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Abstract

This thesis investigates the design of a frequency adaptive digital filter in Very 

Large Scale Integration using the Number Theoretic Transform. The properties of 

residue numbering systems are investigated, and particularly the possible advantages 

occured from parallelism, operations without the need for carry, and the absence of 

round-off errors. The conclusion is reached that this numbering system is in some 

circumstances more suitable for high speed processing in Very Large Scale Integration. 

Transform techniques in a finite field are then examined to determine how they could 

perform filtering operation more efficiently in terms of the number of arithmetic 

operations required compared with other techniques such as Fast Fourier Transform.

Adaptive filtering in the frequency domain using the Number Theoretic 

Transform, and in particular Fermat Number Transform, with appropriate formulae for 

filter weight adaptation using the Least Mean Square algorithm are presented. Several 

result show that the frequency mean square error as a performance index results in 

convergence to an optimal solution. A complexity' ratio is used to ascertain that 

frequency adaptive digital filters need less computational power (number of arithmetic 

operations) than time domain adaptive filters.

A design of special purpose processor using Very Large Scale Integration 

technology is described, several structures using pipelining and systolic arrays are 

presented which support the main Very large Scale Integration design features. A 

table look-up approach using Programmable Logic Arrays (PLAs) for processing 

elements and a measurements of system performance regarding time/area complexity' 

are described.

Finally, it is concluded that, with suitable further development, a Very' Large 

Scale Integration architecture for frequency adaptive digital filter using number 

theoretic transform which has high sampling rate, regular internal structure and



capability to parallel devices could likely be^achieved.
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INTRODUCTION
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1.1. OVERALL AIM

Up to five years ago the designer constructed his digital signal processors out of 

available small scale integration (SSI), medium scale integration (MSI), and large 

scale integration (LSI) components to implement algorithms using the conventional 

numbering system, rather than others such as the residue numbering system (RNS) or 

finite field. This is because designing for the conventional numbering system based on 

SSI, MSI, and LSI proved to be cheaper and more general purpose. However, the 

advent of very large scale integration (VLSI) has resulted in the spontaneous growth of 

interest in designing digital signal processors for both conventional and residue 

numbering systems. This is not hard to understand given the inexpensive 

computational power offered by VLSI and the ability to tailor-make circuits. The 

question naturally arises as to whether VLSI, which is proving so successful in 

designing digital signal processors based on the conventional numbering system, can be 

used to effectively exploit the potential of a residue numbering system.

This work investigates these ideas by studying the design of an adaptive digital 

filter in VLSI using RNS. The major topics covered in this thesis are therefore the 

principles of RNS and number theoretic transform (NTT) in digital filtering, adaptive 

digital filtering implemented both in the time and frequency domains, and the criteria 

involved in "good" VLSI design.

1.2. INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Digital signal processing, a field which has its roots in 17th and 18th century 

mathematics, has become an important modem tool in a multitude of diverse fields of 

science and technology.

Digital signal processing is concerned with the representation of signals by 

sequences of numbers and the processing of these sequences. The purpose of such 

processing may be to estimate characteristic parameters of a signal or to transform a 

signal into a form which is in some sense more desirable. Signal processing, in 

general, has a rich history, and its importance is evident in such areas as filtering,
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modulation, coding, etc.

Until recently, signal processing has typically been carried out using analog 

devices such as inductors, resistors, capacitors, and transistors. However, the limited 

tolerance and stability of these components on chip has made digital signal processors 

more practical.

With the early development of digital computers, new opportunities in signal 

processing applications arose. Because of the flexibility of digital computers, it was 

often useful to simulate a signal processing system on a digital computer before 

implementing it in hardware. Such computers offered tremendous flexibility, however, 

the processing could not always be done in real-time. Consequently, digital computers 

were being used in the simulation of analog signal processing. In keeping with that 

style, early work on digital signal processing was very much concerned with ways in 

which digital computers could programmed, so that with A/D (analog-to-digjtal) 

conversion of signal followed by digital signal processing algorithm, followed by D/A 

conversion the overall system would approximate a good analog signal processing 

algorithm. However, speed, cost, and size were, of course three important factors in 

favour of the use of analog components.

As signals were being processed on digital computers, there was a natural 

tendency to experiment with increasingly sophisticated signal processing algorithms. 

The development of such signal processing algorithms made the notion of all-digital 

implementation of signal processing system even more tempting. The importance of 

this was that it had the effect of reformulating many signal processing concepts in 

terms of the discrete-time mathematics and these techniques then formed an exact set 

of relationships in the discrete-time domain. This represented a shift away from the 

notion that signal processing on digital computers was merely an approximation to 

analog signal processing.

With the advent of integrated circuit technology and the resulting reduction in 

cost and size of digital components, together with the increased speed, the range of

/
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applications for digital signal processing has increased enormously. By using a large 

number of SSI or MSI or even LSI circuits a digital signal processing system can be 

implemented. However, currently available digital signal processing systems are 

sometimes inadequate because they are not fast enough to handle the large number of 

calculations that are usually required. Hence, faster and more powerful systems are 

needed. Because the speed of components is no longer increasing very rapidly, this 

augmentation in computing power will have to be mainly attained by using parallel 

techniques. How parallel the system should be constructed for the signal processing, 

remains to be determined? Consequently, much effort has been dedicated to the 

development of algorithms and number systems which makes efficient use of 

parallelism. Because different algorithms favour different processing structures, it is 

very difficult to decide on a "good" structure for the class of algorithms used in digital 

signal processing. However, it is possible to make some general remarks regarding the 

requirements placed on the number systems. A discussion that follows, will 

demonstrate some important characteristics.

The input into most digital signal processing systems is an analog signal. This 

signal is applied to an A/D converter. The result is a sequence of integers with an 

absolute value smaller than an upper bound which, is usually determined by the 

resolution of the A/D converter. Next, these integers are transformed by a processing 

unit into a new set of integers. To accomplish this transformation, the processing unit 

makes use of additions, subtractions, and multiplications. In general divisions do not 

occur, although rescaling of the data is usually provided. It is necessary to transform 

the output sequence of integers back into an analog signal. Again, the finite 

resolution of the D/A converter imposes an upper bound.

The finite resolution of the system, together with the exclusion of general 

divisions, and the fact that the number of bits required to carry out the arithmetic 

operations in the conventional numbering system would increase compared to the 

required number of input and output bits, and the effect of round-off error, suggests 

using finite field arithmetic. Calculation on ordinary integers can be translated into
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residue arithmetic operations, and any algorithm used for the calculation of certain 

numeric transformations on elements of the field can also be used for the 

corresponding transformations on ordinary integers.

The advantages of using finite field arithmetic are:

1) It does not introduce roundoff errors.

2) It makes use of residue arithmetic, which potentially can be implemented

relatively cheaply and at high speed, especially in parallel and pipelined systems.

3) The arithmetic operations are performed without the need for carry, which

is often the problem in high-speed hardware.

The disadvantages are:

1) Relative-magnitude comparison is not so easy.

2) Overflow detection cannot be mechanised easily.

3) Division is not easily accomplished.

The relative balance of advantages and disadvantages is an interesting question.

A lot of work has been done on finite field algorithms 

[5,7,11,13,15,18,24,104,108], but relatively little on appropriate hardware.

