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Relationship between the wave function of a magnet and its static structure factor

Jorge Quintanilla
Physics and Astronomy, Division of Natural Sciences, University of Kent, Canterbury CT1 7NH, United Kingdom

(Received 14 February 2022; revised 15 September 2022; accepted 16 September 2022; published 30 September 2022)

We state and prove two theorems about the ground state of magnetic systems described by very general
Heisenberg-type models and discuss their implications for magnetic neutron scattering. The first theorem states
that two models cannot have the same correlator without sharing the corresponding ground states. According
to the second theorem, an N-qubit wave function cannot reproduce the correlators of a given system unless
it represents a true ground state of that system. We discuss the implications for neutron scattering inverse
problems. We argue that the first theorem provides a framework to understand neutron-based Hamiltonian
learning. Furthermore, we propose a variational approach to quantum magnets based on the second theorem
in which a representation of the wave function (held, for instance, in a neural network or in the qubit register of
a quantum processor) is optimized to fit experimental neutron scattering data directly, without the involvement
of a model Hamiltonian.

DOI: 10.1103/PhysRevB.106.104435

I. INTRODUCTION

The Rayleigh-Ritz variational principle states that the
ground-state wave function of a quantum system is an ab-
solute minimum of the energy. It provides the theoretical
underpinning of many successful approaches to the quan-
tum many-body problem, including density functional theory
(DFT) [1], variational Monte Carlo methods [2], the BCS
theory of superconductors [3], and the Laughlin theory of the
fractional quantum Hall effect [4], to name a few cases. More
recently, it has been used to find optimal representations of
wave functions using quantum computers [5,6] and neural
networks [7]. Such theories start with a model Hamiltonian
Ĥ and proceed by minimizing the energy 〈�|Ĥ |�〉 to obtain
the wave function �. The Rayleigh-Ritz variational principle
ensures that no wave function can yield a lower value of the
energy than the system’s true ground state. Once the wave
function is known, it is straightforward to predict expectation
values of observables. Very often, however, Ĥ is not known a
priori. In such instances Ĥ has to be found from experimental
data. That involves a laborious and ill-posed inverse problem:
multiple candidate Hamiltonians must be studied until one
is found that predicts the experimentally determined value
of a set of observables. In general there is no guarantee of
uniqueness of Ĥ or � for a given data set. Here we consider
the inverse problem for the magnetic structure factor of a mag-
netic insulator (in particular, one described by an anisotropic
Heisenberg model, which covers a vast range of real mate-
rials). We show that, for systems that have nondegenerate,
distinct ground states, there is a one-to-one correspondence
between the structure factors, the model Hamiltonian, and
the ground-state wave function. We then address the impli-
cations of degeneracy, Hamiltonians with the same ground
state, and excitations and discuss the implications for neutron
scattering.

Our results have several direct implications for the study of
magnetic insulators using neutron scattering, specifically for
the neutron scattering inverse problems described schemati-
cally in Fig. 1. First, as we argue below, Theorem 1 puts the
Hamiltonian-learning problem [Fig. 1(a)] on firmer footing
and will help the design of efficient solutions, for instance,
ones exploiting machine learning [8]. Second, Theorem 2
suggests, and supports, variational methods in which the wave
function is optimized to describe the experimental data, obvi-
ating the need to minimize the energy of a model Hamiltonian
[Fig. 1(b)]. This provides an alternative to existing methods
used to obtain the ground state of a Heisenberg-type magnet,
for instance, those based on neural-network [7] or quantum-
processor [5] representations. Many such methods are based
on minimizing the energy for a given model. The methods
discussed in this work will be appropriate when the model is
not yet known but experimental structure factor information
is available. In those circumstances, working with the wave
function directly has the advantage of involving a single opti-
mization loop rather than two nested ones [compare Figs. 1(a)
and 1(b)]. In analogy with the Rayleigh-Ritz variational prin-
ciple, our second theorem guarantees that no wave function
other than a true ground-state wave function of the system
under investigation can yield a better fit to the data. Finally,
our results suggest that every ground-state property of the
system is contained in the structure factors. This has important
implications for efforts to quantify quantum entanglement
from experimental neutron scattering data [9–11] and justifies
the reduction of measures of entanglement to functions of
correlators [12,13].

