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Abstract

The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox

(monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is

affected by toxic side‐effects (brincidofovir, cidofovir), limited availability (tecovir-

imat), and potentially by resistance formation. Hence, additional, readily available

drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquino-

line antibiotic with a favourable safety profile in humans, inhibited the replication of

12 mpox virus isolates from the current outbreak in primary cultures of human

keratinocytes and fibroblasts and a skin explant model by interference with host cell

signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance

development. Nitroxoline remained effective against the tecovirimat‐resistant strain

and increased the anti‐mpox virus activity of tecovirimat and brincidofovir.

Moreover, nitroxoline inhibited bacterial and viral pathogens that are often

co‐transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for

the treatment of mpox due to both antiviral and antimicrobial activity.

K E YWORD S

antiviral drugs, antiviral therapy, chelator, drug repurposing, monkeypox, orthopoxvirus,
poxvirus
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1 | INTRODUCTION

Two clades of mpox (previously known as monkeypox) virus, a member

of the genus Orthopoxvirus in the family Poxviridae, caused until recently

only limited zoonotic outbreaks in Africa.1–5 Currently, mpox viruses

considered as clade IIB (occasionally also as clade III, consensus on the

nomenclature is still developing) are spreading for the first time by

sustained human‐to‐human transmission outside of Africa (Elsayed

et al.1; Gessain et al.2; Huang et al.3; Mitjà et al.4; Rabaan et al.5). This

ongoing outbreak was classified as a ‘Public Health Emergency of

International Concern' by the WHO on July 23, 2022 and has at the

time of writing (January 20, 2023) affected at least 111 countries,

accounting for 114 987 documented cases and at least 106 deaths.6

About 10% of patients require hospital treatment in the current

global outbreak, mainly due to pain and bacterial superinfec-

tions.2,7–10 This is in contrast to the disease severity observed in

the endemic mpox areas in Africa, in which mpox outbreaks are

associated with mortality rates of up to 12%.4,11,12

Three antiviral drugs (tecovirimat [ST‐246], brincidofovir [CMX001],

cidofovir) are mainly considered for mpox treatment, although they have

not undergone clinical testing for mpox treatment.1–5 Despite differ-

ences in the clinical presentation of the current mpox outbreak

compared to previous ones,2,3,8,13,14 recent findings indicated that

these three drugs are still effective against the currently circulating

mpox viruses in therapeutically achievable concentrations.15–17

Notably, the use of cidofovir and brincidofovir is associated

with severe, therapy‐limiting side effects.2,18 Moreover, the

availability of tecovirimat is limited and may be affected by

resistance formation.2,19,20 Hence, additional effective and readily

available drugs are needed for the treatment of mpox.

The antibiotic nitroxoline is used as a first‐line therapy for

uncomplicated urinary tract infections.21–23 It is known to inhibit the

Phosphoinositide 3‐kinase/Protein kinase B/Mammalian target of

rapamycin (PI3K/AKT/mTOR) and Rapidly accelerated fibrosarcoma/

Mitogen‐activated protein kinase/Extracellular signal‐regulated

kinase (RAF/MEK/ERK) signalling pathways,24–26 which are involved

in orthopoxvirus replication.27–29 As an antibiotic, nitroxoline also has

the potential to target sexually transmitted bacteria that are

commonly cotransmitted with mpox virus during the current

outbreak and can aggravate mpox disease.3,8,13,14 Here, we investi-

gated nitroxoline for its activity against mpox virus and additional

pathogens that may cause coinfections.

2 | METHODS

2.1 | Cell culture

HFF and HFK were isolated as previously described30,31 accord-

ing to the Declaration of Helsinki principles and in agreement

with the institutional review board (112/06; 386/14). HFF were

cultured in Dulbecco's Modified Eagle Medium (DMEM) with

4.5 g/ml glucose supplemented with 5% foetal bovine serum

(FBS) and 100 IU/ml penicillin. HKF were cultured in DermaLife K

(CellSystems) supplemented with 100IU/ml penicillin. The cell

lines ARPE (ATCC) and HaCaT (CLS Cell Lines Service) were

cultured in minimal essential medium supplemented with 10%

FBS, 100 IU/mL penicillin, and 100 μg/mL streptomycin. All cell

lines were regularly authenticated by short tandem repeat analy-

sis and tested for mycoplasma contamination.