1.3. ADAPTIVE DIGITAL FILTERS

Typical techniques for estimating signals corrupted by additive noise involve 

passing them through a filter designed to attenuate the noise, but leave the signal 

unchanged. Estimation theory provides optimal filtering schemes based upon the work 

of Wiener, Kalman, Bucy and many others [106]. The most common of the above 

filters are fixed, meaning that they have a fixed structure and fixed parameters which 

are designed based upon prior knowledge of both the signal and the noise. Another 

type of filter is the adaptive filters, which has a fixed structure, but variable 

parameters. These parameters can be adjusted automatically by a built-in parameter 

adjustment algorithm which seeks to optimise the filter performance in some sense.
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The main advantage of adaptive filters is that little or no knowledge of signal or noise 

characteristic is required.

Adaptive filtering is by no means a new concept. The technique has been 

applied successfully to many practical problems, such as channel equalisation, echo 

cancellers, adaptive antenna array, cancellation of noise in ECG, EEG, and speech, 

filtering of seismic signals and adaptive control [33,34,40,107],

In general, the adaptation mechanisms are concerned with identifying certain 

characteristic parameters of the observed data. Based on these parameters an error 

measure is computed which is used to adjust the signal so as to minimise the error.

The most commonly used error criterion is the Mean-Square-Error. The same is 

true for adaptive filtering and most adaptive filters use the LMS(Least-Mean-Square) 

algorithm or a variation thereof. The Widrow-Hoff LMS algorithm [33,34,42] is one 

of the earliest works on adaptive filters using the mean-square technique in the 

analysis and updating of filter parameters. It uses a steepest descent approach that 

iteratively optimises a vector of filter coefficients via a gradient search. Convergence 

of the least mean square algorithm can be guaranteed when filter parameters are 

chosen appropriately (e.g by scaling), and the resulting filter approximates the well- 

known Wiener filter.

Perhaps the most familiar structure for an adaptive digital filter is the tapped 

delay line or transversal filter. It consists of a tapped delay line connected to an 

adaptive combiner that adjusts the gain (weights) of the signal derived from the taps of 

the delay line and combines them to form an output signal.

The transversial adaptive digital filter with the above structure and algorithm can 

be viewed as attempting to find the best FIR approximation by directly estimating the 

values of w] of the impluse response. However, for the following two reason, it is 

often sensible to attempt the adaptation process in the frequency domain :

1) When the filter length is large, the computational speed becomes a crucial

factor in most applications, hence with the aid of transform techniques such as
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FFT, or NTT it is oiten possible to gain some speed advantages and significant 

reduction in computation.

2) In some applications, the impluse response is not of primary interest but 

rather the frequency response is desired. In this case, the frequency domain 

adaptation is of greater interest.

In the attempts to find processors of reasonable cost and performance, numerous 

designs have been published [20-30]. The earlier versions of these were realisations of 

an ADF in time domain with various techniques being adopted [69] to circumvent the 

large number of multiplications required. Later frequency domain realisations [103] 

utilising the Discrete Fourier Transform or Fast Fourier Transform, reduce this number 

of multiplications and therefore look particularly attractive. This attraction becomes 

almost irresistible when it is further combined with the advantages offered by residue 

numbering systems, and the Number Theoretic Transform. The potential advantages 

of the latter can be predicted considering the majority of digital signals derived from 

the A/D converters have a sample word length or dynamic range of between 5 to 10 

bits, whilst most FFT realisation require complex floating point arithmetic operations. 

These arithmetic requirements of the FFT are only an artefact of the FFT algorithm 

and it is reasonable to suppose that more appropriate algorithms such as NTT, would 

enable equivalent precision to be obtained. The hardware requirements for such a 

realisation could be expected to be more efficient and would far better match the 

commonly known regular cells in VLSI technology such as PLAs.

1.4. VLSI ARCHITECTURE OF DIGITAL SIGNAL PROCESSORS

Up to now many digital signal processors have extensively using SSI and MSI 

components. There are however some disadvantages:

1) Speed limitation: The maximum bandwidth for a processor to handle the 

data is determined by the rate at which it can process the samples of data.

2) Complexity: They generally require more components than their analog
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counter parts.

3) Interface support: In order that the system would communicate with the 

outside world, they must be supported by A/D and D/A converters. This would 

increase the hardware complexity.

These disadvantages made digital signal processors impractical a decade ago. 

However, the great advent in Very Large Scale Integration technology has made it 

possible for their use in practical applications.

There are two general approaches of using VLSI technology for digital signal 

processors:- we can use a general purpose, or design a special purpose processor. The 

choice between the general and special purpose processor depends on many factors. 

To make the maximum use of technology, we should restrict the actual operations 

performed to essential arithmetic, that decoding of instructions and the storing and 

fetching of signal values to and from memory represent "wasted resources" in terms of 

area and power. The design and successful fabrication of an integrated circuit chip is 

difficult and expensive enough so that it is desirable to develop a flexible general 

purpose device for mass production. This is bound to change with the development of 

better tools for chip design.

Because many digital signal processing algorithm can be partitioned, it is possible 

to distribute the processing functions over several chips so this has the advantage of 

modularity for growth.

Combining a modular structure and the technological advances offered by VLSI 

leads to enhancement in residue numbering system implementation for high speed 

digital signal processing applications. The VLSI approach is promising as RNS 

supports two main VLSI design features:

1) RNS has a parallel nature where the arithmetic operations are performed 

independently for each module which supports distributed processing. This can 

minimise the execution time and results in higher data throughput.
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2) Because of the finite number of states in RNS systems, a memory intensive

architecture is suitable and this is also appropriate for VLSI implementation.

With recent advances in VLSI technology, it has become evident that digital 

signal processing can be implemented in cost-effective technology. Such 

implementations operate faster, consume less power, and are more reliable than their 

predecessors built from SSI, or MSI. In order for a system to be realisable in VLSI, it 

should have the following characteristics:

1) Simple and regular design

In order that the system be cost-effective, it should be implemented using only a 

few different types of simple cell. In some cases, it may require more processing 

power, to do this it is necessary to expand the number of processing units. This is only 

possible if the interconnections between processing units are regular.

2) Pipelining and concurrency

There are essentially two ways to build a fast processor. One is to use fast 

components and therefore high clock rate, and the other is to make use of 

concurrency. In applications which is limited by the component speed, the only 

solution that can achieve higher system complexity would be the use of parallelism and 

high degree of pipelining which appears appropriate especially with VLSI technology.

1.5. ORGANISATION OF THE THESIS

The rest of the thesis is organised as follow’s:

Chapter 2: Finite number system and convolution algorithms

An overview of finite number system is outlined and importance

of Euler’s and Fermat and Chinese theorem has been presented.

The convolution algorithm in the finite field is also presented.



Chapter 3:Convolution using Number Theoretic Transform 

The theory of Number Theoretic Transforms and their usage in 

conjunction with the calculation of the convolution algorithm 

is explained. The computational complexity of various Number 

Theoretic Transform techniques are reviewed in order to show 

the advantages of one transform technique over the others.

Chapter 4:Adaptive filtering

The frequency adaptive digital filter algorithm utilising the 

Number Theoretic Transform is discussed. The formulae for 

the convergence and adaptation speed are derived and compared 

with the LMS algorithms and it is shown that under certain 

condition the algorithms are equivalent. Some simulation res­

ults are presented in order to verify the convergence of the 

FLMS. The computational complexity of the LMS and FLMS are 

presented and a complexity ratio is analysed. It has been sh­

own that the frequency adaptive filter is ten times more effi­

cient (in terms of arithmetic complexity) than time domain ad­

aptive filters.

Chapter 5:Special vs general purpose signal processors 

A survey of designs of special and general purpose processors 

are reviewed including the single chip, array and multiproce­

ssors, and systolic arrays.