The work presented here has to be seen in the con-
text of recently developed methods for the determination of
model Hamiltonians from local measurements [14–18]. In-
terestingly, a main thrust of such works, which are usually
concerned with systems in which qubits need to be addressed
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(a)

(b)

FIG. 1. Two versions of the diffuse magnetic neutron scattering
inverse problem: (a) given the scattering function S(q) of a real
material, in Hamiltonian learning the aim is to determine a model
Hamiltonian Ĥ whose wave function � will describe S(q) satisfac-
torily. (b) In quantum tomography one tries to determine the wave
function � directly.

individually, is the optimization of the scaling of the number
and type of measurements required with the size of the system
and the range of interactions. In contrast, our approach relies
on the static magnetic structure factor Sα,β (q), which con-
tains information about all two-point correlators and can be
determined experimentally with the same effort irrespective
of system size or range of interactions.

II. THEOREMS

Our starting assumption is that the physical system under
experimental investigation can be described by an anisotropic
Heisenberg model:

Ĥ =
∑

i, j

∑

α,β

Jα,β
i, j Ŝα

i Ŝβ
j . (1)

Here i, j = 1, 2, . . . , N represent atomic sites whose posi-
tions Ri and R j we assume are known. Ŝα

i represents the αth
component of the spin operator for the magnetic moment at
the ith atomic site (α = x, y, z; we assume each spin compo-
nent is defined with reference to some local axes defined on
each site). We assume the spin quantum number at each site
is S = 1/2 in what follows, but the results can be generalized
to arbitrary S straightforwardly. Jα,β

i, j is an exchange constant
describing the interaction between the αth component of the
spin at the ith site of a given lattice and the β component of
the spin in the jth site. The terms with i = j describe site
anisotropy (e.g., easy planes or easy axes). The dependence
of Jα,β

i, j on i, j, α, and β is entirely arbitrary. The model in
Eq. (1) can thus describe a very broad range of magnetic
models in arbitrary dimensions with and without translational
invariance, including the Ising model [19], XY model [20],
and Kitaev model, to name but a few [21]. Models of this
type are believed to describe well the physics of many materi-

FIG. 2. Schematic illustration of possible relationships between
two-point correlation functions ρ, N-qubit wave functions �, and
general spin-1/2 anisotropic Heisenberg Hamiltonians H (see the
text).

als from single-molecule magnets [22] through infinite-chain
compounds [11] to three-dimensional quantum spin ices [23]
and other spin liquids [24]. The observable quantity of interest
is the two-point magnetic correlator

ρ
α,β
i, j [�] ≡ 〈

�
∣∣Ŝα

i Ŝβ
j

∣∣�
〉
. (2)

The correlator is obviously a single-valued functional of the
wave function �. As shown in Appendix A, this quantity
is readily obtainable in condensed-matter systems through
neutron scattering measurements of the static structure factor
Sα,β (q). The situation we have in mind is one in which the
ground-state correlator ρ

α,β
i, j [�0] has been obtained experi-

mentally but neither the Hamiltonian Ĥ nor the wave function
�0 is known. We wish to prove two closely related theorems
that impose constraints on Ĥ and �0:

Theorem 1. Two Hamiltonians Ĥ and Ĥ ′ cannot have the
same ground-state correlator without sharing the correspond-
ing ground states.

Theorem 2. Any N-qubit wave function � that can repro-
duce the ground-state correlator of Ĥ represents a ground state
of Ĥ .

The implications of these two theorems for the relation-
ship between correlators, wave functions, and Hamiltonians
are illustrated in Fig. 2. For nondegenerate Hamiltonians,
Theorem 1 is a particular case of a more general theorem
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proven by Ng [25]. Here we extend it to the important case
of Hamiltonians with degenerate ground states and discuss
the implications of Hamiltonians sharing a ground state for
Hamiltonian learning using neutron scattering data [Fig. 1(a)].
The latter discussion will be supported by a generalization of
Theorem 1 to excited states (Appendix B). Theorem 2, on
the other hand, is a consequence of the fact that the ground
state maximizes the reconstruction entropy given a set of local
measurements [26]. The theorems are also closely related to
the convexity of the set of all two-point correlators of N-qubit
states [27,28]. Note that our second theorem does not require
all correlators to be representable by N-qubit wave functions
(exemplified by ρg Fig. 2), nor is it restricted to trial wave
functions that are ground states of Heisenberg-type Hamil-
tonians (ρf in Fig. 2). We will discuss the implications of
this second theorem for neutron-based quantum tomography
[Fig. 1(b)]. Finally, we note that Theorem 1 can be deduced
from Theorem 2; however, for clarity we will prove both
theorems independently.

