12-6 potential with the fastest
computers presently available it is unreasonable to use more than a few thousand
molecules, and systems sizes of 256 or 512 are more common. To compensate for the
limited number of particles, periodic boundary conditions (PBCs) are normally applied
in simulations, whereby the basic cell (e.g. a cube, L XL XL) is replicated to fill all
space, to give a uniform liquid sample. Of course any correlations beyond half the cell
length, L, are meaningless, and the interactions between molecules have to be cut-off
at or before L/2. This causes some unwanted side effects, especially when the
interactions are of long range, as is the case for dipolar liquids (this is discussed

further in chapters two and six).

The actual integration of the equations of motions also has to be treated with



some care, as there is a need to balance the requirements of accurately following the
system’s evolution against the amount of computer time used. A stepwise algorithm,

like the Verlet method®, or the so-called “leapfrog” variation, is usually employed.

1.2.2. Monte carlo

Though we have only used MD in this work, another important technique
frequently used in computer simulations of liquids is the Monte Carlo (MC) method.
Instead of calculating the time evolution of a set of molecules, new configurations of
the system are generated by making small random moves of individual particles. The
key to this method is to accept or reject the new configurations in such a way that the
likelyhood of it occurring is proportional to the Boltzmann factor for that state. A

criterion for this was first given by Metropolis et al8.

This technique has a number of advantages, which partly compensate for the fact
that it cannot be used to study any time dependent properties of liquids. For example,
normal MC gives a canonical ensemble system, so that the temperature, rather than
the total energy, is a fixed quantity (though methods for constant temperature MD
simulations have recently been developed® ). Additionally, other ensembles can be
studied by MC, such as the Grand canonical ensemble (GCMC) where the actual
number of particles within the system is also allowed to vary. This form has been used
by Yao et al'l to examine the thermodynamic properties (including the chemical
potential) of dipolar fluids, using the same potential (the Stockmayer potential) that is
employed in some of our simulations. Such measurements are useful in the prediction

of coexistence densities for the fluid.

1.2.3. Simulation of inhomogeneous systems

In addition to the work on properties of the “bulk” homogeneous liquid, there is

growing interest in the behaviour of liquids near interfaces and surfaces. For example,




Chapela et al'l, among others, have performed extensive simulations of two phase
liquid-vapour systems with planar interfaces. They have employed up to 4096
particles, interacting via the LJ12-6 potential, using both MD and MC methods. This
provides information on the structure of the interface and allows calculation of various

important surface properties, such as the surface tension.

Small clusters of molecules have been studied by a number of workers, often to
determine data concerning the nucleation of liquid drops from the vapour. McGinty!2
has investigated the stability of groups of up to 100 LJ particles, using the MD
technique. Rao et al'3 have examined the formation of liquid drops from an “over-
expanded” liquid and also from the super-saturated vapour. Systems were of 108 or

256 molecules, again with the LJ interaction.

Drops of liquid in equilibrium with their own vapour have been simulated by
Rusanov and Brodskayal4, though again only for very limited systems of up to 256
particles. Their results cover a number of aspects of the behaviour of such microscopic
drops, but their runs were quite short and this leads to large uncertainties in the
conclusions. This paper only came to our attention after much of our work on the LJ
potential had been completed, and does examine a similar technique to that used in
chapter four (for the surface tension). However, our work uses larger samples, with

better statistics, to provide more comprehensive data.

It is worth noting here that a great deal of theoretical work has been performed
on liquid interfaces. Many calculations exist for the structure and surface tension of
planar interfaces, but of particular relevance to the data presented in this work are the
results of Falls et al'>. They have used a gradient-theory approach to predict the
structure and stress within small drops in equilibrium with surrounding vapour. An

interaction potential similar to the 1.J12-6 form was used.



1.3. Organisation of this thesis

In this work we report a range of results for the simulation of drops in equilibrium
with their own vapour. The first studies that were made used the simple LJ form for
the interaction potential. This has the advantages of being relatively straightforward to
deal with and fairly fast to compute. There is also a large amount of data in existence
for this particular model, with which comparisons can be made. In fact an empirical
equation of state has been derived for this fluid from simulation data, by McDonald

and Singer’. A more comprehensive equation has since been given by Nicolas ez a6,

Our later drop studies were extended to use the Stockmayer potential, as a simple
model of a dipolar fluid. As well as examining the thermodynamics of these systems
we attempt to calculate dielectric properties of both the bulk liquid within the drop and
of the surface region.

In chapter two the technical details of the MD simulations employed in this work
are discussed. The chosen boundary conditions are explained and the effects of

truncation of the interaction potential considered in inhomogeneous systems.

The states that have been studied are summarised in chapter three. Results for

the temperature, size and stability of the drops are given and some conclusions drawn.

Chapter four examines the calculation of the surface tension from the data of the
preceding chapter. The Kelvin equation for the excess vapour pressure outside a drop
is used as an alternative to the more complex and time consuming process of

evaluating the pressure tensor.

The surface width of liquid drops, and also planar interfaces, is known to rise
rapidly with the temperature. Chapter five is devoted to this topic, and the effect that

surface oscillations (capillary waves) have on the observed width in drops.

The final three chapters of the thesis are concerned with the dielectric properties

of the Stockmayer drops. Chapter six is simply a review of some relevant background



theory of dielectrics. Results for the static dielectric constant within the bulk liquid
are presented in chapter seven, and an effective dielectric profile for the interface

region calculated.

Some efforts have been made to find the dynamic dielectric constant from
measurements on these Stockmayer drops, but with unsatisfactory results. The

methods used and the problems that were encountered are discussed in chapter eight.

1.4. Units used in this thesis

We conclude this introductory chapter with a note on the reduced units which are
used throughout this thesis. In common with many simulators we use dimensionless
units and these are defined by r* = r/o and ¢* = /e for the lengths and energies,
respectively. o and e are the parameters in the LJ potential, which becomes
¢' = 4(* 2—r* 6. Similar reductions are made for other units, but some

ambiguity arises in the choice of the units of mass and time. We follow Verlet in
o2 )"

taking the unit of time to be ['Z?] , and hence the reduced mass of each molecule

is 48. A number of other workers use a time unit without the factor of 48, so that

conversions have to be made in comparisons with their results.

While it is usual to distinguish these reduced units with the superscript “*”°, this
is not done in the remainder of this work since all our results are expressed in this

form.

In the treatment of the dielectric properties of polar fluids we make use of
Gaussian units, in that the constant €, = 1/4w. This results in slightly simpler

equations.
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Chapter Two: Simulation methods for liquid drops

2.1. Introduction

The technique of molecular dynamics has been in use for many years now and the
basic principles of the method are reviewed in a number of articles!-2. In this chapter
we shall discuss the particular MD methods that have been employed in our work, but
with more emphasis on any differences between these methods and the ‘“‘standard”

homogeneous simulations.

Our initial work on drops was performed with the simple Lennard-Jones (LJ) 12-6
potential, and the techniques used for these systems are described first, and an outline

given of the computer programmes that were employed.

The modifications necessary to study non-spherically symmetric molecules are
then considered, using the quaternion representation of orientation. This algorithm is
used with the Stockmayer potential as a simple model for linear polar molecules, and

the technical details of these simulations are given.

2.2. Simulations of LJ12-6 systems

2.2.1. Boundary conditions to contain the system

In the simulation of homogeneous liquids the use of periodic boundary conditions
is accepted as being the best way of containing the system, and avoiding surface
effects. For inhomogeneous systems, such as liquid-vapour interfaces, the situation is

not so clear, and there are various ways in which boundary conditions can be applied.

Studies of the planar liquid-vapour interface usually employ a rectangular cell
that is periodic in at least the x and y directions, the plane in which the surface lies. If
the system 1is also made periodic in the z direction, then two interfaces are obtained, on
either side of a thin liquid film. Alternatively, hard or soft wall potentials may be

used at the z boundaries, to give just one interface, as was done by Chapela e al® .
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With spherical liquid-vapour interfaces, different boundary conditions again are
required. At very low temperatures it would be possible to simulate a totally free
system; the lack of any boundary constraints allowing particles to escape from the
cluster, and not return. However this would be a rare occurrence if the system were
cool enough, and so the clusters could be stable over long periods. Obviously, this
method is not suitable for our study, where we are interested in the higher

temperatures of the liquid state, as the drops would then evaporate too rapidly.
Let us consider three other possibilities to contain a liquid drop:

(i) Place the system in the usual type of cubic periodic boundary conditions, but simply
make the cell size much larger than the diameter of the cluster so that it is possible to

form a vapour region that separates the cluster from its periodic images.

(ii) Surround the system with a spherical wall of some nature, with the volume of this
container being much greater than that of the cluster. Thus particles may freely

evaporate from the cluster to form a vapour region between it and the wall.

(iii) Use a constraining potential (or wall) that tightly confines the system within a
spherical region. The volume of the container would be the same as that of the cluster,
so that no significant vapour phase can exist.

Initially we employed boundary conditions of type (ii), with a simple spherical
hard wall with a radius of about two or three times that of the cluster. However, it
was found that clusters would drift away from the center of the system at such a rate
that very long simulations of small systems could run into the problem of the drop
reaching the waHT. To avoid this, the radius of the wall could be increased, but this
increases the amount of vapour that has to be simulated, and also the time for the

system to reach equilibrium.

+ To minimize the drift, the linear momentum of each system was set to zero at the start of
any sunul 1tion, as was the angular momentum. This was the case with the hard wall containment,
as well as tffc periodic boundary conditions. Thus any drift was due to Brownian motion, rather
than the initial configuration.
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A wall closely confining the system, as in (iii), was not investigated as it prevents
any study of the liquid-gas interface, and may also introduce density oscillations near
the surface of the cluster®> (it would, however, have the advantage of reducing the
equilibration needed for the system). Instead, almost all the cluster simulations
reported in this work have been conducted in large periodic systems, as in (i). As long
as the cluster does not split into two, there is no problem with drift since it can not get
any closer to its periodic images. In such a system it is important that the cell size is
large enough to prevent significant interaction between the cluster and its images, so

the cell size must still be quite large.

Varnations on the methods mentioned above have been used by some workers in
this field. Thompson et @/, use a soft wall spherical container, as in (ii), though in
some runs they move the wall so as to keep the cluster at the center. Hesse-Brot et al’,
have recently published results for a Stockmayer system constrained by a soft wall, as

in (iii).
2.2.2. Cut-off in the LJ12-6 potential

As was explained in chapter one, it is common to truncate the usual LJ12-6
potential, ¢,,(r), at some separation r., partly because the periodic boundary
conditions limit the meaningful range of forces, and partly to save computer time. To

avoid a discontinuity in ¢(r) at r., a constant is added to give the so-called shifted

potential (sp),

¢(’):¢u(’)_¢u(’c) r=r.
=0 r>r, (2.1)
The value of r. is usually 2.5 or 3.00, and these forms of the LJ potential will be

referred to as sp2.5 and sp3 respectively.

This still leaves a discontinuity in the force, f(r) = dé/dr at r = r., and this
may effect the accuracy of the dynamics®. A constant term may be added to the force

for r<r., to eliminate this, and this is known as the shifted force potential. Typically
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the cut-off is set to 3.0c in this case, and this potential will be denoted sf3.

Though these modified forms of the potential may be considered as defining new
fluids in their own right, it is usual to correct the results back to the full LJ12-6, at
least for homogeneous simulations. Even in simulations of non-homogeneous systems
attempts have been made to correct for the truncation, as for example with the surface
tension calculation of Chapela et al®. Correction terms in the case of homogeneous
liquids are usually calculated on the assumption that the radial distribution function,
g (r), is unaffected by the truncation of the potential and that g(r) = 1 beyond r..

Thus the correction to internal energy for an sp{r, } fluid is?,

AU = %p [0y (r)dmr2dr 2.2)

A similar expression is obtained for the pressure correction. In the case of the sf3

form of the potential a slightly more complex correction is required!0.

However it is only possible to make such corrections to these simulation results
because the average force on a given particle, due to the fluid beyond r., is zero and
the most important source of fluctuating force comes from particles within r,. In the
case of a liquid-gas interface the contribution to the force on a molecule near the
surface, due to particles at distances greater than r., is clearly non-zero. The
magnitude of the long range part of the force may be estimated from a similar analysis
used to find AU, and at typical liquid densities Af ~0.8 for r. = 2.5. Such a force
will be directed into the liquid and must affect the resulting density profile obtained.
Work on the equations of state for these modified potentials has shown that there are

significant differences in the coexistence curves!!.

Due to these considerations, we chose to use an unusually long cut-off, with
r. =9 or 100 . This is feasible since the periodic cell size is very large, but it will of
course, increase the computer time required. In fact, due to numerical accuracy (most

calculations are in single precision ~ 7 decimal digits), the effective cut-off, at least in
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the liquid, may be more like 8c. The importance of the long range corrections (such
as eqn. (2.2)) vary as ~ 1/r3, so that our corrections will be abouts thirty times
smaller than those needed for the sp2.5 potential. Thus our results are effectively for

the full LJ potential, without making any corrections.

2.2.3. Integration Method

Various algorithms have been used to integrate the N coupled equations of

motion that arise in MD simulations,

r® = (Um)g.fij(rij) (i=1,N) (2.3)
where r(® is the accialeration, m the mass, and f;; the force between particles i and j.
They all depend on a stepwise integration, advancing the system by a time Ar over
each cycle. The well known method of Verlet!2, for example, calculates the next

positions of the particles from their current positions and forces, along with previous
positions,
r;(t+At) = —r;(t —At)+2r; (t)+(At)2Et}j/m (2.4)
itj
which is correct to order (At)?, so it is a third order method.

The particle velocities, r{!) are obtained from the equation,

r;(t+At)—r;(t—Ar)
2At
which is correct to order (Az)? .

M) = (2.5)

Though this method is well established, we chose to use a more recent method
employing a Gear!? predictor-corrector algorithm. This numerical scheme has been
used in a large number of simulations, though it has by no means replaced other
methods, such as Verlet’s, and the relative merits of each technique are still the subject

of debate.

In the prediction step of the Gear method a Taylor series is used to estimate the

new position and higher derivatives at the time (s +Ar), from the values at time ¢ only.
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For the fifth order Gear algorithm that we use, this is simply,

O+ Ar) = K@) + a0 + A2 10 )+ B0y + A o) 1 A

r(V(e+Ar) = r(l)(t)+Atr(2)(t)+ r(3)(t)+ r(4)(t)+ r(s)(t)

rO(e +Ar) = rO)r) (2.6)
The subscript p is used here to indicate the predicted values and the label for the i*
particle has been dropped. For the correction step of the Gear method, the actual
values of the second derivatives, which we denote as r{®(z +Ar), are evaluated from
the predicted positions, using eqn. (2.3). From these results we obtain the vector AA,
defined by,

Ar?
aa =22 [ Ot +Ar)—r (e +Ax)] @2.7)
If the prediction step had given the exact solution then this term would vanish. This
will not usually be the case, and so the size of this term is a measure of the error

incurred in the step. The Gear corrector is of the following form,

r(t+Ar) = £+ Ar) +a, AL 2.8)
where we have used the subscript ¢ to denote the corrected value. The terms a,
(n=0,5) are the Gear coefficients which depend on the orders of the differential
equation and the method being used. For a second order equation and a fifth order
algorithm these are,

{%%1%%%} 29
The detailed determination of these values is given in Gear’s book!3, where it is shown
that the requirements of a solution that will be both stable and accurate are fulfilled by
these values. Note that the particular coefficients given above are for a general second
order equation in which the first derivative may also appear explicitly. If, as is the

case with the LJ potential, r') is not present then it is possible achieve higher accuracy
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by changing the value of aj from 3/|29 to 3/8¢14. While this could be done for the LJ
20

simulations, the equations of angular re-orientation for Stockmayer molecules require

the morc general coefficients. Due to the numerical accuracy of the computations, the

advantage of such an increase in the order of the method will be very slight.

The Gear method has a number of potential advantages over other integration
schemes, such as that of Verlet. Firstly, it allows a higher order method to be used
and hence a more accurate solution should be obtained, at least when a sufficiently
small time step is used. The fact that we only require the derivatives at one point in
time (a multivalue method) means that a simple scaling operation is all that is required
to change the time step (a leapfrog algorithm usually requires interpolation when the
step is altered). Furthermore, the method is ‘self-starting’, in that it is not necessary to
calculate all the higher derivatives for the initial configuration; they may be set to zero
and a small value of Ar used for the first few steps. The time step can then be

increased when the higher derivatives have stabilized.

On the negative side, a fifth order Gear method requires significantly more
computer memory than Verlet’s scheme. This is not usually a problem with machines

that have large virtual memories, such as the ones used for this work.

Possibly more worrying is the fact that Verlet’s method is found to give smaller
energy fluctuations than higher order methods!3, at least for very long time steps e.g.
At ~ 0.1 (approximately 3x10 ™ sec. for argon). A time step of about half this

length was used in the LJ simulations.

It has been pointed out by Janzen and Leech!® that certain methods, such as that
of Verlet, have the property of conserving energy to very high accuracy, at least when
the time step is less than a certain critical value. In particular these methods give
energy conservation that is only limited by numerical round-off errors, when applied to
simple oscillator problems. The fifth order Gear method is not of this type, so it might

be expected that the energy conservation will be inferior to the Verlet method, for
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large Ar. Even when smaller time steps are used it is common to ‘renormalise’ the
velocities such that the total energy is kept constant. This is done every ten steps in
our simmulations. The factor by which the velocities have to be scaled is, of course,
very close to unity, but this procedure prevents any net drift building up during the
run. It may be shown in simple systems, such as the Morse oscillator problem used by
Janzen and Leech, that rescaling to keep the total energy constant gives a more

accurate solution, in addition to improving the energy conservation.

The conclusions of the two papers mentioned above suggest that fifth order
methods may not offer much advantage over third order ones, such as that of Verlet,
in MD simulations. However, many questions are still unanswered, such as just how
accurate trajectories need to be to measure a given property. This topic is of
fundamental significance to simulators, and undoubtably warrants much more

research.

2.2.4. The initial configuration

To generate an initial configuration for our system, we first performed a normal
homogeneous simulation, with the molecules starting from a face-centred cubic lattice.
Each particle was given a random velocity, chosen from a Boltzmann distribution. A
very short run was then performed on the system, at a high temperature, to ensure that
the structure was melted. A spherical region was then excised from the centre of this
sample, containing the number of molecules required for the drop simulation. The
density of the liquid was chosen to be close to the coexistence value for the desired
temperature of the drop, so that the sample would not be under excessive pressure

when placed on its own at the centre of the large periodic cell.

Both the linear and angular momentum of the newly formed cluster were set to
zero by making small changes in the velocity of each particle (however, the angular
momentum, at least within a given periodic cell, is not conserved with these boundary

conditions).
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2.2.5. Programming details
A complete listing of the programming used for simulating LJ drops is given in
the appendices. The language used is Fortran-77. Most of the coding is fairly

standard, and is based on an earlier version used by Dr. W.A.B.Evans for simulations

of homogeneous liquid systems.

The Gear method is implemented by three subroutines, with reasonably self-
explanatory names; PREDIC, to predict the values at the next step, FORCES, which
calculates the actual forces and CORREC, which applies the correction. By far the
most time consuming of these is the forces calculation, which has a loop over all pairs
of particles, giving N, (N, —1)/2 separate terms. Due to the very long cut-off employed
here and the inhomogeneous nature of the system, almost all of these pair interactions
must be evaluated explicitly at each step. This is why truncated forms of the potential
(e.g. sp2.5) can offer significant computational time savings in large systems, since
neighbour lists!2 may be utilised to vastly decrease the number of interactions that

have to be calculated.

The multiple time step technique of Street et a/l”7 could well have offered
significant time savings in the particular LJ simulations performed in this work.
However, this was not noted until most of the LJ simulations had been completed, at
which point the necessary modifications and testing to use it would not have been
economic. Furthermore, the multiple time step algorithm appears to be unsuitable for

use with angular dependent potentials such as the Stockmayer one.

Due to the very limited disk and tape storage space, all measurements were
performed during the course of the simulations, rather than saving velocity and
trajectory data for later analysis. The various averages are calculated in the subroutine
called DATA. The basic quantities calculated are the temperature of the system and
the distribution of particles within the periodic cell. The first of these is obtained

directly from the mean kinetic energy%.

T Note that due to the constraints on the linear and angular momentum in such a system, the
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The most convenient way of measuring the density distribution is via the density
profile, p(r), about the center of the drop. The assumption we make in this work is
that the drop is on average spherically symmetrical. The only checks that were made
for this involved visual inspection of the clusters on a graphics terminal. This serves
only as a very crude test, but it showed that no gross distortions were present. As long
as there is a reasonable separation between the periodic images, there is no reason to

expect a non-spherical average distribution of particles.

We measure p(r) by counting the number of particles within shells from radius r;
to r; 11, about the center of the drop. For simplicity, the shells are taken to be of
equal width, even though this gives a wide variation in the volume and expected
number of particles for each one. The ‘corners’ of the periodic box, the region
between the largest inscribed sphere and the boundaries, are treated as a whole and the

mean density within it measured.

2.2.6. Definition for the location of the cluster

It is important that the location of the center of the drop is known accurately
during the course of a simulation, if quantities such as p(r) are to be measured. Even
though the total linear momentum is set to zero at the start of each simulation, the

drop may drift by several molecular diameters during the course of a run.

The center of mass of all particles is a fair guide to the location of the cluster
center, but it is sensitive to the distribution of particles in the vapour. To avoid this, a
definition is required to decide which particles are actually in the cluster and which are
in the vapour. Then density profiles, etc., may be measured about the center of mass
of the cluster only. The definition of the cluster we use may be stated as follows: Any

two particles whose center-to-center separation is less than some value, R, , are said to

mean temperature, T, is related to the mean kinetic emergy, <KE>, by the equation
T = (2/3)[3N,/(3N,—6)]<KE> . This is only important for very small drops.
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be neighbours. All particles that may be connected by an unbroken chain of such
neighbours are said to be in the same cluster. A similar method was used by
Sioddard!®. While micro-clusters of two or three atoms may exist in the vapour there

should be only one large cluster, which is the liquid drop.

Appendix C gives details of the particular computational method used to
implement this definition in an economic manner during the course of the simulations.
The best value of R, is found to be about 1.9¢. This value proved adequate over the
range of temperatures studied in this work, but it is likely that a smaller value would
be necessary if states much closer to the critical point are simulated. This is due to the

increasing density of the vapour, which approaches that of the liquid.

2.3. Stockmayer systems

2.3.1. The Stockmayer potential

The Stockmayer potential is simply an LJ 12-6 potential with the addition of an
(ideal) dipole, located at the centre. On physical grounds this is a less realistic model
than the basic LJ one, which has proved a fair approximation for the heavier inert
gases. Permanent dipole moments are only found iii molecules composed of two or
more non-identical atoms, and higher order moments (quadrupole, octgpole etc.) are
usually quite significant. Hence the use of just one LJ site, coincident with the dipole,
is unrealistic. Additionally, the Stockmayer form ignores the polarizability of
molecules. Nevertheless, this is a relatively simple potential that offers a good ‘first

approximation’ to a real dielectric liquid, with long range dipolar interactions.
The reduced dipole moment is given by,

p' = w(ea?)? (2.10)
where reduction is w.r.t. the parameters used for the LJ part of the potential. As with

other reduced quantities, we shall drop the superscript, and use p for the reduced

moment.
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The interaction energy of two dipoles, w; and p,, is,

15N 1) (1) (pe'r2)
(bdd(rlvp’]’r%pfl) = 3 - 3 5 . (2’11)
ri2 ri2

using an obvious notation. The strength of the interaction varies as p?, rather than as
p, and the properties of the fluid will, of course, depend on the value chosen. Most of
our Stockmayer simulations were performed with p2 = 1, and we refer to this as the S/
potential. Rowlinson!® has calculated the effective Stockmayer parameters for a
number of organic polar molecules, using data on the second virial coefficients. A
value of p? =1 lies between that of chloromethane (CH;Cl, u?> ~ 1.7) and tri-
chloromethane (CHCI5, u?> ~ 0.3), according to his data. These values must be
treated with caution, since they derive from vapour phase results. For example,
Rowlinson found o = 0.336nm for CH3F, where as the best value for liquid
simulations of methane (a smaller molecule) is found to be?0 o = 0.388nm . The

reduced dipole moment is very sensitive to the reduction parameter o.

A few simulations have been made with p? = 3, which represents a very strongly
polar fluid, which we denote as the S3 potential. Rowlinson’s parameters give
fluoromethane a reduced moment of u?> ~ 3. The S1 and S3 potentials have been

widely used by other workers.

The force between two dipoles can be expressed in vector notation as,

(i) o (rar)(or) ¥y (por) (p11)

H2
5 77 73 3

bz =3 |r (2.12)

where Fy; is the force on 2 due to 1, and r = ry; = r,—r; . The torque is given by,

(pl.r)(:xQXr) _ (Mtl‘d) (2.13)

r r-

T2]=3

The Stockmayer potential is considered to represent a linear molecule, in so far as
it has non-zero moments of inertia about its x and y axes only, with the dipole

moment, p, along the z axis, so that,

o~
e}

(2.14)

o

I
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where I, = I, = I . Hence each molecule has only two degrees of rotational frecdom.

Using the same reduced units as for the LJ simulations (in particular, m = 48),
we chose the moment of inertia to be / =1 . Again it is difficult to compare this
value with the moments of real molecules due to the ambiguity in the choice of
reduction parameters. Nevertheless, this value is greater than that of a molecule such
as HQl, with any reasonable choice of € and o. Hesse-Bezot et al’ used a value of
1=1.56 in a recent Stockmayer simulation. The static properties of Stockmayer fluids
are, however, independent of the actual value of 7 used. Only dynamical properties
should be effected by the chosen value of inertia. It is desirable to avoid an
excessively small value of 7, since this increases the mean angular velocity at a given

temperature, so that smaller time steps are required.

2.3.2. Integration method for the Stockmayer potential

The translational forces due to the dipole moment can be treated by the same
algorithm used in the LJ simulations, just by adding the additional terms from
equation (2.12).

To include the orientations and torques that arise with the Stockmayer potential
requires the use of additional coordinates. Due to the symmetry of this molecule, it is
in fact only necessary to use a further two coordinates (such as the spherical polar
angles 6 and &) to fully specify the position and orientation of the dipole. For more
complex molecules that are not linear, at least three additional coordinates are needed
to completely define the orientation, such as the Euler angles (6,,0), as described by
Goldstein?!. In practice it is found to be convenient to use more coordinates than are

strictly necessary, for reasons discussed below.

Though Cheung and Powles’ have given a method for simulating linear
molecules, such as we have here, it was decided that a more recent generalization of

this technique (due to Evans?? ) should be used. This would allow the code to be
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easily adapted for non-linear molecules, if required.

While it is perfectly possible to accurately represent the orientation of a body in
terms of the three Euler angles (8,0,4), it is found that numerical integration schemes
based these angles are not satisfactory. These difficulties are due to singularities that
arise when one or more of the angles are undefined (see Evans, reference[22] ). The
alternative method given by Evans, actually uses a set of four coordinates, known as
quaternions, to describe the orientation of each molecule. In terms of the Euler angles
these four parameters are,

X = c0s8/2 cos((Y+d)/2)
1 = sin6/2 cos((Y—d)/2)
& = sin6/2 sin((Y—)/2)

{ = cos6/2 sin((Yy+d)/2) (2.15)
The fact that these are not independent is illustrated by the relation,

Thus the quaternions allow any given orientation of a solid body to be represented by

a vector in four-dimensional space, with unit magnitude.

Evans shows that these new coordinates avoid the singularities that are inherent in
the Euler angle representation, and that they may be simply related to physical
quantities. For example, the angular velocity vector (w,) in the principal coordinate
system (i.e. the coordinate system of the molecule, as opposed to the fixed laboratory

frame) is related to the quaternion derivatives by the equation,

g‘ _C -X M E Wy

al_1]x ¢ —€&€n]le

tlT2)E v ox ¢ m(,)’ii Wl ie)
X -m & -l x

which may be written in the more compact form,

= 1
0 = 1B, (2.17b)

with ®, made into a four component vector. It is also easy to obtain the rotation

matrix to transform from the laboratory frame to the principal coordinate system.
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Within the laboratory frame we have the basic equation of angular motion,

T= %(L) = ~%(h.,) (2.18)
where L is the angular momentum. This equation can be transformed into the
principal set of coordinates, but it must be remembered that the transformation matrix
is time dependent. This leads to the appearance of additional terms when the time
derivative of the angular momentum is taken. Thus the torque about the principal x

axis is,

dw,,
To = I a (I, — 1y )0,y 03, (2.19)

with similar expressions for the y and z torques. In the case of linear molecules with
I,, = I,, we can set w,, = 0 so that the second order terms in ® can be ignored. This

is not the case for more general polyatomic molecules, as was highlighted recently?3.

Hence, for the Stockmayer molecules we may write the equations of motion as,

do

3 = Tox/lpx (2.20)

with a similar expression for the y component and dw,,/dr = 0.

The two coupled first order differential equations, (2.17) and (2.20), may be
integrated directly, but it is more convenient to combine them into a single second

order equation, as was done by Powles e a?4. The result of doing this is,

i
0 =2B| PP 2.21)

—2l0|?
where |Q |2 = 2 +&+72+L.
This second order differential equation may be solved by the same type of Gear
algorithm that is used for the translational motion, but it is now necessary to choose

coefficients that cater for the appearance of Q in the expression for Q As was

pointed out earlier, this is easily allowed for in the choice of Gear coefficients.
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A more detailed discussion of the use of quaternions with a second order equation

is givea by Allen?s.

2.3.3. Cut-off for the Stockmayer potential

In the case of the Stockmayer potentials we have again employed a simple cut-off
at r. = 10o. For the LJ part of the interaction this may be justified, as before, by the
fact that ¢, (r) is almost negligible at the radius of r., since it varies as r ~© at large r.
The dipolar part of the interaction potential, on the other hand, only decreases as ~

3

r~°. Thus there will be a more significant jump in the potential for two atoms at this

separation, though it is still quite small for r. = 10 (and dependent on orientation).