Chapter 6:VLSI architecture for adaptive digital filter 

The design of a VLSI architecture for ADF is described. It

1-10
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includes the design of processing elements based on the table 

look-ups using the Programmable Logic Arrays. The system performance 

for a number of structures based on the Time/Space complexity 

has also been presented.

Chapter 7: Conclusion

The achievements of the work are reviewed. A number of 

improvements are proposed which should allow efficient 

implementation of the frequency adaptive digital filter 

utilising the VLSI technology.
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NUMBERING SYSTEM AND CONVOLUTION ALGORITHMS



2-2

2.1. FINITE NUMBERING SYSTEM AND CONVOLUTION ALGORITHM

In this chapter we will present an overview of finite number systems or residue 

number systems ( Finite Fields ) . Residue Numbering Systems ( RNS ) have been 

useful in coding theorem and digital system theory because they are structured with a 

finite number of states on which addition and multiplication form a closed operations. 

Many authors [1-6] have been investigating the use of these numbering system for 

digital signal processing algorithms. Therefore, in this chapter we shall investigate the 

properties of such a system, when used for filtering and other signal processing 

algorithms.

The material covered here is divided into two main parts ; elementary number theory' 

and convolution algorithms.

In the elementary number theory section, we introduce briefly the concepts of rings 

and fields [1-6] which play an important part when used in conjunction with Number 

Theoretic Transform. In part two we introduce the fast algorithm for convolution 

which is commonly used for digital signal processing.

2.2. ELEMENTARY NUMBER THEORY

Definition : A Finite Number Residue System is a triple ;

FNRS=(S ,/ ,F)

Where S is the symbol set ( set of n-tuple digit vectors ), I is the interpretation set, and 

F is the evaluation function which maps S on to I .

Figure 1.1 shows the sets associated with a FNRS.

The Residue Number System (RNS) as opposed to the fixed-radix system, where 

the number system is completely specified by stating the radix, is described by stating 

the base. However, for the RNS, this base does not consist of a single radix but of an 

N-tuple of relatively prime integers m„ m2, ......... , mN where ml is called " MODULO
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Figure 1.1 FNRS representation of a set
For any given base, the residue representation of an integer X is another N-tuple { xx,

x2, ..... , Xj, .... xN }, where x, is defined as :

x, —XmodM or \X \M

\

where M = n  mi ■
1=1

The residue representation of an integer is unique ; i.e. each integer has only one 

representation, since there exists only one least positive remainder for any number. 

However, the converse of the statement is not true. This ambiguity of residue 

representation is avoided if the integer X lies between 0 and M-l.

The algebraic operation in the RNS consists of operating on the residue digit pairwise 

with modular arithmetic. A number of arithmetic relationships are been presented here 

which follow from the definition of the residue system [4],

a) Additive inverse modulo M

\ - X \ M = \M - X \ M

b) Addition and subtraction modulo M

\x + Y\m = I I* I* + \y\u\u

c) multiplication modulo M

j * . y |  =  \ \x \m -\y \m \m
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So far, only methods for converting to the residue numbering system and performing 

arithmetic operations within this systems have been discussed. We shall now discuss the 

conversion from residue systems back into weighted numbering system.

Given the residue representation { x }, x2, ......... , xN }of X, it is possible to determine

X by Chinese Remainder Theorem provided that the pairwise modulo are relatively 

prime.

Definition : The Chinese Remainder Theorem ( CRT ) can be defined as follows;

" M
x  -  1,-=l mi M

M
where (— ) r  -  l modulo M m ' 1

Since the arithmetic operation is done on the various residues, without any carry from
N

one residue to another one can chose M = \\m i to be the product of many small
i=i

relatively prime modulo. Hence, the computation can accommodate large numbers, 

although actual computations are performed on a large set of small residues. Thus, the 

RNS are quite attractive for high speed multiplications and additions. But this 

advantage is offset by many practical difficulties such as, wordlength etc. which make 

them rarely used. However, we shall see in later chapters that RNS can play an 

important role in digital discrete transforms such as Number Theoretic Transform.

2.2.1. FINITE FIELD

In order to understand fully the concept of discrete transform over finite field it is 

necessary to further develop the mathematical model for Number Theoretic Transform. 

Material related to Residue arithmetic system is developed in a previous section and a 

review' of RNS properties is included in Appendix C.
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1) RING : A non-empty set R is said to form a ring with respect to the binary 

operation + and x provided, for any x,y,z £ R, the following properties hold ;

a) (x  + y )  + z = x + (y  + z )

b) x + y = y + x

c) there exist 0 such that 0 + x = x

d) for each x €/? there exists —x €/? such that:

a: + ( -x  ) = 0

e) ( x . y ) . z  = x . ( y . z )

f) x . ( y  + z )  = x . y  + x . z

g) ( y  + z ) . x  = y . x  + z . x

If the following properties hold, then R is a field.

h) there exist non-zero element 1 e/? such that x . 1 = x

i) for each non-zero element x €/? there exist x~x R such

that x . x_1 = 1

j) x . y = y . x

2) ORDER of a FIELD : The order of a field is the number of elements it

contains. The field is said to be finite if its order is finite . Finite fields are often called

Galios fields and denoted by GF ( M ) where M is the order .

3) CHARACTERISTIC : The characteristic of a field F is define to be the smallest 

positive integer m so that m . x = 0 for every x . If no such integer exists, the 

field is said to have characteristic zero.
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4) SUBFIELD : A subfield of a field F is any subset G of F which is itself also a 

field . e.g field of real numbers is a subfield of the field of complex numbers.

5) PRIME FIELD : A field is prime if it does not contain any proper subfield

Let M be a prime, then Z(M) is the same as GF(M) since all finite fields of the 

same order are equivalent.

The following definitions and theorems relate specially to the properties of the 

finite set of elements of the field Z(M) . It is these properties which will determine 

how the kernel for discrete transforms is to be selected.

All integers "a" which give the same remainder when divided by M can be 

thought as belonging to the same equivalence class relative to the equivalence relation 

( see appendix C ) . Among these classes those corresponding to integers which are 

relatively prime to M play a particularly important role in defining Primitive Roots. 

We shall need to know how many integers smaller than M and relatively prime to M 

exist. This quantity is defined by the following [1-3]:

EULER’S FUNCTION : The function is called Euler’s function and is

defined as the number of integers in Z(M) that are relatively prime to M. If M is 

prime then:

) = M -\

If M = Pc, the only numbers less than M and not prime to P are the multiples of P 

. Therefore :

1
4>(Ai) = <h(/>c) = Pc~ \ l-P )  = f>c( l---- )

P

If "a" and "b" are two mutually prime integers then :

<P(a.b) = 4>(a ).4>(i> )

If the integer M is given by its prime factorisations M = m} m2 ......... ,mj then :

* 1
4>(M) = M .[](l-  — )

i = l  m i
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However, in order to define the primitive root we need to define the order of an 

element of the field Z(M) . To do this let us consider an integer xn defined by :

xn = a n modulo M

If n takes successively the values 0,1,2,..... then will takes the value ...........

Since xn can only take M distinct values 0 to M-l , xn will necessarily repeat a 

previously computed value xr , with r >  n . Let r be the smallest value of n for 

which such repetition occurs. Therefore xn repeats itself cyclically with a period of 

"r" elements (integers) . The condition for this case is given by EULER’S 

THEOREM :

EULER’S THEOREM Definition :

If M >  1 and ( a,M ) = 1 then ;

=  1 modulo M

When M is prime and M does not divide "a" and = M -l  then, the Euler’s

Theorem reduces to FERMAT THEOREM .

FERMAT THEOREM Definition :

If M is a prime, then for every integer "a" ;

= 1 modulo M

The main interest of these theorems lies in the specification of the order of an element 

(integer).