Our approach to proving Theorems 1 and 2 is inspired
by the DFT formalism for Heisenberg models developed by
Líbero and Capelle [29]. Our aims, however, are quite dif-
ferent. The latter work (like other DFT formalisms for lattice
models [29–31]) is an energy-minimization variational theory
closely modeled on the original DFT for electrons in solids
[1]. In density functional theories generally, the aim is to show
that the energy is a functional of a densitylike quantity (in the
case of Ref. [29], the local magnetization). One then splits
the energy into two parts, one that is “universal” and another
that depends on local fields. In order for this to be useful, it
is necessary to have exact results for the universal function
and motivated approximations for the field-dependent con-
tribution. Here our primary quantity is not a density but a
correlator, and we are not interested in splitting the energy
into one contribution that is known and another that is to be
approximated. Instead, we treat the energy as a single unit and
are interested in proving that only one universal Hamiltonian
is compatible with a given set of correlators. In practice,
applications of our approach involve the optimization of the
match to experimental data, rather than the minimization of
the energy. Moreover, we will work in the absence of a
known model Hamiltonian, rather than using knowledge of
one model (e.g., a translationally invariant Heisenberg model)
to approximately solve another (e.g., the same model but with
an impurity potential).

III. PROOF OF THEOREM 1

Inspired by the original proof of the Hohenberg-Kohn the-
orem of DFT, we will proceed by reductio ad absurdum.
Suppose there are two distinct Hamiltonians Ĥ and Ĥ ′, with
different exchange interaction functions Jα,β

i, j and J ′α,β
i, j and

different ground states |�0〉, |� ′
0〉, respectively, that give the

same correlator ρ
α,β
i, j :

ρ
α,β
i, j [�0] = ρ

α,β
i, j [� ′

0] for all i, j, α, β. (3)

We will first consider the case when the two ground states are
nondegenerate. In this case the ground-state energy obtained

from the first Hamiltonian is

E0 = 〈�0|Ĥ |�0〉 < 〈� ′
0|Ĥ |� ′

0〉 (4)

= 〈� ′
0|Ĥ − Ĥ ′|� ′

0〉 + 〈� ′
0|Ĥ ′|� ′

0〉 (5)

=
∑

i, j

∑

α,β

(
Jα,β

i, j − J ′α,β
i, j

)
ρ

α,β
i, j [� ′

0] + E ′
0, (6)

where the inequality is due to the Rayleigh-Ritz variational
principle. Similarly, the ground-state energy obtained from the
second Hamiltonian is

E ′
0 = 〈� ′

0|Ĥ ′|� ′
0〉 < 〈�0|Ĥ ′|�0〉 (7)

= 〈�0|Ĥ ′ − Ĥ |�0〉 + 〈�0|Ĥ |�0〉 (8)

=
∑

i, j

∑

α,β

(
J ′α,β

i, j − Jα,β
i, j

)
ρ

α,β
i, j [�0] + E0. (9)

Adding the two inequalities, we obtain

E ′
0 + E0 <

∑

i, j

∑

α,β

(
J ′α,β

i, j − Jα,β
i, j

)

× {
ρ

α,β
i, j [�0] − ρ

α,β
i, j [� ′

0]
} + E0 + E ′

0.

Using now our assumption (3), this reduces to

E ′
0 + E0 < E0 + E ′

0, (10)

which is absurd. Thus, our initial assumption must be in-
correct: two Heisenberg-type Hamiltonians with different
exchange interaction constants and distinct, nondegener-
ate ground states can never give the same correlator. In
other words, for nondegenerate Hamiltonians that do not
share ground states the exchange interaction function is
a single-valued functional Jα,β

i, j [ρ] of the correlator ρ
α,β
i, j .