As the drop diameter is generally less than 100, the vast majority of liquid-liquid
interactions will be fully accounted for. The main effect of the cut-off is on the forces
between the particles in the vapour and others in the drop or the vapour. Since the
vapour density is always quite low, the numbers involved will be small. Furthermore,
the dielectric constant of the vapour is, in any case, very close to unity, so there is no
need for special treatment of the interactions with dipoles beyond the cut-off length, as
is the case for homogeneous simulations, i.e. despite the periodic boundary conditions,
the diop appears to be surrcunded by a vapour region with a dielectric constant € = 1,

beyond which is an effective vacuum.

2.3.4. Programming details

The programme used for the Stockmayer drops is a modified version of the LJ
programme, and a listing is given in the appendices. While the prediction and
correction steps use the quaternions, plus their derivatives, to represent dipole
orientation and motion, the more comprehensible direction cosines and angular
velocities are also calculated from these, for use in the FORTOR and DATA

subroutines.
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The initial configurations were generated in the same way as the LJ ones, except
that random orientations and angular velocities have to be generated at the start. The
total linear and angular momentum of the initial configuration was set to zero before
each run. Though the angular momentum is not conserved, at least within a given

periodic cell, it was thought best to ensure there was no net rotation to start with.

In most of the Stockmayer simulations a timestep of Ar = 0.05 has been used,
which is the same as the value used for the LJ runs. This is quite large considering the
moment of inertia of the particles. From equipartition, the RMS rotational velocity is
given by 2kT = 2I<|w|?>, with k and I both unity in this case. A typical
temperature of T ~ 0.8 then gives <|w|?>'2 = 1.5, which corresponds to a

reorientation of about 0.06 radians, or 3.5 degrees, per integration step with
Ar = 0.05.

As a check on the adequacy of our value of Az, a few runs were performed with a
step length of Ar = 0.025 instead. No significant difference was observed in the data
obtained with the shorter step length. Since these simulations are very time
consuming, and require quite long equilibration periods, it was felt that a reasonably
large step size should be employed. Our value of Ar is about 50% greater than the
value used by Hesse-Bezot et a/’ in a recently published study of Stockmayer systems.
They also had a slightly larger moment of inertia, but their state points were at higher
temperatures. A few of the Stockmayer runs in this work have been performed with

Ar = 0.04 instead of 0.05, when higher temperatures were required.

As with the LJ simulations, the total energy was kept constant by rescaling the
total kinetic energy every ten steps. The values were again very close to unity, and

indicated a drift of the order of 2% per 10000 steps.
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Chapter Three: Stability and structure of LJ and Stockmayer drops

3.1. Introduction

This chapter presents the results obtained for the size, shape and stability of the
series of LJ and Stockmayer drops that have been studied. The approach of these
systems to liquid-vapour equilibrium is first discussed (section (3.2)), since an
adequate portion of each run must first be discarded before meaningful averages can
be obtained. We then describe the range of drop size and temperature over which
simulations have been performed, and present the basic data obtained, i.e. density
profiles, pressures etc. In the final section some discussion of these results is given

along with an estimate of the uncertainty in the data.

3.2. Equilibration

The equilibration period required in these simulations is clearly greater than that
needed in more usual ones (e.g. of homogeneous liquid), due to the larger size of the
periodic cell. For example, assuming a reduced temperature of unity, a particle with
the RMS velocity would take ~1500 time steps to travel from one drop to its nearest
neighbour image (assuming no other interactions occur). This is a lower bound on the
initialization period, and it is likely that a rather longer time will be necessary in

practice.

To study the evolution from a cluster in vacuum to one in equilibrium with its
vapour we can observe the cluster size as a function of time. The definition used for
N, has been discussed in the previous chapter. In figure (3.1a) the variation of the
cluster size with time is shown for a typical system. These results are for an Sl
simulation with N, = 260, a total energy per particle of E = —2.0 and a cell size of

S = 200, state (DI)T. The run extends over almost 25000 time steps of Ar = 0.05,

T This is just a reference number to help identify the particular run in the tables that are
presented later. The letter ‘D’ indicates dipolar systems, while LJ states will be labelled L1, L2..
etc.

28



250

248

23¢

2208

2101

(a)

0.9

2.8 1

B.7

e.5

(4]

- . T P
oeee 1aeet 15eee 2e@ee

time steps

Figure 3. 1: (a) The number of particles within the cluster against time
(in units of the simulation integration time step. At=0.05). These
results are for state (D1). a Stockmayer St drop. with Np=260 and
7=0.79.

(b) The mean temperature of the above system as a function of time.

given by subaverages of the total kinetic energy over intervats of 1000
time steps

250e¢



30

starting from an initial configuration obtained from an homogeneous simulation (see

chapter two).

The mean temperature of the system may also be used as a guide to the approach
to equilibrium. However, in MD simulations the temperature can only be obtained
from the time average of the kinetic energy, the instantaneous value of which is
subject to large fluctuations. Nevertheless, subaverages can be made to estimate the
temperature over small portions of the run. Values of T obtained by averaging over

periods of 1000 steps are plotted in figure (3.1b), again for state (D1).

Comparing figures (3.1a) and (3.1b) it can be seen that there is some correlation
between them, as might be expected since evaporation of particles from the cluster
leads to a reduction in the kinetic energy of the system. It can be seen that the
greatest part of the change in N, occurs in the first ~2000 steps of the run, in
agreement with the rough estimate made above. After about 3000 steps the cluster
size is within the band 216 < N, <230, and it fluctuates within these approximate

limits for the remainder of the run.

The behaviour of the temperature during the run also suggests that a minimum of
~3000 equilibration steps are required for this system. Similar results to these are
observed in the other simulations, for both Stockmayer and LJ drops. In very large
systems the cluster size takes slightly longer to ‘level-out’, but the increased number of
particles within the drop means that variations in quantities, such as the sub-averages
of the temperature, are much less. In such cases it is likely that the central cluster is
very close to its equilibrium state after a few thousand time steps, but that the gas

density in the furthest corners of the periodic cell may take longer to reach its true

equilibrium value.

In view of the above observations a minimum equilibration period of 3000 steps
was generally adopted for these simulations. However, the results of each run were

inspected individually and, if it was felt that the initialization period was inadequate,




31

sufficient data was recorded to allow averages to be made over smaller parts of the
run. For example, the averages could be calculated from only the last 6000 steps of a

run of, say, 13000 steps, if required.

After equilibration, systems were usually run for at least 10000 further integration
steps to obtain data. As is apparent in figures (3.1a,b) the fluctuations in 7 , N, etc.
take place over long periods, and hence we need to average over many steps. With
very big drops (N, ~1000), it was not usually possible to use 10000 steps due to the
high cost in computing time, and shorter runs were sometimes made. Thompson et all,
in their recent study of LJ (sp2.5) drops, have used extremely long MD simulations of
between 16000 and 350000 time steps. However their main concern is the calculation

of the pressure tensor, and this appears to require such enormous runs.

To test the adequacy of using 10000 steps, the measured properties obtained from
two consecutive runs of this length can be compared. This has been done for the data

for the run shown in figures (3.1a,b) and the findings are given in table (3.1).

Table 3.1
Run T N, P Pg Ry D
First 0.793 222.5 0.855 0.0052 3.83 1.62
Second 0.785 222.8 0.849 0.0050 3.83 1.71

Table 3.1: A comparison of averages over the first and second 10000 step
periods of run (D1).
The temperatures measured in the two segments differ by about 1%, which is
acceptable, considering the small number of particles and inhomogeneous nature of the
system. The mean cluster sizes are almost identical, while the densities and virial
pressure values are not in quite such good agreement, but they have larger

uncertainties (which we estimate later).
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3.3. States studied and their properties.

3.3.1. Range of state points

The upper bound on temperatures at which free drops may be observed is T, the
critical temperature of the fluid. For the full LJ 12-6 potential it is found that 7, lies
within the range 1.30 - 1.35 (e.g. see Nicolas? or Adams3 ). Hence, with the almost
complete LJ interaction used in our simulations, we must have 7 < ~1.3 . In practice
it was found to be difficult to obtain drops at temperatures above T ~1.0, and the most
energetic LJ state we ran had T=1.05. This significantly lower limitation is imposed
by the finite number of particles that can be used and the requirement that the cell
size, S, remains ‘sufficiently large’. As the temperature of a drop is increased the
density in the surrounding gas also increases very rapidly. Due to the very large
volume of the cell, the proportion of particles within the gas phase rises sharply, so
that the drop can evaporate well before 7. is reached. To obtain states at higher
temperature it would be necessary to either reduce the size of the periodic cell (but this
may lead to interactions between images, which is very undesirable), or increase the

number of particles in the simulation (which requires more computing time).

The Stockmayer fluids (S1 and S3) have not been studied in as great a detail as
has the LJ fluid. However, some data is available and Powles* has analysed this, in
conjunction with some basic perturbation theory, to allow the coexistence curve to be
predicted for the S1 fluid, and estimates made of its critical parameters. He finds that
T.=1.45 in this case. The highest temperature S1 system we have used is at T ~0.95,
despite the increase in T, over the LJ value. This is partly due to the fact that slightly
larger periodic cells were used to ensure the isolation of images in the presence of

long-ranged dipole-dipole interactions.

We are not aware of any estimates of the critical parameters for the S3 fluid, but

the value of T, will be greater than 1.45. The S3 drops used in this work were
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simulated at temperaturesof T ~ 1.2 - 1.25 .

At the other extreme of very low temperatures, there is no real difficulty in
obtaining clusters in equilibrium with surrounding gas. However we are mainly
interested in the properties of liquid systems and the liquid-vapour interface, rather
than solids and the solid-vapour interface, so that most state points simulated had
temperatures above the triple point value, T,, for the fluid. For the LJ potential it is
known that’, T, = 0.68, while the value for S1 and S3 fluids is less well known.
Powles® suggests the value of T, ~ 0.77 for the S1 fluid. Nevertheless, we have
performed some runs for T < T,, but they are not very far below it, and are mainly
small clusters. It has been shown by McGinty’ that a sharp liquid-solid phase
transition does not occur in very small clusters. His work was performed with LJ
clusters of between 30 and 100 particles. By measuring the diffusion constant in the
center of these clusters the transition from liquid to solid state can be detected. It is
found that drops of ~100 particles remain essentially fluid down to 7=0.6 or so.
When the transition does occur it is a gradual one. In their work on drops of ~256
particles, Rusanov and Brodskaya® find that the solid liquid transition may not occur
until 7 ~0.32 (sp3 potential).

The diffusion constant was not calculated in our simulations, though it is observed
that the central densities obtained are generally closer to the coexisting liquid values
than to the density of the solid phase. It seems unlikely that any of the drops we
simulated would have had a solid core, though further investigation of the melting

transition in large clusters may be warranted

Within the above temperature ranges a series of states have been studied for the
LJ and S1 potentials, along with two S3 states. Tables (3.2a) and (3.2b) give details
of the important parameters used for each system; the total energy, cell size, number
of particles and the length of the run. The majority of runs are of 260 or 450

particles, larger systems proving to be very expensive in computer time. The few very
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small systems studied (N, = 60 - 100) were only stable at low temperatures.

Table 3.2a
Run Run parameters Length of run
no. N, S E Init. Prod.
(L1) 60 17.0 -1.0 10000 40000
(L2) 100 17.0 -1.0 10000 40000
(L3) 100 17.0 -0.5 10000 40000
(1L4) 260 18.0 -2.0 3000 20000
(LS) 260 18.0 -1.1 3000 20000
(L6) 260 24.0 -2.0 20000 12000
(L7) 260 24.0 -1.3 15000 20000
(L8) 260 24.0 -1.0 10000 10000
(L9) 260 24.0 -0.6 10000 25000
(L10) 320 18.0 -2.4 3000 20000
(L11) 320 18.0 -2.0 3000 10000
(L12) 320 18.0 -1.2 3000 10000
(L13) 320 18.0 -1.0 3000 10000

Table 3.2a: The details of the LJ systems that have been studied with
between 60 and 320 molecules. N, is the number of molecules, S is the side
length for the periodic cell and E is the set total energy per particle. The
final two entries are the run lengths, in time steps of 0.05.

A range of cell sizes have been used in the search for a satisfactory compromise
between ensuring that periodic images are isolated from each other and keeping the

equilibration time down. The results are discussed later.

3.3.2. Properties of LJ drops

A typical LJ drop density profile, p(r), is shown in fig. (3.2a) for the state (L21).
This is a 450 particle system with E = —1.0, and a periodic cell size of S/o = 20 .
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Table 3.2a (continued)

Run Run parameters Length of run

no. N, S E Init. Prod.
(L14) 450 16.0 -0.2 6000 8000
(L15) 450 18.0 -2.8 3000 10000
(L16) 450 18.0 -2.0 4000 18000
(L17) 450 18.0 -1.0 4000 10000
(L18) 450 20.0 -3.1 3000 12000
(L19) 450 20.0 -2.8 3000 10000
(L20) 450 20.0 -2.0 4000 12000
(L21) 450 20.0 -1.0 3000 10000
(L22) 450 20.0 -0.5 2000 10000
(L23) 450 20.0 -0.3 2500 10000
(L24) 450 20.0 0.0 3000 5000
(L25) 800 17.5 -0.8 2000 8000
(L26) 1300 25.0 -3.7 4000 5000
(L27) 1300 25.0 -2.5 2000 5000
(L28) 1300 23.0 -0.8 2000 4000

Table 3.2a (Cont.): Data on the LJ states that used between 450 and 1300
particles. Column entries as before.
The temperature of this system was found to be T = 0.86 with the average number of
particles within the cluster N, = 303 . The general appearance of the liquid-vapour
interface is qualitatively similar to that obtained in other studies, such as that for the
planar interface®. The increasing fluctuations in p(r) as r -0 are due to the decrease in
shell volumes (the width of shells is kept constant). For a planar interface the

coexisting liquid density at this temperature is* p, = 0.78 and p(r) is very close to this
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Table 3.2b

Run Run parameters Length of run
no. N, S E Ar u? Init. prod.
(D1) 260 20.0 -2.0 0.050 1 4000 20000
(D2) 260 20.0 -1.0 0.050 1 2000 5000
(D3) 260 24.0 2.0 0.025 1 10000 16640
(D4) 260 24.0 -1.0 0.025 1 7000 6400
(DS) 450 18.0 -1.0 0.050 1 2000 10000
(D6) 450 24.0 -3.0 0.050 1 2500 15000
(D7) 450 24.0 -2.0 0.050 1 10000 20500
(D8) 450 24.0 -1.5 0.040 1 2500 5000
(D9) 450 24.0 -0.4 0.050 1 2000 10000
(D10) 800 27.0 -3.1 0.050 1 2000 5000
(D11) 900 27.0 -3.0 0.050 1 3000 3000
(D12) 900 27.0 -1.5 0.040 1 3000 11900
(D13) 450 24.0 -2.6 0.040 3 5000 20000
(D14) 450 24.0 -1.6 0.040 3 10000 22000

Table 3.2b: Details of all the Stockmayer states simulated in this work.
Parameters are as for table (3.2a), plus the time step, As, and the squared
dipole moment, p2.

value for r <2.50. A more complete analysis of the liquid densities obtained will be

made in chapter four.

The surface region, where p changes rapidly with r, has a width of ~2-30 . Due
to the spherical geometry a large proportion of the particles lie within this region of
varying density. Beyond the surface region the density profile levels off to a gas
density of p, = 0.022 for r greater than ~ 7o. This compares with a coexistence

vapour density of p, = 0.0086 for planar surfaces. This diserepaney is due to the

difference
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surface tension and will also be treated in more detail in chapter four.

Also shown in fig. (3.2a) is a hyperbolic tangent of the form,

p(r) = A—Btanh(2(r —R,)/D) 3.1)
This curve has been fitted to the data by a least squares method. Each data point was
given a weight proportional to the square root of the number of particles found within
that shell. This gives a good fit in the surface and dense liquid regions, where there
are many particles. Such a choice of weights is quite arbitrary, and may not be the
best choice. The use of equal width shells leads to great variations in the mean
number of particles within each one, so it is clearly unsatisfactory to give all the p

values the same weight.

Due to the large fluctuations in the density at small r, the estimate of the liquid
densityT, p; = A+B, is adopted as the most convenient way of obtaining p;. The
estimate of the gas density, p, = A—B, on the other hand, is not very reliable with
the given weighting, particularly when p, is very small. Rather than use another set of
weights, p, was measured directly from the p(r) data. Figure (3.2b) shows the same
data as (3.2a), but on a larger scale to show the profile within the gas. It can be seen

that the tanh curve slightly under estimates the gas density in this case.

Table (3.3a) presents a summary of the temperature and cluster size data for all
the LJ simulations. The virial pressure, as measured over the entire periodic cell, is
also given for some of the states, along with the R, and D parameters for the fitted

tanh curves. In addition, the best estimates of p; and p, are included.

Graphs of the density profiles, and the corresponding tanh fits, are shown for a
selection of states in figs. (3.3) to (3.8). The first of these represents a drop of only
~42 particles (state L1) and it can be seen that is virtually no ‘bulk’ liquid inside the

surface region. At the other extreme is the drop in fig. (3.8) (state 1.26), with

t At r=0 the tanh(..) term in (3.1) is virtually -1.
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Table 3.3a

Run T N, P Pg P R, D

(L1) 0.625 42 - 0.0037 0.832 2.14 1.18
(L2) 0.654 67 - 0.0072 0.834 2.49 1.53
(L3) 0.713 56 - 0.0094 0.847 2.29 1.56
(14) 0.726 219 - 0.0080 0.834 3.80 1.77
(LS) 0.805 183 - 0.0150 0.801 3.54 1.99
(L6) 0.643 197 - 0.0047 0.860 3.68 1.57
(L7) 0.694 168 - 0.0068 0.838 3.48 1.64
(L8) 0.760 158 - 0.0077 0.831 3.47 1.86
(L9) 0.715 132 - 0.0091 0.818 3.19 1.80
(L10) 0.717 286 - 0.0085 0.841 4.19 1.72
(L11) 0.747 268 - 0.0110 0.839 4.04 2.00
(L12) 0.802 238 - 0.0170 0.796 3.88 2.5
(L13) 0.813 222 - 0.0200 0.787 3.76 2.15

Table 3.3a: Results for the LJ systems of between 60 and 320 particles. T is

the temperature and N, is the mean number of particles within the cluster.

p; and p, are the hquld and vapour densities respectively, D is the surface

width and R;, the half radius of the drop.
N. = 1250 and a radius in excess of 7. There is a substantial central region of liquid
at close to the coexistence density for this temperature. The other figures show a range
of drops of various temperatures and sizes between these extremes. Most work has

been performed with 450 particle simulations which have a significant central region at

liquid densities, while not being too expensive in terms of computer time.

The relationship between the final temperature and the preset total energy, E

2

was found to be approximately linear for a given number of particles and periodic cell

size. This is illustrated in fig. (3.9) for N, = 450, S/o = 20 states. Deviations from
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Table 3.3a (continued)

Run T N, P Pg P R, D
(L14) 0.989 325 .039 0.0630 0.664 3.80 3.44
(L15) 0.721 422 - 0.0065 0.840 4.80 1.79
(L16) 0.811 392 - 0.0140 0.812 4.62 2.16
(L17) 0.888 329 - 0.0280 0.762 4.29 2.45
(L18) 0.676 425 .0023 0.0034 0.860 4.82 1.68
(L19) 0.706 414 - 0.0050 0.840 4.79 1.65
(L20) 0.788 377 - 0.0110 0.814 4.62 2.06
(L21) 0.856 303 - 0.0220 0.782 4.21 2.24
(L22) 0.908 278 - 0.0250 0.741 4.03 2.25
(L23) 0.949 252 .0247 0.0300 0.749 3.84 2.55
(L24) 0.900 215 .023 0.0350 0.764 3.25 3.07
(L25) 1.056 690 .042 0.0600 0.679 5.30 4.10
(L26) 0.688 1265 - 0.0028 0.856 7.02 1.74
(L27) 0.838 1162 - 0.0140 0.796 6.86 2.26
(L28) 1.033 1063 - 0.0340 0.700 6.57 3.49

Table 3.3a (Cont.): Results for LJ systems of 450 to 1300 particles. Column
entries as before.
linearity occur as E- 0, and it was generally found that clusters become unstable for
E = 0. Systems run with £=0 were found to slowly evaporate, without any sign of
reaching equilibrium and the results of one such state, (L24), are included in the

tables, though the values obtained are not expected to be dependable.

Fig. (3.10) shows how the cluster size, N,, depends on E for the same series of
N, =450, S/o = 20 systems. As E- 0 it can be seen that N, begins to decline quite

rapidly as more and more particles are lost to the vapour. Also shown in the figure are
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values of an alternative cluster size definition, which we call N,,. This is just the
number of particles that lie within the radius R, , and it can be seen that N, declines
faster than N, as E-0. In fact both N, and N, are fairly aibitrary definitions, but the
latter is more useful to locate the drop during computations. N, has the advantage
that it is clearly defined even when the density of surrounding vapour is approaching
that of the liquid (7-7.). The definition of N, will fail in such cases, unless the
nearest neighbour criteria, R, (see chap. two), is chosen very carefully. N, declines
less rapidly than N, because some ‘vapour particles’ are included in the former
method. It must be said though, that the number of ‘vapour’ particles counted as
belonging to the cluster is quite small for all our simulations (since p;>>p,) and the

location of the center of the cluster is not impaired.

3.3.3. Properties of Stockmayer drops.

The density profiles obtained for S1 and S3 systems are very similar to the LJ
ones, with the density decreasing monotonically from the liquid to the vapour.
However, with similar temperature and size of cluster the Stockmayer potentials give
lower p, and higher p; than observed with the LJ potential. This is as would be

expected from the shifts in 7. and 7,.

Density profiles for a few typical S1 drops are shown in figures (3.11) - (3.14),
and an S3 result is given in (3.15), along with the fitted hyperbolic tangents. The

measured parameters of these states and others are listed in tables (3.3b) and (3.3c¢).

In addition to the average temperature of the whole system, the separate
rotational (7,) and translational (7,) contributions are listed. It can be seen that the
two components differ by up to 2% in some cases. This is believed to be due to the
random fluctuations within the system, and it is independent of the time step used to

integrate the equations of motion.
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Figure 3. 12: As for fig. (3. 11). but for the state (D6). with Np=450
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Table 3.3b

Run T T, T, N. P Uy Uy

(D1) | 0.790 | 0.797 | 0.781 | 223 | 0.0037 | -0.74 | -3.23
(D2) 0.839 | 0.83 | 0842 | 189 | 0.0078 | -0.57 | -2.52
(D3) 0.751 | 0.749 | 0.754 | 210 | 0.0029 | -0.72 | -3.15
(D4) 0.835 | 0.825 | 0.850 | 177 | 0.0058 | 057 | -2.51
(DS) 0.948 | 0946 | 0950 | 366 | 0.0160 | -0.59 | -2.79
(D6) 0.734 | 0729 | 0742 | 407 | 0.0025 | -0.88 | -3.96
(D7) 0.809 | 0.807 | 0.812 | 367 | 0.0048 | -0.70 | -3.30
(D8) 0.869 | 0.876 | 0858 | 359 | 0.0060 | -0.65 | -3.03
(D9) 0.944 | 0933 | 095 | 288 | 0.0119 | -0.49 | -2.28
(DI10) | 0.744 | 0.740 | 0.749 | 715 | 0.0024 | -0.88 | -4.08
(D11) | 0.820 | 0.818 | 0823 | 872 | 0.0028 | -0.89 | -4.24
(D12) | 0913 | 0906 | 0925 | 710 | 0.0105 | -0.65 | -3.16
(D13) | 1203 | 1.195 | 1.214 | 348 | 0.0094 | -2.97 | -2.63
(D14) | 1.251 | 1252 | 1249 | 312 | 0.0117 | -2.54 | -2.18

Table 3.3b: Thermodynamic results for the Stockmayer drops. T, T, and 7,

are the mean, translational and rotational temperatures respectively. N, is

the cluster size and P is the virial pressure of the whole system. U,; and

Uz, are the potential energy contributions due to the LJ and dipole-dipole

interactions.

To observe the fluctuations in the two components of T, the subaverages of 7,
and 7, can be calculated and this has been done for state (D7), see fig. (3.16). The
subaverages are over intervals of 500 time steps, so there is a large amount of noise.

No particular bias in the distribution of kinetic energy between modes can be observed.

The statistical uncertainties in the averages are dealt with in section (3.4.1).

The tables of results also give the separate contributions to the internal energy

due to dipolar (U, ) and LJ (U,;) interactions. For the S1 potential Uy, is the larger
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Figure 3.16: The separate rotational (Trot' dashed line) and the
transiationat (TtranS' solid line) temperatures. as measured for a
Stockmayer drop. state (D7), Np=450 and T=0.81. The values

shown are averages over periods of 5Q0 time steps during the course of
the simutfation.
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Table 3.3c
Run Py P R, D
(D1) 0.0053 0.855 3.83 1.62
(D2) 0.0100 0.838 3.60 1.81
(D3) 0.0036 0.875 3.76 1.46
(D4) 0.0060 0.845 3.57 1.54
(DS) 0.0180 0.808 4.49 2.36
(D6) 0.0037 0.879 4.72 1.52
(D7) 0.0062 0.850 4.57 1.76
(D8) 0.0083 0.825 4.55 1.96
(D9) 0.0125 0.819 4.15 1.99
(D10) 0.0048 0.866 5.74 1.62
(D11) 0.0026 0.847 6.13 1.81
(D12) 0.0110 0.812 5.77 2.10
(D13) 0.0083 0.828 4.48 2.05
(D14) 0.0101 0.797 4.30 2.24

Table 3.3c: Results for the density profiles of the Stockmayer drops.

Columns as in table (3.3a).

term, and Uy, represents only ~18% of the total internal energy. A similar ratio is

found in homogeneous liquid results!?. For the S3 states the Uy, contribution

accounts for ~55% of the total, which underlines the fact that the S3 fluid is much

more polar than the S1 fluid.

As for the LJ states, an approximately linear relationship is found between the

total energy £ and T, as is shown in fig. (3.17) for a series of states (N,

S =24).

= 450,
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Figure 8. 17: The mean temperature of the S1 systems, with N, =450

and § =24, as a function of the set total energy per mofecule.
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3.4. Accuracy of results

The usual method of estimating the statistical uncertainty in computer simulations
is from the inspection of subaverages calculated within a given run!l. Taking the
system temperature, for example, the standard deviation (s.d.) of the mean can be

estimated from the equation,

(uT) = | 2@ ~TY1 (k—l))}m (32)
where {7} are the subaverages of the temperature, each measured over a fixed period
of L, steps (as in fig. (3.16), where L, = 500 ). An important condition on this is
that the subaverages must be independent, i.e. L; is large enough to ensure that there
is no correlation between values of T, 12. As is indicated by figures (3.1a) and (3.1b),
the fluctuations in T can occur over long periods of time due to the large cell size. To
investigate the dependence of (A]—‘ ) on the length of subaverages, eqn. (3.2) was used
with a range of L, values. Taking, for example, data from state (D14) it was found
that the s.d. of the mean increased with L, , up until L, ~2000 steps. Above this (AY_" )
is insensitive to L;, and hence L, =2000 should give a fair estimate of the statistical
error. For this particular run (N, = 450, 22000 steps) it was found that (A]_' ) =
+0.005 . Similar values were found for other systems of comparable size and length
of run. With N = 260 the uncertainty was estimated as (Af ) = *0.01, again for a
run of ~20000 steps. For the larger systems the increased number of particles is off-
set by rather shorter runs, so that (Af) ~ =0.01 for state (D12) (N, = 900, 11900

steps) for example.

Thus statistical fluctuations give rise to uncertainties of the order of =0.01 in the
temperature for the longer simulations. Since the s.d. of the mean is roughly inversely
proportional to the square root of the length of the run, the errors may be of the order
of =0.02 for the temperature, when less than ~10000 steps have been used. If the

rotational and translational components of the temperature in the dipolar simulations
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are assumed to fluctuate in the same way, then the uncertainty in each one will be

greater than that in the mean T by factors of ~1.6 and ~1.3 respectively.

The above estimates are, of course, only based on the statistical fluctuations
observed during the simulations. There may also be non-random sources of error.
The most obvious possibility is that a system has not reached complete equilibrium in
the allotted initialization time. Due to limitations in the computer time available,
some of the larger drops were run for fewer steps than would have been used

otherwise.

In addition to the uncertainty in the temperature of each system, all the other
quantities that are obtained as time averages are subject to some statistical error. The
virial pressures that are calculated in many simulations appear accurate to within =5%

in longer runs, and perhaps +=10% in the others.

It was noted in fitting the p(r) curve that the uncertainty in each value of the
density profile is proportional to the square root of the number of particles counted.
However, since p(r) is computed at each step in the simulation, the samples are not
independent and we have the same difficulty in estimating (Ap(r)) as for (A]_" ).
Instead of trying to estimate the error for each value of p(r) it is more useful and
convenient to estimate the uncertainties in the fitted parameters p;, p, , R, and D. By
observing the variations in these parameters that are obtained during the course of a
run, and the quality of the fit, an idea of the reliability may be found. In very small
systems at low temperatures, like state (L1) with N, = 42, the value of p(r) is very
poorly defined in the liquid and the error in the fitted value may be =10%. In more
realistically sized systems (N,=260), the increased liquid region allows more
confidence to be placed in the fitted value of p;, and the uncertainty is of the order

+1% - =2%, depending on the length of run and number of particles used.

The gas density estimate obtained from the tanh fit is not reliable, for reasons

that have already been elaborated, and this value was taken directly from p(r) at large
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r. Due to the low number of particles in this region the values of p, are not much

better than +10% in general.

The radius of the drops, R,, can be obtained to within *1%, since it is
determined by the surface region of the drop, where the statistics are good. By
contrast the surface width, D, is not so well defined. The reason for this may be that
small changes in the parameter D can be partly compensated for by variations in p;
and p, such that the tanh curve still fits the (more heavily weighted) central portion of

the data quite well. The estimated uncertainty is typically 5% for values of D.