We have seen that the sequence xn = a n modulo M repeats itself with a periodicity 

"r". If a" =1 modulo M for some value "r" of "n", the sequence will repeat itself from 

the beginning. Hence, if "r" is the smallest positive integer such that a r = 1 modulo 

M, the complete sequence of integer a" modulo M (residue) will be periodic with 

period (order) "r" .
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Let us now determine the maximum vale of "r" for a given M . From Euler’s theorem

if ( a,M ) = 1 then r = . If (a ,M) + l = d where d is the greatest common
a M M M

divisor of a and M . We have ( - —-r = land r' = <1>(— ) . Since <i>(— ) < <h(M) then
d' a d d

the period "r" is maximum for ( a,M ) = 1 .

We shall call the element a which generates a sequence of order ( length) r = <b(M) 

as PRIMITIVE ROOT . An element a generating a shorter cyclic sequence of order 

r < <t>(A/) will simply be called a ROOT of order r.

2.3. CONVOLUTION ALGORITHMS

The adaptive digital filtering is concerned with two major operations ; a) 

convolution of two sequences to produce an output and b) the correlation of the input 

sequence with the error to update the filter coefficients in order to minimise the mean- 

square error. In this section we shall look at some of the algorithms which exist to 

evaluate the convolution algorithm faster, since correlation is the same as convolution 

but the sequence is time reversed.

The circular convolution yk of two sequences xn and hn of the length N can be 

defined as :

y* = 2  *■•**-» (!)
r =0

for k= 0,1,2,......... ,N-1

It can be seen quite clearly from (1) that, it would required a number of 

multiplications and additions of the order of N2 . For large convolution the 

corresponding processing load becomes rapidly excessive and therefore considerable 

effort has been devoted to devising faster computation methods or algorithms [8-11]. 

Most fast convolution algorithms are either based on the transform techniques, and 

shall be dealt with in a later chapter, or on the techniques of replacing the large 

convolution with a large number of small convolutions [Nussbaumer, 6, 1981]. In fact, 

the number of such algorithms is so large that an exhaustive presentation would be
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impossible or not totally related to this thesis. Moreover, many seemingly different 

algorithms are essentially identical and differ only in the formalism used to develop a 

description [Nussbaumer, 6,1981].

Most convolution algorithms which have been developed both theoretical and practical 

levels, treat data as a quantised quantity. That is the data which is discrete in 

amplitude [ Rabiner and Gold, 12, 1975 ] . There the point of view w'as to treat each 

sample as a sum of continuous quantity and an error. The goal was to estimate or 

minimise it.

Here, we present a different point of view, namely that all data can only take 

quantised (integer) values. We shall present a method to evaluate the convolution of 

such quantities. Namely, the convolution in the finite ring of integers, or finite field, 

utilising the residue arithmetic operations.

Knuth [1,1981] and Szabo [4,1967] have investigated and demonstrated the use of the 

Residue numbering system to speed up the operation of multiplication on general 

purpose computers. Although the technique never achieved widespread usage because 

of hardware complexity' and cost, it is now feasible to achieve this with the aid of Very' 

Large Scale Integration ( VLSI).

Recall equation (1) and rewrite it as follow's;

N- 1
yt = ^  x (m) . h (l —m ) modulo M (2)

m =0

where 1 = 0,1,........N-l x \ m )  and h \m )  are the residues of x(n) and h(n)

respectively and define as;

x (m ) = x (n ) modulo M 

h (m) = h{n)  modulo M

and addition, multiplication are define modulo a prime M.

Since the arithmetics modulo a prime M are exact, multiplication and addition of 

integers do not require rounding. Hence, operations in the Residue number system are
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free from round off error, and the only source of error occurs when we quantise the 

sample of input signal, i.e. in the encoder.

Because of this lack of round off, the major limitations of Residue Number System are 

magnitude and overflow detections. The later disadvantage can be prevented by using 

a large modulo (M) or dynamic range . However, performing arithmetic on a large 

dynamic range can be very costly and complex . In order to overcome this difficulty we 

can use several small modulo which are pairwise relatively prime and paralleled to 

obtain a sufficient dynamic range [ Jenkins, 13, 1977 ] .

L
Let ; A/ = n  in this case equation (2) becomes:

i=0

N - 1
y. • =  2  x, (m ) . /j( (/ —m) modulo mt'  m  =0

where ;

Xj (m) = x (m ) modulo mi 

A, (m) =  h (m) modulo mt

Therefore y,' is obtained by computing the L product of x-(m)  . h ,\m) modulo mi 

.Hence ;

yi = (3)i ~o 1
However, the aim was to obtain the convolution given by equation (1) namely y, 

rather than y,' . Therefore one needs to translate the result calculated by equation (3) 

which are in residue form, back into the natural representation.

Using Chinese Remainder Theorem, which was investigated by Szabo and Tanaka 

[4] ) w'e can reconstruct y, from y, . The question then arises that, although the 

computation is free of round-off error it is not likely that the full precision of the final 

output will be retained . This is because of the lack of sign detection in the Residue 

Numbering System . Szabo [ 4,1967 ], Jenkins [ 13,1977 ] argued that by altering the 

decoding process it is possible to produce an output that has been correctly scaled.

They have suggested that if the input data are within certain boundaries, then the
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result calculated in the Residue Numbering System and properly decoded is identical 

to the result obtained using conventional arithmetic. This boundary is defined as :

/ [- W, W]

M
where I is any integer and W = —-— .

Thus integers between { 0, W } would be accounted as positive quantities and integers

belonging to { -W, 0 } would be negative quantities . On the other hand, integers 
M —1 M —1

between { 0, —-— }and { -  - , M-l } are positive and negative quantities

respectively .

The only drawback with the technique is as long as the quantisation of input signal 

does not cause large negative quantities to be mistaken for large positive values or 

vice-versa . Such a draw back can be prevented by choosing mi large enough in 

relation to dynamic range ( M ) . This latter modification will increase the hardware 

complexity further . Taylor [ 15, 1981 ] suggested three methods for various memory / 

throughput / dynamic range tradeoffs, for encoding and decoding the natural integers 

to and from Residue representation.

The principle of convolution using Residue Arithmetic can be illustrated by a simple 

example . Let us suppose that it is desirable to calculate the convolution of two 

sequences x(n) and h(n) described by the following equation ;

y{ n)  = h0 x(n)  + hv x ( n - 1)

Where h0 = 127 and h l = -61  .

Whenever x(n) = 25 and x(n-l) = 83, y(n) = -1888 . Let M = ( 19,23,29,31 ) be the 

modulo set on which the Residue Numbering System will be based . Since3 M - 1
M = = 329863 the dynamic range of this system is 196431 or —-— . Using

i=0 2

equations (2.2) and (2.3) h(n) and x(n) becomes

hQ *  (13,12,11,3) h x *  (15,8,26,1)
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x ( n ) = (6,2,25,25) j t ( n - l )  = (7,14,25,21)

respectively.

The residue encoded output y («) = >,o(n)>}'i(n),>'2 (n),yi(n) would be computed in 

parallel by using equation (3) :

y o i" ) = 113x6 + 15 x7 19 = 12
V /"“

N 2 II 11 2 x 2 + 8 x 14 123 = 21
^ ( n )  = 111x25 + 26x25 |29 = 26

y3(n ) = |3x25 + 21 x 1 ]31 = 3

Using the Chinese Remainder Theorem it is possible to decode the residue outputs in 

order to obtain y(n) . Therefore y(n) becomes;

3
y(") = 12 m i h rH ’i'OL IM1=0

where m,_1 is the multiplicative inverse of mi .