This is illustrated by the one-to-one correspondence between
{Ha, Hb} and {ρa, ρb} in Fig. 2.

We note that our proof relies on the assumption that |�0〉 �=
|� ′

0〉 since otherwise, the strict inequalities (4) and (7) be-
come equalities. In other words, if Ĥ and Ĥ ′ share their unique
ground state, the theorem does not apply. This is illustrated by
the one-to-many correspondence between ρd and {Hd, H ′

d, H ′
e}

in Fig. 2. Although this might appear to be a serious limitation
for Hamiltonian learning using neutron scattering, it may not
be as important in practice, as we discuss below.

In the above paragraphs we explicitly assumed that the
ground states of Ĥ and Ĥ ′ are nondegenerate. In order to
prove Theorem 1 we need to relax that assumption. Let us
first consider the case when the ground state of one of the
Hamiltonians (which we take to be Ĥ without loss of general-
ity) is degenerate while that of the other Hamiltonian remains
nondegenerate. Then the first of the above two inequalities
(4) and (7) is not strict, as there is always the possibility that
|� ′

0〉 happens to be a ground state of Ĥ as well as being the
unique ground state of Ĥ ′. In that case, Theorem 1 would
be violated because |�0〉 would not be a ground state of Ĥ ′
but it would have the same correlators as |� ′

0〉, which is.
Barring that possibility, the arguments above hold, so we need
to consider only that special case. In the special case we have

E0 =
∑

i, j

∑

α,β

(
Jα,β

i, j − J ′α,β
i, j

)
ρ

α,β
i, j [� ′

0] + E ′
0 (11)
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and

E ′
0 <

∑

i, j

∑

α,β

(
J ′α,β

i, j − Jα,β
i, j

)
ρ

α,β
i, j [�0] + E0. (12)

When we add the equality (11) to this inequality (12), we still
arrive at the same contradiction as before, (10). This proves
that Theorem 1 also applies when one of the two Hamiltonians
is degenerate.

Let us now consider the case when both Hamiltonians
have ground-state degeneracy. Then there is a new possibil-
ity, namely, that |�0〉 is a ground state of Ĥ ′ and |� ′

0〉 is a
ground state of Ĥ (all other possibilities have already been
covered above). In that case all the above inequalities become
equalities, and we do not arrive at a contradiction. However, in
this case all the ground states of Ĥ and Ĥ ′ leading to the same
correlators are shared, so the premise of the theorem is not
satisfied. In summary, degenerate Hamiltonians with the same
correlators must share all the corresponding ground states, as
a single ground state of one which is not also a ground state of
the other suffices to generate a contradiction. This is illustrated
by ρe in Fig. 2: the same correlator can be generated by the
ground state of He and by that of H ′

e, but then the ground
state of H ′

e must also be a ground state of He and vice versa
(it is possible, on the other hand, for ground states leading
to different correlators not to be shared, as illustrated by the
correlator ρd of H ′

e). This concludes our proof of Theorem
1. �

IV. HAMILTONIAN LEARNING

Before proving Theorem 2 we shall discuss the implica-
tions of Theorem 1 for Hamiltonian learning using neutron
scattering. First of all, we address the question of shared
ground states. An example of this would be two spin-1/2
ferromagnetic Ising models differing only by an overall mul-
tiplicative factor. In both cases, the ground state is a classical
state where all the spins point along the positive or nega-
tive direction of the quantization axis. The correlators are
therefore identical in the ground state. It is therefore im-
possible to discriminate between these two models from a
measurement of the ground-state correlators. It would be
tempting to venture that this limitation of Theorem 1 can
be trivially circumvented by normalizing the parameters of
trial Hamiltonians. However, this would take care of only
certain instances of shared ground states, known a priori.
We cannot discard nontrivial cases. On the other hand, it is
straightforward to generalize our proof of Theorem 1 to show
that it holds for any excited state |�n〉 as well as for the
ground state (see Appendix B). Therefore, two Hamiltonians
that are physically distinct but share a ground state could be
told apart by probing their low-energy excitations. Indeed,
any real condensed-matter experiment will take place at finite
temperature with the measured correlator corresponding to
a thermal superposition

∑
n Z−1 exp(−En/kBT )ρα,β

i, j [�n]. For

two Hamiltonians Ĥ and Ĥ ′ to give the same result at any ar-
bitrary temperature one would therefore require all eigenstates
|�n〉 and all the eigenvalues En to coincide. In that case, the
two Hamiltonians are identical: Ĥ = Ĥ ′ = ∑

n En|�n〉〈�n|.
Thus, this limitation of Theorem 1 may not, in practice, limit

its applicability to Hamiltonian learning in neutron scattering
experiments [32,33].