In summary, it appears that the fluctuations inherent in these inhomogeneous
drop-vapour systems leads to greater uncertainties than would be found in the more
usual homogeneous simulations. It would have been desirable to have made longer

runs on some of our drops to improve the accuracy of the data, had the extra computer

time been available.

3.5. Discussion

Falls et a/'3 have calculated the density profile of drops of varying size by means
of density gradient theory. The model used is based on the LJ fluid, but a number of
approximations are made, such as replacing the 12-6 form of the potential by a
Gaussian expression and using the van der Waals equation of state. This prevents any
quantitative comparison being made with our simulation results. Qualitatively, their
results are similar to ours, with p(r) profiles that appear to be of tanh form. Further

comparisons of our results with this paper will be made in chapters four and five.

Several references have already been made to the simulations of Thompson ez al
who have also studied liquid drops. Again it is not possible to directly compare our
results because Thompson et al have used the LJ sp2.5 model, while we chose to use

the virtually complete LJ potential. Nevertheless, their profile results are qualitatively

similar to ours.
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One way to make a more quantitative comparison between these results is to use
the theory of corresponding states, whereby all quantities are reduced with respect to
the critical parameters (thus we use p’' =p/p., T' =T/T, and P' = P/P. where
T, = 1.35 for full LJ and 1.119 for sp2.5, etc.). However, if the corresponding states
principle is valid, the coexistence curves of the two fluids should be very similar to
each other when plotted in these units. This can be checked quite easily, using the
data of Powles* and doing so reveals that the agreement is not very good, especially in

the liquid region well below 7., where the reduced densities differ by ~16%.

Table (3.4) compares the data obtained for one of our simulations with that of a
similarly sized state from Thompson ez al ’s paper. Both runs have the same value of
T' =T/T,, and the enclosing volumes are very nearly identical, though the shape of
the containers differs. The agreement is not very good, as would be expected from the
difference between the equations of state. This emphasizes the fact that using a
truncated potential in an inhomogeneous system alters the state in a way that makes it

very difficult, if not impossible, to ‘correct’ results back to those for the full potential.

Table 3.4

Run T T/Tc Nc Rh D (Y] .Qg pl/pc pg /pc

(L21) | .856 .634 | 303 | 422 | 2.24 | 856 | .022 | 2.45 .063
Th 71 634 | 321 | 4.43 | 2.50 | .764 | .024 1.87 .059

Table 3.4: A comparison of data from state (L21) with results due to
Thompson ef al (denoted as “Th.”).

We note that the addition of dipolar interactions does not change the general
form of the drop profiles, though the actual densities and widths are different due to

the different equations of state.

The virial pressure has also been evaluated in a number of the drops studied.

The meaning of this quantity in an inhomogeneous system is far from clear. For
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example, Powles er al'* have shown that it is not possible to find the pressure within a
drop by measurements of the virial for just molecules within the central (liquid)
region. It is thought that the virial for the whole periodic cell, which we have
measured here, may give the vapour pressure outside the drop. A simple comparison
of pT with P (i.e. assuming perfect gas behaviour) gives a ratio that is usually within
20 or 30% of unity, though rather worse in a few cases. This is reasonable agreement,
considering the uncertainty in both quantities and the fact that the perfect gas
assumption is not exact. However, we shall take the measured vapour density as being

the more reliable indicator of the state of the coexisting gas.
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Chapter Four: Surface tension in microscopic drops

4.1. Introduction

In this chapter we examine some of the effects of surface tension (which we
denote by <) on the LJ drops that have been simulated. Due to the very small size of
these systems, the surface tension might be expected to make a considerable
contribution to the pressure within the drops (Ap = 2-y/R, the Laplace eq.). Other
effects, particularly the enhancement of the vapour pressure predicted by the Kelvin
equation, may also be present, but both these results depend on macroscopic
thermodynamics and must eventually fail as the size of a drop approaches that of a
single molecule. We shall compare our results with some of the predictions of the

Kelvin and Laplace equations.

The thermodynamic and mechanical methods of treating surface tension are
briefly discussed for planar and spherical interfaces in §4.2 and §4.3 . In section 4.4
we look at methods of calculating y by computer simulation, and how the excess
pressure outside small drops may be useful in this respect. Finally, some observations

are made on the effect of the Laplace equation on the liquid densities inside drops.

4.2. The thermodynamic treatment of surface tension

4.2.1. The planar liquid gas interface

Surface tension is treated in many books on thermodynamics, to varying degrees.
A particularly detailed and up to date review of surface phenomenon is given in a
book by Rowlinson and Widom! and we have made frequent references to this work in

the following discussion of surface tension.

We first consider the case of a planar liquid-gas interface of area A. The
temperature, volume and total number of particles (T,V,n) are all held constant, so we

have a canonical ensemble. The change in the Helmholtz free energy of the system is

65
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given in general by the equation,

dF = —SdT —PdV ++vydA +pdn 4.1)
for a system of only one species of molecule, where S is the entropy, P the pressure
and p the chemical potential (as n is constant for the whole system the last term is
normally omitted, but it is useful to retain it here to treat the separate liquid and

vapour phases later).

Hence a thermodynamic expression for the surface tension is,

_ |9F ,
-Y - [aA ]T,V’" ’ (4'1 )

the rate of change of free energy with surface area. Due to the extensive nature of

F,V,A and n, we may integrate (4.1) to give,

F =—PV+yA+np 4.2)

To allow properties of the surface to be calculated, it is usual to introduce a Gibbs
dividing surface, which is simply any surface such that its normal (at all points) lies in
the direction of Vp(r). For the flat interface these are just planes of constant z,
assuming that the density varies only in the z direction. The particular dividing
surface chosen is quite arbitrary, since no measurable property should depend on it. It
is often found to be most convenient to use the so-called equimolar dividing surface,

which is located at a height z, such that,

zl

Jpi—p(2)1dz = [[p(z)—p, 1dz (4.3)

—

where p; and p, are the limiting values of the density in the liquid and vapour regions
respectively. This surface divides the system into liquid and gas regions with volumes
of V; and V,. It is then possible to define the surface value of an extensive
thermodynamic quantity as the difference between the actual value for the whole
system and the total value expected for two homogeneous regions of (p;,V;) and

(pg,V,). For example, the surface number of molecules for a given dividing surface
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is,
ng = n—n—n,

=n-p Vl —Pg Vg

(=0 for the equimolar surface), and the surface free energy which is,

(4.4)

Fy = —PV+pn+yA —(—PV;+pn)—(—PV, +un,)

= YA +png (4.5)
(note that this only reduces to F; = yA for the equimolar dividing surface). Thus

quantities such as F, are dependent on the dividing surface chosen, but measurable
values, such as <y, should be invariant to this. The thermodynamic definition of <y

avoids any consideration of the structure within the interface.

4.2.2. The spherical liquid gas interface

The surface tension in a spherical interface can also be treated
thermodynamically, though it turns out to be rather more complicated than the
previous case. The original theory of this (as well as of the planar surface) is due to

Gibbs, but with further development by other workers, most notably Tolman?.

It is convenient to consider a small section of a liquid drop in equilibrium with its
vapour, as illustrated in figure (4.1). The section is defined by a solid angle, (), and
the two spherical surfaces at R, and R;. As before, we can define a series of dividing
surfaces that are everywhere normal to Vp(r) (i.e. concentric spheres about the origin),
and the radius of the equimolar surface, R, , is given by,

R, R,

J@r=p(rar = [(o(r)=p,)ar (4.6)
Note that, unlike the planar case, an antisymmetric profile for p(r) does not have
R, = R, , where R, is the radius such that p(R,) = (p; +p,)/2. Itis also assumed that

R; and R, are far enough from the interface that p(R,) = p, and p(R;) = p;.

The general form for the change in free energy of this system is,



Figure 4.1: Diagram of a spherical interface. The centre of the drop is
located at ‘O’ and the equimolar surface is at R,. The subsystem defined by
the solid angle () and the surfaces R, and R, is considered in the text.
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dF = —§dT —P,dV,—P,dV, +ydA +CdR +pdn , 4.7
where this equation is taken as the definition of the surface tension, vy, and of the

curvature dependence, given by the term CdR.

The total free energy of the system must be invariant to the choice of dividing
surface so that, on changing this from R to R +dR, we require that,
dF = —(P,—P,)dV,+vydA +CdR

= —(P;—P; )QR?dR +y2QRdR +CdR = 0 (4.8)
Keeping R and T fixed, the first of these equations can be integrated with respect to €}

to give the expression for the free energy,

F = _Pl Vl _Pg Vg +’YA +p)l (4.9)
If the condition that this free energy should be invariant to the choice of R is then
used, as in ref. [3], it can be shown that the curvature term is given by C = Ady/dR.
Using this in (4.8) gives the result that,

AP = P—P, = %*% (4.10)

Hence the surface tension is, in general, dependent on the dividing surface at

which it is measured. In the limit of large drops, where the surface width and

curvature effects may be neglected, we obtain the well known Laplace equation,

AP =2 (4.11)
R
For any drop we can define a dividing surface of radius R = R,, such that,
dy =0
dR |k =&, ’
and this is referred to as the surface of tension. Thus, Laplaces equation holds exactly

for this choice of dividing surface,

2v[R,]
R

A

AP = (4.12)
It is possible to integrate equation (4.10) by putting it in the form,

%(R%[R]) = R2AP (4.13)
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to give variation of y with the choice of dividing surface as

2
- 2R

It is thought that the fact that the surface tension is not invariant to the choice of
dividing surface implies that +y is not physically meaningful in very small drops!.

We now consider the dependence of y ( = y[R,]) on the drop size, i.e. how the
surface tension varies with R;. The equimolar surface and the surface of tension are
not in general equal even in the case of a planar interface. The difference between
these two surfaces is important in Tolman’s treatment of the curvature dependence of
surface tension. This separation is denoted by 8,

5 = R,—R,
= g, ~Z (as R-x) (4.15)
Tolman? has shown that the surface tension in a drop (y; = y[R,]) is related to

the planar value ('y.) by the equation,

v R , (4.16)
to first order in (8/R;). To this accuracy we may take 8 = R, —R;, = z, —z,. Tolman
was able to calculate the higher order terms in (4.16), but it is thought that these are

not useful, due to the ambiguity in g at small R mentioned above!:3.

While the Laplace equation gives the difference in pressure between the liquid
and vapour phases of a drop, the actual vapour pressure outside the drop also differs
from the coexistence value that is found for the planar case. The relationship between
the drop vapour pressure, P, (R), and the planar value, P, (%), is usually known as the
Kelvin equation. This equation may be derived (again, after Rowlinson and Widom)
as follows: Since the chemical potential is the same in both phases for the drop and for
the planar interface, we have p;(R) = p, (R) and p, (*) = (=) so that,

by (R)—pg () = py(R)—py () (4.17)
This may be rewritten as,




a1

i (R) w(R)
[ dp= [ an (4.18)
w, (=) ()

and since dP = pdp.+%dT = pdp, at constant T,

P, (R) P,(R)
dr

P, () Pg (P) B P, (=) pi(P)

To obtain the usual form of the Kelvin equation it is necessary to make three

(4.19)

approximations, as follows:

(i) The liquid phase is effectively incompressible, so that the RHS of (4.19) becomes,

P,(R)

dpr
Pl(ao) (Y] (P)

= Jor = - (p@)-P()

}

1 2
e [Pg R+ P, (°°)] ; (4.20)
using the Laplace equation.

(ii) The vapour is assumed to behave as a perfect gas, so that P = pkT, and the LHS
of (4.19) becomes,

P,(R)

P _ . rdP _ Py (R)
A 5@ kT [ P len[Pg(w)] (4.21)

(iii) If 27}>>Pg (R)—P,(~) then (4.20) and (4.21) may be combined to give the

Kelvin formula,

7 10— [ﬁﬁ] (4.22)
/

Since vy only varies slowly with R, at least for R>>8, the equilibrium vapour
pressure outside a drop increases as the size is reduced (this makes small drops

unstable w.r.t. larger ones in a condensing vapour).

The excess vapour pressure outside some of the drops simulated in this work will
be used to obtain an estimate of vy, using the Kelvin equation. The effects of the

above approximations are discussed later. Before this method is employed, we shall
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briefly review the mechanical definition of surface tension, and the other methods by

which y may be obtained in a simulation.
4.3. The mechanical definition of surface tension

4.3.1. The planar interface

The thermodynamic treatment of y can be made without having to define the
“local” values of the pressure, temperature or chemical potential within the surface
region. The mechanical definition of y on the other hand requires knowledge of the
pressure through the surface. For the planar case, the pressure is a tensor of the form,

P(z) = Py (z)kk+P;(z)(ii+])) (4.23)
where Pr(z) and Py(z) are the tangential and normal components of the pressure,
assuming an interface in the x —y plane. The mechanical condition for equilibrium,
that V.P = 0, leads to the result that Py is constant, and hence equal to the bulk

pressure, P.

By considering the work done at constant 7 and V, when the surface area is
increased by dA, the surface tension can be written as,

v=J (P-Pr2))a (4.24)

The surface of tension, z;, can then be defined by,

z = [z [P—Pr(z)]dz (4.25)

—o0

Thus vy and z; can be obtained if Pr(z) is known. Unfortunately it is found that
Py is not uniquely defined within the surface?-5. This occurs because the non-kinetic
part of the stress on a given surface arises from the forces that act between the particles
on opposite sides. The ambiguity is in deciding on the path along which the force acts.
The two most common definitions for the pressure tensor are the Irving-Kirkwood® and

the Kirkwood-Buff/Harasima’ formulas, which have been shown to give measurably
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different results for Py in the planar interface8.

It is found that, though P; is not unique, the value of y given by (4.24) is
invariant to the choice of pressure tensor. However, the surface of tension, given by
(4.25), is not invariant to this, so that it can not be precisely defined by mechanical

arguments, even in the planar case.

4.3.2. The spherical interface

For a spherical drop in equilibrium with its vapour the pressure tensor within the
surface is of the form,

P(r) = Py(r)e, e, +Pr(r)(€seo+eses) (4.26)

The condition that V.P = 0 now leads to a set of differential equations relating P; and

Py, and both of these components vary through the interface. To calculate v it is

again necessary to define a dividing surface and the surface of tension, R, , is the usual

choice. Considering the forces across a strip of width d6 leads to,

R R R

Y,R,d6 = do | [rdrP, + frdrPg — [rave(r)
R, R, R,

Rs

VR, = [rdr[p - R)=Pr() ] (4.27)

where P; , (r;R;) = P, if r<R; and P, otherwise and v, = y[R,].
Using the condition that V.P = 0 allows several different versions of the equation

for y, to be obtained, such as that due to Buff®,
Rx

= [;{x—]dr[PN(r)—PT(r)] (4.28)
It is found that R; depends on the choice of the pressure tensor, as it does for a
plane surface. However, the expressions for y, are not now invariant to the choice of

P, so that there is no unique mechanical definition for the surface tension of a drop.
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4.4. Calculation of y by computer simulation

4.4.1. Calculations for the plane surface

The surface tension in the planar liquid-gas interface has been evaluated by a
number of techniques, both in MC and MD simulations. Most of this work has been
based on the LJ12-6 potential. A few of these methods, and the results, are discussed

here.

The direct simulations of the planar interface have already been mentioned in
chapter two. The most convenient method of calculating vy in such a system is from
the expression,

¥y = %J;dzlfdrlz [’12— %]¢'(’12)P(2)(1‘1,f2) (4.29)
where p®)(ry,r,) is the pair density distribution function and ¢’ is the derivative of the
interaction potential (this expression may be obtained starting from either the
thermodynamic or pressure tensor forms of vy, with the use of some statistical
mechanics! ).

In terms of a simulation average, this is evaluated as,

= _}{<2(rij —32/r; )’ (r)> (4.30)

-
and this has been us}ed several workers!0-11,

An alternative is to actually evaluate the tangential pressure, Py(z), through the
surface, and then to use equation (4.24). Such a calculation is much more time-
consuming than use of (4.30), and the result for P; is dependent on the definition
used for the pressure tensor. Rao and Berne!2, for example, have performed MC
simulations in which P; and Py are obtained for a 2048 particle planar system (sp2.5
interaction). A total of over 3 million moves were made, which is only about 1400 per
particle. Their results for these components are quite ragged, and it appears to be very

expensive to find the presure tensor accurately. In addition to finding v it is also




75

possible to calculate the location of the surface of tension, using (4.25), though this is
not uniquely defined. The Harasima form of P was used in this case. While the
surface tension result of y = 0.42 at T =0.92 is invariant to the form of P, it is not

expected to be highly accurate.

Chapela et al'l use equation (4.30) to calculate +y for a range of states using MD
and MC for the sp2.5 fluid with planar systems of 255 to 4048 particles. In addition,
correction terms are derived so that the surface tension for the complete LJ potential
can be obtained. This process is rather suspect though, since the use of the sp2.5
potential gives different coexisting densities and surface widths to those of the full
potential, and the coexistence curves can not be simply scaled onto each other, as was
noted in chapter three. This was one of the main reasons for our decision to use the
virtually full LJ interaction in our simulations. The accuracy of the values of vy

obtained in this way for the full potential is estimated as +10%, or worse.

Possibly the most accurate simulation results for vy are those due to Miyazaki et
al'3. They use MC with the full LJ potential to calculate the total change in free
energy of a homogeneous liquid that is cut in two. This forms two surfaces which are
allowed to relax to equilibrium. The surface tension is then given from equation

(4.1"). In this method an estimated accuracy of ~ *+2% is achieved.

4.4.2. Calculating -y in liquid drops

It has been seen that the definitions of surface tension in a spherical system are
more complex than for the planar case, and it appears that there is no direct analogue
of equation (4.30) for curved interfaces. The alternative method of direct evaluation
of the pressure tensor during the simulation can, however, still be employed. We
made investigations of this possibility, using the Irving-Kirkwood definition to find
Py (r) through the surface. This calculation is very time consuming as it necessary to
resolve all the force components acting across each shell at which Py (r) is required

(Pr(r) can be obtained by differentiation of this result, since the condition that
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V.P = 0 leads to Py(r) = Py(r)+(r/2)(dPy(r)/dr)). The very long cut-off that we
use with the LJ potential makes this much slower than, for example, if the sp2.5 model
had been used.

The results obtained were not very encouraging, particularly for the pressure
towards the centre of the drop, where the shell areas become very small, due to poor
statistics. Because of the very long and time consuming runs that would be necessary,
and since other workers!4 were already exploring the possibility of calculating P, we
chose instead to investigate the use of the Kelvin equation to measure y. The

expression in equation (4.22) can be written as,

In [Pg (R) ] - &1 | (4.31)

Py(®) )  RpT ’
since k = 1 in our reduced units. If v is assumed to be independent of drop size, then
at fixed temperature, a plot of InP, (R) against R should give a straight line, the
gradient of which would allow the determination of . This, of course, ignores the
variation of vy with R, predicted by equation (4.16), and the approximations in the
derivation of the Kelvin equation. The importance of these effects can also be

investigated.

The only remaining problem with using the Kelvin equation in this way, is what
value to use for the drop radius, R, in (4.31). From the derivation, it appears that the
appropriate value is R, the radius of the surface of tension. However the calculation
of this quantity is not easy, and to do so from the mechanical definition would require
P, which is unknown in our simulations. Instead, the equimolar radius R, will be
used, which is a quantity that may easily be obtained from the simulations. This is
equivalent to assuming 8 = 0 ( is dependent on the choice of pressure tensor anyway,

at least from mechanical definitions).

Figure (4.2) shows a graph a graph of In[P, (R, )] against R,? for a series of states

at 7 = 0.69. This temperature is very close to the triple point and the assumptions of
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Figure 4.2: Logarithm of the reduced vapour pressure against R,”!, the
reciprocal of the drop equimolar radius, at T = 0.69. The points, from right
to left, correspond to systems of 100, 260, 450 and 1300 LJ particles. The
latter is state (L26), while some interpolation has been used for the other
results. The solid line corresponds to the Kelvin equation with the planar
value of vy, and the two dashed lines estimate the possible variation due to

the uncertainty in T, etc. Assuming 8 = 0.5 in Tolman’s equation gives the
curvature shown by the chained line.
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the Kelvin equation (incompressibility, “perfect gas” vapour and
2v/R>>P;(R)—P;(=)) are expected to be more accurate here than at higher

temperatures.

The straight line shows the result that is predicted by the Kelvin equation. The
R,”! = 0 intercept is the coexistence pressure for the planar fluid that is given by
Powles!® (from the Nicholas equation of state). This gives P, (») = 0.00105+.00005
at this temperature. The gradient is given by 2y/p,T = 4.47, where the value of
vy = 1.31 (%0.02) has been obtained from the data of Miyazaki et al!3 for the planar
surface, and p; =0.85 at T = 0.69.

Due to the uncertainty in the temperature of the simulations, and also in the
values of v, P, () and p;, two other lines have been marked around the Kelvin result,
as an indication of the possible error. The four data points shown correspond to
systems of the following sizes; (i) N, = 1300 (run L26), (ii) N, = 450 (runs L18/L19),
(iii) N, =260 (L7) and (iv) N, = 100 (L2/L3). It is difficult to achieve a given
temperature in constant energy molecular dynamics, so some interpolation of the data
was necessary in cases (ii) and (iv).

The agreement of the simulation data with the Kelvin line is very good for the
largest drop, (i). In fact this must be fortuitously so, considering the uncertainty in the
measured vapour density. For drops with fewer particles the vapour pressure tends to
rise faster than that predicted by the Kelvin equation, until we get to the 100 particle
systems. Clearly, P, (R,) cannot increase indefinitely as R, -0, and there must be some
critical size at which P, reaches a maximum. The 100 particle systems may be close to
this point.

In figure (4.3) a similar analysis has been performed for systems with a
temperatures of 7 = 0.84, but only for sizes of N, = 1300 and N, = 450. In this case
the divergence from the Kelvin result is much more marked, even for the 1300 particle

system. The planar value for the surface tension that has been used in this case is
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Figure 4.3: As for figure (4.2), except at the temperature of 7 = 0.838.
note that results are only available for the two larger system (N, = 1300 and
N, = 450) at this particular state.
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v = 0.95, which is based on the Miyazaki et al value at T = 0.7, and using the
empirical relation! y(T') « (T, —T)'?%. Hence it is not as reliable as before. However,
the N, = 1300 drop gives a gradient corresponding to y = 1.2 which is rather high,
considering the result at 7 = 0.69. Thus the Kelvin equation seems to over-estimate
the value of vy at this higher temperature, though the uncertainty in vy obtained in this

way is still quite large (~ 15%) and longer simulations would be helpful.

Figure (4.4) shows the variation of the measured vapour densities with
temperature, for systems of varying size. The plane surface (coexistence) values are
plotted for comparison. It can be seen that the vapour density is generally greater in
the smaller drops, as predicted by the Kelvin equationT. However, the vapour
densities of the 320 particle simulations (L10-L13) lie above some of the 260 particle
results (periodic box side, § =18). This anomaly may be due to a fall in the surface

tension of small drops.

4.4.3. The accuracy of the Kelvin equation

Due to the approximations needed to obtain the kelvin equation, there is some
doubt about its usefulness at any temperature significantly above 7,. This problem has
recently been analysed by Powles!®. He has shown that the three approximations
involved in the derivation of (4.22) are still quite good for higher temperatures. Using
the Nicolas equation of state and planar values of vy, the vapour pressure outside an LJ
drop is calculated without using these approximations. The accuracy of InP, (R) from
the Kelvin equation is found to be quite good, even for temperatures well above 7,
though it tends to overestimate this quantity more for smaller drops. However, even at
T = 1.0 and for drops as small as R = 3, the error is still only ~15%, so the accuracy
1s rather better than might be expected at higher temperatures. It should be noted

though that this analysis is in terms of the surface of tension, R, and that any

7 Note that vapour density is proportional to vapour pressure in the Kelvin approximation.
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Figure 4.4: Vapour densities for the LJ drops as a function of temperature.
The solid line represents the coexistence values predicted by the Nicolas
equation of state, while the dashed line is due to Adams.
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variation of vy with radius is ignored.

Thompson et al have reported results for the vapour pressure outside sp2.5 drops.
They have used constant temperature MD (as described by Haile and Guptal? ) to
study several drops at T = 0.71, which corresponds to T/7, =0.634. This compares
with T/T, = 0.838/1.35 = 0.62 for the higher temperature state used here (fig. 4.3), so
the Kelvin equation will not be so accurate for their state. Their MD results appear

rather scattered considering the lengths of the runs employed.

4.4.4. Predictions of the Tolman equation

The Tolman equation, (4.16), gives the first order variation of y with radius, but
knowledge of & = R,—R; is poor, particularly for drops. In their plane surface
simulation, Rao and Bernel? found a value of 8 = 0.96+0.12 (sp2.5, T = 0.92), using

the Harasima form for P.

Thompson et al'* have calculated 8 for a range of sp2.5 drops, using a
thermodynamic route, and also via the two common forms for the pressure tensor. For
larger drops (N, ~1000) they find 3 to be in the range 0.05 - 0.4, rising to the order of

unity for smaller systems.

If a value of 3 = 0.5 is assumed, then equation (4.16) can be used with v, in the
Kelvin equation to find In[P, (R)/P,(«)]. This has been done for T = 0.69, and the
resulting curve is also shown in figure (4.2). The agreement with the simulated values
is worse than without this correction which may indicate that the drops are too small
for (4.16) to be useful, or that the value of 3 used is not appropriate for the full LJ
potential. A negative value of & would be required to explain the rise above the
Kelvin line, while most calculations suggest a positive value for this quantity.
However, the uncertainty in our data is quite significant, and if the value of vy, was in

fact slightly higher, the results could be consistent with a small positive 8.
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4.5. Liquid densities within small drops

Finally in this chapter on surface tension, the central liquid densities of the
simulated drops are examined. This section is included here because the Laplace
equation predicts increased pressure within the drops that should lead to densities

above the coexistence values expected for a planar system.

Figures (4.5) and (4.6) show the measured values of p, as a function of
temperature for the LJ and S1 drops respectively. The coexistence values of p;, from

ref.[15], are also shown, as continuous lines.

The results for LJ drops are scattered about the coexistence line, with the majority
lying above it. Since an equation of state is available for this fluid and the surface
tension, 7., is known, we may calculate the expected liquid density under a pressure
of P = P,(R)+2y/R. This has been done for R = 7 and the resulting curve is also
marked in figure (4.3). The value of R = 7 corresponds roughly to the size of the
1300 particle systems, assuming that R, = R;,. While all three such results fall below
this line, the uncertainty in these p; values (~*3%) is such that they could still be
consistent with the Laplace equation. However, as the drop radius is decreased further
there is no evidence of a general rise in the liquid densities, and indeed the very small

drops have rather lower values of p;.

Falls et al'® find a qualitatively similar behaviour in their gradient theory
treatment of drops. The central density of their drops increases with R, ! at first, and

then decreases for very small drops.

4.6. Conclusions

The results presented here indicate that moderately accurate values of y can be
obtained by use of the Kelvin equation for drops of the order of ~1000 particles. This
avoids the calculation of the pressure tensor through the surface, which would slow the

simulation be a factor of ar least two, even when only evaluated at every tenth time
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Figure 4.5: Liquid densities inside the LJ drops as a function of temperature.
The solid line shows the liquid coexistence densities given by the Nicolas
equation of state. The dashed line shows the density that would be found
inside a drop of R, = 7, using the planar surface tension, along with the
Laplace equation for the pressure difference, and the equation of state.
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step!4. However it is necessary to know the density of the coexisting vapour for the
potential. The method is also restricted to temperatures near T,, though corrections

using the second virial coefficients, as in reference[16], might extend this range.

This method has not been applied to find y for the S1 data since the coexisting
vapour curve is less well known for this potential, and fewer large systems were
simulated. Quite long runs are required to get sufficiently accurate values of the
vapour density, and the Stockmayer simulations are much more expensive (in

computer time) than the LJ ones.
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Chapter Five: Surface width of microscopic drops

5.1. Introduction

The behaviour of liquid-vapour systems as the critical temperature is approached,
has been extensively studied, by both experimental and theoretical methods. Of
particular interest is the manner in which certain physical properties either diverge or
vanish as 7-T, . This is usually characterised by a so-called critical exponent for the
given property!-2. In the preceding chapter it was noted that the surface tension near
the critical point is known to be proportional to (7.—7)", and that the critical

exponent, v, in this case is v=1.26.

In this chapter the surface width of the simulated drops is considered, and an
estimate of the critical exponent for this property obtained, albeit for data well below
T.. This is compared with the predicted value of this exponent, and with actual
theoretical calculations of the surface width, in the temperature range used in the
simulations. The contribution of surface oscillations (capillary waves) to the surface
width is evaluated to enable a better comparison to be made between theory and

simulation. This analysis is due to Powles (private communication).

5.2. Critical exponents and the surface width

A critical exponent describes the behaviour of a given thermodynamic property in
the limit as the system approaches the critical point, (7. ,P.,p.). A typical example is
the isothermal compressibility, x7, which diverges at the critical point. It is found that
its behaviour may be represented by the equation,

Xr =c|T.—T|™ (asT-T.) (5.1)
where ¢ is a constant and vy is the appropriate critical exponent (it is conventional to
use y, which is not to be confused with the surface tension). It is found from
experiment that the same exponent is obtained if 7, is approached from above (along

p =p.) or below (along the coexistence curve). Moreover the same value of vy

88
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(experimentallyZ, y = 1.2+.04) is obtained independent of the liquid been studied, so

it is a ‘universal’ constant.

Other important critical exponents govern the heat capacity, (C,x|T.—T |,
a=0.1), the difference between liquid and vapour densities
(pi—py*|T.—T|P,B=0.355) and the pressure along the isotherm T =T,
(P—P.x|p—p, |> Yp—p.) , 8=4.35). The values quoted here are derived from
experiments on real liquids or advanced theoretical methods, such as renormalization

theory?2:3.