These constants can be computed as follows ;

and
m0 = 20677 m, = 17081 m2 = 13547 ot3 = 12673

Therefore
/tjq1 = 4 m[ 1 = 2 0  m2 1 = 2 2  m3 1 = 5

y( n)  = |20677 14x 12 119 + 17081 |20x21 123 + 13547 (22x26 |29 + 12673 13x5 |3] |32986v 

= |206770 + 102486 + 284487 + 190095 | 392863
y(n)  = 390975

M — 1
Since y(n) lies between ■—-— and M, therefore it is a negative integer . To find the

true value of y(n), w'e should compute the complement of it . Hence y(n) = -1888 

which is the same as if we were using the conventional system.
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SUMMARY

In this chapter we presented a number of theorems and definitions related to 

finite fields . These Theorems and definitions present a broad scope, as regards the 

usage of these, when used in conjunction with the Number Theoretic Transforms . In 

the second part of this chapter we presented an algorithm for performing convolution 

in the ring of integers . The advantage of computing the convolution in the Finite 

Field compared to the conventional number system is that it is exact and free of errors 

and that it occurs due to register limitation as in the case of the conventional system . 

As well as error free computation, it is possible to perform the convolution much faster 

in the Finite Field rather than in the conventional system. This is because arithmetic 

is performed in parallel on the relatively small prime integers . It is this parallelism 

and hence the speed, which greatly influences the use of these algorithms in 

conjunction with today’s technology for example Very Large Scale Integration .

One of the limitations of using the technique described in the previous section is, 

as the sequence length increases the number of arithmetic operations will increase 

accordingly, and therefore it is not suitable for many practical cases where the 

sequence length is high . In order to overcome this difficulty, it is possible to perform 

the convolution in the frequency domain with the aid of the well-known algorithms 

such as DFT, FFT and NTT . However these techniques have their own limitations, 

and will be discussed in detail in the next chapter.



CHAPTER 3

NUMBER THEORETIC TRANSFORMS
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3.1. CONVOLUTION USING NUMBER THEORETIC TRANSFORM

In chapter 2, we introduced the concept of Finite Number Theory' and its usage in 

conjunction with the calculation of the convolution of two sequences. There , we 

showed how modulo arithmetic and the Chinese Remainder Theorem can be used in 

order to compute the cyclic convolution of two sequences x(n), h(n) in time domain. 

We have argueed that the number of arithmetic operations (multiplications , additions 

)are directly proportional to the sequence length ( N ) . Therefore, direct calculation 

of the convolution for long sequences would not be very efficient.

Many authors [ \~&] have shown that convolution in the frequency domain with 

the use of discrete transforms, with the convolution property, would reduce the 

number of arithmetic operations, and hence, it is more efficient. In this chapter we 

begin by presenting the definition and basic conditions for the existence of discrete 

transforms, with the emphasis on the Number Theoretic Transform possessing the 

convolution property . Then, we shall introduce the two most important Number 

Theoretic Transforms, namely MERSENNE TRANSFORM and FERMAT 

TRANSFORM and further we have generalized our definition of the Number 

Theoretic Transform to include Complex Transforms . Finally, we concluded the 

chapter by discussing the constraints and computational complexity for these 

transforms.

3.2. DISCRETE TRANSFORM

The discrete transform possessing the convolution property can be used to 

efficiently compute the convolution of two long sequences, which is the requirement of 

most practical cases. This computation is done under certain conditions which wall be 

described later.

All discrete transforms have the same general form, with conditions for an inverse 

transforms, and the convolution property' being determined by the number system over
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which the transform is defined . In the following discussion the convolution property is 

a focal point in the development of the NUMBER THEORETIC TRANSFORM . In a 

later section the definition and the conditions of the general Number Theoretic 

transform, not requiring the convolution property, will be given .

The discrete transform of a sequence x(n) where n = 0,1,2,3,...... ,N-1 is

defined as :

N - 1

X { k ) =  2 x{n)  Cf  (n , k ) k =  0,1,2,......J f - 1
n =0

and with inverse transform defined as :

N - 1
x(n) = y£ x (n )  Ci (n,k) n= 0,1,2,.....^V-l

k =0

Where Cf  (n ,k) and C, (n,k) are the forward and inverse kernel coefficients 

respectively.

The discrete transform is called the Discrete Fourier Transform (DFT) when the

kernels of the transforms are defined as complex exponential i.e. Cf  = W1* where

~j2pi r
W = exp(——— ) for a sequence of length N . The DFT is the only transform in the

complex number field which has the convolution property . The convolution 

implemented is the cyclic convolution property' if the output sequence y(n) of two 

sequences, x(n) and h(n), each with a period of N, can be related as :

r{v(/i)] = r[jc(w)] ■ T[h(n) ]  (3.1)
Then w'e can say that the transform has Cyclic Convolution Property' (CCP) . Linear 

convolution can be calculated with cyclic convolution by augmenting the sequence 

x(n) and h(n) with a sufficient amount of zero to prevent aliasing .

The Transform approach to performing convolutions is useful when there exists a 

fast algorithm, such as Fast Fourier Transform, to reduce the number of arithmetic
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operations . However, the disadvantages of using FFT to calculate convolution are 

significant amounts of rounds of errors and considerable number of multiplications .

Using kernels defined over a Finite Field all calculations are performed exactly . 

The transforms with kernels defined over a Finite Field GF(M) are called NUMBER 

THEORETIC TRANSFORM [ Pollard, 26, 1971 ] . The Number Theoretic 

Transform (NTT) of a sequence x(n) where n= 0 ,l,2 ,....,N -l, is defined as :

N - 1
X{ k )  = 2 > (")  • * = 0 ,l,...... / / - I  (3.2)

n =0

With inverse transform defined as :

N - 1

x(n) = N*1 2  x(n) ■ a~nk n=0,l,...N—l (3-3)

Where the " a is a root of order N, A^1 represents the multiplicative inverse in the 

field in which the arithmetic is carried out, and all operations performed modulo M .

The relationship between the modulo M, the transform length N , and the kernel " a 

is reviewed in definitions 3.1.1 and 3.1.2 [Agarwal,23,1975 :

Agamal,22,1974],establishing the conditions for the existence of a Number Theoretic 

Transform possessing the convolution property .

Definition 3.1.1 : A Number Theoretic Transform of length N over Z(M), 

having the DFT structure, will implement cyclic convolution property' if and only if 

there exists N~} and an element " a " , which is a root of unity of order N.

Definition 3.1.2 : A Number Theoretic Transform of length N over Z(M) 

having the DFT structure will implement cyclic convolution modulo M if, and only if,
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N divides O (M )

Where O(M) is the order of M .

With the aid of the above definitions we can summerise the conditions for the 

existence of the Number Theoretic Transforms as follow ;

1) aN — 1 Modulo M

2) N.N~X = 1 Modulo M

3) gcd[(a'-l),Ai] = 1 t =\,2, . . .N-\

Immediate consequences of the conditions 1,2,3 are that, the inverse transform defined 

by (3.3) is indeed the inverse transform, N must be relatively prime to M and a must 

be a root of order N modulo M respectively. Example : let N=4 a = 2 M

-  5

1) 24 = 16 = 1 modulo 5

2) N=4 N~x = 4 hence N.N~X = 1

3) [2 , 1 ] = 1 [ 3 , 5 ]  - 1  [ 7 , 5 ]  = 1

In order for the Number Theoretic Transform with the conditions sets above and 

convolution property to be more attractive in comparison with other transforms or 

convolving directly, they should be computationally efficient and easy to implement 

using the available technology. The requirements for the efficiency are summerised as 

follow [ Agarwal,23,1975];

1) N should be highly composite ( preferably a power of 2 )

2) N should be large enough for practical cases.