2.2 | Mpox virus isolation and production

Mpox virus clinical isolates were obtained by culturing swabs

from the patient's lesions on Vero cells. After appearance of CPE

both cells and supernatant were frozen at −80°C. For virus stock

preparation, the human keratinocyte cell line HaCaT was utilised.

Briefly, cells were incubated with 50 µL of infectious inoculum for

72 h and subsequently frozen at −80°C until further processing.

After thawing, supernatants were centrifuged at 150g for 10 min

and virus stocks stored at −80°C. Virus titres were determined as

TCID50/mL using confluent HFF in 96‐well microtiter plates.

2.3 | Antiviral assay

Confluent cells in 96‐well plates were infected with mpox virus isolates

at MOI 0.01 and incubated at 37°C for 48 h. Drug inhibitory effects

were determined by immunocytochemistry staining of mpox virus.

Briefly, cells were fixed with acetone:methanol (40:60) solution and

immunostaining was performed using an anti‐Vaccinia Virus antibody

(1:4000 dilution; #ab35219 Abcam), which was detected with a

peroxidase‐conjugated anti‐rabbit secondary antibody (1:1,000, Dia-

nova), followed by addition of AEC substrate. The mpox virus positive

area was scanned and quantified by the Bioreader® 7000‐F‐Z‐I

microplate reader (Biosys). The results are expressed as percentage of

inhibition relative to virus control which received no drug.

2.4 | Cell viability assay

Cell viability was measured by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐

diphenyltetrazolium bromide (MTT) dye reduction assay 96‐well

plates. 25 µL of MTT solution (2mg/mL in PBS) were added per well,

and the plates were incubated at 37°C for 4 h. After this, the cells were

lysed using 100 µL of a buffer containing 20% sodium dodecylsulfate

and 50% N,N‐dimethylformamide with the pH adjusted to 4.7 at 37°C

for 4 h. Absorbance was determined at 560 nm (reference wavelength

620 nm) using a Tecan infinite M200 microplate reader (TECAN).

2.5 | Mpox virus isolate assignment to clades

Total DNA from viral stocks was isolated using the QIAamp DNA

Blood Kit (Qiagen) according to the manufacturer's instructions. DNA
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was subjected to qRT‐PCR analysis using the Luna Universal qPCR

Master Mix Protocol (New England Biolabs) and a CFX96 Real‐Time

System, C1000 Touch Thermal Cycler (Bio‐Rad). Primers detecting

mpox virus were adapted from Liu et al.32

2.6 | Split‐thickness skin model

Skin samples derived from surplus split skin not used for wound cover

were placed in PBS and perforated by microneedle pretreatment

(Segminismart®) to facilitate virus infection as described.33 Then,

3 x 3mm skin pieces were infected with 106 TCID50/mL of MPXV1

per well in 500µL with or without nitroxoline (10µM). Fourty eight hours

postinfection, tissue samples were formalin‐fixed, paraffin‐embedded,

and cut into 4µm sections. After deparaffinisation and heat‐induced

epitope retrieval (Target Retrieval Solution pH9, Agilent‐Dako, S2367),

sections were incubated with a primary anti‐vaccinia virus antibody

(1:10.000, Abcam, ab35219), followed by incubation with secondary anti‐

rabbit IgG‐horseradish peroxidase conjugates (ZytoChem HRP Kit, HRP‐

125, Zytomed Systems), and visualisation using HistoGreen (Histo Green

Kit, Linaris, LIN‐E109) as peroxidase substrate. All experiments were

performed according to the Declaration of Helsinki principles and in

agreement with the institutional review board (112/06; 386/14).