The surface width of both drops and planar interfaces is expected to diverge, as
the critical point is approached along the coexistence curve. A value for the critical
exponent in this case may be derived from, for example, the van der Waals equation
of state. Using such an equation, in conjunction with a Taylor expansion about the
critical point leads, to the ‘mean field’ results for the exponents®. In fact these values
are only approximations of the experimental results, for reasons discussed below.
Nevertheless, within this approximate treatment it is possible to show that the density
profile of a planar interface takes on a hyperbolic tangent form as the critical

temperature is approached, such that,

p(z)=pc = 3 (pi—p, tanh(z/2D) (5-2)
The parameter D is immediately identifiable with the width parameter that was fitted
to the simulation profiles in chapter three. In the mean-field theories it is found that
the width diverges as D |T,—T |7V, with v = 1/2. In fact the parameter D is thought
to be equivalent to the coherence length of density fluctuations in the bulk phases of

the fluid, so that these two properties have the same exponent.

The mean-field calculations may also be used to derive values for other critical
exponents, and these results are referred to as the classical values of the exponents. In
general, these classical values are not in good agreement with experimental values for

real liquids. For example, mean-field theory predicts the value of y =1 for the
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compressibility, instead of y = 1.2+0.04 as is actually found. The failure of mean-
field theory is believed to be due to the non-analytic behaviour of the equation of state
at the critical point, related to the long range density fluctuations that are possible in
the thermodynamic limit. To obtain more accurate values of the critical exponents
from theory requires a more sophisticated treatment, such as scaling theory or

renormalization theory (see e.g. Hansen and Mcdonald? and references therein).

Computer simulations are necessarily performed with no more than a few
thousand particles at most. Such systems cannot realistically reproduce the behaviour
at the critical point because the long range fluctuations are suppressed. Hansen and
Verlet® and Alder et al have calculated various critical exponents from MD
simulations close to the critical point. They find results that are consistent with the
classical mean-field values for the exponents B, y and & (defined above), but the
exponent for the specific heat at constant volume, a, is close to the ‘real-liquid’ value.
The exponent v was not calculated in these simulations. Alder ez al used homogeneous

systems of (mainly) 108 particles and with temperatures above T = 0.97.

5.3. Temperature dependence of the surface width

Using the data for all the LJ states that have been studied, a graph of the surface
width, D, as a function of the temperature has been drawn. This is shown in figure
(5.1). It can be seen that D rises from approximately 1.5¢ near the triple point, to
over 4o at the highest temperature used, which was T = 1.06. The width is clearly
rising rapidly as the temperature approaches 7., but the limited size of the drops
prevents states much closer to the critical point being studied (see chapter three). As it
is, the highest temperature simulation that was performed (state L25) had a cell size
that was rather small considering the number of particles and the spread of the surface

region involved. Even for this state, T/T.=0.79, so we are still well below the critical

point.
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Figure 5.1: The surface widths (D) for the LJ and S1 (Stockmayer) drops, as
a function of temperature.  The upper curve is the result
D =1.06(T.—T)~', which was obtained by a least squares to the LJ data

(T, = 1.32). The lower curve is a similar fit for the Stockmayer data
(T, = 1.45).
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The results for D(T) show a fair amount of scatter, perhaps in part due to the
relative insensitivity of the fitting process to the value of D (see chapter three).
Despite this scatter, and the iact that all the data lie well below 7., we shall least-
squares fit these results to a expression of the form,

D(T) = A(T.~T)™ (5-3)
An equal weighting was given to all the data points in this fit, and the value of
T, = 1.35 used, though this is subject to some uncertainty. However the results of the
fit are not very sensitive to 7., and we obtain the expression,

D = 1.06(T.—T) 1° (5.9
Thus our estimate of the critical exponent in this case is v=1.0+0.1, though only from
data well below T,.. This is significantly greater than either the mean field value or the
prediction of the more sophisticated theory, v = 1/2 and v=0.63 respectively. If the
exponent in equation (5.3) is constrained to be either of these values, then a very poor
fit is obtained. Hence it appears that the simulated surface width is diverging more
rapidly than would be expected from either value of the critical exponent, assuming

that they are still meaningful this far from 7, t,

It is difficult to discern any clear tgand in the surface width of drops as a function
of the number of particles. There is some indication that small drops have thinner
surfaces than larger drops at the same temperature. This is not as noticeable as the
size dependence observed by Chapela er al’ in their simulations of planar interfaces,
using the sp2.5 potential. Thompson et a® have given surface width results for sp2.5
drops, and they also indicate a rather faster divergence of the width of N, = 256
particle systems compared with N, = 2048 particle ones. However this is most notable
at higher temperatures, and most of our smaller simulations have been made at low T .

It might also be noted that there is some inconsistency between the surface widths

t Experimental data® for B (the exponent for the density difference) indicates a slow rise in the
apparent exponent as the temperature falls below 7,.. For T7/T. = 0.8 the increase is ~ 10%.




93

obtained from the two different simulation methods used by Thompsom er al (the
Oxford (O) and Comell (C) results in their paper). If the appropriate value of T, is
used in equation (5.3), a least squares fit to their 2048 particle data yields a critical

exponent of v=1.1, that is in reasonable agreement with our results.

Proceeding to the Stockmayer results reported in chapter three, we have also
plotted the surface width values for these states in figure (5.1). It can be seen that
these values lie below the LJ results, but they diverge in a similar manner as the
Stockmayer critical temperature is approached. This is as might be expected from the
upwards shift in temperature of the S1 coexistence curve compared to that of the LJ
fluid. An exponent of v=1.0 is again obtained from a least squares fit. The S1 data

are relatively further from T, ( =1.45 ) than the LJ results.

5.4. Theoretical calculations of the LJ surface width

A number of theoretical calculations of the liquid-vapour surface width have been
performed for the LJ fluid. Some recent values will be compared with our simulation
results. Henderson and Lekner® have obtained a value of D at one temperature (85K
in argon units) using surface tension and energy data due to Shih and Uﬁgg. In fact
their calculation is based on the BFW potential for argon, rather than the LJ one, but

it is not expected that the width should be very sensitive to this.

A range of values have been obtained by Fisher and Methfessell® who used the
BGY approximation (along with the LJ interaction) and calculate D for several
temperatures up to 7 = 1.1 . In another calculation, due to Ebner et a/'!, the surface
width is obtained using a density functional formalism, with an approximation for the

direct correlation function.

In figure (5.2) these theoretical values of the surface width have been plotted as a
function of temperature. There is reasonable agreement between the various values,

even though they are based on different approximations. Also shown in the figure is
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Figure 5.2: Comparison of calculated surface widths with the LJ simulation
results. The upper curve again shows the fit to the simulation data.
Calculations of the intrinsic surface width (D, ) due to Henderson and Lekner
(®). Ebner et al (T) and Fisher and Methfessel (©) are shown. The value for
D; due to Falls er al (¢ ) is seen to lie well below these results. The curve
marked D, is the calculated capillary contribution to the surface width and
D, is that due to the “‘breathing” mode of oscillation. The estimates of the
total width due to capillary plus intrinsic parts are marked as (+) and (X).

1.2
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the curve that was fitted to the LJ simulation data, equation (5.4). Clearly there is a
large discrepancy between these two sets of data. A fit to the theoretical values gives a
critical exponent of v=0.7, which is much closer to the expected value of ~0.63 (or

perhaps 0.5), than the simulation results.

The theories referred to above are all applied to planar liquid-vapour surfaces,
but it is likely that similar widths should be observed in our case, at least in the larger
simulated drops. Some theoretical predictions of the surface width in drops can be
obtained from the data of Falls e a/'2. One such point is included in the figure (5.2)
and it is very much lower than the other theoretical values. However, the
approximations used by Falls ez al are such as to make their results only qualitatively

comparable to the actual LJ fluid, and we shall not use this value.

In the next section we examine surface oscillations in drops as a possible

explanation of the difference between the simulated and theoretical widths.

5.5. The effects of capillary waves on surface width

Ideally, a liquid drop at equilibrium may be considered as having a ‘step
function’ profile, so that the density changes from p, to p, discontinuously at the
radius R. The spherical shape of the well defined interface is maintained by the
surface tension forces. Such a surface can support oscillations and these are generally
referred to as capillary waves (they also exist in the planar interface). At any finite
temperature each independent mode of the surface will be subject to thermal
excitations and, by equipartition (in the classical limit), will have a mean energy of
kT72 (k=1 in reduced units, but we retain it here). We wish to investigate what
contribution such oscillations make to the surface width. This problem has been
analysed by Henderson and Lekner?, who give a detailed description that includes

quantum effects. Here we shall give a simpler classical treatment of the problem.

An analysis of capillary wave modes is given in several text books, such as that by
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Landau and Lifshitz!3. It is usual to make the assumption that the liquid is
incompressible, in addition to the idealised profile mentioned above. This allows
solutions to be obtained 1u terms of the velocity potential, ¢, which obeys the equation
V2§ = 0 for an incompressible fluid. With the further assumption that the oscillations
are of small amplitude it can be shown the solutions are spherical harmonics which we
write in the form,

U = Appe ' r' P["(cosf)e™® (5.5
where w is the angular frequency and P/*(cos8) are associated Legendre functions.
The boundary conditions for the system lead to the condition that,

w? = yI(I-1)({+2)/pyR?®  (I=2) (5.6)
where p,, is the mass density and vy the surface tension. The requirement that /=2
arises since the / = 1 mode corresponds to translation of the whole drop and / = 0 to

a ‘breathing’ mode that is impossible for an incompressible liquid.

Since both our simulations and the theoretical predictions of surface width, shown
in figure (5.2), ignore any quantum effects there should not be any inconsistency on
these grounds. To check if such capillary waves in real argon drops of this size can
still be treated classically, we calculate the ratio #w/kT . It is found that this quantity
is much less than unity for argon, at most reasonable values of /, e.g. for a radius of
R4, = 40=1.36nm and a temperature of T, = 0.7¢/k =84K, even a large value of

= 12 only gives Tw/kT=0.2 . It is shown below that higher frequency modes are
unimportant, so that it is reasonable to treat argon drops classically. Quantum
corrections only become significant for drops of liquids such as neon and helium which

are already known to be poorly described by classical calculations.

From equipartition, each such capillary mode will have a mean kinetic energy of
%kT . If the displacement of the surface from its mean value in the mode (/,m) is

denoted as {; ,,(8,4)={, ,,, then the form of this function can be obtained from the

velocity potential, (5.5), since the radial velocity satisfies %Lf— =vy, = %% Hence we
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obtain,

U m = a)  P(cosB) cosm b sinwt 5.7)
where q; ,, is the amplitude of oscillation. It was originally noted by Rayleigh!4 that
the mean radius of such an oscillating drop is increased from its value when free of
disturbances, R, to a value R, (not to be confused with the surface of tension in chap.

4) such that the volume is conserved. This gives the condition,

SJTRAY ) sind d6 db = 2ok (5.8)

To order {7, we get,

2
R?>—R? = 021_,: J fP(cos8)? cos?m & sinwr do db (5.9)

The increase in surface area of the drop is (see Landau and Lifshitz, § 61),

sin?0

2 2
3L m 3y m
m=[f [(Rs+§l,m)2+ [%] +%_1_[ g’d) ] do dé (5.10)

Substituting (5.7) and using (5.9) in (5.10) leads to the equation,

2
) . 1 [ dP/"(cos6)
AA = a,?,,,'rrslnzmt f {—P, ’(cose)2+3 [———l T
1 1 .. 5 ol .
5 5. Pr(cost)“m* |sin® d6 (5.11)
2 sin’@

This allows the determination of g, ,, , since the mean energy of a mode is just the
average of AA times the surface tension vy, i.e kT/2 = y<AA> . Using this in
equation (5.7), we can then find the mean square amplitude of the thermal capillary

waves by taking the average over time and (6,4¢) . This eventually yields,

7 = KT 1
b 4y (1-1)(1+2)
This equation is also obtained by Henderson and Lekner when they treat drops in the

(1=2) (5.12)

classical limit.

Due to the incoherence of the vibrations, the total mean square amplitude is
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simply the summation of (5.12) from/ = 2 to! = L.,

Lmu

(21+1)
4y 22 (-1 +2) )

The high frequency cut-off arises, in this case, as the wavelength, N, approaches the

C_z_ kT

value of the mean separation between particles. We shall take the lowest wavelength
as Apmn~20. For the typical sizes of the simulated drops (R ~ 4 - 5 o) this

corresponds to L ., = 12 - 16 .

In the limit as R -, we go over to a planar interface and the upper limit of the
summation in (5.13), L p,~%. The resulting series is proportional to 3/~ for large /,
and this is known to diverge as log(Ln.x)- Thus we obtain the usual result that

capillary waves lead to an infinite width for an interface of infinite area.

For a drop radius of R = 4 it is found that L ,,=12, for which the summation in

(5.13) is 3(..)=4.44 and so the RMS amplitude is,

ik i )
2 = Py
(¢) =21 [4m] (5.14)
The leading coefficient is only weakly dependent on the values taken for the cut-off
and the drop radius, e.g. for R = 7, we get 2.35 instead of 2.1 . Using values of

surface tension for the planar interface (see chapter four), we have plotted equation

(5.14) in figure (5.2) (the curved marked D, ).

Before the above analysis is compared with the actual surface widths of LJ drops,
it must be noted that the assumptions of a sharp interface and of incompressible liquid
are only approximately satisfied. Also, the effect of the vapour pressure outside the

drops is ignored, and this may be significant at high temperatures.

A check may be made on the importance of the finite compressibility, x, of the
LJ fluid by calculating the amplitude of the ‘breathing’ mode of oscillation, when the
surface may be described by the expression, r(tr) = R +{,(¢), where {, is independent

of the angles 6 and ¢. For a given small amplitude a;, the work performed against
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the pressure may be calculated from the compressibility at the liquid density, which
can be obtained since the equation of state is known. Depending on the time period of
such oscillations, either the adiabatic (x;) or isothermal () value may be more
appropriate, but for a rough estimate of the amplitude it is more convenient to
calculate the isothermal value. Using this value, and equating the total work for the

maximum displacement to kT, the result is,

(&?]m - J@]m (5.15)
127R

Taking a radius of R = 4, this yields the curve shown in figure (5.2) (labelled D,).
This is very much smaller in amplitude than the capillary oscillations so it appears that

incompressibility is a reasonable approximation.

The assumption of a sharp interface is clearly not very realistic, especially for the
smaller drops and at higher temperatures. Nevertheless, the RMS amplitude of
thermal capillary waves is only weakly dependent on the actual radius of the system,
and the equimolar radius R, will be taken as the ‘mean’ value. Since a significant
proportion of all the molecules in a given drop lie in the interface region, where the
density is less than the liquid value, this may lead to an increased value of the
compressibility. This in turn could enhance the contribution of the breathing mode to

the surface width.

Considering the accuracy of the simulation data for D, the treatment of capillary
waves given above is probably adequate. The values shown in figure (5.2) indicate
that these oscillations have a significant amplitude in comparison to the total width of

the simulated drops.

Now, it is claimed by Lekner and Henderson®, and others, that the theoretical
widths such as those discussed above are actually for the ‘bare’ (or intrinsic) profiles,
in that they do not contain any contribution due to capillary waves. Thus we need to

combine the two effects to find the surface width of real drops. However some doubt
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has been cast on this by Evans!® who has shown that some capillary-like effects may
already be included in a van der Waals model of the interface, so that the simple
addition of the two effects could be incorrect. Despite this, we shall proceed to
calculate the total width due to the intrinsic (theoretical) profiles plus the capillary
contribution. As a rough approximation we could simple add the two widths to give a
total width of D=D,;+D_.. A more correct analysis is to use the central limits theorem
to replace the sum over the capillary waves by a gaussian distribution. This can then
be convoluted with the intrinsic profile, which may be represented by a hyperbolic
tangent, and the width of the resulting curve obtained. In fact this process yields
values very close to the original result of D =D, +D, for the values of D; and D, that
we have. These values are also shown in figure (5.2). They are in quite good

agreement with the simulation results, except, perhaps, at temperatures above 7=1.0.

5.6. Discussion

The surface width results reported here, and the particular theoretical predictions
looked at above, are consistent with the assumption of capillary wave broadening of
the intrinsic profile. The scatter in the simulation values and the approximations of
the capillary theory make it difficult to determine if the discrepancy that occurs at

higher temperatures is significant or not.

Further studies of liquid drops would be desirable to get more accurate values of
the surface width, and also to obtain data closer to the critical point. This requires
more computer time and probably larger systems to achieve the higher temperatures.
It would be interesting to see if the predicted weak dependence of D, on the radius (=
10% increase from R = 4 to R = 7) could be observed for a series of drops at constant

temperature.

It might also be useful to study the actual modes of oscillation of the simulated
drops. For example, the method of perturbation-difference (which is mentioned in a

later chapter) might be used for this. However the period of the lowest mode of
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oscillation is rather long (T = 2m/w=100=2000 integration steps), and problems with

noise usually arise after about 100 steps.
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Chapter Six: Dielectric theory and computer simulation

6.1. Introduction

The remainder of this thesis is concerned with the calculation of dielectric
properties of the Stockmayer fluid from the data obtained in the simulation of the Sl
and S3 drops. In this chapter a brief review is made of some of the basic dielectric
theory that is relevant to the interpretation of our results. The static dielectric
constant, €, is discussed in 6.2 for polar (non-polarizable) fluids, and the frequency

dependence of this quantity, €(w), is considered in 6.3.

A number of techniques have previously been employed to study the dielectric
properties of polar fluids, and some of these are briefly reviewed in the final section of

this chapter.
6.2. The Static dielectric constant

6.2.1. Polarization and the dielectric constant

When a fluid (or any other material) is placed in an electric field a net dipole
moment is induced in it. For a homogeneous and isotropic sample in a field E, the
dipole moment per unit volume (polarization) is found to be given by,

P = xE (6.1)
where the constant x is the dielectric susceptibility (this relation breaks down in very

intense fields, but is usually adequate).

From basic electrostatics the electric displacement vector D is related to E and P

by the equations,

D = E+47P = E(1+4mwx) = ¢,E (6.2)
where €, = 1+4mx is the dielectric constant (we shall use the subscript s to help

distinguish this from the LJ energy parameter).

While it is reasonably straightforward in principle to measure €, in a given

102
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macroscopic sample, it is rather more difficult to calculate the dielectric constant from
the microscopic properties of matter, such as the interaction potential between
molecules. This is due to the long range correlations that exist in dipolar fluids, which
are sensitive to the (macroscopic) shape of the sample and its surroundings.
Nevertheless, it has been shown that the dielectric constant can still be expressed in
terms of local correlations, and is independent of the macroscopic shape and

surroundings of the system!.

There are two main sources of the polarization that is induced in the fluid. The
first is due to the redistribution of electronic charge within a molecule. In the presence
of an electric field the distortion of this charge distribution produces a dipole moment
within each molecule. Also, atoms, or groups of atoms, within a molecule can change
their relative positions so as to produce a net dipole moment. Secondly, for a dipolar
liquid the molecules themselves can reorientate so that the permanent dipoles tend to

lie in the direction of the applied field.

The total polarization of a given sample can be expressed as P = P,+P,, where
P, is the contribution due to the electronic distortion, and P, is the part due to

reorientation of permanent dipoles.

The degree of electronic polarization is dependent not on the mean field within
the liquid (the Maxwell field), but on the mean field that each molecule actually
experiences, known as the internal field, E;. It is found that P, = NaE,, where N is
the total number of molecules and « is a constant, the molecular polarizability (in
general the molecular polarizability is a tensor, a, but it is usually adequate to use the

scalar value tr a/3).

The reorientational polarization is given by P, = N<p>, where <p> is the
expectation value of one molecule’s permanent dipole moment in the applied field.
The mean electric field acting on such a molecule to produce this alignment is E;, the

directing field. This is not the same as either the Maxwell or the internal field".

1 The fact that the directing field is not equal to the internal field was first noted by Onsager,
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Using basic statistical mechanics? it can be shown that <p> is related to E; by the

equation <p> = (u?/3kT)E,, and hence, P, = N p?E,/3kT .

Thus if the internal and directing fields can be calculated from the microscopic
structure of the fluid, the polarization can be determined for a given applied field.
Once this is known the dielectric constant can be obtained. However, such
calculations are difficult, and usually require drastic approximations, some of which

will be discussed later.

There are some important differences between the two main sources of
polarization. Most significantly, the response time of the electronic contribution is
very much shorter than that of the reorientational part. Thus P, takes very much
longer to reach its equilibrium value then does P,, when a static field is applied.
Additionally, the electronic polarization, being an intramolecular effect, is only
weakly dependent on the density and temperature of the fluid, whereas the
reorientational part is extremely sensitive to these parameters. The alignments of
molecules that give rise to P, are subject to greater disruption as the temperature of

the system is increased.

The Stockmayer potential that is used in this work is essentially a model of a
polar fluid, the molecules of which are non-polarizable, i.e. « = 0. Hence we shall

neglect P, and confine our attention to the reorientational contribution only.

6.2.2. Simple theories of the dielectric constant

The long range nature of the dipolar interaction, and the fact that the
macroscopic sample shape influences the behaviour of molecular correlations makes it
difficult to treat €, by theoretical means. One of the first approaches to have some

success is the treatment due to Onsager>. In this model only one central dipolar

who pointed out that the part of E; that is due to the reaction field of the permanent dipole
should not be included in E;.
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molecule is considered explicitly, and the surrounding fluid is assumed to behave as a
macroscopic dielectric continuum. This drastic approximation ignores all the effects of
the short range structure of the fluid. Nevertheless, with these assumptions it is
possible to obtain a simple relation between the size of the permanent dipole moment,
p, and the dielectric constant, which is the well known Onsager equation (e.g. see

reference[2] ),

dn p? (& —€x)(2¢ tex)
3P3UT T T € (eat2)
(es '—1)(265 +1)
= 3 (6.3)

where e is the dielectric constant measured at high frequencies. This represents the

electronic contribution to €, and so for the Stockmayer model we have put €, = 1 in

the above expression.

The Onsager equation is found to be a moderately successful approximation for
the behaviour of various real dipolar liquids. However it is particular poor for highly

polar liquids, such as water, where hydrogen bonding can occur.

For polar gases at low density, a virial expansion (analogous to that employed for
the pressure) can be used for the dielectric constant. This equation is based on the
Clausius-Mossotti (CM) formula, but the expansion is made in terms of the density,
rather than the polarizability, which appears in the CM expression. This allows the
virial form to be used with polar fluids, even when a = 0. The virial equation in this

case can be written as?,

€—11

ok a(T)+pb(T)+p2cT)+..... (6.4)

where a(7) = 4wp®/(9kT), and the higher order coefficients can be expressed as

integrals over pairs, triplets, etc. of molecules. While this expression is limited to
densities much less than that of the liquid state, it is interesting to note the important
effect of molecular shape on the second dielectric virial coefficient, (7). For

example, b (T) is found to be strictly positive for gas phase measurements on CHF;,
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while similar data for a molecule such as CH3F always gives a negative value for this
coefficient. This difference is due to the shape of the molecules, which effects the
relative stability of the parallel and anti-parallel alignments that can occur between
pairs of molecules. It can be shown that the spherical symmetry of the LJ part of the
Stockmayer potential will always lead to a positive value for b(T).

6.2.3. The Kirkwood g factor and the mean square moment

In dense polar liquids it is necessary to treat the interactions of the fluid by more
general statistical mechanics. It is desirable to relate the dielectric constant of a
macroscopic sample to the molecular correlation functions within the fluid. Some of
the most important pioneering work in this area was performed by Kirkwood* with

further developments due to Frohlich.

The treatment given in Frohlich’s book is based on the consideration of the
spontaneous polarization fluctuations within a small volume, V, containing N
molecules, of the total sample. The remainder of the sample is then treated as a
continuous dielectric, so that the only molecular interactions that are explicitly treated
are those within V. It is usually stated that V should be sufficiently large to make this a
good approximation, without actually specifying the minimum volume. We shall give
some of the details of the derivation of the Kirkwood formula here because the method

is similar to that used in later calculations.
From equation (6.2) we can write,

4r<M>p
|4
where <M>; = <>'u,>; is the mean moment of the sample of N particles in the

i

(e,—1E = 44P = (6.5)

applied field. Introducing a unit vector in the direction of E, we can write E = Ee,
and the vector <M>j will be parallel to e. Thus we can take the dot product of (6.5)
with e, and then expand the RHS in a Taylor series about £ = 0, which can be

truncated at the first term since we are only interested in the linear response, so that
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we get,

4 4
= = —< > = —F—< >
(e,—1)E = M.e>g v EaE M.e

where the omission of the subscript E on the angle brackets indicates the average with

no applied field. Hence,

d 417 ) -
(€ 1) V 8E<M V [aE oE, ’ ] (6'6)

The field within the dielectric is the Maxwell field E, but it is more convenient to
introduce the actual field that acts upon the volume under consideration. This value is
denoted here as E,, and this is the applied, or cavity, field which would exist if all the

molecules were removed from V. Simple electrostatics gives the relation between E

3¢,
2¢, +1

and E, asE, = E, where ¢, is the static dielectric constant of the fluid.

Applying classical statistical mechanics to the system of N particles in the applied
field, a formal expression can be obtained for the expectation value <M.e>. If the
integral over all positions and orientations is denoted as f dX and the energy of the
configuration X in the applied field E, by U(X ,E, ), then

E;
<M= = = 2f ax (M &) exp (~U(x WyiT) 6.7)

with Z = [dXexp(—U(X &)/kT ). Thus we can write,

d<M.e>
3E, aE z ka dxM.e eXp( Ui
2 kT
= 1 aU >+—1—<M el oU >
aE kT CeE, T AT 3E,
= 73:<(M‘é)2>
= oy (6.8)
3kT ’
since we have 8U/3E, = —M.e and also <M.e> = 0. In the final equation we have

used the fact that <cos?6> = 1/3. Thus the final relation obtained is,
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(es—l)(2€s+1) = 4_1T<M2>
3e; V  3kT

It can be seen that the mean square fluctuations of the total moment within a sphere

(6.9)

immersed in its own medium are directly related to the dielectric constant.

The expectation value <M?> can be expressed as,

<M?> = <MM> = <Xmwi)-(Xw;)>

1

= W< Fcost,; > (6.10)
iJ
where 6;; is the angle between dipoles w; and p;. For a sufficiently large volume V,

the value of Ycos6; should be virtually independent of the position of the j*

molecule and so we can write <M?> = p?N¥'<cos,;> (for a more complete
J

discussion of this point, see e.g. ref. [2] ). Using this, equation (6.9) can be

rearranged as,

(€¢—1)(2€§+1) P 2
- - = < >
127re, 3T %:coseu

. .
ek (6.11)

where g is known as the Kirkwood correlation factor. For g = 1 the Onsager

equation is recovered, and so (6.11) can be seen as a generalization of this result.

The Kirkwood g factor is of course related to the more general pair correlation
function for the molecular liquid which is A (r;,€,r,,€;) = h(12). Rather than deal
with the whole of this function, it is more convenient to expand it in a series of terms,
the coefficients of which are rotationally invariant (i.e. angle independent). This
procedure i1s described in ref. [6], for example, and leads to
h(12) = h(r)+ha(r)A(12)+hp (r)D(12)+... , where the angle dependence is in the
functions such as A(12) = fi;.fi, and D (12) = 3(fi;.r)(fi,.r)—(fi;.A,). We are mainly
interested in the function h,(r) here because it is this term that determines the value

of the Kirkwood g factor. h(r) is related to the h (12) by the equation,
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ha(r) = 3 202202 40,40, 6.12)

From the above definitions g may be expressed as,

g = _ZhA(r)4'n'r2dr (6.13)
Thus the dielectric constant can be directly related to part of the pair correlation
function, but calculation of h(12) is of course very difficult. Some progress has
nevertheless been made in the theoretical treatment polar fluids, such as the important
work of Nienhuis and Deutchl. More recently Patey et al’>8 have used a quadratic
HNC approximation to find €, for a fluid of hard spheres with variable dipole and
quadrupole moments at the centre. Some calculations have also been made for the

Stockmayer potential.

6.3. The frequency dependent dielectric constant

D
6.3.1. The debye equation

Since the permanent dipoles within a liquid take a finite time to reorientate when
an electric field 1s applied, the dielectric constant measured in an alternating field, of
angular frequency w, is different to that found in the static case. The frequency
dependent form of €, is represented as a complex quantity, e(w) = €'(w)—i€''(w),
where € (0) = ¢, and €''(0) = 0 T

One of the simplest (and often quite adequate) models for understanding e(w) is
that given by Debyell. The Debye equation can be derived starting from the

assumption that the rate of change of the polarization at any time (P(z)) is simply

proportional to the difference between the equilibrium value (P,,,) and the current

+ Note that we assume e(w) to be independent of the spatial variation of the electric field, i.e.
e(k,0) = e(w), at least in the low wave vector (k) limit. This point is discussed in detail by, for
example, Madden and Kivelson®. At extremely high frequencies the electric field can vary over
lengths that are shorter than the range of the correlation functions which are important in the
determination of the dielectric constant. It may then be necessary to treat e(w) as been dependent
on k, as well as frequency, but we are not interested in this limit.
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value, %CXP(I)—P“I,,,. The resulting differential equation gives an exponential

solution for the polarization, such as P(t) = P,,,(1—exp(—t/1)), in the case of a .
constant field applied at ¢+ = 0 (we ignore the polarizability which leads to a small,
virtually instantaneous, response since this is absent in the Stockmayer model). The

time constant 7 is the macroscopic relaxation time of the system.
The solution for P(z) in an alternating field, Eee'®, allows the calculation of

€(w), via the use of equation (6.2). It is found that,

€1

€(w) = €'(w)—ie''(v) = 1+_——1+iw2‘r$

and hence the two components are,

W) = 1+

s 1+w?7?

. €—1

€ ((x)) = mw‘r (614)

These equations give the simple Debye behaviour of the dielectric constant, with €' (w)
falling monotonically from €, to unity at very high frequency, while €’’(w) has its peak
value at @ = 771, and disappears at low and high w. It is sometimes more convenient
to display both parts of €(w) on the same graph, in a so-called ‘Cole-Cole’ plot. This is
just a graph of €'(w) against €''(w), and for the Debye model this just gives a semi-
circle, radius (e, —1)/2 centred at € = (¢, +1)/2, €'’ = 0. Such a plot is convenient

for comparing experimental data with theoretical curves like the Debye result.