The above discussion suggests that the inverse problem of
deducing the Hamiltonian from the correlators may, indeed,
be well defined, as long as we know that the material under
investigation is described by a model of the form in Eq. (1).
That could provide a natural explanation for the success of
a recent machine learning based approach to this problem
[8]. In that reference an autoencoder was trained using sim-
ulations of the neutron scattering function Sα,β (q) obtained
for a family of candidate Hamiltonians [for completeness, we
offer a proof of the equivalence between knowledge of Sα,β (q)
and of ρ

α,β
i, j in Appendix A]. The autoencoder thus trained

can be used to generate a low-dimensional latent space on
which experimental data can be projected, effectively finding
an optimal model Hamiltonian. Although, in principle, that
inverse problem is “ill defined” [8], our formal results for the
ground and excited states of Heisenberg-type Hamiltonians
strongly suggest that there may be only one solution. We
note that the work in Ref. [8] dealt with classical models;
however, similar dimensionality reduction has been shown for
quantum models using closely related principal component
analysis [34].

Several recent works discussed the determination of model
Hamiltonians using local measurements [14–18]. While such
methods are well suited to artificial systems such as quantum
simulators, they are not readily applicable to experimental
data on condensed-matter systems. Specifically, in most cases
[14–17] they require the covariance matrix, which in turn
relies on four-point correlators of the form ρ

α,β,α′,β ′
i, j,i′, j′ [�0] ≡

〈�0|Ŝα
i Ŝβ

j Ŝα′
i′ Ŝβ ′

j′ |�0〉, where i and i′ are sites that are not linked
by a direct interaction and j and j′ are sites that interact
with i and i′, respectively. Such higher-order correlators are
not readily accessible through neutron scattering. In contrast,
for periodic systems all the two-point correlators ρ

α,β
i, j [�0]

can be determined in a neutron scattering experiment (see
Appendix A). As an added benefit, such an approach yields
all the required information using a “single-shot” global mea-
surement irrespective of the size of the system or the range
of spin-spin interactions. Thus, in the case of condensed-
matter systems it is not necessary to devise more sophisticated
observables in order to improve sampling efficiency, as was
proposed recently [18]. Effectively, neutron scattering inte-
grates a large number of local measurements into a single
function S(q) that needs to be fitted (see Appendix A)—a sort
of analog parallel computation.

V. PROOF OF THEOREM 2

In the preceding paragraphs we proved that, for any set
of Heisenberg-type Hamiltonians that do not share ground
states, the exchange constants Jα,β

i, j are single-valued func-

tionals of the correlators ρ
α,β
i, j (sets labeled “2” in Fig. 2).

With the additional constraint that the Hamiltonians have
nondegenerate ground states (sets labeled “1”) the ground
state |�0〉 is in turn fixed by the choice of Jα,β

i, j . Thus, in

this case |�0〉 is also uniquely determined by ρ
α,β
i, j . More

generally, Theorem 1 implies that the only ground states of
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Heisenberg-type Hamiltonians (including Hamiltonians with
degenerate and/or shared ground states) that are compatible
with the ground-state correlator of a given model are also
ground states of that same model. The various possibilities
are shown in Fig. 2: each correlator in the shaded area (sets
labeled “3”) uniquely identifies a nondegenerate ground state
(ρa → �a, ρb → �b, ρc → �c, ρ

′
c → � ′

c, ρd → �d) or a set
of degenerate ground states of either one Hamiltonian (ρh →
{�h, �

′
h}) or a set of Hamiltonians that share all those states

(ρe → {�e, �
′
e}) [35]. This is essentially the same as Theorem

2 except for the constraint that the trial wave functions must
be ground states of Heisenberg-type Hamiltonians. To prove
Theorem 2 we need to show that the result holds even without
that constraint. In other words, we need to prove that in Fig. 2
there can be no lines linking correlators in the shaded area (set
labeled “3” on the left side) to wave functions in the unshaded
area (set labeled “4” in the middle). Again, we proceed by
reductio ad absurdum. Let us assume that there is a state |�̃〉
that gives the same correlator as |�0〉:

ρ
α,β
i, j [�̃] = ρ

α,β
i, j [�0] for all i, j, α, β. (13)

Let us further assume that |�̃〉 is not the ground state of Ĥ .
There are two possibilities: either it is the ground state of some
other Heisenberg-type Hamiltonian, or it is not the ground
state of a Heisenberg Hamiltonian at all. Below we will not
assume either case, so our proof will cover both instances.
By the Rayleigh-Ritz variational principle, we know that |�0〉
gives the absolute minimum of the energy, which implies

E0 ≡ 〈�0|Ĥ |�0〉 � 〈�̃|Ĥ |�̃〉. (14)

Using Eqs. (1) and (2), we can write this as

E0 ≡
∑

i, j

∑

α,β

Jα,β
i, j ρ

α,β
i, j [�0] �

∑

i, j

∑

α,β

Jα,β
i, j ρ

α,β
i, j [�̃].

Let us now consider separately the two cases when the two
expectation values of Ĥ in Eq. (14) are different and when
they are equal. Let us first consider the case when they are
different:

E0 ≡ 〈�0|Ĥ |�0〉 < 〈�̃|Ĥ |�̃〉.
Then we have

∑

i, j

∑

α,β

Jα,β
i, j ρ

α,β
i, j [�0] <

∑

i, j

∑

α,β

Jα,β
i, j ρ

α,β
i, j [�̃], (15)

and from our assumption (13) this reduces to
∑

i, j

∑

α,β

Jα,β
i, j ρ

α,β
i, j [�0] <

∑

i, j

∑

α,β

Jα,β
i, j ρ

α,β
i, j [�0], (16)

which is a contradiction. Therefore, the only possibility is that
the two expectation values are equal:

E0 ≡ 〈�0|Ĥ |�0〉 = 〈�̃|Ĥ |�̃〉.
However, in that case 〈�̃|Ĥ |�̃〉 is the absolute minimum E0,
and therefore, |�̃〉 is a ground state of Ĥ , which contradicts
our starting assumption. Thus, we conclude that the only state
that reproduces the ground-state correlator of Ĥ is the actual
ground state of Ĥ (or one of its ground states, if the ground
state of Ĥ happens to be degenerate). �

We note that our proof of Theorem 2 does not rely on
having proved Theorem 1. Theorem 2 is a simple consequence
of the fact that the expectation value of any Hamiltonian of
the form (1) is a sum of two-point correlators. Thus, if two
states |�0〉 and |�̃〉 give the same correlators, they must give
the same expectation value. Therefore, if |�0〉 minimizes the
energy, |�̃〉 does too. We also stress that Theorem 2 is true
even when we include candidate wave functions such as �f in
Fig. 2 that are not derived from any Hamiltonian of the form
(1) (which makes Theorem 2 stronger than Theorem 1). This
means that unconstrained searches in wave function space are
guaranteed to be able to find the true ground state.

VI. QUANTUM TOMOGRAPHY

Our last result offers the possibility to study systems
for which experimental magnetic neutron scattering data are
available by working directly with the wave function, without
the need for a model Hamiltonian (Fig. 1b). The same efficient
encodings of wave functions that have been developed to
obtain the ground state of a given model Hamiltonian could be
used to find the wave function that matches the experimental
data. For instance, one could encode the wave function in a
neural network [7], trained once to reproduce the experimental
data (instead of minimizing the energy as done in Ref. [7]).
Alternatively, a quantum circuit could be optimized to place
the qubits in a quantum processor in a state that reproduces the
measurements. In this respect, we note that the simulation of
inelastic neutron scattering functions of single-molecule mag-
nets using a quantum processor (for known Hamiltonian) has
already been successfully demonstrated [36]. The approach
we propose would dispense with the model Hamiltonian and
instead optimize the scattering function directly. It would be
similar to an evolutionary variational eigensolver [6] except
that, again, we would not be minimizing the energy of a
model Hamiltonian but would be instead optimizing the wave
function to describe the experimental data. Both neural net-
works (or, more generally, tensor networks [37]) and quantum
circuits can, in principle, generate any wave function. Our
theorem implies that any general-purpose optimization algo-
rithm will converge towards the right ground state (or another
ground state of the same model with the same correlators).
Specifically, it guarantees that convergence towards an un-
physical wave function that reproduces the data is not possible
as there are no wave functions that can describe the data
and are not valid solutions to the problem at hand. This is
akin to the guarantee offered by the Rayleigh-Ritz variational
principle that no wave function can give an energy lower
than the true ground-state wave function. Once optimized, our
neural network or quantum circuit contains all the obtainable
information about the system’s ground state and can straight-
forwardly be used to predict any other ground-state property.