2.7 | Immunoblot analysis

Whole‐cell lysates were prepared using Triton‐X sample buffer

containing protease inhibitor cocktail (Roche). The protein concen-

tration was assessed by using DC Protein assay reagent (Bio‐Rad

Laboratories). Equal protein loads were separated by sodium dodecyl

sulfate‐polyacrylamide gel electrophoresis and proteins were trans-

ferred to nitrocellulose membranes (Thermo Scientific). For protein

detection the following primary antibodies were used at the indicated

dilutions: AKT (Cell Signaling, #9272, Lot 22, 1:1000), phospho‐AKT

T308 (Cell Signaling, #2965, Lot 1, 1:1000), phospho‐AKT S473 (Cell

Signaling, #4060, Lot 27, 1:1000), c‐Raf (Cell Signaling, #9422, Lot 3,

1:1000), phospho‐c‐Raf S338 (Cell Signaling, #9427, Lot 4, 1:1000),

ERK1/2 (Acris, #AP00033P4‐N, Lot S7015, 1:1000), phospho‐ERK1/

2 T202/Y204 (Cell Signaling, #9106, Lot 30, 1:1000), GAPDH (Cell

Signaling, #2118, Lot 14, 1:4000), MEK1/2 (Cell Signaling 1:1000, Lot

14, #9122, 1:1000), phospho‐MEK1/2 S217/221 (Cell Signaling,

#9121, Lot 3, 1:1000). Protein bands were visualized using IRDye‐

labeled secondary antibodies at dilution 1:40000 (LI‐COR Bio-

technology, IRDye®800CW Goat anti‐Rabbit, #926‐32211 and

IRDye®800CW Goat anti‐Mouse IgG, #926‐32210) and Odyssey

Infrared Imaging System (LI‐COR Biosciences).

2.8 | Drug combination assay

To evaluate antiviral activity of nitroxoline in a combination with

tecovirimat and brincidofovir, the compounds were applied alone or

in fixed combinations at 1:2 dilutions using HFF monolayers.

Subsequently the cells were infected with MPVX1 at MOI 0.01 for

48 h. The calculation of IC50, IC75, IC90, and IC95 for single drugs and

their combinations as well as combination indexes (CIs) was

performed using the software CalcuSyn (Biosoft) based on the

method of Chou and Talalay.34 The weighted average CI value (CIwt)

was calculated according to the formula: CIwt (CI50 + 2CI75 + 3CI90 +

4CI95)/10. CIwt values were calculated for mutually exclusive

interactions where CIwt < 0.8 indicates synergism, CIwt between 0.8

and 1.2 indicates additive effects, and CIwt ˃ 1.2 suggest antagonism.

2.9 | Selection of tecovorimat‐resistant variant

ARPE cells were seeded in 96‐well plate 48 h prior infection and

treatment. The cells were treated with 4 µM of Tecovirimat and

subsequently infected with MPXV1 at MOI 0.01. Untreated cells

were used as passaging control. After 7 days the selection medium

containing 4 µM of Tecovirimat was refreshed and the cells were

incubated for additional 7 days. The positive wells displaying plaques

were harvested and expanded to viral stocks. The resistance

development was validated in antiviral assay and the resistant strain

designated as MPXV1rTECO.

2.10 | Complete virus genome sequencing

Up to 5 ng extracted DNA were used for library preparation using the

KAPA Hyper Prep Kit (Roche) according to manufacturer's instruc-

tions. Resulting libraries were quantified on a TapeStation System

(Agilent), equimolar pooled, and paired‐end sequenced on an Illumina

MiniSeq sequencer (Illumina; 300 cycles). Reads were mapped against

ON563414.2 using Geneious Prime v2022.0.1 and manually curated.

The sequence of MPXV1rTECO is available from GISAID under the

ID EPI_ISL_16847487.

2.11 | Effect of nitroxoline on HSV‐1 and VZV

Antiviral efficacy of nitroxoline against two sexually transmitted

herpes viruses, HSV‐1 and VZV, was evaluated in HFF and ARPE

cells, respectively. Briefly, confluent layers of HFF or ARPE cells were

treated with nitroxoline and infected with HSV‐1 McIntyre strain

(ATCC) at MOI 0.01 for 24 h or with VZV clinical isolate35 at MOI 0.1

for 48 h. Subsequently, the cell were fixed with acetone:methanol

(40:60) solution and immunostained with antibody directed against

HSV‐1 (#ab9533; Abcam) or against VZV (IE62‐specific mAb;

Chemicon), which was detected with a peroxidase‐conjugated anti‐

rabbit or anti‐mouse secondary antibody (1:1,000; Dianova), respec-

tively, followed by addition of AEC substrate. The virus positive area

was quantified by the Bioreader® 7000‐F‐Z‐I microplate reader

(Biosys). The results are expressed as percentage of inhibition relative

to nontreated virus control.
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2.12 | Bacterial isolates and antibiotic
susceptibility testing

All bacterial isolates were recovered from patients hospitalized at the

Goethe University Hospital in Frankfurt. Reference strains E. coli

ATCC 25922 and Neisseria gonorrhoeae ATCC 49226 were obtained

from DSMZ (German Collection of Microorganisms and Cell Culture).