While the Debye resuit is a good approximation to the behaviour of a many
simple dielectrics, it has a number of limitations. In particular, at very short times the
response of the dipoles to the applied field is limited by their inertia, which is not
allowed for in the Debye treatment. More complex materials can also have a range of
different relaxation times. Various empirical modifications to the Debye theory have

been proposed (e.g. see refs. [11] and [5] ) with varying degrees of success, but we

shall not discuss these here.
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6.3.2. Relation of €{w) to the CF <M(0).M(r)>

It has already been seen that the static dielectric constant can be related to the
mean square fluctuations of the total moment within a spherical sub-volume of the
fluid. An analogous relation can be derived for the dynamic dielectric constant in
terms of the time-dependent extension of <M?2>, the normalized auto-correlation
function of the moment,
<M(0).M(2)>

<M?>
The derivation of such a relation can be made using the linear response theory of

o) = (6.15)
Kubo!2. Applying this to the total dipole moment of our spherical sample yields!3 the

following expression for <M(z)> in an applied field E, (¢),

1 e d ,
<M(t)>g = 3kT;Ldt E,(t )dI, <M(0).M(¢' )> (6.16)
which is just an “after-effect” expression for the moment, except that the response

kernel is given. For the case of an immersed sphere the applied field E, (¢) is just the

cavity field, as used in the static formula, (6.9).

Within a homogeneous system the static formula for €, (6.2), can be extended to

express €(w) as,

<
€(w)—1 = 47P (0)/E(w) = 4w (6.17)
where we assume a homogeneous applied field of the form E,e’“" and have taken the

frequency transform of the various terms involved.

The susceptibility of the dielectric to the applied field (rather than the Maxwell
field, as in (6.2)) can be defined as,

Plw) _ 1 <M(w)>g
E(w) V. E,(0)
Combining this equation with the linear response result, (6.16), eventually gives,

Xo (@) = (6.18)

<M?> P ;
Xo (@) = — 1—iw| ®()e ' dr (6.19
3kTV { )




112

Thus e(w) may be expressed as,

4m <M*>
3 k1V

| £
J E(w)

Ignoring retardation effects (the “quasi-dielectric’” limit) the ratio of the applied field

e(w)—1 = 1—iof®(t)e 1= d (6.20)
0

to the Maxwell field at the frequency w is just given by the same formula as for the
static case, with e€(w) replacing €,. For a spherical volume immersed in its own

medium we get E, (0)/E (w) = 3e(w)/(2e(w)+1). Using this in (6.20), with the static

result from (6.9) yields,

o [@)e-iwd] = & @e@)t)(ew)=1)
T R I (R R 7 .

This equation was first obtained by Fatuzzo and Mason!4.
While the functions €(w) and x(w) are shape independent, the other functions
such as <M?>, ®(¢) and x,(w) vary according to the boundary conditions of the

sample. For example, in the case of a dielectric sphere in vacuo, the above type of

analysis gives the result,

. F —iwt = ng!_l € +2
1 lw{®(t)e dr )21 (6.22)

so that the correlation function ®(r) must be different from that obtained for the
immersed sphere. This topic has been discussed in relation to the computer simulation

of homogeneous systems by Neumann and Steinhauser in a recent paper!.

6.4. Computer simulation of dipolar fluids

The method that we have used for simulating the Stockmayer fluid (described in
chapter two) is based on a simple spherical truncation of the interaction potential,
though with a much greater cut-off than usual. Due to the long range nature of the
dipolar force, various schemes have been employed in homogeneous simulations to

account for the significant interaction that would, in a macroscopic liquid, occur
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between an individual dipole and the fluid beyond the cut-off, r.. These methods
have been reviewed by several authors!6:15 and we shall just mention some of the

basic details for comparison. The two most commonly used methods are:

(1) Reaction field techniques, in which a simple spherical truncation of the interaction
is used, but it is also assumed that a continuous dielectric exists beyond the cut-off
sphere, with a dielectric constant eg-. This continuum produces a reaction field on
each dipole, like that used in Onsager’s calculation of €, which is proportional to the

total moment within r., M= > m,. Since the response of this reaction field is
r<r,

instantaneous, it corresponds to a frequency independent dielectric constant beyond
the cut-off!>. The value of ey is usually chosen to be as close as possible to the
expected value of € for the fluid. It is also possible to use eg = , which
corresponds to “‘conducting boundary conditions’. The reaction field method was first

used by Barker and Watts!”

(2) The Ewald-Kornfeld!®:1® summation technique, where by interactions with all
dipoles beyond r. (i.e. including all the periodic images) are expressed as two rapidly
convergent series which can then be evaluated. This is a more time consuming
procedure than the reaction field method, and it is necessary to exercise great care in
the accurate evaluation of these series?). It has been shown that this method gives
similar results to (1), and also effectively corresponds to a frequency independent

dielectric constant beyond r. .

Other methods used include that due to Ladd?! who approximated the effect of
each image cell by a number of point multipole moments at its centre. These can then

be summed over relatively quickly, though the result is effectively similar to that of the

Ewald method.

It is known that the use of a simple spherical truncation of the dipolar potential

leads to a significantly different form of the function h,(r) near r = r., compared to
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that obtained with any of the above methods?2. This is for homogeneous simulations
with r.~4c. However, both lattice summation (e.g. Ewald) and reaction field
methods are to some degree artificial and some differences still exist between the
results of these methods. The system that has been studied in this work does still
involve a simple spherical truncation, but with a value of r, several times greater than
that possible in more conventional simulations. In addition, the cut-off mainly effects
the much less numerous liquid-gas interactions, while most liquid-liquid interactions
are completely accounted for within the drop. The use of lattice summation or
reaction field corrections is not useful or desirable for our system, since we are
interested in a microscopic drop surrounded by low density vapour, and do not wish to

include the image effects.

In the following chapters we investigate the feasibility of using these effectively
isolated drops to measure the static and dynamic dielectric constant. We shall
compare our results with some of those obtained by other authors, using the more

conventional techniques.
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Chapter Seven: Results for the static dielectric constant

7.1. Introduction

In this chapter we report results for the mean square moment, <M?(r)>, within
the series of Stockmayer drops that have been studied. It is shown how these
measurements can be used to obtain the static dielectric constant of the bulk liquid,
using a generalization of the Frohlich result, equation (6.9). The results will be
compared with data due to Adams and Adams!, and others, who have performed

homogeneous simulations, using Ewald-Kornfeld summations, at similar state points.

The analysis of <M?(r)> is also extended to treat the drop surface in more
detail. While the true form of €, in the liquid vapour interface must strictly require a
tensorial representation, it is shown that a simple scalar function for €,(r) can give a

satisfactory explanation of most of the observed <M?(r)> data.

7.2. Measuring <M?(r)> within the drops

During most of the longer Stockmayer simulations, detailed in chapter three, the
mean square moment, <MZ2(r)>, was measured. This quantity was obtained for a
number of different sphere radii, each such notional sphere being centred on the centre
of mass of the drop. Following the approach used to sample the density profile we
chose to use a set of N sphere sizes, with the radius of the i” sphere being
r; = i(L/2N) where L is the length of the periodic cell and we took N = 50 (as for
p(r)). To efficiently sample the values of M?(r;), the vector moment within each
shell, M(r, -r; .1), is first computed (see listing in appendix for details). Then the total
moment of each sphere, and hence M?(r;), can be obtained by a summation over the

appropriate set of shells.

Thus for each drop we have data for the function <M?(r)>. For comparison
with theory it is more convenient here to present values of <M?(r)>/(3kTr?) rather

than just <M?(r)>, and we shall refer to this “normalized” quantity as the mean

116
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square moment, or MSM.

Figure (7.1) shows a typical plot of the MSM against r for the 450 particle S1
system, state (D7). Also shown for comparison on the same figure is the density
profile of this drop. It can be seen that the MSM has a relatively low value in the
vapour, but that this rises rapidly through the interface region and begins to reach a
plateau inside the drop, where the density is approximately constant. However, at
very small r the MSM again decreases quite sharply. A qualitatively similar behaviour
was observed in the other drops for which the MSM was measured. Before examining
these results in detail it is necessary to discuss the interpretation of this data, which is

given in the following sections.
7.3. The generalized MSM for a macroscopic dielectric sphere

7.3.1. Derivation of the formula

It was shown in chapter six that the MSM of a sphere immersed in its own
medium is directly related to the dielectric constant by the equation (6.9). A similar

equation can be dcrived in the case of an isolated sphere in vacuum? which is that,

4 <M?>  <M?> &1
3 3T  3R%T { = MM ) = € +2 1)

Thus for all €,>1 the vacuum value of the MSM (equation (7.1)) is always less than

the immersed value, (6.9). The data shown in figure (7.1) is at least in qualitative
agreement with this observation, ignoring the interface region and the data at small r.
A quantitative comparison can be made by calculating the generalization of equations
(6.9) and (7.1) to find the MSM of any given sphere of radius r’, centred within a
homogeneous dielectric sphere of radius R, in vacuum (corrections due to the vapour
are considered latter). It is assumed that all parts of the system can be treated

macroscopically and that € = €, for r <R with e = 1 for r >R.

Combining equations (6.6) and (6.8) from chapter six gives,
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Figure 7.1: The measured MSM ( = <M?%(r)>/3kTr?) as a function of sphere
radius, r. The data shown (A) is for state (D7), an S1 drop with N, =450,

at a temperature of T =0.809. The

equimolar radius is R, =4.7 in this

case. For comparison, the density profile of the drop (the tanh fit to p(r)) is

also shown, on the same scale.
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<Mr)> _ (&1 (95, )
3kTr3 3 OF

The Maxwell field within the whole sphere (radius R) is simply related to the field at

(7.2)

infinity (E.) by E = ;—%Em To find the cavity field, E, , that acts on the spherical

region of radius r’ requires the solution of the Laplace equation for the uniform field
inside a dielectric shell (i.e. € = 1 for r<r') subject to E = E at infinity. This can
be done using a simple extension of the analysis to find the Maxwell field within a
sphere that is given in many texts on dielectrics, e.g. see appendix 2 of reference[2].

The actual calculation 1is relatively straight forward and yields the result

E, = E.9,/[(e, +2)(2¢, +1)—2(e,—1)}(r/R)’]. This allows the determination of

oE, . .
[ 3F ] and so the more general expression for the MSM is found to be,

<M2(I’)> - € —
3kTr3 9¢, (¢, +2)

The limits of (r/R)-0 and (r/R)-1 give the original equations (6.9) and (7.1)

(&, +2)(2¢, +1)—2(€, —1)21';—33 (7.3)

respectively, as required.

Equation (7.3) was in fact first obtained by Berendsen3. It has also been used by
Adams and McDonald* in a study of polar lattices and the two dimensional analogue

was used by Bossis®- 6 in studies of a 2D Stockmayer system.

In figure (7.2) we plot the MSM as a function of (r/R), as given by equation
(7.3), for a range of € values. Beyond r = R the curves have been extended by
plotting <MZ%(R)>/3kTr3.

An important fact that is illustrated by these curves is that the values of the MSM
near r = R all lie very close together. This effect is most pronounced for the larger
values of €,. At the r-0 limit on the other hand, the MSM curves show a much
greater separation even for very large values of €;. Thus it is much easier, and more
accurate, to calculate €, from measurements of the MSM for an “‘immersed” system

rather than using the “‘sphere in vacuo” results. This is another argument that has




<M2(r)>/3kTr3
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Figure 7.2: The MSM within a macroscopic sphere (sharp surface at R) as a

function of r/R, for a range of values of ;.
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recently been put forward against using a simple spherical truncation in homogeneous

simulations of dipolar fluids’.

7.3.2. Comparison with simulation data

In this section we shall assume that the dielectric profile of a Stockmayer drop can
be adequately approximated by the result obtained above for a macroscopic system
with a sharp interface. Simulation data is compared with equation (7.3) by setting the
radius R equal to R, , the equimolar radius of the drop, and ignoring the fact that the

vapour has a dielectric constant greater than unity.

In figure (7.3) we have again plotted the MSM data of state (D7) but also
included is the curve obtained from equation (7.3) for a dielectric constant of
€, = 10.3. This particular value was chosen to give a best fit to the data in the
approximate range 2.4<r=4 . It is clear that the macroscopic theory breaks down at
small r (we discuss this in more detail latter) and this becomes most notable for r
below ~2.4 . Also the fact that the interface region is, in reality, quite diffuse means
that (7.3) cannot be expected to hold well for r~R,, and so data above r = 4 was

ignored in selecting the best fit for ¢, .

Within the limited r region used the agreement between the data and equation
(7.3) is quite good. Through the surface of the drop, and also in the vapour, the data
indicates rather higher values of the MSM than are predicted by the theory. This is as
might be expected since we have ignored the significant number of molecules that lie

above R, , and the contribution of the vapour region.

7.3.3. Importance of surface width

As a first attempt to treat the interface region in a more realistic way, the sharp
dielectric profile that was assumed above can be replaced with a “stepped” surface

defined by,




Figure 7.3: A comparison of the simulation data for state (D7) (& ) with the
calculated MSM (solid line) of a macroscopic sphere with a dielectric
constant of € =10.3 and a radius R =R, =4.7 in this case. With the
“stepped” dielectric profile described in the text (e, = (10.3+1)/2 between
0.9R, and 1.1R,) the dashed curve is obtained. The short chained line
indicates the “‘microscopic” limiting value for this particular system, as r-0.
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€(r) =€ if r<R(1-9)
€ +1 .
= if R(1-3)<r=<R(1+d)
=1 if r>R(1+9%) (7.4)

where the step has a width of 28 (here 8 is an arbitrary parameter, not to be confused

with Tolman’s & in chapter four).

The treatment of <M?> for such a system is similar to that used for equation
(7.3), though slightly more complex because of the extra layer. For any chosen radius
r the cavity field that acts on the particles within the given sphere will be
homogeneous as before, so that equation (6.8) is still applicable. For r=<(r—3) the
problem is just one of determining the ratio of the cavity field to the Maxwell field,

3E,

[E]’ as before. While it is feasible to solve the Laplace equation analytically for

systems of a few shells, to give expressions like equation (7.3), it is easier to
implement a numerical solution which can be extended to treat more complex systems
later.  The pgeneral form of the potential within each shell is

®,(r) = —(A;/r’+B;r)cos and this can be combined with the boundary conditions at

oF
r=R=*dandr =0 and r = » to find [ 61:2 ] The details of this method are given

in appendix D.

For the case of r>(R —8) we need to find the total MSM due to two regions with
different values of € and E. The Maxwell field in the outer shell will in fact have a
dipolar component in addition to the homogeneous part (i.e. the A, term in the
solution for ®;(r) is non-zero). However this will produce no net moment, by

symmetry, and it can be ignored. The total moment in the applied field E, is then
given by,

<M(r)>p = 2@,—1)‘;‘—? (7.5)

where the sum is over the two separate regions within r, each of volume V; and mean
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Maxwell field E; (the subscript E indicates that (7.5) is the mean response in an
applied field, as opposed to functions such as <M?(r)>, which are measured in the
absence of any field). The method of solution for the various fields in this case is also
given in appendix D.

The resulting MSM that is obtained with such a ‘stepped profile’ is also shown in
figure (7.3). The value of & was chosen to be 8/R, = 0.1 to give an interface width of

similar magnitude to that found for the density profile.

As can be seen, the agreement between this modified theoretical curve and the
MSM data is rather better, at large r (>R—3), than was obtained with the simple
sharp interface. However the agreement is still not completely satisfactory. More
significantly, we note that the values of the MSM for r <R —3% are in fact very little
different to those obtained without the surface step. Hence it appears that the exact
details of the interface region only have a very marginal effect on the MSM well within
the drop. Thus it is not necessary to accurately treat the behaviour of the dielectric

constant in the surface to measure the dielectric constant of the bulk liquid.

Considering the above, it seems that the original estimate of €, = 10.3 that was
found for the dielectric constant of the bulk fluid may, therefore, be a reasonably
accurate one. From the spread of the data and the uncertainty in the exact range of r
values that should be included in the fit, the error in this result may be of the order of

+ 10%, 1.e. ¢, = 10.3=1 at T = 0.81 and a density of p = 0.85.

While it is possible to estimate the bulk liquid dielectric constant for all the
studied Stockmayer states by this technique, we chose to first implement a more
general treatment of the surface region. The details of this are given in the next
section and it is hoped that the ambiguity in deciding which data to omit from the

fitting process will be reduced by this more realistic model.
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7.4. The MSM for a continuous dielectric profile

7.4.1. <M?(r)> within the surface

It has been seen, as in figure (7.3), that the plot of the function <M?%(r)>/3kTr>
against r is relatively insensitive to the dielectric constant in the surface. However,
the r—3 term that is included in this expression emphasizes the data in the bulk (at
small r) while suppressing the data in the surface and vapour regions. For a better
comparison of these results with the macroscopic curves, a graph of just <M?2(r)>
against r can be more useful. Using the same data as before (i.e. state (D7)), such a
plot has been drawn in figure (7.4). Also included in this figure are the <M?%(r)>
results, as calculated for the sharp interface and the stepped interface. It is clear that
the behaviour of these latter curves in the surface and vapour regions is substantially
different to that of the simulation data. The stepped profile only makes a marginal

improvement to the fit in this figure.

The assumption that €, = 1 in the vapour region necessarily leads to the constant
values of <M?(r)> that are shown in (7.4) at large r. The actual value of €, well
outside the drop can be calculated from the known vapour density, using the Onsager
equation, (6.3), which is a good approximation at low density. This yields a value of
€, = 1.032 for this particular state, (D7). It is relatively straightforward to modify the
macroscopic theory of the sharp interface to allow for €, >1 outside the drop, and the
new curve that is obtained in this way is also shown in figure (7.4). We note that the
increase of <M?(r)> at large r given by this result is very similar to that of the

simulation data, but with the former curve shifted down by a constant amount.

The obvious conclusion from these results is that a better description of the
behaviour of the MSM in the surface is required to explain the data. The simplest way
to extend this analysis is to increase the number of dielectric shells until we have a

virtually continuous profile, the shape of which can be adjusted to fit the observed
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Figure 7.4: The actual function <M?(r)> as a function of r for state (D7)
(&). The result corresponding to a macroscopic dielectric sphere with a
sharp surface is given by the solid curve, while that for a stepped surface is
shown as a dashed curve. If the vapour dielectric constant is included in the
calculations for the stepped surface, the chained curve is obtained.
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simulation data. The validity of such an approach, and the methods by which it can
be implemented are discussed below.

7.4.2. The general form of the dielectric constant

The most general expression for the dielectric constant is as a tensorS,

e(k,0) = [I+41rx(k,w)] (7.6)
and it is only in the low k limit for homogeneous isotropic systems that we can write,

e(k,0) - €(0) = ()1 (1.7)
In the interface region the density is changing very substantially over lengths of the
order of a molecular diameter, which is, of course, less than the range of the
correlation functions that determine €, (e.g. see values of h,(r) given by Neumann et
al’ ). Hence, within the surface the dielectric constant is; (i) likely to require a non-
isotropic tensor for its representation, and (ii) the value at a given point within the
surface will depend not just on the density, p(r), but also on .the distribution and
density of the surrounding fluid. This means that the dielectric constant at any given
point in the surface is not necessarily even close to that which would be found for a

homogeneous sample at the same density and temperature.

While it would obviously be more correct to treat the dielectric constant as a
tensor, in the following analysis we shall just use a scalar function to represent this
quantity. This simplifies the necessary calculations significantly, and the methods
described in appendix D can be used to find <M?%(r)>. Thus we wish to find the
single function €,(r) that will correspond to the measured data from the simulation. If
such a scalar function can be found which adequately fits the experimental data then it

is probably not worthwhile trying to find the more general tensor expression.

7.4.3. Fitting €, (r) to the <M?(r)> data

It would be most desirable to directly calculate the function €,(r) from the
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simulation data for <M?(r)>. However the particular numerical method outlined in
appendix D only allows the calculation of the <M?(r)> from a given dielectric

proﬁleT :

As far as we know it is not possible to invert the equations to find €, (r) directly,
so a fitting process was adopted. Using some functional form for €,(r), a non-linear
least squares fit was performed to find the best parameters for the given function.
Since we expect €,(r) to be constant well outside the drop, and also to be tending to a
(different) constant value within the drop (we again have to ignore the data at very
small r), the most obvious choice for this function is a tanh form, analogous to that

used for the density profile, i.e.,

€,(r) = A.—B tanh [ir.;R—E)]

where A, = (g, ; +€, ,)/2 and B, = (¢, ,—¢, ,)/2. The notation ¢, ;, and ¢, , has been

(1.7)

used for the limiting values of the dielectric constant in the liquid and vapour
respectively.
Figure (7.5) shows the resultant <M?(r)> curve that was obtained by fitting such
a function for €; to the same data that was used in the previous sections (state (D7)).
All data points for r=2.4 were given an equal weight in the fit, while the results for
r<2.4 were excluded as before. The choice of weights is rather arbitrary and to
emphasize the data well within the drop, as the method of §7.3 does, one could use
3

weights proportional to r—°. This might be preferred if the aim is just to maximise the

accuracy of the value of €, .

During the fit €, , was held constant at the value found from the limiting vapour

density, €, = 1.032. The remaining three parameters, €, ;, R, and D, were then

T The particular method we have employed is to treat the drop as a system of N shells. each of
the same width, and having a dielectric constant equal to the value of the continuous function
€;(r) at the mid-point of the given shell. For large enough N (we used 50 divisions), the
<M?(r)> profile is independent of N .
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Figure 7.5: The function <M?%(r)> (dashed) that is obtained by fitting to the
simulation data, using a tanh form for €(r), with three adjustable
parameters. The simulation data for state (D7), to which the fit was made,
is shown as the solid curve.
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adjusted for the best least-squares fit.

The agreement between this fitted curve and the data from the simulation is seen
to be very good. The use of a simple scalar function of tanh form for €,(r) does,
therefore, appear adequate to describe our results, at least in this case. This is a vast
improvement at large r, compared to the simple sharp and stepped interface results
shown in figure (7.4). At small r, however, there is very little difference between this

new calculation and the previous results.

Similar fits have been performed for a number of the longer Stockmayer runs for
which the function <M?(r)> was measured. In addition to the several S1 drops, fits
have also been made for the two S3 states studied. Table (7.1) summarises the results

obtained for the various parameters.

Table 7.1

Pot. S1 S3

State (D6) (D10) (D7) (D12) (D13) (D14)
N, 450 800 450 900 450 450
T 0.734 0.744 0.809 0.913 1.20 1.25
€, 1.018 1.027 1.032 1.048 1.09 1.12
€ 13.1 13.2 10.2 8.8 29.3 26.2
R, 4.72 5.74 4.57 0 4.48 4.30
R, 4.70 5.64 4.65 5.52 4.42 4.26
D 1.52 1.62 1.76 2.10 2.05 2.24
¥ 153 1.2 1.47 2.32 1.69 1.75
P 0.879 0.866 0.850 0.812 0.828 0.797

Table 7.1: Results obtained for the dielectric profiles of various drops
assuming a hyperbolic tangent form for the function €,(r). Data for the
density profile is also shown for comparison.
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The dielectric surface width and “half radius” (D, and R,) may be compared to
the corresponding values obtained for the density profiles of the drops, which are also
given in table (7.1). We note that these values are generally very similar. There is a
slight tendency for R, to be less than R,, but only by ~0.1, and this difference is
reversed in one state. The variation between the two sets of surface width parameters

is slightly greater, though without any clear trend.

Figures (7.6) to (7.9) illustrate the fits obtained with the parameters given in
table (7.1) for a selection of states. As for the previous example, these figures show
that the fits are reasonably close to the data. The two S3 drops show slightly poorer
agreement than the other S1 results. The higher value of the liquid dielectric constant
in the S3 drops means that the function <M?(r)> has to change more rapidly through

the surface region and thus may represent a more severe test of the theory.

We note that, in the case of the S1 drops, the variation of €, through the surface
is such that both the fit and the data for <M?(r)> increase monotonically with r.
However, in the case of the S3 drops, figs. (7.8) and (7.9), there is a significant
“bump” in the <M?*(r)> profile. This is probably a vestige of peak that was seen in

figure (7.4) for a sharp dielectric profile.

Calculations have been made by Gubbins and Thompson® of the anisotropy of
dipole orientations in the planar liquid-vapour interface for the Stockmayer fluid.
They found only slight anisotropy in the case of the S1 potential, but this effect was
much more noticeable with the highly polar S3 potential. Similar correlations can be
expected in the curved interfaces of the drops simulated in this work and are likely to
be associated with an increase in the anisotropy of the dielectric tensor within the
surface as the dipole moment is increased. Hence it might be more useful to
investigate the possibility of fitting a tensorial form for the dielectric constant in highly

polar drops, such as the S3 ones. This has not however been attempted in this work.
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Figure 7.6: As in fig. (7.5), but for state (D12), N, = 900 and a temperature
of T =0.913.
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Figure 7.7: As in fig. (7.5), but for state (D10), N, =800 and a temperature
of T =0.744.
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Figure 7.8: As in fig. (7.5), but for state (D14), N, = 450 and a temperature
of T =1.25, using the S3 potential (p? = 3).
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of T =1.20, again for the S3 potential.
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7.4.4. An alternative form for €,(r)

While the results obtained with the tanh form for €,(r) are quite good, this
particular choice of function is rather arbitrary. An alternative approach that has been
investigated is based on the Kirkwood equation, (6.11), which relates €, to the density
and the correlation factor g in an homogeneous system. The low density of the vapour
surrounding the drops will give a value of g that must be very close to unity, whereas
the dielectric constant values for the bulk liquid indicate that g is of the order of 1.5
to 2.0 within the drops. If, as before, we assume that a simple scalar function, €,(r),
is adequate to describe the surface behaviour, then we can directly define the related
function, g (r,p(r)) using equation (6.11), in conjunction with the density profile p(r).
For simplicity we shall assume that this effective g factor can be expanded in terms of
just the density at r, i.e.,

g(p) = 1+ap+bp’+...... (7.8)
which gives g = 1 in the limit p-0. It must be emphasized that this is an empirical
approach and that the function g(p) within the surface cannot be related to the true
Kirkwood correlation factor for a homogeneous system at the same density. In fact it
might be more correct to include other terms in equation (7.8), such as (dp/dr), but

this has not been investigated.

Thus by using equations (7.8) and (6.11), a form for the dielectric profile, €,(r),
can be obtained in terms of the set of coefficients {a ,b,...}. Using the same numerical
methods as for the tanh curve, a least squares fit can be performed to determine the
best values for these coefficients. This has been doné:; number of states, but here we
shall just use the data for drop (D7) as a typical example. Two different expressions
were employed for g(p), a linear one, g(p) = 1+a;p and a quadratic form,
g(p) = 1+ayp+byp®. For this particular state the optimum values found for these
coefficients were a; = 0.747 for the first fit and a, = 1.855, b, = —1.545 for the

second one. In figure (7.10) we compare the simulation data with these linear and
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quadratic results for <M?(r)>. The agreement is quite good in both cases, though
slightly better for the quadratic form, as would be expected. The €,(r) profiles given
by these fits are shown in figure (7.11), along with the hyperbolic tangent result. We
note that all three methods give similar results for the dielectric profile, especially in
the surface region. However, the linear expression for g gives a larger value of €; in
the centre of the drop than the other two methods, indicating that a single parameter
function may not give adequate flexibility. The estimate of the bulk liquid dielectric

constant for the quadratic fit is very close to the value obtained by the tanh method.

It is possible to use more terms in the expansion for g (p), but it was found that
this only gives a slight improvement in the <MZ?(r)> fit, and the coefficients
themselves tend to change quite significantly as the order of the polynomial is
increased. The dielectric profile obtained in the surface and vapour regions is not
greatly effected by such changes, but the higher powers can lead to strange behaviour

of g (p) for large p.

This method of expressing €,(r) in terms of the density gives results which are
consistent with those obtained with the tanh form, but it appears to be slightly less
satisfactory. Also, the fit parameters themselves (a; and a,, b,) have no clear
physical meaning, such as can be associated with the width and radius values of the
tanh fit. Hence, we shall limit further discussion to the results given in table (7.1)

using the tanh representation for €,(r).

7.5. Comparison with previous dielectric measurements

A number of workers have calculated values of the static dielectric constant at
various liquid densities for the S1 and S3 potentials. Computer simulation studies
have almost exclusively been based on homogeneous systems with periodic boundary
conditions. Long range corrections are applied by either lattice summations techniques

or the reaction field method, which are mentioned in chapter six.
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Figure 7.10: The function <M?(r)> obtained by fits based on the expansion
of the Kirkwood g in terms of the density. The data for state (D7) is again
shown as a solid curve, while a linear fit (g (p) = 1+a;p) gives the dashed
result.  The chained curve comesponds to the quadratic fit
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Figure 7.11: The dielectric profiles, €(r), obtained for state (D7) by three
different fits to the <M?(r)> data. The result of using a tanh form for €(r)
is shown by the solid curve. The dashed curve corresponds to the linear
expression for g (r), while the quadratic form gives the chained curve.
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Adams and Adams! give results for €, for the S1 potential at state points close to
the values found in the central regions of our drops. In figure (7.12) we have drawn
two tentative curves representing the temperature dependence of €, at the two densities
p = 0.8 and p = 0.85, through the five points given by Adams and Adams. The bulk
liquid values, €, ;, given in table (7.1), are also marked on the figure. Our r‘esults for
the S1 states lie between p = 0.88 at T = 0.735, (D6), and p = 0.812 at T = 0.924,

(D12), so they do not lie on an isochore, but are close to the coexistence curve.