VII. FINAL REMARKS

To conclude we note some limitations of Theorem 2. First,
it relies on the assumption that the physical system under
investigation is described by a Hamiltonian of the form in
Eq. (1). Systems with itinerant electrons or with interaction
terms involving three or more spins at a time are therefore
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excluded. The generalization of our results to such systems is
left for subsequent work [38]. Second, Theorem 2 establishes
the existence of a fitness peak at �0 but says nothing about its
steepness. The peak could be almost a plateau in some cases,
which would complicate practical applications. Investigating
this for different models provides another focus for future
research. Finally, our theorems refer only to the ground state
(apart from the generalization of Theorem 1 to excited states
in Appendix B). Further generalizations to states of thermo-
dynamic equilibrium and to excited states are left for future
work.

Note added. The generalization of Theorem 1 to finite
temperatures was discussed recently by Murta and Fernández-
Rossier [39].
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APPENDIX A: EQUIVALENCE BETWEEN CORRELATORS
AND THE SPIN STRUCTURE FACTOR

Here we show that, for systems with translational symme-
try, the correlators ρ

α,β
i j are unique functionals of the diffuse

magnetic neutron scattering function or static spin struc-
ture factor Sα,β (q), which can be determined experimentally
[40,41] and is given by

Sα,β (q) ≡ 1

Nh̄

∑

i, j

eiq·(Ri−R j )
〈
Ŝα

i Ŝβ
j

〉
. (A1)

This is not quite the same as a Fourier transform, in which
case we could say straightaway there is a one-to-one corre-
spondence between Sα,β (q) and 〈Ŝα

i Ŝβ
j 〉, but almost. Again,

let us proceed by reductio ad absurdum. First, we assume
that there are two different correlation functions that give the
same scattering function. Let us designate these two correla-
tion functions as ρ

α,β
i, j and ρ̃

α,β
i, j . Our assumption is that the

difference �
α,β
i, j ≡ ρ

α,β
i, j − ρ̃

α,β
i, j �= 0. Since they give the same

scattering function, we have

Sα,β (q) = 1

Nh̄

∑

i, j

eiq·(Ri−R j )ρ
α,β
i, j

= 1

Nh̄

∑

i, j

eiq·(Ri−R j )ρ̃
α,β
i, j

for all q, α, β. The last equality implies that
∑

i, j

eiq·(Ri−R j )�
α,β
i, j = 0 for all q, α, β. (A2)

Suppose that all magnetic sites are equivalent. Then the
function �

α,β
i, j = �α,β (Ri − R j ), and (A2) becomes
∑

R

eiq·R�α,β (R) = 0 for all q, α, β,

which evidently implies �α,β (R) = 0 for all R as the Fourier
transform of a null function is a null function which contra-
dicts our original assumption, concluding our argument.

Suppose now that the magnetic sites are not equivalent.
Nevertheless, as long as we are dealing with a state with
translational symmetry, the function ρ

α,β
i, j will have to be pe-

riodic. This periodicity can be established experimentally (for
instance, by magnetic neutron crystallography), and it is also
straightforward to impose it on the wave function; therefore,
we can restrict ourselves to the assumption that ρ̃

α,β
i, j (and

therefore also �
α,β
i, j ) has the same periodicity [42]. In practice

this means that we can write the left-hand side of Eq. (A2) in
the following form:

∑

i, j

eiq·(Ri−R j )�
α,β
i, j =N

M×N∑

i=1

M∑

j=1

eiq·(Ri−R j )�
α,β
j (Ri )

=N
M∑

j=1

e−iq·R j f j (q),

with

f j (q) =
M×N∑

i=1

eiq·Ri�
α,β
j (Ri ).