Antimicrobial susceptibility was determined by disc diffusion

(Liofilchem®) using Mueller Hinton agar (OxoidTM; Thermo Fisher) for

E. coli and Chocolate agar with Vitox (OxoidTM, Thermo Fisher) for N.

gonorrhoeae. Agar dilution was performed with Mueller Hinton agar

for E. coli and gonococcal agar supplemented with hemoglobin

solution and BBLTM IsoVitaleXTM (Becton; Dickinson and Company)

for Neisseria gonorrhoeae with increasing concentrations of nitroxo-

line. Additionally, broth microdilution was performed with cation‐

adjusted Mueller‐Hinton broth for E. coli.

Inhibition zones and minimum inhibitory concentrations (MICs)

were evaluated and interpreted according to EUCAST guidelines for

E. coli due to the undefined criteria for N. gonorrhoeae [https://www.

eucast.org/clinical_breakpoints/].

2.13 | Structural modelling

The mpox F13L protein structure was modelling using Phyre236 (with

default settings). Phyre2 generated a high confidence model for 93%

of the protein sequence.

2.14 | Statistics

The results are expressed as the mean ± standard deviation (SD). If

not stated otherwise, values are the results of three biological

replicates. The statistical significance is depicted directly in graphs

and the statistical test used for calculation of p values is indicated in

figure legends. GraphPad Prism 9 was used to determine IC50 values.

3 | RESULTS

3.1 | Effects of nitroxoline on mpox virus
replication

The effect of the 8‐hydroxyquinoline derivative nitroxoline

(Figure 1A) was determined on the replication of 12 mpox virus

isolates (Supporting Information: Table 1) from the current global

outbreak. Mpox virus was cultured in primary human foreskin

fibroblasts (HFF) and primary human foreskin keratinocytes (HFK)

as previously described.15

When added to the culture medium together with the virus,

nitroxoline inhibited mpox virus infection in HFF and HFK in a dose‐

dependent manner (Figure 1B−D) as indicated by immunostaining. The

nitroxoline concentrations that reduced virus immunostaining by 50%

(IC50) ranged from 2.4 to 4.6 µM in HFF and from 0.5 to 1.5 µM in HFK

(Figure 1E−G, Supporting Information: Table 1). Nitroxoline did not affect

cell viability in the tested concentration range of up to 20µM

(Figure 1C,D). Notably, nitroxoline may interfere with different

orthopoxviruses, as it also inhibited vaccinia virus infection at a similar

IC50 (5.2 µM) as mpox virus infection (Supporting Information: Figure 1).

Time‐of‐addition experiments (Supporting Information: Figure 2A)

showed that nitroxoline interferes with the mpox virus replication

cycle post viral entry (Supporting Information: Figure 2B,C).

Nitroxoline inhibited mpox virus infection in a similar way when

it was added two hours postinfection (Supporting Information:

Figure 2B,C) as when it was added simultaneously with the virus

(Figure 1C,D). However, nitroxoline addition together with virus

followed by a washing step after a two‐hour entry period was not

effective (Supporting Information: Figure 2B,C). Moreover, nitroxoline

only reduced virus titres (as determined by PCR for genomic mpox virus

DNA), when added after the 2‐h virus absorption period, but not when

it was present only during the entry period (Supporting Information:

Figure 2D).

To investigate the antiviral effects of nitroxoline in the context of

the skin architecture, we used primary human split‐thickness skin

grafts that preserve the histology and complexity of the skin.37 Skin

grafts were infected with 106 TCID50/mL of mpox virus isolate 1

(MPXV1), and the infection was visualised by immunohistochemical

staining for virus antigen after 48 h. As depicted in Figure 1H,

pronounced infection was detected in the epidermis. Moreover,

clusters of infected cells or single infected cells were located in the

dermis (Figure 1H). These findings are in line with the known patterns

of mpox infection in human skin.38,39 Nitroxoline (10 µM) treatment

strongly reduced the number of mpox‐infected cells.