The drop values for € are lower than would be indicated by those of Adams and
Adams at the three lower temperature points. However, the higher temperature point,
state (D12), seems to be above the value than would be expected from Adams and
Adams. The accuracy of the results iq given by Adams and Adams is not explicitly
stated, but they also report a number of measurements for the same states using an
applied electric field, and observing the resultant polarization. The dielectric constant
is then obtained directly, using equation (6.2), though the thermal fluctuations of the
polarization mean that a very intense field has to be used. Results for €, calculated in
this way can vary by more than 20% from the zero applied field values. Part of the
difference may be associated with saturation effects, but it seems that there is still a

significant uncertainty, even in the zero applied field results.

The two S1 drops at the lowest temperatures, states (D6) (N = 450) and (D10)
(N = 800), were chosen to be as close as possible in temperature to investigate the
dependence of our results on system size. It is reassuring to note that the values
obtained for € ; are very close, which indicates the a system size of N = 450 should
be sufficient, at least for measuring the liquid dielectric constant for the S1 potential.
The values for the dielectric surface width, D, are also found to be very similar in

these two cases.

It was noted earlier that varying the weights used in the fitting process might

effect the relative accuracy of €,; and other quantities. However, in practice
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reported in table (7.1) are marked as ().
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increasing the weighting of the data in the bulk liquid only had a quite small effect on
the results obtained from the fit. We estimate the accuracy of the values of €, ; as
abouts *1 for the S1 drops in table (7.1). This is in addition to the uncertainties

mentioned in chapter three for the temperature and liquid density of the drop.

Previous results for the S3 fluid seem to be more restricted. Several workers have
reported measurements of €; at the temperature T = 1.35 and a density of p = 0.8.
For example, Pollock and Alder!? found €, = 38 for this system, using either 108 or
256 particles. Another S3 state point that has been studied is 7 = 1.15 and
p = 0.822. While Adams and Adams! found €, = 48 for this state, more recent and
extensive simulations of this system by Neumann et al’ yield a value of €, = 66=2.
Moreover they get the same result by both lattice summation and reaction field

techniques, and so this value appears more reliable than that of Adams and Adams.

While it is difficult to accurately interpolate the p and T dependence of € from
just these two points, it is clear that they would suggest values of €, between about 40
and 50 for our S3 drops, at T = 1.2 and T = 1.25 (with p = 0.83 and p = 0.8
respectively). This is significantly higher than the values of 26 and 29 that are
actually found. Hence this method may be inadequate for the highly polar S3 system,
when used with only 450 particles. Obviously it would be desirable to investigate

larger S3 drops at the same state points, but insufficient time was available to do this.

Hesse-Bezot et al'l have recently published details of a similar method to the one
used here, but only for finding the liquid dielectric constant. They use an isolated
liquid drop that is contained by a soft wall potential (this introduces some density
oscillations near the wall, but they are not very great). The type of method described
in §7.3.2 is employed to find €, assuming a sharp surface. They only report results
for one state point, at T = 1.35 and p = 0.8, with p> = 2.7. Two large systems were
studied, one with N = 913 and the other with N = 1472. The smaller system gave the

result € = 22+6 where as the larger one gave €, = 28=2. A conventional
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calculation by Pollock and Alder!? at a very similar state yielded €, = 29+1. Thus it
seems likely that larger drops are required to find the actual bulk liquid dielectric

constant of highly polar systems.

7.6. The MSM at small r

The MSM plots such as that shown in figure (7.3), clearly fall well below the
macroscopic curve for r< ~2.4 . A sphere of radius r = 2.4 at the centre of any
given drop will contain a mean number of molecules <n(r)> = (4n/3)r3p~46. For
r = 1 the expected number of molecules is only 3, and at r ~0.67 this value reaches
unity. For a spherical volume so small that the probability of two molecules been
within it simultaneously is negligible, the value of <M?(r)> is determined directly

from the density as,

<M2r)> = (pw)pV = S rpp? (7.9)

and hence,
<M?*(r)> _ 4mpy’®

AT OkT (7.10)

For state (D7) this gives the limit that the MSM ~1.47 as r-0, and this value is

marked in figure (7.3). Considering the statistical uncertainties in the data at small r,

this value agrees well with simulation results.

The behaviour of the MSM in the “transition region”, between the micro and
macroscopic limits, is more difficult to calculate, but will clearly depend on the
distribution function ha(r). If this function were known, the mean moment of any
given sphere could be obtained by integration over all possible configurations within
the volume. However, there is the complication that h,(r) may vary with the radial
position, and is, in any case, not very well known, so we shall not attempt to calculate

this here.
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7.7. Conclusions

It has been seen that the liquid drop systems used in this work allow the bulk
dielectric constant of moderately polar systems to be calculated. For strongly polar
fluids it may require drops of significantly more than 450 particles to find the bulk
dielectric constant. If this is indeed the case than it may be more economic to use
more conventional techniques, such as reaction field methods to find €, at a given
density and temperature. It is nevertheless important to show that homogeneous
simulations with such artificial long range corrections do give consistent dielectric
results, and simulations of large drops represent a good way of avoiding all such

corrections.

The analysis of the dielectric surface properties has been made in terms of a
simple scalar function, €,(r). This is clearly an over simplification, but is adequate to
describe most of the drop results found here. A surface dielectric profile of similar
width and position to the density profile is observed. A better theoretical treatment of
the surface, allowing for its microscopic structure, and the fact that the dielectric
constant should really be a tensor, may help to remove some of the discrepances that

are found, particularly for the S3 drops.
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Chapter Eight: The dynamic dielectric constant

8.1. Introduction

In this chapter we present some results for the time correlation functions that have
been measured for the Stockmayer drops. It was hoped that the correlation functions
(CFs) for the total dipole moment within spheres would allow the calculation of the
dynamic dielectric constant, as discussed in chapter six. However theoretical and
statistical problems lead to significant difficulties in finding e€(w) reliably in this way

and some of the reasons for this are considered.

The procedures used to measure both the single particle and total moment CFs
during in the simulations are outlined in §8.2, while some typical results are presented
in §8.3. The calculation of €(w) from this data is examined in section 8.4 and some of
difficulties involved are pointed out. The final section discusses this method in

relation to some other studies that have been made on e(w).

8.2. Calculation of the correlation functions

8.2.1. The total moment correlation function

In chapter seven we examined results for the dependence of the mean square
dipole moment on the radius of the sphere within which it was measured. For most of
our larger drops we also calculated the more general quantity, <M(0).M(z)>,. This is
the time auto correlation function of the total dipole moment within a sphere of radius
r. Extending the notation used in chapter six we shall write the normalised version of
this quantity as ®, () = <M(0).M(r)>,/<M?%(r)>.

To investigate the r dependence of @, (z), this quantity was evaluated for 25
separate radii, these being equally spaced, with the largest one equal to half the
periodic box side (this gives a resolution of ~0.48 in r). In the programme a large

array was used to store the vector moment within each sphere at every fourth time step
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for the last 240 steps of the simulation. These particular sampling frequencies were
chosen as a compromise between accurately studying the time and r dependence of
®, (¢), while avoiding excessive use of computer resources (in particular the limited
disk and memory space). The CFs are obtained by averaging over the appropriate

products of vectors from this array.

8.2.2. The single particle correlation function

The auto correlation function for individual molecules was also calculated during
these simulations. This is just the expectation value <p(0).mw(t)>/p?. Since this
function may, like ®,(r), be dependent on the radial position of the molecule,
separate averages were evaluated in shells about the drop centre of mass. For
convenience the same radial divisions were used as for the total moment CF. However
it must be noted that this single particle function, which we denote as
®}(1) = <p(0).pn(t)>,/u?, refers to just the particles within the shell at r, whereas

®, (¢) is measured for all the particles in the sphere, radius r.

8.3. Results for the correlation functions

8.3.1. The radial dependence of ®(r)

Figure (8.1) shows some typical examples of the results obtained for the single
particle CFs. These values are for the S1 state (D7), N, = 450 and T = 0.81. Only a
few of the 25 separate results for ®(¢) are shown, since many of these are similar to
one another. As might be expected there is some difference between the CF found in
the vapour region and that obtained for the bulk liquid inside the drop. The CF is
seen to decay slightly more slowly in the liquid than in the vapour, at least for
t=~1.5. At longer times the CF in the vapour also goes quite negative, whereas this
feature is much less significant in the liquid. For free reorientation (i.e. the low

density limit) the form of this CF is known to be given by Kummer’s function!, and
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Figure 8.1: Time dependence of the single particle correlation function
®(r), measured for a number of spherical shells about the drop centre of
mass. Each shell is of width Ar =0.48, and the r values given are for the
outer radii of the shells. This data is for the S1 state (D7), at T = 0.809.
The equimolar radius is R, =4.7.
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the response in the vapour region has been found to be quite close to this limiting

form.

8.3.2. The radial dependence of ®,(z)

Figure (8.2) shows a similar set of curves for the function ®,(¢), again for the S1
state (D7). At very small r (e.g. 0.48 - 0.96) this CF decays very rapidly, faster even
than the single particle function @ (¢). This is due to the fact that there are very few
molecules within such a volume and those that are present are frequently exchanged
with others from the surrounding fluid, so that correlations are ““forgotten” sooner
than they would otherwise be. Such volumes are obviously not large enough to yield
the CFs for a macroscopic sample. As r is increased the CF decays more slowly (i.e.
the correlation time increases). The effect of molecules drifting in and out of the

volume then becomes relatively less important.

The form of the CF is found to be approximately constant for r in the range of
abouts 2 - 2.8, at which point the correlation time reaches a maximum. Beyond this
range the CF again changes, presumably due to the effects of the surface region. This
variation is most noticeable in the range of r from about 3.3 to 4.8. The initial decay
of the CF again becomes more rapid, and a strong negative feature appears at times
above t~1.5. At larger r still the CF measured beyond the drop surface seems to
show a strongly damped oscillatory form. This changes little with further increase in
r, since the relatively few particles in the vapour have little effect. Similar oscillatory

behaviour is predicted by Neumann et al for an S3 system?.

8.3.3. Trends in the correlation functions

The CFs that have been measured are, of course, sensitive to the temperature and
density of the drop, and we shall compare some data from a few of the various state
points. In figure (8.3) we compare the single particle CFs for three S1 drops. The
states (D6) and (D10) are of similar temperature (7=0.74) and liquid density, but
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Figure 8.2: As for fig. (8.1), but for the total moment correlation functions,
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Figure 8.3: The normahzed single particle correlation functions

®(r) = <p(0).pu(t)>,/u? against time for three S1 states. These are values
measured well within the drop (r~2.5). The data for the higher
temperature state, (D12), with N, =900 and T =0.913, is marked as (O).
The other results are for states (DlO) N, =800and T = 0 744 (data as (+))
and (D6), N, =450, T =0.735 (data as (x))
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differ in size (N, = 450 and N, = 800 respectively). The values of ®;(¢) shown are
for molecules well within the bulk liquid, and it can be seen that the results are very
similar for these two states, as would be expected. As the temperatuie is increased,
the correlation times will fall and this is illustrated by the other curve in the figure.
This represents @ (r) within the liquid region of state (D12), which is at the

temperature T = 0.91. The CF in this case decays more rapidly, as expected.

Figure (8.4) makes a similar comparison for the total moment CF, ®,(r). These
are the results found well within the diops, but not at very small » where microscopic
effects dominate (typically r=2.5). The data shown is for the same three states

considered above.

As before we find that the CFs measured with the two systems of differing size,
but similar temperature, are reasonably consistent with each other. The discrepances
that do occur at longer times are probably due to statistical errors. The higher

temperature state again gives a more rapidly decaying CF, as expected.

We note that for the S1 states in general, the single particle correlation function
always decays more quickly than the total moment function, at leas: beyond very short
times, where the response is limited by inertia. This is in qualitative agreement with
the observations of Pollock and Alder’. They have measured similar CFs in the
Stockmayer fluid at a temperature of T = 1.35 and density p = 0.8 using a range of
dipole strengths. Normal periodic boundary conditions plus Ewald summations were
employed in their work. The results are not directly comparable due to the higher
temperature and the fact that they use a moment of inertia 20% greater than ours.
Moreover the total moment CF obtained using Ewald sums is not the samie as that for
a sphere immersed in its own medium, though it is expected to be similar (see chapter

six and Neumann and Steinhauser? ).

Figure (8.5) shows some of the CFs that were found for the S3 drops, states (D13)

and (D14). The decay is much slower for both the single and multi-particle CFs in
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Figure 8.4: As for fig. (8.3), but for the total moment correlation functions,
®, (1) = <M(0).M(z)>,/<M?>. These are results measured at r~2.5 so
that the spherical region lies well within the drop, but still encloses a
significant number of molecules.
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this fluid, despite the higher temperatures. As is also apparent in the results of Pollock
and Alder, the increased dominance of the dipolar interaction for the S3 potential
leads to a greater difference between ®,(r) and ®S(r). We again note that the
correlation functions decay more rapidly for the higher temperature system, as before.
Beyond the short time (inertia) limit, the behaviour is close to exponential, as was
found by Pollock and Alder' .

8.4. Calculation of e(w)

In chapter six some methods for the calculation of e(w) from the total moment CF
were discussed. The two main results are equations (6.21) and (6.22), the first
applying to a macroscopic sphere immersed in its own medium and the second to a
sphere in vacuum. For sufficiently large drops it should be possible to obtain the CF
for an effectively immersed sphere, as long as r is such that (r/R,)><<1. However r
must still be large enough that the volume can be treated macroscopically. On the
other hand, if the vapour density is very low and the effect of the surface width can be
ignored, then we would expect to obtain the CF given by equation (6.22) from

measurements made for r >R, .

It is not clear how a full generalization, like that used for the function <M?(r)>
in the previous chapter, can be derived for the time CFs that correspond to “partially
immersed”’ spheres. Following the static case, one can derive an analogous formula
for a sphere within a larger sphere within a vacuum. However this still requires that
€(w) is independent of r, within the whole dielectric drop. A more complete
macroscopic treatment would require an expression for the dielectric constant as a

function of both w and r, which we do not attempt to find here. Hence we have just

1 In fact it can be shown’ that the total moment CF for a “Debye dielectric”” sphere immersed
in its own medium is composed of two exponentials,
@, (1) = (2¢,+1)"[2¢,exp(—t/1p)+exp(—e,t/1p)], where Tp is the Debye relaxation time. The
geometry used by P&A would give a single relaxation time4.
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examined the results obtained by using equations (6.21) and (6.22) on the appropriate
CFs that were measured in the simulations, to see if a consistent form for e(w) can be
found. Because these calculations have not, so far, proved very successful, only a

short description is given of the methods used.

Having chosen to use either the immersed sphere or sphere in vacuum relation (or
some intermediate version), the first problem is always to calculate the Fourier-Laplace
transform which we shall denote as,

F [-®, ()] = [l—im { @, (1)e "' dsr 8.1)

A number of techniques may be used to find this, perhaps the most obvious of which is
to employ a numerical FFT on the data. However, due to the noise that arises in the
CFs at long times, we instead chose to use a fitting procedure to express the given CF
in terms of a series of functions for which the transform in equation (8.1) may be
found analytically. The required result can then be calculated directly from the

coefficients of the fit. The functional form that we used was,

O() = e B2 LﬁlanLn(sr)] (8.2)
where L,(x) is the n” order Laguerre polynomial (e.g. see Arfken® ) and the
parameters B and a, are to be fitted to the data. These functions are orthogonal and
their transforms can easily be found. The only difficulty is in constraining the fit to
give the correct form of ®(z) in the limit 7-0. It can be shown that the finite inertia,
1, of the molecules requires that ®(0) = 0 and &(0) = —(2u2NkT /I )/<M?>, where N

is the mean number of molecules within the sphere (for details see e.g. Scaife’ ).

Once such a transform has been made, €(w) can then be calculated from the data.

For the sphere in vacuum CF (eqn. (6.22))the required formula is,

2a(w)+1

elo) = 1—a(w)

(8-3)

(es . 1)
(€+2)

using the notation a(w) = F [—®()]. In the immersed sphere case (eqn.
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(6.22)) we have to solve a quadratic equation for €(w),

as a(w))? 12
el = 1+a(m)—[(1: (w))"+8] (8.4)
(€, —1)(2¢, +1)

S

with in this case, a(w) = F,_[—®(¢)], and we have to take the positive

root to get €(0) = ¢,. This latter form highlighted some of the inadequacy of the
method used here, since it generally yielded unphysical results for e(w) as w~». In
particular the solution has to obey both the conditions €(0) = ¢, and e() = 1. What
we found was that, starting from the zero frequency limit and using (8.4) to find €(w)
as w increases, we would end up on the wrong root, with €'()<0. This is clearly
unacceptable and use of the equations for a partially immersed macroscopic drop did

not correct this deficiency.

To understand how the above problem can occur, we consider the case of a Debye
dielectric, the CF for which is5, ®(t) = (2¢, +1) 1[2¢,e ™ + ¢ '“’™]. Transforming
this and using (8.4) leads to two solutions for e(w). The first of these gives the
expected semi-circle (if plotted in a Cole-Cole plot) which runs from €(0) =¢, to
€() =1. The second, unwanted, solution is a smaller aic from €(0) = —1/(2¢,) to
€() = —1/2. Now as the form of the function a(w) departs from the Debye limit these
two solutions remain distinct until a “cross-over” point is reached, beyond which the
curve starting from €(0) =€, goes continuously to €(<) = —1/2. The other solution
then goes from e() =1 to €(0) = —1/(2¢,). This is not due to problems as to which
value to take for the complex square root. In practice the form of a(w) must be such
that this cross-over cannot occur, or if it does then there must be another “cross-over”,
possibly associated with ihe long time behaviour of the CF, such that correct limiting
values are obtained. Note that this problem does not occur with reaction field or
lattice summation simulations, since a linear relation then holds between e(w) and the

appropriate a(w)?.
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Calculating €(w) from equation (8.3) using the isolated system CF also avoids the
difficulties associated with getting a consistent solution from a quadratic equation, but
it is not very satisfactory for other reasons. Apart from the presence of the
surrounding vapour, the surface width of the drops used in this work is not negligible
in comparison to the radius, R,. To see how important this is we can calculate the

“mean” density seen by the molecules within the drop, which we define by
R

p = [drdmr?p*(r)/N, N being the number of particles within radius R. For R just
0

outside the surface of the drop it is found that this mean density is typically 20 to 40%
lower than the measured value at the centre of the drop. Hence the assumption of a

uniform system is not a very good approximation.

These problems are illustrated by figure (8.6) which shows the results for e(w)
obtained by the two different methods in the form of a Cole-Cole plot. This data is for
state (D7) at T=0.81, using the S1 potential. The difference between the curves is
greater than is immediately apparent from the Cole-Cole plot because the frequencies
are not shown. Both case show a divergence from the Debye result that is more
marked than that found by either Hesse-Bezot et al or Neumann et al for the S3
potential. This casts further doubt on the reliability of our data. We note that there is
some indication of a “bump” at high frequencies, at least for the immersed sphere

Cole-Cole plot, qualitatively similar to a feature found by Neumann ez al.

§.5. Discussion

No very satisfactory results have been obtained for e(w) by this method. Part of
the problem maybe that our runs were not long enough, and we note that Neumann et
al? used production runs of 100000 steps in their studies of the CF for a homogeneous
S3 sample (N, = 512). Nevertheless it seems likely that we would have to use a
significantly larger number of particles to be confident of having the true “‘immersed

sphere” CF. To calculate the CF for an isolated sphere it might be better to adopt the
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Figure 8.6: Cole-Cole plots for the dynamic dielectric constant €(w) for state
(D7). The dashed curve is the result obtained from the total moment CF
within the drop, using the immersed sphere formula. The upper solid curve
is that obtained from the CF at large r assuming the system to be a sphere in
vacuum. The Debye semicircle is also shown for comparison.
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approach used by Hesse-Bezot et al. Their simulation of 1472 particles contained
within a spherical “wall” potential avoids any complications due to the vapour, and
limits the surface region to some extent. They claim to be able to calculate e(w)
satisfactorily from the CF ®(¢) for the whole sphere, though they do not give details of
the measured form of the CF and only state that the Fourier-Laplace transform was
made numerically. There is some difference between the Cole-Cole plots for e(w)
obtained by Hesse-Bezot et al and by the reaction field calculations of Neumann et al,
though the latter used a larger dipole moment and a lower temperature. It would be
interesting to perform calculations of €(w) for the same state point by both methods to

make a better comparison.

Hesse-Bezot er al find that their statistics are too poor to allow the calculation of
€(w) from the immersed CFs obtained from their simulations. Their main run was of

7000 steps, with Ar =0.035.

A number of relations that exist between the various correlation times in such
systems are also mentioned in the above paperT, and for the immersed sphere and

sphere in vacuum CFs the ratio is given by,

Tvﬂ[' _ 363 (2€S + 1) (8 5)
Timm (e, +2)(2¢2+1) ’

Some rough calculations for the S3 state (D13) give 7, = 3.2+0.2 and

Tae = 0.65%0.1. Thus the ratio of these correlation times is T, /7., = 5*1, whereas
using the calculated dielectric constant for this state in equation (8.5) implies that this
ratio should be ~10. This is a further indication of the discrepancy between the two

functions.

Neumann er a/ and Pollock and Alder have given some results for the S3

correlation times at temperatures above and below those of states (D13) and (D14).

=

+ The definition of the correlation time used is T = ftb(t)dt
0
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However due to the long range corrections they use, these times are not equivalent to
the ones we measure, as is explained by Neumann and Steinhauser®. It is possible to
predict the true immersed CF from the CFs that they measure, and Neumann et al
have done this for T = 1.15, and we estimate the correlation time (from their graph)
to b€ Ty ~6*1. Pollock and Alder’s data only allows an upper bound to be easily
found for the correlation time at T = 1.35, which is 1,,,<3.7. Thus our result of
Towm = 3.2 at T = 1.2 is probably too low, but not drastically so. We conclude that
longer runs with drops of over ~1000 particles may yield more satisfactory results for
€(w), but that the cost of such simulations would be very great. This has to be
contrasted with methods such as that of Neumann ez al, who used systems of 512

dipoles to find this function.
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Conclusion

In this work we have investigated a number of different properties of small drops
in equilibrium with their own vapour. These highly inhomogeneous systems have been
studied over a range of temperatures from just below the triple point to abouts half
way between T, and T.. It has been found most convenient to work with systems of
about 450 particles, since these are large emough to give a significant region of
constant density liquid within the drops, while not requiring excessive time to
compute. However, a range of system sizes have been used and this enables checks to

be made on the sensitivity of measured quantities to the number of particles employed.

The measurement of surface tension in this highly curved system, via use of the
Kelvin equation, has been shown to be feasible, at least for large drops at temperatures
near 7,. It seems that the effects of the surface curvature on <y are quite small, even
for systems of only ~1000 atoms. However, it is necessary to know the coexistence
vapour pressure quite accurately as well as making a long simulation to ensure reliable
data for the vapour density outside the drop. With the falling cost of computing, and
making use of the corrections to the Kelvin equation as suggested by Powles!, this
could become a viable technique for the determination of vy to moderate accuracy,
avoiding the complexities necessary in methods such as that of Miyazaki et al2.
Clearly there is much further work that could be performed on this topic and in
particular we would have liked to have investigated the surface tension of the
Stockmayer drops, had their been sufficient time. It is possible that y would show a
significantly greater size dependence in such systems due to the long range nature of

the dipole interactions.

The study of the surface width of drops has been shown to be consistent with a
range of theoretical predictions of this quantity for the L.J12-6 fluid, when the effect of
surface oscillations are included. As we noted, there is still some uncertainty as to the

exact contribution that capillary waves make to the theoretically calculated widths3.
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Further simulations to improve the accuracy and range of surface width measurements
would be useful in this respect. Also, work on improving the capillary wave analysis
for small drops (for example by including the fact that an intrinsic width is already

present) would allow better comparisons to be made.

The static dielectric constant of the S1 fluid, as obtained from <M?2>
measurements within drops, is found to be consistent with data from homogeneous
simulations that use Ewald summation techniques. However, for the S3 potential the
calculated value of €, is rather lower than expected from similar homogeneous
simulations. Only systems of 450 particles were employed in the S3 measurements,
and this probably indicates that larger samples are required in such strongly polar

cases. It would be desirable to make a more detailed study of S3 drops.

The variation of the mean square moment through the surface of drops has been
used to find the effective dielectric profiles for a number of states. These results
indicate a variation of €(r) that is quite similar to that of the measured density profile.
A simple scalar function for €(r) is found adequate to explain most of our data,
though clearly further work is required on the theoretical interpretation of the

dielectric constant within the liquid-vapour interface.

In.vesti gations are currently been made in this laboratory by J.G.Powles,
M.L.Williams and W.A.B.Evans on the properties of similar isolated drops, but using
a hard spherical wall to contain the system. This offers a number of advantages over
the systems discussed here. In particular, the necessary equilibration times should be
reduced, the need for a truncation of the interaction potential is completely eliminated
and it is possible to study densities greater than the coexistence value at the given
temperature. The undesirable restriction to temperatures significantly less than 7, is
also removed. Work has been made on the pressure tensor within such systems and on

the meaning of virial pressure?.
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The simulation of drops has proven useful for the calculation of both properties of
the surface and of the bulk liquid. With the falling cost of computing power, the
range and size of systems that can usefully be simulated is constantly increasing. This
will make methods like those discussed here more viable and there is clearly great
scope for further work along these lines. One of the most pressing needs is for the use
of more realistic interaction potentials. In particular it is known that the Stockmayer
model is a far from perfect representation of a real polar liquid and it is desirable to
include the effects of molecular shape, polarizability and higher order electric
moments. One such model has recently been proposed by Murad>-©. Since our
ultimate goal is to explain the interactions of real liquids such models must be adopted

in future.
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Appendix A: Listing of the LJ simulation programme

This appendix gives a listing of a version of the Fortran-77 programme used in
the LJ simulations. The subroutine to locate the cluster (GETDRP) is not included,
since this is given in appendix C. To reduce the size of these listings, a shorthand
notation is used here, where by a common block is just listed by its name in angle
brackets(e.g. <COMMON /VEC/, ..>) after the first occurance, and all the names

within each block are kept the same.

PRORAM LD4
C Liquid drop simulation programme. Uses LJ12-6 interaction
C on drop surrounded by vapour in large periodic cell.
C NP= number of particles; ND= number of divisions for density profile
PARAMETER (NP =828 , ND = 58 )
COTION /VEC/ X8 (NP),YB(NP) ,ZB (NP) , X1 (NP), Y1 (NP}, Z1 (NP) , X2 (NP) ,
+ Y2(NP),Z2 (NP) , X3 (NP}, Y3(NP) ,Z3 (NP) , X4 (NP), Y4 INP) ,Z4 (NP)
+ XS(NP),YS (NP) ,Z5 (NP)
COPMON /FORCE/ FX(NP) ,FY (NP) ,FZ (NP)
COMMON /NUM/DELTA, FCUT, SIDE, TIME,NCLUST,NINIT, MINSTP, MAXSTP

+ , IPRFQ, I0MPFQ, IGOPFQ, 10PFQ, IRESFQ, TFIXED
COTIN /SMS/SUrK, SUMK2, SUMU, SUMU2, NDPROF (8:ND) ,NDC (8:ND),
+ NCDIST (NP) , SUP

COTON /RES/ ETOT,EXIN,U, VIR
COTDN /FILES/ FDATA,FLDM, FPROF
CHARACTERx14 FDATA, FLDOM, FPROF
LOGICAL 0D
CALL SETUP(OLD)
C For a nex run do ten steps at DELTA/1@ to get derivatives right.
IF ((NOT.OLD) THEN
CALl SETZER
CALL CHDELT( DELTA/18. )
D0 X5 1=-1,-18,-1
TIME=TIME+DELTA
CALL PREDIC
CALL FORCES
CALL CORREC
CALL DATA(D)
CALL RESCAL(I)
35 CONTINUE
CALL CHDELT( DELTAX18.)
CALL SETZER
ENDIF
C A negative step number is used to indicate the initialization period.
IF (MINSTP.LE.B) THEN
D0 48 I=MINSTP-1,-NINIT,-1
TIME=TIME+DELTA
CALL PREDIC
CALL FORCES
CALL CORREC
CALL DATA(I)
CALL RESCAL(I)
49 CONTINLE
CALL SETZER
MINSTP=8
ENDIF
C Main production run loop. MINSTP is step at which configuration was saved.
DO S8 I=MINSTP+1,MAXSTP
TIME=TIME+DELTA
CALL PREDIC
CALL FORCES
CALL CORREC
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CALL DATA(I)
CALL RESCAL(I)
CONTINLE
WRITE(x,” (/*" FINISHED’")")
SToP
END

SUBRDUTINE PREDIC

C Predict new positions and derivatives.

PARAMETER ( NP = 888 )

LOTON /VEC/, /NXV/ >

18

C Most time consuming part of the simulation; calculation of all forces.