3) a should have very few bits in binary representation in order that the 

multiplication of power of a be simple operation.
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4) M needs to be large enough to avoid overflow, and also a few binary 

representation.

So far, we have shown the conditions and requirements for an Number Theoretic 

Transforms with the cyclic convolution property to exist. Let us now investigate the 

good choices of M, a for which the maximum Transform length 

jVmax = O(M) = <J>(M) is not too small . From (4) the most obvious choice of M is 2p. 

However, in this case the maximum transform length is 1 and therefore of no 

practical interest . Similarly, when M is even, one of the factors of M is 2 and from 

definition 3.1.2 the maximum transform length is equal to 1. Thus, the only case of 

interest is when M is odd.

Now' we shall examine the most important Number Theoretic Transform and their 

properties, when M is either a Mersenne number (Mp = 2p -1) or a Fermat number 

(Mf  = 2k + \) . Further information about the properties of these number can be found 

in [ Vinogradov,3,1955 : Nussbaumer,6,1981 ].

3.2.1. MLRSENNE NUMBER TRANSFORMS

The most interesting case for Mersenne numbers Mp corresponds to p being a

prime number, that is p = 3,5,7,9,.......From definition 3.1.2 and Fermat’s theorem

and the fact that Mp is a prime number, the possible transform length can be given by ;

N/(Mp — 1) that is N divides Mp — 1
N / (2P — 2) (3.1.1.1)

It can be concluded from the above equation, that 2 and p are the obvious divisor of 

2p -  2 , hence we can define a Number Theoretic Transform of length p and 2p 

modulo a Mersenne Number . In order to complete the definition of Mersenne 

Transforms, we must find the root a of order p and 2p . Since M -  1 is a prime, 

an obvious root of order p is 2, since the pA first pow-ers of 2 are all distinct . 

Mersenne transforms can also be defined with transform lengths of 2p . In this case ( 

-2 ) is a root of order 2p modulo a Mersenne number, since the 2p first powers of
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-2 are all distinct .

For a = 2 the Mersenne Number Transform and its inverse can be defined 

respectively as follow :

p - i

Xm(k) = £■*(") • 2"* modMp
n =0 

p -1
x(n) = P-1 • 2-"* modM”

k= 0

Where n,k = 0 ,l,...,p -l and P~r = Mp -  (Mp -  1 )/p

Thus a length-p circular convolution can be computed as shown in figure 3.1 by 

three Mersenne Transforms plus p multiplications in the transform domain . 

However, if one of the input sequences is fixed, its transform can be precalculated and 

therefore only two transforms are needed to evaluate the convolution .

Similarly, we can define a Mersenne Transform of length 2p with root a = -2  . It is 

also possible to define Mersenne transform with a dimension larger than 2p, since the 

maximum transform length is 2p -  2 . However , the root a of these transforms is 

no longer a pow'er of two, and need some general multiplications . Therefore, in 

practice only the transforms of length 2 and 2p are called Mersenne Transforms . 

The relationships between transform length, root, and word length are summerised in 

table 3.1 .

From the definition of Mersenne numbers, we can deduce that any integer can be 

represented by p-bits word . Thus, additions modulo a Mersenne number is performed 

by using a binary full adder of p-bits and folding the MSB output back into LSB . This 

is similar to the One’s Complement addition . Similarly, multiplications modulo Mp 

can be performed by forming the 2p-bit product of the two words and adding the 

pth-MSB to the pth-LSB which is again Similar to the One’s Complement operation .
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M NT
f ---- —------------------JT

Figure 3.1 Block diagram of Mersenne Number Transform 
However, multiplication by powers of two is particularly simple, and only amounts to

shifts.

In summary, a Mersenne Transform requires p(p-l) additions and (p— l)2 shifts and 

p general multiplications in transform domain . Apart for the advantages explained 

above, the principal deficiencies of Mersenne Number Transform are due to firstly, the
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lack of ability to perform a fast transform algorithm and secondly, Mersenne Number 

Transform is not attractive in the real-time signal processing ( e.g Image processing, 

Speech, Filtering etc ) , this is because there is a rigid relationship between word 

length and transform length .

In order to ease some of these limitations we can define another transform having the 

cyclic convolution modulo a Fermat number .

3.2.2. FERMAT NUMBER TRANSFORMS

Fermat numbers are defined as Mf  = 2k + 1 . Let us assume that k is an odd 

number, therefore 3 will divide Mf  and hence we can say that Mf  is a composite,

and 3 is at least one of the factors, that is Mf  = m1m2t...... . Using the Euler’s

Theorem ( chapter 3 ) , we can define the order of Mf  . That is

0(Mf ) = GCD [(toj —l),(m2—1),.... ] = (3.1.2.1)

Therefore O(M^) = 3 — 1 = 2

In order that the transform supports the convolution property ;

= 0(Mf ) = 2

Hence, the possible transform length when k is odd, will be equal to 2 . Thus, we 

consider only k as an even number . Let k = s2‘ where s is an odd integer, then Mf 

divides 2sk + 1 and hence, the possible transform length will be governed by the 

possible length for Mf . Therefore only the integers of the form 2k + 1 are of 

interest .

The Number Theoretic Transforms defined modulo a Fermat number are called 

Fermat Number Transforms . Let us now' consider transform lengths possible in 

arithmetic modulo various Fermat Numbers .

Since the first five Fermat numbers are prime, we can define the order of Mf as 

follows:
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0(Mf ) = Mf  -  1

Therefore we can have a maximum transform length of 2k . For these Fermat primes 

the integer 3 is an " a " of order N = 2* allowing the largest possible transform 

length . With 3 as a root of order N , it is no longer possible to achieve the powers 

of 3 with simple shift operations and therefore need more general multiplications . 

However, it is still possible to find roots that only need bit shift operation, but will not 

satisfy the maximum transform length criteria . The integer 2 is a root of order

N = 2k+1 moduloMf , since 2' takes N distinct values for i= 0 ,l,2 ,..... ,2'+1 -1

[Agarwal,23,1975] . This means that when Mf  is prime we can define Fermat 

Number Transform and its inverse of length N = 2k with root 2 as follow :

*/(*) = V * ( " )  •2'1* (3.1.2.2)
n =0

x(n) = F £  * ,(* ). 2-"* (3.1.2.3)
k= 0

Where F -  - 2k~'~1

It is also possible to double the transform length . Agarwal[27,1973] show-ed that with 

a = V2 is a root of order N = 4k and multiplications by powers of V2 are simply a 

word shift . Table 3.2 lists possible parameters for Fermat Number Transform .

In computing the Fermat transform, arithmetic is done modulo 2k + 1 Arithmetic 

modulo a Fermat number is significantly more complex than arithmetic modulo 

Mersenne numbers . In this case a k-bit word is used to represent the integers from 0 

to 2k — 1 . The problem then arises of how we shall represent 2k modulo Mf . There 

are two ways to overcome this difficulty, one is to allow for an error to occur in the 

calculations, that is when 2k is encountered in the data it is rounded to 0 or -2 . 