3.2 | Effects of nitroxoline analogues on mpox
virus infection

Next, we investigated a set of nine nitroxoline analogues for anti‐

mpox virus activity in HFF (Figure 2A). Only compounds 1 (IC50:

1.8 ± 0.3 µM), 7 (IC50: 3.6 ± 1.5 µM), and 9 (IC50: 2.1 ± 0.1 µM)

displayed a similar antiviral activity as nitroxoline (IC50: 2.1 ± 0.7 µM)

(Figure 2B). The active nitroxoline analogues all harboured halogen

ions at positions 5 and 8 and a hydroxy group at position 9. Notably,

compound 9 is clioquinol, another antibiotic that is clinically being

used for the treatment of different skin infections23 (Figure 2).

Further research will have to show whether it may be possible to

identify nitroxoline analogues with a higher anti‐mpox virus activity

than nitroxoline.

3.3 | Nitroxoline interferes with mpox
virus‐induced cellular signalling pathways

Nitroxoline inhibits bacterial growth by chelating cations that are

required by bacterial metalloenzymes, and the addition of cations
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such as Mg2+ and Mn2+ abrogates its antibacterial activity.40 In

contrast, the addition of Mg2+, Mn2+, or other divalent cations did not

affect the antiviral activity of nitroxoline (Figure 3A,B) indicating a

different mode of antiviral action.

However, nitroxoline inhibited virus‐induced PI3K/AKT

signalling (as indicated by AKT phosphorylation, Figure 3C,D)

and MAPK signalling (as indicated by RAF, MEK, and

ERK phosphorylation, Figure 3E,F) in a dose‐dependent manner.

Moreover, inhibitors of PI3K/AKT/mTOR (buparlisib, LY294002,

and PI‐103) and MAPK (sorafenib and regorafenib) signalling

inhibited mpox virus infection (Figure 3G,H). These data

agree with previous findings showing that nitroxoline inhibits

PI3K/AKT/mTOR and RAF/MEK/ERK signalling24–26 and that

orthopoxvirus replication critically depends on PI3K/AKT/mTOR

and RAF/MEK/ERK signalling.27–29 Taken together, these

data suggest that nitroxoline inhibits mpox virus infection at

least in part by interference with these two host cell signalling

pathways.

3.4 | Nitroxoline inhibits a tecovirimat‐resistant
mpox virus strain

Based on experience with other antiviral drugs, there is concern that

tecovirimat‐resistant viruses may emerge.2 Hence, we established a

tecovirimat‐resistant mpox virus strain (Figure 4A). ARPE cells were

infected with MPXV1 at a multiplicity of infection (MOI) of 0.01 in

the presence of tecovirimat 4 µM. After 7 days, medium was

removed and replaced by fresh tecovirimat 4 µM‐containing

medium. After a total incubation time of 14 days, cytopathogenic

effects (CPE) were detected, and the tecovirimat‐resistant substrain

was expanded (Figure 4A).

The resulting tecovirimat‐selected MPXV1 sub‐strain (MPXV1r

TECO) displayed a pronounced tecovirimat resistance as indicated by

an IC50 of >10 µM compared to an IC50 of 0.096µM of a passaging

control (Figure 4B). Whole genome virus sequencing indicated three

amino acid sequence changes (E353K, N267D, and I372N) in F13L

(TP37 and gp45), the target of tecovirimat (Figure 4C,D, Supporting

Information: Table 2). E353K is shared between isolates from the

current global outbreak and was shown not to affect tecovirimat

efficacy.15 In contrast, N267D and I372N were previously shown

to provide resistance to tecovirimat and are, hence, likely responsible

for the observed tecovirimat resistance.41,42 Notably, MPXV1r

TECO remained sensitive to both brincidofovir and nitroxoline

(Figure 4B).

In contrast to MPXV1 cultivation in the presence of tecovirimat,

MPXV1 cultivation in the presence of nitroxoline (5 µM) did not

result in reduced virus sensitivity to nitroxoline, tecovirimat, or

brincidofovir, although the incubation time was increased to three

passages (Figure 4E).