Here N is the number of magnetic unit cells (repeating units),
and M is the number of sites within a unit cell. Thus, the sum
over j runs over all the sites in the first unit cell, while the sum
over i runs over all the sites in the lattice. For the expression∑M

j=1 e−iq·R j f j (q) to vanish for all q we must have each of the
f j (q) for j = 1, 2, . . . , M vanish independently. But f j (q) is
the Fourier transform of �

α,β
j (Ri ); therefore, �

α,β
j (Ri ) must

vanish too for each j = 1, 2, . . . , M. This means �
α,β
i, j is iden-

tically zero, contradicting again our starting assumption.
There is a third possibility; namely, the system may

not be periodic. This applies, for example, when there is
quenched disorder. In that case the scattering function Sα,β (q)
is averaged over the disorder and is therefore insufficient
to determine the real-space correlator. The extent to which
Sα,β (q) constrains the system’s ground state in that case
should be an interesting subject for future investigations.

APPENDIX B: EXTENSION OF THEOREM 1 TO EXCITED
STATES

Here we extend Theorem 1 to excited states. Consider two
Hamiltonians Ĥ and Ĥ ′ of the Heisenberg type [Eq. (1)] but
with different sets of coupling constants given by Jα,β

i, j and

J ′α,β
i, j , respectively. Let us assume that the ground-state corre-

lator ρ
α,β
i, j [�0] is the same. In that case |�0〉 is a ground state

of both Hamiltonians due to Theorem 1. Let |�1〉 and |� ′
1〉 be

the first excited states of Ĥ and Ĥ ′, respectively. We wish to
prove that if these two states are different, the corresponding
correlators are also different, ρ

α,β
i, j [�1] �= ρ

α,β
i, j [� ′

1]. As with
all the other proofs in this paper, we proceed by reductio ad
absurdum. Let us assume that the opposite is true, in other
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words, ρ
α,β
i, j [�1] = ρ

α,β
i, j [� ′

1]. Then

E1 = 〈�1|Ĥ |�1〉 < 〈� ′
1|Ĥ |� ′

1〉 (B1)

= 〈� ′
1|Ĥ − Ĥ ′|� ′

1〉 + 〈� ′
1|Ĥ ′|� ′

1〉 (B2)

=
∑

i, j

∑

α,β

(
Jα,β

i, j − J ′α,β
i, j

)
ρ

α,β
i, j [� ′

1] + E ′
1, (B3)

where in writing the inequality we have made use of our
assumption that |�1〉 �= |� ′

1〉. We have also used the fact that
both |�1〉 and |� ′

1〉 are orthogonal to the shared ground state
|�0〉. Similarly,

E ′
1 = 〈� ′

1|Ĥ ′|� ′
1〉 < 〈�1|Ĥ ′|�1〉 (B4)

= 〈�1|Ĥ ′ − Ĥ |�1〉 + 〈�1|Ĥ |�1〉 (B5)

=
∑

i, j

∑

α,β

(
J ′α,β

i, j − Jα,β
i, j

)
ρ

α,β
i, j [�1] + E1, (B6)

with the same assumptions made above. Adding the two in-
equalities, we obtain

E1 + E ′
1 <

∑

i, j

∑

α,β

(
Jα,β

i, j − J ′α,β
i, j

)(
ρ

α,β
i, j [� ′

1] − ρ
α,β
i, j [�1]

)

+ E ′
1 + E1.

Our assumption that ρ
α,β
i, j [� ′

1] = ρ
α,β
i, j [�1] then leads to

E1 + E ′
1 < E ′

1 + E1,

which is absurd. Q.E.D. The argument can be trivially ex-
tended to successive excited states. We can also extend it in the
same way as Theorem 1 to cover the case where the excited
state is degenerate (in other words, to show that if |�1〉 and
|� ′

1〉 are degenerate excited states of Ĥ , then both of them
must also be degenerate states of Ĥ ′). �
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