As k increases the probability' of such occurrence is small, in fact Agarwal[22,1974] 

has discussed in detail the hardware implementation of modulo arithmetic for Fermat 

transforms using the above idea. The second approach is by using k+l-bits and
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p Mp Length Root M u Length Word length

3 7 3 2 6 3

3 7 6 -2 6 5

5 31 5 2 30 5

5 31 10 -2 30 5

7 127 7 2 126 7

7 127 7 -2 126 7

9 511 9 2 510 9

9 511 18 -2 510 9

TABLE 3.1 P aram eter for S evera l kfersenn e N um ber Transform

t k Length Root M u Length Root/Mu Length Word Length

2 4 2* 4  1 8 2 16 3 5

2 4 2* 4  1 16 ST 16 V T 5

3 8 28 4  1 16 2 256 3 9

3 8 2® 4  1 32 ST 256 3 9

4 16 216 4  1 32 2 65536 3 17

4 16 216 4  1 64 ST 65536 3 17

5 32 2 n  + 1 64 2 128 V T 33

TABLE 3.2 P aram eter fo r  various F erm at N um ber Transform
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various data code translation to simplify the practical implementation . Me 

Qellan[28,1976] has described a new binary code for the integers modulo Mf . Given 

a binary representation of k+1-bit s for a data as A = \ak ], the new code is 

described as follow :

This number representation provides a binary arithmetic modulo Mf  for negation, 

addition and multiplication by integer power of 2 . This new arithmetic is shown to be 

similar to and as complex as One’s Complement arithmetic . One problem with this 

coding technique is that performing arithmetic with this additional bit is difficult . 

Leibowitz[29,1976] has discussed another coding technique of less complexity than 

that of McClellan . In order to overcome the problem mentioned above, a modified 

binary number system w'as used . In order to avoid arithmetic with extra bit, he 

allowed the additional bit to be a "1" only, w'hen the number to be represented is "0" 

. This is achieved by subtracting "1" from the normal binary representation .

In summary’, using any techniques described above for arithmetic modulo a 

Fermat number is similar to the one’s complement and that of Mersenne numbers . 

However, we shall describe a different approach for performing modulo arithmetic on 

these numbers in later chapters .

In general, the Fermat Number Transform have two principle advantages over 

Mersennen Number Transform :

1) The Fermat Number Transforms permits much more flexibility in selecting

If ak = 1 thenA = 0

if ak = 0 then

A = dk_, . + dk_2 . 2*~2 +

where

if Clj = 1
if a, = 0

the transform length as a function of word length than Mersenne transforms.
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2) It is possible to evaluate the Fermat transforms with a fast transform type 

algorithm similar to that of FFT .

3.3. OTHER NUMBER THEORETIC TRANSFORMS

Mersenne and Fermat transforms were presented in the previous section, and have 

been used for several digital signal processing algorithms especially the convolution of 

two sequences . Each transform possesses the circular convolution property and has the 

arithmetic operations of addition, shift, and complement . The primary advantages of 

these transforms is the exact calculation . All operations are performed in a Finite 

Field of integers with the arithmetic carried out modulo a prime integer M . This 

structure causes a rigid relationship between the transform length and the word size . 

Flowever, Fermat transforms have the advantages of utilising a fast transform 

algorithm, where Mersenne transforms have the advantages of very efficient arithmetic 

. Several methods have been proposed to overcome some of the difficulties while 

retaining the advantages of these transforms . Agarwal and Burrus [30,1974] showed 

that the word length restriction and hence transform length will be reduced by using 

2-dimensional convolution . In this case, cyclic convolution of length N = A'j . N2 can 

be implemented using a 2-dimensional Fermat transform defined similarly to the 

equations (3.1.2.2, 3.1.2.3) :

X f  (*1

",
*2) = 2  G(niki) ■ “ "‘*1

Where G(nl k l) = ,”2) • a(”2*2)
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",
* (" l > n2) = F (n \k i) ■ a - n 1k 1

2 - I
Where F( nxhx) = lXf (khk2) . a "2 2

The 2-dimensional transform and its inverse can be taken in either order, however for 

computational advantages it is best to take the transform along the column of the input 

matrix and then for the final result along the rows . This procedure can be shown 

graphically as follow ;

r x(°)>.......... - x i(0) , * 2(0),........

x(l), •

•

(/3a

==:

-

a ’S = ' X’s

A consequence of this technique is, the word length required now is proportional to 

the square root of the transform length rather than the transform length itself . 

Unfortunately, this technique will achieve the result at the expense of increased 

requirements for computation and storage .

In order to improve some of the difficulties which have arisen in transforms defined so 

far, we shall introduce other transforms which will achieve a higher computational 

efficiency and an increase in transform lengths in the next sections .

3.3.1. COMPLEX NUMBER THEORETIC TRANSFORM

Complex convolution arises in many areas e.g. radar, modems ,etc , in this case it
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is necessary to define complex transforms .It also greatly influences the transform 

length when real convolution is used . Reed and Truong [24,1975] have investigated 

the general case of complex Number Theoretic transform and in specific Complex 

Mersenne Transform over GF( M2 ) . They have shown that complex transforms 

which support the circular convolution can be defined modulo Mp = 2p -  1 for any 

length N such that ;

N / (q2 -  1)

For any transform of length N, with N = 2p+1 , the roots are given by ;

a = a + Jb

This specifies relatively large transform lengths with arithmetic operative in One’s 

complement and a fast transform type algorithm . However, the root are not simple 

and need some general complex multiplications .

Nussbaumer [31,1976] further introduced the concept of the complex transform 

defined in the ring, modulo Mp . In this ring with Mp = 2P -  1, 2 and -2 are roots of 

order p and 2p respectively, corresponding to transform length of p and 2p . Since Mp 

is a prime , 2d and and - 2d are also roots of order p and 2p provided ”d" is not a 

multiple of Mp . This implies that 2J and 1 + J are roots of order 4p and 8p 

respectively . Table 3.3 shows some data relates to Complex Mersenne Transform . 

Under these conditions, a Complex Mersenne transform of length 8p and word length 

of p-bits which supporting circular convolution can be defined by ;

*m(*) = V  * («M 1 +J)nk
n =0

*(«) = R V  Xm{k) . (1+7)-"*
k =0

Where R . 8p = 1 moduloMp .

Since the transform length is no longer a prime, the calculation of these transforms can 

be partly simplified by fast transform type algorithm . Using either decimation in time
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p " , Trans. Length/a “>2J Traiu. Length/a »1+_J Word Length

3 7 12 24 3

11 2047 44 88 11

13 213 - 1 52 104 13

15 2U - 1 60 120 15

17 217 -1 68 136 17

19 2 » - l 76 152 19

21 221 -1 84 168 21

23 22 3 .1 92 184 23

TABLE 3.3 Param eter* re la ted  C om plex U erten n e N um ber Transform

or decimation in frequency, the transform defined above can be decomposed into p 

eight point transforms :

*«(*) = i> (/M  • (1 + J f ’k + (l +J)k i x { p n+1) . (l +j)p-k
n — 0 n — 0

+ .........  + i , x ( p n+ p - l )  . (1 + j ) p-k
n =0

This decomposition technique will reduce the number of real operations . Therefore, 

we conclude that a complex transform can reduce the number of operations and at the 

same time provide a fairly large transform length . A similar argument is also true in 

the case of Complex Fermat Transforms .
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3.3.2. PSEUDO TRANSFORMS

Another alternative to ease the question of transform length and word length is 

the use of another concept known as Pseudo Transforms . The idea of Pseudo 

Transform is similar to the idea explained in chapter three for computing the 

convolution using the residue arithmetic .