3.5 | Effects of nitroxoline on Escherichia coli,
Neisseria gonorrhoeae, and herpes viruses

Next, we evaluated the activity of nitroxoline against bacterial (E. coli

and N. gonorrhoeae) and viral (varicella zoster virus, herpes simplex

virus type 1) pathogens that are commonly cotransmitted with mpox

viruses.8,9,43

14 E. coli patient isolates displayed nitroxoline sensitivity as

indicated by disk diffusion (inhibition zones: 17−24mm), agar dilution

(maximum inhibitory concentrations (MICs): 4−8 µg/ml correspond-

ing to 21−42 µM), and applying clinical breakpoints set by EUCAST

(Supporting Information: Figure 3A, Supporting Information: Table 3).

Susceptibility testing of N. gonorrhoeae revealed similar results

(inhibition zones: 22−25mm and MICs of 4−8 µg/ml), indicating a

susceptible phenotype (Supporting Information: Figure 3B, Support-

ing Information: Table 4).

In contrast to mpox virus infection, nitroxoline inhibited varicella

zoster virus and herpes simplex virus type 1 infection only at a

concentration of 20 µM (Supporting Information: Figure 3C, Support-

ing Information: Figure 3D).

3.6 | Combination of nitroxoline with antiviral
drugs

Antiviral combination therapies can result in increased efficacy

and reduced resistance formation.44 In agreement, brincidofovir

and tecovirimat displayed increased antiviral activity when used

F IGURE 1 Effects of nitroxoline on mpox virus (MPXV) replication in primary human fibroblasts (HFF), keratinocytes (HFK), and a skin
explant model. (A) Chemical structure of nitroxoline. (B) Representative photographs illustrating the concentration‐dependent effects of
nitroxoline on mpox virus isolate 1 (MPXV1, MOI 0.01) infection in HFF and HFK, as indicated by immunostaining. (C) Nitroxoline dose response
curves in MPXV1 (MOI 0.01)‐infected HFF, as indicated by immunostaining; IC50, concentration that inhibits mpox virus infection by 50% as
indicated by immunostaining; CC50, concentration that reduces cell viability by 50% as indicated by MTT assay. (D) C) Nitroxoline dose response
curves in MPXV1 (MOI 0.01)‐infected HFK, as indicated by immunostaining; IC50, concentration that inhibits mpox virus infection by 50% as
indicated by immunostaining; CC50, concentration that reduces cell viability by 50% as indicated by MTT assay. (E, F) Concentration‐dependent
effects of nitroxoline on HFF and HFK infection with 12 mpox virus isolates, as indicated by immunostaining. The level of virus inhibition is
depicted by the intensity of the purple colour. (G) Nitroxoline IC50s in HFF and HFK. (H) Effects of nitroxoline on MPXV1 infection in a skin
explant model. Primary human skin tissue was infected with 106 TCID50/ml of MPXV1 per well in 500 µL with or without nitroxoline treatment
at 10 µM for 48 h. Then, the skin tissue was embedded into paraffin and sectioned. Virus infection was detected by immunohistochemical
staining. Arrows indicate virus‐infected cells.

6 of 13 | BOJKOVA ET AL.



in combination against different orthopoxviruses in preclinical

model systems.45,46 In this context, nitroxoline displayed additive

activity in combination with tecovirimat and synergistic activity in

combination with brincidofovir against mpox virus infection, as

determined by the method of Chou34 (Figure 5).