D18l =1,NP
XB(I) = XB{I)+X1 (1) +X2 (1) +X3 (1) +X4 (1 HE (1)
Ye(l) = YB(1)+Y1 (1) +Y2(1)+Y3 (1) +Y4 (1) +Y5 (1)
Z8(1) = ZB(1)+Z1 (1)+Z22(D)+Z3 (1) +Z4 (1} +Z5 (1)
XL(I) = X1(I)42. X2 (1) 43. %X3 (1) +4. %X4 (1) 45. %G (1)
YI{I) = YI(D+2.%Y2(I1)+3.%Y3 (1) +4.%Y4 (1) 45.%Y5(])
(1) = Z1(1)42.xZ22(1}43.%Z3 (1) +4 . %24 (1) 45. %75 (1)
X2(1) = X2(1)+3.%X3(1)46.%%4 (1) +18. %G (1)
Y2(1) = Y2(1)43.xY3(1)+6.%Y4 (1) +18.%xY5 (1)
22(1) = Z2(1)+3.%xZ3(1)+46.x24 (1) +18.xZ5(1)
X3(I) = X3(I)+4. %4 (1) +18. %G (1)
Y3(I) = Y3(I)+4.%Y4(1)+18.%Y5(I)
Z3(1) = Z3(1)+4.xZ4 (1) +18.xZ5(1)
X4 (1) = X4(I)45.%¢5(1)
Y&4(I) = Y4(I)+5.xY5(I)
Z24(1) = Z4(1)45.x25(1)

CONTINLE

RETURN

END

SUBROUTINE FORCES
PARAMETER ( NP = 889 , WTMOL = 48. , ND = 58 )

<LOTON /VEC/, /FORCE/, /NX/, /RES/ >

18

U=8.
VIR=8.
SIDE2=SIDE/2.
FOUT2FCUTHCUT
SF=2.x\D/SIDE
DO 18 I=1,N°
FX(1)=0.
FY(1)=0.
FZ(1)=0.
iTINJE
D0 28 1=2,NP
FX1=8.
FYI=0.
FZ1=0.
X1=XB(I)
YI=YB(I)
Z1=78(1)
0 38 J=1,1-1
X=XB (J} -XI
Y=YB (J)-YI
Z=78{J)-Z1
R2= XkX+YxY+ZxZ
IF (R2.GT.FCUT2) THEN
IF (X.GT.SIDE2) THEN
X=X-SIDE
ELSE IF (X.LT.-SIDE2) THEN
X=X+SIDE
ENDIF
IF (Y.GT.SIDE2) THEN
Y=Y-SIDE
ELSE IF (Y.LT.-SIDE2) THEN
Y=Y+SIDE
ENDIF
IF (Z.GT.SIDE2) THEN
Z2=Z-SIE
ELSE IF (Z.LT.-SIDE2) THEN
Z=Z+S1DE
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ENDIF
R2= YXokX+YkY+ZxZ
IF (R2.GT.FCUT2) GOTO 38
ENDIF
RINV2=1./R2
RINVE=RINV2XRINV2RINY2
U= (RINVB-1. ) »RINVG+U
A= (2.5RINVE-1. ) sRINVEXRINY2
VIR1=8.
F=AxX
FXI=FXI-F
FX(J)=FX(J)+F
VIR1=VIRL+X»
F=AxY
FYIFYIF
FY(J)=FY (D) 4F
VIR1=VIR1+Y®F
F= AxZ
FZIFZ1-F
FZ()FZ () +F
VIR1=VIR1+Z%
VIR=VIR+VIR1
30 CONTINLE
FX (1) FX(1)4FXI
FY (1) =FY(1)4FYI
FZ(D)FZ(1)+FZ1
20 CONTINLE
D=12. »0EL TAOEL TA/ZWTMOL
DO 48 1=1,NP
FX({1)= FX({1)xD
FY({I)= FY(1)xD
FZ(I)= FZ(1)xD
48 CONTINLE
U= Uk, /NP
VIR=VIR¥2%.
RETURN
END

SUBROUTINE CORREC
C Apply Gea~ correction step.
PARAETER ( NP = 828 )
LOMMON /VEC/, /NXV/, /FORCE/ >

DATA FB2,F12,F32,F42,F52

+ /.15, .89722222, .61111111, . 16666667, . 816666657/

DO 18 I=1,NP
XCOR = X2(1)-FX(1)
YOR = Y2(I)-FY(I)
ZOR = Z2(1)-FZ(1)
X8{I) = X8(I)-XCOR¥82
X1(I} = X1(I)-XCORW12
X2 (1) = X2(1)-XCOR
X3(I) = X3(1)-XCORW32
X4 (1) = X4(1)-XCORW42
XS (1) = XS(1)-XCORWS2
YB (1) = YB(I)-YCORKB2
Y1(I) = Y1(I)-YOOR®12
Y2(1) = Y2(I)-YCOR
Y3(I) = Y3(I)-YCOR®32

Y4(I) = Y4(1)-YCORWF42
YS(I) = Y5(I)-YCORKS2
28(1) = Z8(1)-ZCORWB2
Z1(1) = Z1(1)-Z00R¥F12
Z2(1) = 22(1)-ZCR
Z3(1) = Z3(1)-ZCOR32
26(1) = Z4(1)-ZCOR¥42
5(1) = Z5(1)-Z00RwS2
18 CONTINJE
RETURN
END

SUBRIUTINE DATA(I)
C Calculation of all averages and printing of results carried out




C by this subroutine.

PARAETER ( NP = 830 , WTMOL = 48. , ND = 58 )
<OMMON /VEC/, N/, /RES/, /SUS/, /FILES/ >

CHARACTERx14 FDATA, FLDM, FPROF

INTEGER CLUST (NP)

LOGICAL CAL1

SAVE CLUST,CAL1, XSUM, YSUM, ZSUM

DATA CAL1/.TRLE. /XSUM, YSUM,ZSUM/@. , 8. ,8. /P14/12.568637/

SF= 2.%\D/SIDE

IF (CAL1 ) THEN

CALL GETORP( CLUST,LEN,3.61 )

CAL1=.FALSE.
ENDIF
CALL CMASS( XSur, YSUM,ZSUM,CLUST,LEN )
V2=8.
C Sample the density profile of the whole system and the cluster
DO 18 JJ=1,NP
J=OUST (L))
R= SIRT( (XB(J))»x2 + (YB(J) a2 + (ZB(J)) 32 )
NBOX=SF¥R
IF (NBOX.GT.ND) NBOX=ND
NDPROF (NBOX) =NDPROF (NBOX) +1

IF (JJ.LE.LEN) NDC (NBOX) =NOC (NBOX) +1
V2=V2+X1 (J)30i2+Y1 (J) 302421 (J) 30K2
18 CONTINLE
V2= V2/ (NPXOELTAXDEL TA)
PRESS= (NP/S10Ex0k3) x (EKINKZ. /3. +VIR/ (3. x\P) )
SUP=SUP+PRESS
EXIN= V2:{TMOL/2.
SUK= SUK+EKINADELTA
SUU= SUMHOELTA
SUMR2=SUMU2-+HUiok2¥0EL TA
SUMK2=SUMK2+EK I Nowok2xDEL TA
IF ( MOO(I,1GDPFQ).EQ.8 ) THEN
CALL GETDRP( CLUST,LEN,3.61 )
NCLUST=NCLUST+.EN
ENDIF
IF ( MOD(I,IPRFQ).ED.8 ) THEN
AVOL=REAL ( (NCLUSTxIGOPFQ}) /1
AVU= SUMU/TIME
AVK= SUK/TIME
AVE= AVUHAVK
AVP=SUP/1
SIGK= SORT ( SUK2/TIME-AVK#K2 )
SIGU= SORT( SUM2/TIME-AVUiok2 )
OPEN(2,FILE=FLDM)
CALL FSEEX(2,0,2)
WRITE(2,’ (I5,5FS.5,FS.2,15,5F8.4,2E11.4E1) ") [, AVE, AWK, AVU,
- SIGU, SIGK, AVCL, LEN, XSUr, YSUM, ZSUM, EKIN, U, PRESS, AVP
QLOSE (2)
IF ( MOO(I,IDPFQ).EQ.8 ) THEN
OPEN (3, FILE=FPROF)
CALL FSEEK(3,8,2)
WRITE(3,” (16,FS.5)") I,SIDE
WRITE (3, (1717} NDPROF
WRITE(3,’ (1717) " )NDC
CLOSE (3)
WRITE (4,” (3I6)) I, 1GOPFQ,NP
WRITE (4,” (1816) ") NCDIST
ENDIF
ENDIF
IF ( MOD(I,IDMPFQ).EQ.8 ) THEN
OPEN(8, FILE=FDATA, FORM="UNFORMATTED" , STATUS="0LD")
REWIND (8)
NPN=N\P
WRITE(8) NPN,ETOT,DELTA,SIDE
WRITE(8) XB,Y8,78,X1,Y1,7Z1,X2,Y2,22,X3,Y3,Z3,%X4,Y4,24,

+ X5,Y5,75

WRITE (8) NDPROF,NDC, SUK, SUMU, SUMK2,SUML2,
+ SUF,, TIME,NREF ,NOLUST,NCDIST, 1

QL 0SE(8)

IF (IDPFQ.LT.8) STOP
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ENDIF
RETURN
END

SUBROUTINE CMASS ( XSUM, YSUM, ZSUM, OLUST,LEN )
C This routine performs a simple translation on the whole system
C so that the centre of mass of the cluster is at (8,8,0).
PARAMETER ( NP = 808 )
<LOMION /VEC/, /NXV/ >
INTEGER CLUST (NP)
X=8.
Y=8.
Z=8.
SIDE2=SIDE/2.
DO 18 I=1,LEN
11=0.UST(I)
X= X+X@(I1)
Y= Y+YB(I1)
Z= Z2+28(11)
18 CONTINLE
X=X/LEN
Y=Y/LEN
Z=Z/1EN
DO 28 I=1,NP
X8 (1)=X8(I)-X
YB(1)=Ya(I)-Y
Z8(1)=28(1)-Z
IF (X8(I).GT.SIDE2) THEN
X8 (I}=X8(I)-SIDE
ELSE IF (XB(I).LT.-SIDE2) THEN
X8 (1)=X8 (1)+SIDE
ENDIF
IF (YB(1).GT.SIDE2) THEN
Y8 (1)=YB(1)-SIDE
ELSE IF (YB(I).LT.-SIDE2) THEN
Y8 (1)=YB(1)+SIDE
ENDIF
IF (Ze(1).GT.SIDE2) THEN
Z8(1)=28(1)-SIDE
ELSE IF (Z8(1).LT.-SIDE2) THEN
ZB(1)=Z8(1)+SIDE
ENDIF
280 CONTINLE
XSUM=XSUMHX
YSUM=YSUM+Y
ZSM=ZSUZ
RETURN
END

SUBROUTINE RESCAL (I1)
C Rescale all velocities to keep total kinetic enmergy constant.
PARAMETER ( NP = 888 , ND = 58 )
<OTON /VEC/, /NM/, /RES/, /FILES/ >
CHARACTERx14 FDATA,FLDM, FPROF
LOGICAL TFIXED
IF (.NOT.TFIXED) THEN
DIFF=ETOT- (EKIN+U)
IF( (ABS(DIFF).LT.8.881) .AND. (MOD(I1, IRESFQ) .NE.B) )RETURN
DIFF=DIFF+EKIN
IF ( (DIFF).LT.8.8 ) THEN
WRITE(x,” (" -SORT *’,15)") 11
SF=8.1
ELSE
SF= SORT( (DIFF) /EXIN )
ENDIF
ELSE
SF=SORT (ETOT/EXIN)
IF(MOD(11, IRESFQ) .EQ.B) WRITE(2,’ (FS.B)’) SF
ENDIF
DO 18 I=1,NP
X1(I)= X1(1)x5F
Y1(I)= Y1(1)*&F




21 (1= Z1(1)xF
18 CONTINE
WRITE@," (*” EX RES "’ ,F12.7)")SF
RETURN
END

SUBROUTINE SETZER
C Reset all sums to zero and start averaging from scratch.
PARAMETER ( NP = 838 , ND = 50 )
<TOMON /NN, /SUS/ >
TIME = 8.
UK = 8.
SUK2 = 8.
U = 8.
SUMR2 = 8.
SUP=L.
DO 18 J= B,ND
NOPROF (J) =8
NOC (J) =B
18 CONTINLE
NCLUST=8
DO 38 J=1,NP
NCDIST (J) =8
38 CONTINLE
RETURN
END

SUBROUTINE CHDELT (DELNEL)
C Change time step
PARAETER ( NP = 8060 )
<OTON /VEC/, /NI >
X = DELNEW/DELTA
Y =X
DELTA = DELNEM
WRITE(x,” (/°* DELTA CHANGED TO :’’,F7.4)")0ELTA
D018 1 = 1,NP
X1(I) = X1 (DX
Y1(I) = Y1(I)xX
A1) = 211X
18 CONTINLE
X = XxY
D028 1 =1,N
X2 = X2(1xX
Y2(1) = Y2(I)xX
22 = 21X
20 CONTINE
X = XxY
D031 =1,N
X3(I) = X3(I)xX
Y3(I) = Y3(I)xX
Z3(1) = Z3(1}xX
32 CONTINE
X = XxY
D041 =1,N
X&(1) = X4(I)xX
Y4(1) = Y4(I)xX
Z4(1) = Z4(1)xX
4@ CONTINE
X = XxY
DOS8 11 =1,N°
Xo (1) = XS(I)xX
YS(I) = YS(I)xX
(1) = 51X
58 CONTINE
RETURN
END

SUBROUTINE SETUP(QLD)
C Interactively read parameters for run.
PARAMETER (NP =823 , ND = 59 )
<TOMTON /VEC/, /NX/, /SUIS/, /RES/, /FILES/ >
CHARACTER SUFFIXxS, PARAMG, FDATAX14, FLOM14 , FPROFx14, FOLUSTx14
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LOGICAL OLD, TFIXED
PRINT” (/** LIQUID DROP SIMULATION'")’
PRINT* (/** INPUT SUFFIX FOR FILENA'ES’")’
READ (x,’ (AB)’) SUFFIX
FDATA="DD4" //SUFFIX
OPEN (8, FILE=FDATA, FORM="UNFORMATTED" , STATUS="0LD")
FLDM="LDM" //SUFFIX
INQUIRE (FILE=FLDOM, EXIST=0LD)
OPEN (2, FILE=FLDM)
CALL FSEEK(2,8,2)
FPROF="PROF" //SUFFIX
OPEN (3, FILE=FPROF)
CALL FSEEK(3,8,2)
FCLUST="CLUST" //SUFFIX
OPEN (4,FILE=FCLUST)
CALL FSEEK(4,8,2)
REWIND (8)
READ (8)NIN, ETOT,DELTA, SIDE
FOUT=SIDE/2.
IF (NIN.NE.NP) THEN
PRINT’ (/7" sooickiciok ERROR - INCORRECT DATA FILE'’,//
+ ' NP="",14,"" NIN="",14)" NP,NIN
SToP
ENDIF
READ(8) X@,Y®,78,X1,Y1,71,X2,Y2,22,X3,Y3,Z3,X4,Y4,74,X5,Y5,75
IF (Q.D) THEN
PRINT' ("" RINSOLD **)°
READ (8) NDPROF,NDC, SUMK, SUMU, SUMK2, SUMU2,
+ SUP, TIME, NREF ,NCLUST, ,NCDIST, MINSTP
ELSE
PRINT’ (*” RUN=NEU **)°
ENDIF
CLOSE (8)
PRINT® (** ALTER PARAMETER ?°")’
READ (x, ” (AB) * ) PARAM
IF (PARAM.EQ.’ETOT ’) THEN

READx, ETOT

ELSE IF (PARAM.EQ.’SIDE ') THEN
READx, SIDE

ELSE IF (PARAM.EQ.’FCUT ’) THEN
READx, FCUT

ELSE IF (PARAM.EQ.’NINIT ’) THEN
READx, NINIT

ELSE IF (PARAM.EQ.’MAXSTP’) THEN
READ x,MAXSTP

ELSE IF (PARAM.EQ.’IPRFQ ’) THEN
READx, IPRFQ

ELSE IF (PARAM.EQ.’IDMPFQ’) THEN
READx, IDMPFQ

ELSE IF (PARAM.EQ.’IGOPFQ’) THEN
READX, 1G0PFQ

ELSE IF (PARAM.EQ.’IDPFQ ') THEN
READx, IDPFQ

ELSE IF (PARAM.EQ.’IRESFQ’) THEN
READx, IRESFQ

ELSE IF (PARAM.EQ.'TFIXED’) THEN
TFIXED=. TRLE.

ELSE IF (PARAM.EQ.’DELTA *) THEN
READx, DELNEW

CALL CHDELT (DELNBW)
ELSE IF (PARAM.EQ.’? ’) THEN

PRINT” (°* ETOT="",F12.6,/"* MAXSTP="",18,/"" NINIT="",18,
- /’’ DELTA="",F8.5,/°" SIDE="",F8.3,/'" FOUT="",F8.3)°,
- ETOT,MAXSTP,NINIT,DELTA, SIDE, FCUT

PRINT* (** IPRFQ ="",17,/'’ IOMPFQ ='",16,/°" 1G0PFQ =", 16,
+ /' 10PFQ =7, 17,/ IRESFQ ='",16) ", IPRFQ, IOMPFQ, IGOPFQ,
+ 1DPFQ, IRESFQ
ELSE IF (PARAM.NE.’NO ') THEN

PRINT' (" 222°°/)’
ENDIF
IF (PARAM.NE.”’NDO ") GOTO 18
IF (D) THEN
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WRITE(2,” (/°° RESTART"')")

BELSE
WRITE(2,” (/" RN = "’ AB,"" ETOT = *’,F8.4)")SUFFIX,ETOT
WRITE(2,” (" SIDE = *’,FS.4,”" DELTA = *’,F8.5)")SIDE,DELTA
WRITE@," (" TFIXED = **,12)") TFIXED

ENDIF

a0sE(2)

RETURN

END

BLOCK DATA
PARAMETER ( NP = 808 )
<OTON /NX/ >
LOGICAL TFIXED
DATA NINIT,MINSTP,MAXSTP/808,8,1082888/ 1PRFQ, IDMPFQ, IGDPF,
+ 10PFQ, IRESFQ / 599,108,18,1008,168 /
+ TFIXED / FALSE. /
END
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Appendix B: Listing of the Stockmayer programme

This appendix gives a listing of the lastest version of the Fortran-77 programme
used in the Stockmayer simulations. The subroutine to locate the cluster (GETDRP)
is omitted, since this is given in appendix C, as is the subroutine CMASS, which is
identical with the version in appendix A. Following appendix A, common blocks are
represented by the short hand notation <COMMON ...>, after the first occurance.
Running on a VAX 11-780 computer (4.2bsd unix(TM)) a 450 particle simulation

required approximately 30 seconds CPU time per step.

PROGRAM STOX
C Stockmayer simulation programme version 3.1 (31/5/84)
C Important parameters:
C NP = number of molecules
C ND = number of divisions used for density profile
C NIM= number of divisions used for correlation functions
C

PARAMETER ( NP = 458, ND = 58 , NOM = ND/2 , MAXST = 68 )
COTON /VEC/ XB(NP),YB(NP),ZB(NP) , X1 (NP), Y1 (NP), Z1 (NP) , X2 (NP) ,
+ Y2 (NP),Z2 (NP) , X3 (NP) , Y3 (NP}, Z3 (NP) , X4 (NP) , Y4 (NP) , Z4 (NP) ,
+ XS (NP),YS (NP), Z5 (NP)

COTION /QUAT/ AXB(NP),AYB(NP),AZB (NP) ,AQ8 (NP) ,AX1 (NP) ,AY1 (NP) ,
+ AZ1 (NP), AQL (NP}, AX2 (NP) ,AY2 (NP) , AZ2 (NP} , A2 (NP) , AX3 (NP) ,

+ AY3(NP) ,AZ3 (NP) , A3 (NP) , AX4 (NP) , AY4 (NP) , AZ4 (NP) , AQL (NP)

+ AXS (NP), AYS (NP) , AZS (NP) , AQS (NP)

COTIN /DIPOLE/ ALX(NP) ALY (NP) ,ALZ (NP) ,LIPX (NP} ,WPY (NP) , LIPZ (NP)
COTON /TORFOR/ TX(NP), TY (NP) , TZ(INPY ,FX (NP) ,FY (NP) ,FZ (NP)
COTION /NUM/DELTA, FCUT, SIDE, TIME,NCLUST,NINI T, MINSTP, MINSEG

+ ,MAXSEG, NSSEG, IPRFQ, ISGDIE, 1GDPFQ, 10PFQ, IRESFQ, I0MTFQ, DIPM
+ ,FI1, TFIXED, 1CM8TS

REALx® SUK, SUMKR, SUMLL, SUMUD, SUMK2, SUMKR2, SUMUL2,

+ SUMUD2, SUMP, SUMDM2, SUMCOS, SUMMBT, SUMMTH, SUMUBT

COTON /SUMS/SUK, SUKR, SUMUL, SUMUD, SUMK2, SUMKR2, SUMUL2, SUMUD2,

+ NDPROF (8:ND) ,NDC (8:ND) , SUMP, SUMCOS (8: ND)
+ ,SU'DM2 (8:ND) , SUTMBT (8:NOM, 8: MAXST) , SUMTM (3, 8: NOM)
+ , SUMUST (8:NDM, 8: MAXST)

COTDN /RES/ ETOT,EKIN, W, WD, VIR
COTON /FILES/ FDATA,FRES, FPROF, FOLUST, FMCORR, SUFFIX
COMTiON /ETIM/ CPU, ICSTPS
CHARACTERx14 FDATA,FRES, FPROF, FOLUST, FMCORR, SUFF I X6
REAL T(2)
LOGICAL 0D
CALL SETUP(OLD)
CPU=ETIME(T)
ICSTPS=8
IF (.NDT.OLD) THEN
CALL SETZER(B)
CALL CHDELT( DELTA/1B. )
D0 X I=-1,-18,-1
TIME=TIME+DELTA
CALL PREDIC
CALL FORTOR
CALL CORREC
CALL DATA(-1,8)
C Data only called to get ekin etc. for rescale etc.
CALL RESCAL(I)
KS) CONTINLE
C Above 1B steps with small delta help predictor/corrector adjust as velocities
C are rescaled. next is ninit initialisation steps for cluster to reach eqm.
CALL CHDELT( DELTAXx18.)
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CALL SETZER(@)
ENDIF
IF (MINSTP.LE.B) THEN
DO 4@ I=MINSTP-1,-NINIT,-1
TIME=TIME+DELTA
CALL PREDIC
CALL FORTOR
CALL CORREC
CALL DATA(I,@)
CALL RESCAL(I)
48 CONTINLE
CALL SETZER(B)
ENDIF
DO 58 J=MINSEG+],MAXSEG
D0 78 1=1,NSSEG
TIME=TIME+DELTA
CALL PREDIC
CALL FORTOR
CALL CORREC
CALL DATA(I,J)
CALL RESCAL(I)
CONTINUE
CONTINLE
CONTINLE
CPU=ETIME(T)-CPU
TOTAL=ICSTPS+.1E-18

g8

PRINT” (°* FINISHED RN *’°,A,"" STEPS='',F8.8,"" OCPU="",F12.3,

+ /’7 TIME PER STEP="",F12.3)’,SUFFIX, TOTAL,CPU, CPU/TOTAL
STOP
END

SUBROUTINE PREDIC
C Predict the new set of coordinates and there derivatives
C at the next time step
PARAMETER ( NP = 458 )
<OMDON /VEC/, /QUAT/, /NX/>
ICSTPS=1CSTPS+1
D011 = 1,NP
XB(1) = XB(1)+X1 (D21 +X3 T} +X4 (1) PGS (D)
YB(I) = YB(D)+Y1(I)+Y2(1)+Y3(1)+Y4 (1) +YS(1)
Z8(1) = Z8(1)+Z1 (1) +Z2(1)+Z3(1)+Z24{1)+Z5(1)
X1(I) = X1 +2.%X2 (1) +3.%X3 (1) +4 . %X4 (1) +5. %G (1)
Y1(I}) = YI(I)4+2.%xY2(1)+3.%xY3 (1) +4.%Y4 (1) +5.%Y5(])
Z1(1) = Z1(1)+2.xZ2 (1) +3.%Z3 (1) +4 . %24 (1) +5.%75(1)

X2(1) = X2(1)43.xX3 (1) +6. x%X4 (1) +18. %G (1)
Y2(I) = Y2(I)+3.%Y3(1)+6.%Y4 (1) +18.xY5 (1)
22(1) = Z2(1)+3.xZ3(1)+6.xZ4 (1) +18.xZ5 (1)
X3} = X3(I)+4.xX4 (1) +18. %5 (1)

Y3(I) = Y3(I)+4.xY4 (1) +18.%xYS(])

Z3(1) = Z3(1)+4.%Z4 (1) +18.xZ5 (1)

X&4 (1) = X4 (1 +5. %6 (1)

Y&4(I) = Y4(I)+45.%xYS(1)

26(1) = Z4(1)45.x25(1)

AXB (1) =AXD (1) +AXL (1) +AX2 (1) +AX3 (1) +AX4 (1) +AXG (1)

AYB (1) =AYB (1) +AY1 (1) +AYZ (1) +AY3(I) +AY4 (1) +AYS (1)

AZB (1) =AZB (1) +AZ1 (1) 4+AZ2 (1) +AZ3 (1) +AZ4 (1) +AZS (1)

AQ2 (1) =A00 (1)+AQ1 (1) +AQ2 (1) +AO3 (1) +AD4 (1) +AQS (1)

AXT (1) =AX1 (1) +2.xAXZ (1) +3. *xAX3 (1) +4 . %AX4 (1) 45.3AXS (1)
AYL (1) =AY1 (1) +2.%AY2 (1) 43. %AY3 (1) +4. %AY4 (1) +5.3AY5 (1)
AZ1 (1} =AZ1 (1)+2.%AZ2 (1) +3. xAZ3 (1) +4. %AZ4 (1) 45.3AZ5 (1)
AQL (1) =AQ01 (1) +2.%A02 (1) +3. %A03 (1) +4. %A04 (1) 45.%A05 (1)
AXZ (1) =AXZ (1) +3. xAX3 (1) +6. ®AX4 (1) +18. %AXS (1)

AY2 (1) =AYZ2 (1) +3. xAY3 (1) +6. %AY4 (1) +18. %AYS (1)

AZ2 (1) =AZ2 (1) +3.xAZ3 (1) +6. %xAZ4 (1) +18. %AZS (1)

A2 (1) =A02 (1) +3. xA03 (1) +6. %AD4 (1) +18. %A05 (1)

AX3 (1) =AX3 (1) +4. xAX4 (1) +18. %A (1)

AYZ (1) =AY3 (1) +4.xAY4 (1) +18.%AYS (1)

AZ3 (1) =AZ3 (1) +4.%AZ4 (1) +18.%AZ5 (1)

AQ3 (1) =A03 (1) +4.xAD4 (1) +18.%A05 (1)

AX4 (1) =AX4 (1) +5. xAXS (1)

AY4 (1) =AY4 (1) 45.%AY5 (1)

AZ4 (1) =AZ4 (1)45.xAZ5 (1)
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AQ4 (1) =AD4 (1) 45. xA05 (1)
18 CONTINLE
RETURN
END

SUBROUTINE FORTOR
C Calculate forces and torques acting on all molecules
C - this is the most time consuming part of the programme
PARAMETER ( NP = 458, WTMOL = 48. , ND = 50 )
<COMMON /VEC/, /TORFOR/, /QUAT/, /DIPOLE/, /NI, /RES/ >
DIPM2C=-3.xDIPOIPM/24.
uL=8.
uD=g.
VIR=8.
SIDE2=SIDE/2.
FCUT2=FCUTHCUT
DO 18 I=1,NP
FX(1)=8.
FY(I)=8.
FZ(1)=8.
ALX(1)=2.x%(AYB (1) xAZB (1) -AXB (1) %xAQB (1))
ALY (1) =-2.%(AXB (1) xAZB (1) +AYB (1) %xAQB (1))
ALZ (1) =AZ8 (1) %0k2+A08 (1) 5012-AX8 (1) 32-AYB (1) 52
™ (1)=8.
TY (1)=8.
TZ(1)=8.
18 CONTINE
C This double loop runs over all unique pairs of molecules to
C calculate the torques and forces (the long cut-off (FOUT) means
C that the majority of terms have to be included, so neighbour |ists
C are used).
DO 28 1=2,NP
DO 38 J=1,I-1
X=X8 (J)-X8(1)
Y=Y8(J)-YB(I)
Z2=28(J)-Z8(1)
R2= XkX+YxY+ZxZ
IF (R2.GT.FCUT2) THEN
IF (X.GT.SIDE2) THEN
X=X-SIDE
ELSE IF (X.LT.-SIDE2) THEN
X=X+SIDE
ENDIF
IF (Y.GT.SIDE2) THEN
Y=Y-SIDE
ELSE IF (Y.LT.-SIDE2) THEN
Y=Y+SIDE
ENDIF
IF (Z.GT.SIDE2) THEN
Z=7-SI0E
ELSE IF (Z.LT.-SIDE2) THEN
Z=Z+S10E
ENDIF
R2= XxX+YxkY+Z%Z
IF (R2.GT.FCUT2) GOTO 38
ENDIF
RINV2=1./R2
RINVE=RINV2XRINY2ARINV2
UL=UL+ (RINVB-1. ) 5RINVE
A= (2.5RINVG-1. ) sRINVEXRINV2
VIR=VIR+AxR2
R=SORT (R2)
DNINJ=ALX (1) ,ALX () +ALY (1) %ALY (J) +ALZ (1) %ALZ (J)
DNIR =ALX (1) xX+ALY (1)kY+ALZ (1) %Z
DNJR =ALX (J) xX+ALY () xY+ALZ (J) %Z
RINV3=RINVZ2/R
RINVS=RINVE*R
UD=UDHONINBRINV3-3. 30N RIONRIRINVS
FR=DNINU-5. »xONIReONURIRINVZ
F=DIPM 20k (FRxX+DNR¥ALX (1) +ONTR¥ALX (J) ) 3RINVS-A%X
FX (1) FX(1)4F
FX (D) =FX(J) -F




F=DIPM2Cox (FRxY+ONJR¥ALY (1) +DNIR¥ALY (J) ) 3RINVS-A%Y
FY(I)FY (1) +F
FY (D) FY (D) F
F=DIPM2Cx (FR&Z+DNJR¥ALZ (1) +ONIR¥ALZ (J) ) 3RINVS-AXZ
FZ(1)=FZ(1)+F
FZJ)FZ (N -F
TX (D) =TX (J) -ALX (1) *RINV3+3. 3ONI RARINVSxX
TY (D) =TY (J) -ALY (1) 3RINV3+3. sONI RARINVSxY
TZ () =TZ (J) -ALZ (1) 3RINV3+3. ¥ONIRARINVERZ
TXI) =TX (1) -ALX (J) 3RINV3+3. 3ONJRARINVERX
TY (1) =TY (1) -ALY (J) 3R INV3+3. ¥ONRHRINVExY
TZ(1)=TZ (1) -ALZ (J)xRINV3+3. ¥ONIRXRINVExZ
30 CONTINUJE
280 CONTINLE
DO 48 J=1,NP
DX=TX(J)
TYY=TY (J)
TZZ=TZ(J)
TX(J) =ALY (J)xTZZ-ALZ (J) xTYY
TY (J) =ALZ (J) xTXX-ALX (J) xTZZ
TZ (J) =ALX (J)%TYY-ALY (J) %TXX
48 CONTINLE
U= UL /NP
W= UDDIPMHOIPM/NP
VIR=VIR¥24.
RETURN
END