4 | DISCUSSION

Nitroxoline is an FDA‐approved antibiotic that has been used for

more than 50 years for the treatment of acute and recurrent urinary

tract infections. It is currently used as a first‐line therapy for

F IGURE 2 Effects of nitroxoline analogues on mpox virus infection. (A) Chemical structures of the investigated nitroxoline analogues.
(B) Dose–response curves indicating compound effects on mpox virus (MPXV1) infection as indicated by immunostaining of MOI 0.01‐infected
primary human foreskin fibroblasts (HFF) and MTT assay in mock‐infected HFF.
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F IGURE 3 Nitroxoline interferes with mpox virus‐induced cellular signalling pathways. (A, B) Cations known to inhibit antibacterial effects of
the chelator nitroxoline did not inhibit nitroxoline's antiviral activity as indicated by immunostaining in mpox virus isolate 1 (MPVX1) MOI
0.01‐infected primary human foreskin fibroblasts (HFF, A) and did not affect cell viability in the presence of nitroxoline as indicated by MTT
assay in mock‐infected HFF (B). (C, D) Nitroxoline reduces AKT phosphorylation in a dose‐dependent manner as indicated by Western blot. (E, F)
Nitroxoline reduces Raf, MEK, and ERK phosphorylation in a dose‐dependent manner as indicated by Western blot. (G, H) PI3K, PI3K/mTOR,
and Raf inhibitors suppress mpox virus infection in a dose‐dependent manner, as determined in MPVX1 MOI 0.01‐infected HFF. Compound
effects on cell viability were detected by MTT assay in mock‐infected HFF.
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uncomplicated urinary tract infections in Germany due to its

excellent activity towards both Gram‐negative bacteria and fungi as

well as its favourable safety profile.21,47 In this study, nitroxoline

effectively inhibited the replication of 12 mpox virus isolates from

the current outbreak. The nitroxoline IC50s (0.5−4.6 µM) were within

the range of therapeutic plasma levels that have been reported to reach

between 30 and 50µM.47 Moreover, nitroxoline also suppressed mpox

virus replication in a skin explant model. The investigation of nine

nitroxoline analogues did not identify a compound with superior activity

against mpox virus relative to nitroxoline.
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F IGURE 4 Effects of nitroxoline and brincidofovir on a tecovirimat‐adapted mpox virus strain. (A) Scheme of the one‐round adaptation
approach for the generation of a tecovirimat‐resistant sub‐strain (MPXV1rTECO) by exposure of the mpox virus isolate 1 (MPXV1) to
tecovirimat 4 µM. (B) Dose‐dependent effects and IC50 values of tecovirimat, brincidofovir, and nitroxoline in primary human foreskin
fibroblasts infected with MPXV1 or MPXV1rTECO at an MOI 0.01 as detected by immunostaining. (C) Amino acid sequence changes in F13L
(the target of tecovirimat) from mpox viruses from the current global outbreak (MPXV 2022) including MPXV1 and MPXV1rTECO relative to
preoutbreak sequences. N267D and I372N were previously shown to mediate tecovirimat resistance.41,42 (D) Location of (E) (Glu, glutamate)
353, N (Asn, asparagine) 267 and I (Ile, isoleucine) in the F13L structure. The change from N (Asn, asparagine) to D (Asp, aspartate) in position
267 results in the loss forms hydrogen bonds with E263. (E) Sensitivity of a MPXV1 substrain that was cultivated for three passages in the
presence of nitroxoline (5 µM) to tecovirimat, brincidofovir, and nitroxoline as indicated by immunostaining 48 h postinfection with MOI 0.01.

BOJKOVA ET AL. | 9 of 13



Tecovirimat (F13L inhibitor) and brincidofovir (DNA polymer-

ase inhibitor) are the antiviral drugs that are currently mainly

considered for mpox treatment.2,3,15 There are concerns about the

potential emergence of tecovirimat‐resistant mpox virus strains,2

and the formation of a tecovirimat‐resistant vaccinia virus was

described in an immunocompromised acute myeloid leukaemia

patient after inoculation with the vaccinia virus‐based ACAM2000

smallpox vaccine.48

We established a tecovirimat‐resistant mpox virus strain

(MPXV1rTECO), which harboured the known tecovirimat resistance

mutations N267D and I372N, by adapting MPXV1 to tecovirimat in a

one round selection step using a high tecovirimat concentration

(4 µM). This approach is similar to that previously described for the

generation of a tecovirimat‐resistant cowpox virus.49 In contrast,

another study reported the establishment of tecovirimat‐resistant

poxviruses by exposure to step‐wise increasing drug concentrations

to be a lengthy process (6–18 months) that is not always successful.41

The reasons underlying these discrepancies remain unclear. It may be

possible that the currently circulating mpox viruses harbour small

tecovirimat‐resistant subpopulations that become readily selected

and enriched in response to tecovirimat treatment.

Notably, MPXV1rTECO remained sensitive to nitroxoline (and

brincidofovir). In contrast to tecovirimat, nitroxoline treatment of

mpox virus using the same approach did not result in the formation of

a nitroxoline‐resistant strain. This agrees with evidence suggesting

that the targeting of host cell factors by antiviral drugs is associated

with reduced resistance formation compared to agents that directly

target virus proteins.50,51

Moreover, nitroxoline exerted additive antiviral effects in

combination with tecovirimat and synergistic effects in combination

with brincidofovir. Hence, its clinical anti‐mpox virus activity in

humans can be tested in combination with these antivirals without
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F IGURE 5 Antiviral activity of nitroxoline in combination with tecovirimat and brincidofovir. (A) Dose‐dependent effects of nitroxoline (N, 0.
16−20 µM), tecovirimat (T, 0.8−100 µM), and their combination in primary human foreskin fibroblasts (HFF) infected with mpox virus isolate 1
(MOI 0.01) as indicated by immunostaining. (B) Representative immunostaining images illustrating the combined effects of nitroxoline (N) and
tecovirimat (T). (C) Determination of the combination index (CI) of nitroxoline (N) and tecovirimat (T) following the method of Chou and
Talalay.34 (D) Dose‐dependent effects of nitroxoline (N, 0.16−20 µM), brincidofovir (B, 3.9−500 µM), and their combination in HFF infected with
mpox virus isolate 1 (MOI 0.01) as indicated by immunostaining. (E) Representative immunostaining images illustrating the combined effects of
nitroxoline (N) and brincidofovir (B). (F) Determination of the CI of nitroxoline (N) and brincidofovir (B) following the method of Chou.34
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depriving study participants of these more established options.

Additionally, nitroxoline combination therapies with increased activ-

ity may delay resistance formation by monkeypox virus.44

Nitroxoline was previously reported to inhibit a genetically

modified Japanese encephalitis virus strain in the hepatoma cell line

Huh7,52 but information on its antiviral mechanisms of action is

lacking. Nitroxoline exerts its antibacterial effects by chelating metal

ions including Fe2+, Mn2+, and Mg2+.53 Although poxviruses depend

on the availability of bivalent cations for effective replication,54,55 the

antiviral activity of nitroxoline was not affected by the addition of

metal ions. This shows that nitroxoline's antiviral and antibacterial

mechanisms of action differ substantially.

Our further research demonstrated that nitroxoline inhibits mpox

virus replication at least in part by interfering with the PI3K/AKT/

mTOR and Raf/MEK/ERK host cell signalling pathways that are

critical for orthopoxvirus replication.27–29 Notably, the clinically

approved Raf inhibitors sorafenib and regorafenib also suppressed

mpox virus infection at nontoxic concentrations.

In agreement with previous findings,21,53,56 nitroxoline was also

effective against N. gonorrhoeae and E. coli, two sexually transmitted

bacteria that are commonly cotransmitted with mpox virus in the

current outbreak.8,9 Moreover, nitroxoline inhibited infection caused

by herpes simplex virus type 1 and varicella zoster virus, two herpes

viruses that are often detected together with mpox virus,8,9,43 albeit

at higher concentrations (>10 µM) than those blocking mpox virus

infection. These effects may also be caused by inhibition of PI3K/

AKT/mTOR and Raf/MEK/ERK signalling, as interference with these

signalling pathways has also been described to affect herpes virus

replication.57–61

In conclusion, nitroxoline inhibited mpox viruses from the current

global outbreak, including a tecovirimat‐adapted strain, at therapeu-

tically achievable concentrations. Moreover, it increased the activity

of and can be used in combination with the two approved

antipoxvirus drugs tecovirimat and brincidofovir. Nitroxoline is

potentially also a readily available alternative to these antivirals, as

the use of brincidofovir is associated with significant adverse effects

and tecovirimat stocks are insufficient to cover the current

outbreak.2,18–20 Finally, nitroxoline is also effective against patho-

gens that are co‐transmitted with mpox virus in the current outbreak,

such as sexually transmitted bacterial and viral illnesses.8,9 Thus,

nitroxoline is a repurposing candidate for the treatment of mpox virus

that may also have potential for the treatment of neglected mpox

disease in endemic areas in Africa and for the control and ideally

prevention of future global outbreaks.62
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