SUBROUTINE CORREC
C Apply the Gear correction, using the results for the forces and
C torques in the new positions. The Gear coeff.’s are the FE2,F12.. etc.
PARAMETER ( NP = 458 , WTMOL = 48. )
PARAMETER ( FB2 = 3./16. , F12 = 251./368. , F2 = 11./18. ,
- F42 = 1./6. , F52 = 1./68. )
<OMTON /VEC/, /QUAT/, /DIPOLE/, /NXV/, /TORFOR/ >
REAL TPX(NP), TPY (NP), TPZ (NP) , TPQ (NP)
C= (DELTA2) x (DIPMex2) / (2.9 1)
D=12. x0EL TAXDEL TA/WTMOL
DO S I=1,NP
FX(I)= FX(1)xD
FY(I)= FY(I)xD
FZ(I)= FZ(1)xD
E11=-AXB (1) %0k2+AYB (1) 30x2-AZ8 (1 ) %x24+A00 (1 ) 20k2
E12=2.% (AZB (1) xAQ8 (1) -AXB (1) xAYB (1))
E13=2.%(AYB (1)%AZ8 (1) +AXB (1) %AQB (1))
E21=-2.x(AXB (1) xAYB (1) +AZB (1) %AQB (1))
E22=AX8 (1) xAXB (1) -AYB (1) xAYB (1) -AZB (1) *AZB (1)+AQ8 (1) xAQ8 (1)
E23=2.% (AYB (1) xAQ8 (1) -AXB (1) xAZB (1})
TPX (1) = (EL1kTX (1) 4E12%TY (1) +E13%TZ (1) )xC
TPY (1) = (E21kTX (1) +E22%TY (1) +E23%TZ (1) )3
TPZ (1) =8.
TPQ (1) =— (AX1 (1) 3k24AY1 (1) 302+AZ1 (1) 302+A01 (1) 3k2)
S5 CONTINE

DO 18 I=1,NP
XCOR = X2(I)-FX(I)
YCOR = Y2(I)-FY (1)
LR = Z2(1)-FZ(1)
XB(I) = XB(I)-XCORK82
X1({I)} = X1(I)-XCORK12
X2(1) = X2(I)-XCOR
X3(1) = X3(I)-XCORK32
X4 (1) = X&(1)-XCORWF42
X5(I) = X5(I)-XCORKS2
YB(I) = YB(I)-YCORKB2
Yi(I) = YI(I)-YCOR®12
Y2(1) = Y2(1)-YCOR
Y3(I) = Y3(I}-YCOR®32
Y&(I) = Y4(I)-YCORW42
YS(I) = YS(I)-YOORMS2
Z28(1) = ZB(1)-ZCORKB2
Z1(1) = 21 (1)-ZCORWF12
22(1) = Z2(1)-ZCR
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Z3(1) = Z3(1)-ZCORW¥32
24(1) = Z4(1)-ZCOR%42
Z5(1) = Z5(1)-Z00RWS2
AXCOR=AX2 (1) -8.5% (-AZB (1) xTPX (1) -AQ8 (1) xTPY (1)+AX8 (1) xTPQ(I))
AYCOR=AY2 (1) -8.5x( AQB(I)xTPX(I1)-AZB(1)xTPY (1)+AYB (1)xTPQ(I))
AZCOR=AZ2 (1) -8.5x ( AXB (1)xTPX (1)+AYB (1)xTPY (1)+AZB (1) xTPQ(1))
AQCOR=AQ2 (1) -8. 5% (-AYB (1) xTPX (1) +AX8 (1) xTPY (1) +AQ8 (1) xTPQ(I))
AXB (1) = AXB(I) - AXCORWB2
AX1(I) = AX1(]) - AXCORW12
AR (1) = AX2(1) - AXOR
AX3(1) = AX3(I) - AXCORsF32
AX4 (1) = AX4 (1) - AXCORW42
AG(1) = AG(I) - AXCORMS2
AYB(I) = AYB(I) - AYCORWO2
AY1(I) = AY1(l) - AYCORW12
AY2(1) = AY2(I) - AYOOR
AY3(I) = AY3(I) - AYCORW32
AY4 (1) = AY4(1) - AYCORW42
AYS(I) = AYS(I) - AYCORWS2
AZB(1) = AZB(1) - AZOORNFO2
AZ1(1) = AZ1(]) - AZDORWF12
AZ2(1) = AZ2(1) - AZCOR
AZ3(1) = AZ3(1) - AZCORW32
AZ4(1) = AZ4(1) - AZOORNF42
AZ5(1) = AZS(1) - AZOORWFS2
AQB (1) = ADB(I) - AQCORWM@2
AQl (I) = AQL(]) - AQCORNF12
A2(I) = AR(I) - ADCOR
AQB(I) = AQ3(I) - AQCORW32
AQ4 (1) = AQA(]) - AQCORMF42
AOS (1) = AGS(I) - AQCORWS2
WPX (1) = 2.%(-AZB(1)xAX1 (1)+AQ8 (1) xAY1 (1) +AXB (1) %AZ1 (1)
+ -AYB(1)xAQ1 (1)) /DELTA
WPY (1) = 2.%(-AQB(I1)xAX1 (1)-AZB (1) xAY1 (1)+AYB(1)xAZ1 (1)
+ +AXB (1) xAQ1 (1)) /DELTA
C Ensure that sum of sguares=1 & wpz=B for all molecules
WPZ (1)=8.
Q=AX8 (1) 5x2+AYB (1) 3k2+AZB (1) 502+A08 (1 ) k2
Q=SRT(Q)
AXB (1) =AX8(1)/Q
AYB(1)=AYB(1)/Q
AZB(1)=AZ8(1)/Q
AQ@ (1)=A0B(1)/Q
AX1 (1) =—DEL TAx ( (AZB (1 ) RPX (1) +AQB (1) RPY (1)) /2.)
AY1 (1) = DELTAx((AQB (1) RPX (1) -AZB(1)RPY (1)) /2.)
AZ1 (1) = DELTAx((AXB (1) RPX (1) +AYB (1) RPY (1)) /2.)
AL (1) = DELTAX((-AYZB (1) HPX (1) +AXB (1) RPY (1)) /2.)
ALX (1) =2.x(AYB(I)xAZB (1) -AXB (1) %AQ3 (1))
ALY (1) =-2.%(AXB (1) xAZB (1) +AYB (1) xADB (1))
ALZ (1) =AZ8 (1) 5x2+A08 (1 ) 30k2-AXB (1) 5i2-AYB (1 } 50k2
18 CONTINLE
RETURN
END

SUBROUTINE DATA(ISTEP, JSEG)
C This routine deals with the calculation of the various averages
C in the course of the simulation and the regular dumping of data
C in case a crash occurs.

PARAMETER ( NP = 458, WTMOL = 48.,ND = 52,NDM = ND/2, ISMTFO=4 )
PARAMETER ( MAXST = 68 )

<LOMON /VEC/, /QUAT/, /DIPOLE/, /NM/, /RES/ >

REALXE SUK,SUKR, SUML, SUMD, SUrK2, SUMKR2, SUMUL 2,

+ SUMUD2, SUP, SUMDM2, SUMCOS, SUMMBT, S, SUMUgT
CHARACTERx14 FDATA,FRES, FPROF, FCLUST, FMOORR, SUFF 1 X6
INTEGER CLUST (NP) ,NSHELL (NP)

REALx8 SX,SY,SZ,DMX (8:ND) ,DMY (8:ND) ,OFZ (8:ND)

LOGICAL CAL1,SAMPMT
SAVE CLUST,CAL1, XSUM, YSUM, ZSUM
DATA CAL1/.TRLE. /XS, YSM,Z9U/8. ,8.,8./

SF= 2.x\D/SI10E
IF ( CAL1.0R.ISTEP.EQ.1 ) THEN

CALL GETDRP( CLUST,LEN,3.61,X8,Y8,20 )
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CAL1=.FALSE.
ENDIF
[=ISTEP
IF(1.GT.0) I=I+(JSEG-1)*NSSEG
IF ( MOD(I,IGDPFQ).EQ.8 ) THEN
CALL GETDRP( OLUST,LEN,3.61,X8,Y8,Z8 )
NCLUST=NCLUST+LEN
ENDIF
CALL CMASS( XSUM, YSUM,ZSUM,CLUST,LEN )
V2=8.
W2=8.
Rv=8.
DO S J=0,ND
DX (J) =8.
oMy (J) =0.
DMz () =8.
S CONTINLE
DO 18 JJ=1,NP
J=0UST (W)
R= SORT( (XB(J))»x2 + (YB(J))#k2 + (ZB(J)) 2 )
NBOX=SFxR
IF (NBOX.GT.ND) NBOX=ND
NSHELL (J) =NBOX/2
NDPROF (NBOX) =NDPROF (NBOX) +1
IF (JJ.LE.LEN) THEN
NDC (NBOX) =NDC (NBOX) +1
ENDIF
SUMCOS (NBOX) =SUMCOS (NBOX) + ( (X8 (J) *xALX (J) +YB (J) ALY (J) +
+ 28 (J)xALZ (J) ) 3x2) / (RxR)
OrX (NBOX) =0rX (NBOX) +ALX (J)
Or1Y (NBOX) =DMy (NBOX) +ALY (J)
OrMZ (NBOX) =DMZ (NBOX) +ALZ (J)
V2=V2+X1 (JJ) 302+ Y1 (JJ) 302+Z1 (JJ) 50k2
W2=L2-HPX (JJ) %0i2-+HPY () 30i2+HPZ (JJ) 362
18 CONTINLE
SX=8.
SY=8.
SZ=8.
DO 12 J=B,ND
SX=SX+OMX (J)
SY=SY+OMY (J)
SZ=SZ+D1Z (J)
SUDM2 () =SUDM2 (J) +4SXEX+SYaEY+52457
12 CONTINLE
V2= V2/ (NPXOELTAXOEL TA)
W2 /NP
EKINT= V2x<ITMOL/2.
EKINR= L2x1/2.
EKIN=EKINR+EKINT
PRESS= (NP/ (S1DE) %3} x (EKIN#2. /5. +YIR/3. /NP+D)
SUMK= SUMK+EKINTXOELTA
SUMKR= SUMKR+EKINROEL TA
SUML= SUML+UxELTA
SUMUL2=SUMUL 2+ULiok23EL TA
SUMIC= SUMUDHIDOELTA
SUMUD2=SUMUD2+UDbiok2xEL TA
SUMK2=SUK2+EK INT»ok2xEL TA
SUMKRZ=SUMKR2+EK I NRwok2xEL TA
SUP=SUP+PRESSHEL TA
C Sample the time correlation functions
IF ( MOO(I,4).EQ.B8.AND.I.GT.8 ) THEN
SAMPMT= (MO0 (I, ISMTFQ) . EQ. B)
CALL MSOM( NSHELL,SAMPMT )
IF (SAMPMT) ICMBTS=1CMATS+1
ENDIF
C print running averages
IF ( MOD(I,IPRFQ).EQ.8 )} THEN
AVCL=REAL ((NCLUSTxIGDPFQ)) /1
AVUL= SUMUL/TIME
AVUD= SUMD/TIME
AVK= SUPK/TIME
AVKR=SU'KR/TIME
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AVE= AVUL+AVUDHAVK+AVKR
AVP=SUP/TIME
SIX= SORT( SUK2/TIME-AVK»x2 )
SIGKR= SORT ( SUKR2/TIME-AVKR#W2 )
SIGL= SORT( SUML2/TIME-AVUL2 )
SIGUD= SORT( SUMUD2/TIME-AVUDNK2 )
WRITE(2,’ (I5,5FS.5,E18.3€1,F8.1, I5,4F8.4) ") 1, AVE, AWK, AVKR,
+ AVUD, AVUL, AVP, AVCL, LEN, EXINT, EXINR, UL, LD
WRITE(2,’ (7F18.6) ") SIK,SIGKR,SIGUL, SIGUD, XS, YSUM, ZSUM
C write density profile and other data out
IF ( MOD(I,NSSEGxIDPFQ).EQ.8.AND.I1.GT.8 ) THEN
WRITE(,’ (16,F3.5)") I,SICE
WRITE (3, (1717) " )NOPROF
WRITE(3,’ (1717) " )NDC
WRITE@,’ (" COS'")")
WRITE (3, (18E12.5E1) ") (SUMCOS (J) / (NDPROF (J)+1.E-7) , J=8,ND)
WRITER,’ (" 412>7")°)
X=DIPMOIPM/ (JSEGKRNSSEG)
WRITE (3, (18E12.5E1) ") (SUMDM2 (J)xX, J=8,ND)
ENDIF
IF ( MOD(I, IDMTFQ) .EQ.8.AND.1.GT.8.AND. IOM9TS.GT.8 ) THEN
WRITE(7) 1,SICE, ICMBTS
WRITE(7) SUTBT
WRITE(7) SUTM
WRITE(7) SUrUeT
ENDIF
ENDIF
C save the current configuration in case of system crash
C old data over written
IF (D (I1STEP,NSSEG) .EQ. 8. 0R. ISTEP.EQ. -NINIT) THEN
REUIND (8)
NPI=NP
WRITE(8) NPI,ETOT,DELTA,SIDE,FI,DIPM
WRITE(8) X8,YP,28,X1,Y1,21,X2,Y2,22,X3,Y3,23,%4,Y4,74,

+ X5,Y5,75
WRITE (8) AXB,AYD, AZB, AQB, AX1,AY1,AZ1,AQ1, AX2,AY2,AZ2, A2, AX3,
+ AY3,AZ3, A3, AX4, AY4L, AZ4 , A, AXS, AYS, AZS, ADS
LRITE (8) NDPROF,NDC, SUMK, SUMKR, SUMUL, SUMLD, SUMK2,
+ SUKR2, SUMUL2, SUMUD2, SUP, SUD2,
+ SUMCOS, SUMMAT, SUMUBT, SUMTTH,
+ ICMBTS, TIME,NCLUST, ISTEP, JSEG, SUFFIX
CALL DOUP
ENDIF
RETURN
END

SUBROUTINE DDUP
C Ensure all data written to files by opening and closing them
<<OMTON /FILES/>

CHARACTERX14 FDATA,FRES, FPROF, FCLUST, FMCORR, SUFF X6

CLOSE (8)

OPEN (8, FILE=FDATA, FORM="UNFORMATTED” , STATUS="0LD")

CLOsE(2)

OPEN (2,FILE=FRES)

CALL TOEOF (2,1)

A0sE(3)

OPEN (3, FILE=FPROF)

CALL TOEOF (3,1)

CLOSE (4)

OPEN (4, FILESFOLUST)

CALL TOEOF (4,1)

CLOSE (7)

OPEN (7, FILE=FMCORR, FORM="UNFORMATTED’)

CALL TOEOF (7,8)

END

SUBROUTINE TOEOF (ICH, IFMT)

C Position file at end - system dependent routine
CALL FSEEK(ICH,B,2)
END

SUBROUJTINE CMASS (1 XSUM, YSUHM, ZSUM, CLUST,LEN )
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PARAMETER ( NP = 458 )
C This routine is identical to that used in the LJ programme,
C so we omit the listing here.

END

SUBROUTINE RESCAL (11)
C rescale velocities to keep total energy constant - rescale factors recorded
PARAMETER ( NP = 458, ND = 58 )
<COTON /VEC/, /QUAT, /DIPOLE/, /NXV/, /RES/ >
LOGICAL TFIXED
IF ((NOT.TFIXED) THEN
DIFF=ETOT- (EKIN+UL+D)
IF( (ABS(DIFF).LT.8.881).AND. (MD(11, IRESFQ) .NE.B) )RETURN
DIFF=DIFF+EKIN
IF ( (DIFF).LT.8.8 ) THEN
WRITE(x,” (** -SORT **,I15)") 11
SF=0.1
BHSE
SF= SRT( (DIFF) /EXIN )
ENDIF
ELSE
SF=80RT (ETOT/EKIN)
ENDIF
IF(MOD(11, IRESFQ) .EQ.8) WRITE(2,’ (FS.B)’) SF
DO 18 1=1,NP
X1{I)= X1(1)x&F
Y1(I)= Y1(I)xGF
Z1(1)= Z1(1)x&F
WPX (1) =SFPX (1)
WPY (1) =SFPY (1)
AX1 (1) =AX1 (1) 2&F
AY1 (1) =AY1 (1)x&F
AZ1 (1) =AZ1 (1)3GF
AQ1 (1) =AQ1 (1)3GF
18 CONTINLE
RETURN
END

SUBROUTINE SETZER (ISUMEF)
PARAMETER ( NP = 458, ND = 52 , NOM = ND/2 , MAXST = 68 )

18 CONTINLE




SUBROUTINE CHDELT (DELNEW)
PARAMETER ( NP = 458 )
LOTON /VEC/, /QUAT, /NI >

X = DELNEW/DELTA

Y =X

DELTA = DELNEM

WRITE (%,” (" DELTA="",F7.5)")DELTA

D018 1 =1,NP
X=Y
X1(I) = X1{I)xX
Y1(I) = YI(I)aX
21(1) = 211X
AX1 (1) =AX1 (1) %X
AY1 (1) =AY1 (1) %X
AZ1 (1) =AZ1 (1) %X
AQ1 (1) =AQ1 (1) %X
X=XxY
X2(1) = X2(1)%X
Y2(1) = Y2(I)xX
22(1) = Z2(1)xX
AX2 (1) =AX2 (1) %X
AY2(1) =AY2 (1) %X
AZ2 (1) =AZ2 (1) %X
AQ2 (1) =AQ2 (1) %X
X=XxY
X3(I) = X3(I)xX
Y3(I} = Y3(I)xX
Z3(1) = Z3(1xX
AX3 (1) =AX3 (1) %X
AY3 (1) =AY3 (1) %X
AZ3(1)=AZ3(1)xX
AO3 (1) =AQB (1) %X
X=XkY
X&(1) = X&(I)xX
Y4(1) = Y4(I)xX
Z24(1) = Z4(1)%X
AXG (1) =AX4 (T)xX
AY4 (1) =AY4 (1) %X
AZ4 (1) =AZ4 (T} %X
A4 (1) =A04 (1) %X
X=XkY
X5(I) = X5 (I)xX
YS(I) = YS(I)xX
Z5(1) = 251X
AXS (1) =AX5 (1) %X
AYS (1) =AYS (1) %X
AZ5 (1) =AZ5 (1) xX
A5 (1) =A5 (1) %X

18 CONTINLE
RETURN
END

SUBROUTINE SETUP (OLD)
C Read configuration file and prompt for run parameters interactively
PARAMETER ( NP = 458, ND = 58 , NOM = ND/2 , MAXST = 68 )
<OMTON /NY/, /S06/, /RES/, /FILES/ >
+ SUMID2, SUP, SUMDr2, SUMCOS, SUMMBT, SUMH, SUMUBT
CHARACTERx14 SUFF X6, PARAMKS, FDATA, FRES, FPROF, FCLUST, FMOORR
LOGICAL 0D, TFIXED
PRINT® (/** LIQUID DROP SIMULATION’’)’
PRINT’ (/7 INPUT SUFFIX FOR FILENAMES' ')’
READ (x,’ (AB)*) SUFFIX
FDATA="SFD’ //9UFFIX
OPEN(8,FILE=FDATA, FORM="UNFORMATTED" ,STATUS="0LD")
FRES="RES’ //SUFFIX
OPEN (2,FILE=FRES)
CALL TOEOF (2,1)
FPROF="PROF’ //SUFFIX
OPEN (3, FILE=FPROF)
CALL TOEOF (3,1)
FOLUST="0OLUST' //SFFIX
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OPEN (4,FILESFOLUST)
CALL TOEOF (4,1)

FMCORR="MCORR" //SUFFIX

OPEN (7, FILE=FMOORR, FORM="UNFORMATTED" )
CALL TOEDF(7,8)

CALL INDATA(QLD,SUFFIX,8)

FCUT=SIDE/Z.

IF (0D) THEN

PRINT” (" RIN=OLD *°)°

8BS

PRINT* (°* RUN=NEU *°)°

ENDIF

Clong if loop to allow interactive selection of parameters
18 PRINT’ (" ALTER PARAMETER ?2°°)°

READ (x, * (AB) * ) PARAM
IF (PARAM.EQ.’ETOT *) THEN

READx, ETOT

ELSE IF (PARAM.EQ.’TFIXED') THEN

TFIXED=. TRLE.

ELSE IF (PARAM.EQ.’NBM ') THEN

OLD=.FALSE.

ELSE IF (PARAM.ED.’OLD ") THEN

0D=. TREE.

ELSE IF (PARAM.EQ.’SIDE ') THEN

READx, SIDE

ELSE IF (PARAM.EQ.’FCUT *) THEN

READx, FCUT

ELSE IF (PARAM.EQ.’NINIT *) THEN

READx,NINIT

ELSE IF (PARAM.EQ. MAXSEG') THEN

READ x,MAXSEG

ELSE IF (PARAM.EQ.’NSSEG’) THEN

READ x,NSSEG

ELSE IF (PARAM.EQ.’IPRFQ ') THEN

READx, IPRFQ

ELSE IF (PARAM.EQ.’IGOPFQ’) THEN

READx, IG0PFQ

ELSE IF (PARAM.EQ.’IDPFQ *) THEN

READx, 10PFQ

ELSE IF (PARAM.ED.’IRESFQ’) THEN

READx, IRESFQ

ELSE IF (PARAM.EQ.’IDMTFQ’) THEN

READx, IDMTFQ

ELSE IF (PARAM.EQ.’DELTA °) THEN

READx, DELNEL
CALL CHDELT (DELNBW)

ELSE IF (PARAM.EQ.'DIPM ") THEN

READx, DIPM

ELSE IF (PARAM.ED.’FI ") THEN

READx, F1

ELSE IF (PARAM.ED.’? ") THEN

+
+

+

+
+

PRINT (°* ETOT="",F12.6,/’" MAXSEG="",I8,/'" NINIT="",18,
/’’ DELTA="",F8.5,/°" SIDE="",F8.3,/’’ FOUT="",F8.3,)°,
ETOT, MAXSEG, NINIT,DELTA, SIDE, FCUT
PRINT* (** DIPM ="',F12.7,/°" FI ="’ ,F12.7,
)’ ,DIPM,FI
PRINT’ ("* IPRFQ =’’,17,/" 1GOPFQ =’’,16,
/' 10PFQ ="",17,/°" IRESFQ ='",16)", IPRFQ, IGOPFT,
10PFQ, IRESFQ
PRINT” (** NSSEG ='',15,/°" TFIXED ='"’,L1)’ ,NSSEG, TFIXED

ELSE IF (PARAM.NE.'ND ') THEN

PRINT® (** 222°°/)’

ENDIF

IF (PARAM.NE.’NO ’) GOTO 18
IF (OLD) THEN

WRITE(2,” (/** RESTART’’,2I6)") MINSTP,MINSEG

ELSE

WRITE(2,” (/** RN = '’ ,A8,”" ETOT = *°,F8.4)")SUFFIX,ETOT
WRITEQ,” (" SIDE = " ,FS.4,"” DELTA = **,F8.5)")SIDE,DELTA
WRITE,” (** DIPM = "’ ,F3.4,"" FI ="’ ,F8.5)")DIPM,FI
WRITER,” " TFIXED = *’,L2)°) TFIXED

MINSEG=@
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MINSTP=0
ENDIF
RETURN
END

SUBROUTINE INDATA( OLD,SUFFIX, ICALL )
C Actual routine to read configuration file
PARAMETER ( NP = 458, ND = 58 , NOM = ND/2 , MAXST = 68 )
<LTOMTON /VEC/, /QUAT/, NIV, /90157 >
REALx8 SUMK, SUMKR, SUMUL, SUMUD, SUMK2, SUMKR2, SUMUL2,
+ SUMUD2, SUP, SUDM2, SUMCOS, SUMTBT, SUMTM, SUMUBT
CHARACTER SUFF X6, OLDSURIG
LOGICAL OD
REUIND (8)
READ (8)NIN,ETOT,DELTA, SIDE,F1,DIPM
IF (NIN.NE.NP) THEN
PRINT’ (/77" s« ERROR - INCORRECT DATA FILE'',//
+ **NP="",14,"" NIN="",14)" ,NP,NIN
STOP
ENDIF
READ(8) Xe,Y®,78,X1,Y1,71,X2,Y2,22,X3,Y3,23,%X4,Y4,24,X5,Y5,75
A

+ SUKR2, SUMUIL2, SUMUD2, SUP, SUD2,
5 SUMCOS, SUMMBT, SUMUBT, SUTT,
+ 10MaTS, TIME,NCLUST, MINSTP, MINSEG, OLDSUF
IF(ICALL.EQ.1.AND. IERR.NE.B) THEN
PRINT’ (°* 10 ERROR IN INDATA’")’
SToP
ENDIF
0LD=(IERR.EQ. Q) . AND. (SUFFIX.EQ.OLDSUF)
RETURN
END

BLOCX DATA
COTON /NI >
LOGICAL TFIXED
DATA  NINIT,MINSTP,MINSEG, MAXSEG/808, 8, 8,188/ NSSEG, IPRFQ,
+ 1GDPFQ, IDPFQ, IRESFQ, IDMTFQ / 158,508,18,5,18,1008 /
+ ISGDIE/B/
DATA DIPM,FI/1.,1./ TFIXED /.FALSE./
END

SUBROUTINE MSQM( NSHELL , SAMPMT )
C Subroutine to measure time dependent corr. fn’s for the total moment
C (@) .M{t)> and single particle J(B).U(t)>
PARAMETER ( NP = 458 , ND = 58 , NOM = ND/2 , MAXST = 68 )
<OMON /SUS/, /DIPOLE/ >
INTEGER NSHELL (NP) ,LSHELL (NP)
REALxE SUK, SUMKR, SUMLL, SUMLD, SUMK2, SUMKR2, SUMUL2,
- SUMUD2, SUP, SUDM2, SUMCOS, SUMMAT, SUMTTH, SUMUBT
REAL MT (3,8:NOM, 8: MAXST) ,ALB (3,NP)
LOGICAL MTFULL, SAMPMT
SAVE MTFULL, IPTH,ALB,LSHELL
DATA MTFULL /.FALSE./ IPTH /8/
IF (IPTH.EQ.MAXST+1) THEN
MTFULL=. TRLE.
IPTH=0
ENDIF
IF (IPTH.EQ. 8) THEN
DO 4 J=1,NP
ALB(1,J)=ALX())
ALB(2,J)=ALY(J)
AB3,J)=ALZ()
LSHELL (J)=NSHELL (J)
4 CONTINLE
ENDIF
DO S J=8,NM
MT(1,J,IPTH) =8.
MT (2, J, IPTH) =8.
MT (3, d, IPTH) =8.
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5 CONTINE
00 18 J=1,N°
MT(1,NSHELL (), IPTH) =T (1,NSHELL (), IPTH) 4ALX ()
MT 2,NSHELL (J) , IPTH) =MT (2,NSHELL (J) , IPTH) +ALY (J)
MT (3,NSHELL (J), IPTH) =MT (3,NSHELL (J) , IPTH) +ALZ (J)
18 CONTINE
DO 1S J=1,NDM
MT(1,J, IPTH MT (1, J, IPTH) +MT (1, J-1, IPTH)
MT 2, J, IPTH) MT (2, J, IPTH) +MT (2, J-1, IPTH)
MT (3, J, IPTHYMT (3, J, IPTH) +MT (3, J-1, IPTH)
15 CONTINE
D0 17 J=1,NP
1451 ()
SUMURT (1, IPTH) =SUMUBT (1, IPTH) +ALB (1, J)*ALX (J)+ALB (2, J) %ALY (J) +
+ ALB(3, )xALZ ()
17 CONTINE
IF (TTFULL . AND. SAMPMT) THEN
00 28 J=8,MAXST
JU=M0D (IPTH++1,MAXST+1)
DO 38 1=8,NDM
SUMBT (1, J)=SUMMBT (1, )T (1, 1, JDRT (1,1, IPTH) +
+ MT 2,1, KT (2,1, IPTH)+MT (3,1, )T (3,1, IPTH)
SUTM(1, 1) =SUMM(1, DT, 1,4))
SUMTTM(2, 1) =802, ) +MT (2,1, )
SUTHM (3, 1) =SUTM@3, DT (3, 1,4
38 CONTINLE
28 CONTINLE
ELSE
SAPMT=.FALSE.
ENDIF
IPTH=IPTH+1
RETURN
END
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Appendix C: Determination of the drop location

1. Introduction

In the simulation of small droplets in equilibrium with their vapour it is often
necessary to accurately locate the centre of the droplet, which can drift away from it’s
original position. If the number of particles in the vapour phase is significant, the
centre of mass of the whole system is not an accurate guide to the center of the

droplet.

We assume spherically symmetric particles, and say that any two are
“neighbours” if their center to center separation is less then some value R,. Then
particle B is in the same group as A if they are neighbours, or a neighbour of A is in
the same group as B. With a suitable choice of R, , the largest of these groups defines
the droplet. The center of mass of the droplet is then readily found. For the Lennard-
Jones 12-6 interaction it was found that the largest cluster size was virtually
independent of R, for R, in the region of 1.9 o (see figure (C.1)) and so that was
taken as the criterion for separating the drop from its vapour and in defining the center
of the drop. The difference between the center of mass of the whole system, and that

of the cluster is of the order 0.3 o for a 260 particle system.

2. Simple-minded sorting

At first we used a simple-minded routine for finding the largest cluster, which is
listed in section 4. This assumes that one particle (number IC) is already known to be
within the cluster. We then search for the nearest neighbours of IC , according to the
distance criterion R,, and any that are found are recorded in the array NCL. The
search then proceeds to find the neighbours of these that are not already recorded in
NCL, and repeats this until the size of the cluster in 