In this section we first explain the Pseudo Fermat Transform and expand the idea 

further to include the complex pseudo transforms . As explained, one of the restriction 

of using the FNT’s is their rigid relation to the word length . Various solutions to this 

problem have been considered such as segmenting words into smaller blocks, or using 

two different modulo Mx , m 2 which the final output can be obtained with the aid of 

CRT [ Agarwal,23,1975] . However a more direct solution could be obtained if 

Number Theoretic Transform could be defined for Mf  = 2* + 1 and k #2' . In this 

case, let us assume that the prime factorisation of Mf  is given by ;

......., Mt

Thus, an N-point transform having the circular convolution can be defined in the 

ring of integer modulo Mf  , provided the N-point transform can be defined

separately in the field of Mx , ........., M, . This leads to the condition for the existence

of N-point transform , such that N must simultaneously divide

Mx — 1 , M2 — 1 , ...... , Ai, -  1 . In this case, if k is even the maximum transform

length would be equal to 2 , therefore , k must be a power of 2 to provide better 

transform length [Agarwal,23,1975] . Hence, it seems that w'e managed to reduce the 

word length, but we are faced with the fact that the transform length is sill small .

Nussbaumer [32,1977], used the same idea , but changed it completely to

facilitate the long transforms as well as short word length . In this case the Number

Theoretic Transform is defined in a ring of submultiple of Mp rather than Mp , and 

calling them Pseudo Fermat Number Transforms . We will restrict our definition of 

these transforms with a root of pow'er of 2 [ Nussbaumer,6,1981] as follow ;
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w-i
XAk) -  S  x (n) ■ 2Mni modulo Mf I Mi

n =0 

\ - l
x(n) = Q £  */(*) . 2~HKi modulo Mf / M,

*=o
Where Q . N = 1 modulo Mf  / A/,

It can be seen that these transforms have a similar structure to the one of the Fermat 

Number Transforms . But the corresponding word length for a specific transform 

length has been reduced . One limitation or rather one can say a practical deficiency is 

that, performing transform modulo Mf  / M, could be difficult and more importantly the 

corresponding arithmetic circuit could be more complex than the case of arithmetic 

modulo Mf . To circumvent this difficulty, it is possible to operate the transforms 

modulo Mf  , with the final result obtained by performing the last operation modulo 

Mf / Ml . Table 3.4 shows the transform lengths and roots for various k , when k is 

even .

k Modulo Trans. Length Root Word Length Prime Factor

20 220+ l
17 40 2 16 17.61681

22 2e +1
5

44 2 19 5.397.2113

24 2 * + l
257 48 2 16 97.257.673

26 226+ l
5 52 2 24 265.157.1613

34 2m + 1 
5 68 2 32 685.953.26317

38 2m+1
5 76 2 36 1145.457.525313

44 244+ l
17 88 2 40 17.353.2931542417

TABLE 3.4 P aram eteri fo r  various Pseudo F erm at N um ber Transform
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Similar transform pairs can be defined for the Mersenne Number Transforms . Again 

the PMNT holds the same conditions as have been set up for the PFNT . However, if 

one studies the transform lengths, roots and word length, they are not much different 

to those of PFNT and in some cases even worse .

The idea of Pseudo Transforms can go further to develop the Complex Pseudo 

Transforms. The existence of Complex Pseudo Fermat Transform can be demonstrated 

by considering an N terms PFNT defined in the ring of Mf  / Ml , with a root 2W of 

order N .

If N and w are odd, then the condition N . w = 2k implies that N is even 

and N / 2 is odd . That is ;

( ( -2  ) w ) Na = ( ( -2  ) w ) Nfl = 1 modulo Mf  / M,

provided d and k have no common factors [Nussbaumer,32,1977] . In this instance 

( 2J ) *’ is a root of order 2N and (l+y)'v is a root of order 4N . The Complex 

Pseudo Fermat Number Transform pair can be defined as :

4 V - 1
Xf(k) = 2) *(n) ■ (1+•/)*"* modulo Mf /

n =0 

4/V — 1
x(n) = (4A)"1 2  Xj(k) . (1 +J)~wnk modulo Mf / Mi

k =0

It is also possible to find other values for root a , but these values have no simple 

structure . Various options for CPFNT are listed in table 3.5 [Nussbaumer,32,1977]. It 

can be seen from table 3.5 that Fast Fourier Transform algorithm does not necessarily 

increase the efficiency of the transform, because N is not highly factorisable .

3.4. WALSH TRANSFORMS

In previous sections we introduced several Number Theoretic Transforms modulo 

Fermat and Mersenne numbers which possess the convolution property . The major
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problem with these types of transforms has been that the transform length is dependent 

upon the modulo and the root . There are variations as indicated in tables 3.1-5, to 

circumvent these problems . But in each variation there was always a desirable feature 

which was compromised .

If all the desirable features of each number theoretic transform were considered, 

then the ideal number theoretic transform could be characterised by the following ;

1) Arithmetic modulo a Mersenne number.

2) Operations consist of additions and bit shift .

3) Having a fast type algorithm .

4) The convolution property .

The major obstacle in simultaneously satisfying all the above criteria has been the 

convolution property . It is this property w'hich determines the dependency of the 

transform length, the modulo , and the root of unity [def.3.1.1] . If the convolution 

property' is considered to be optional , then another class of transforms can be defined 

for which the kernel will be of a rectangular nature . This class of transforms are better 

known as Walsh Transform . A finite Walsh Transform pair can be defined as follow' 

[Elliott,25,1982] ;

Xw(k)  = ^  x (n ) ■ w’fl/ (n , j ) moduloM
n —0 
N - \

x( n)  =  A/-1 ^  Xw{k) . vra/(k , j ) modulo M 
k —0

where wal(n,j) and w'al(k,j) are the Walsh functions with the property' o f ;

N~x 1 n =k
2  = o i h e r w .s e  

]= 0
Because the Walsh functions are binary valued, their generation and implementation 

are simple . These functions can be rearranged in several ways a) sequency order b) 

natural order and c) dyadic order [Elliott,25,1982] in order to provide the kernel for 

the Finite Walsh Transform. Because of the characteristic of Walsh functions, and the
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k Modulo Trans. Length Root Prime Factor

15 213 + 1 
9

40 2(J-1) 99.331

25 2“  + 1 
33 200 J + l 33.251.4051

27 227 + 1 
81.19 216 J + l 81.19.87.211

33 2M + 1 
9

88 2(J-1) 603.683.20857

35 235 + 1 
33 56 -4(J-1) 33.43.281.86171

45 2*5 + 1 
171 40 16(J+1) 11.171.331.18837001

49 2*  + 1 
129 392 J+ l 129.4363953127297

TABLE 3.5 V arious P aram eters for C om plex P seu do F erm at Transform
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fact that the elements of the kernel are 1 , M-l , it is implied that

the a is a root of order 2 . Hence the maximum transform length is equal to two in 

order to support circular convolution property . Therefore one can say that, the Finite 

Walsh Transform does not preserve the convolution property . However, an arbitrary 

transform length Finite Walsh transform can be defined which possess the dyadic 

convolution property [Elliott,25,1982], and cannot be used to perform linear 

convolution . Hence, the Finite Walsh Transform over finite field produces a structure 

similar to the traditional Number Theoretic Transform except it cannot possess the 

cyclic convolution properly'. The only constraint imposed on the Finite Walsh 

Transform is that the transform length must be relatively prime to M in order to take 

fully the advantages of modular arithmetic and Eular’s Theorem .

3.5. COMPUTATIONAL COMPLEXITY

In previous section we presented a number of discrete digital transforms each 

capable of performing the convolution of two sequences in the frequency domain . In 

this section we shall study some of the advantages and disadvantages of these 

transforms over its rival Fast Fourier Transform .

For many practical purposes, comparing various algorithms of such complexities is 

very tedious and almost impossible in the loose sense . However , it is somewhat 

possible to compare these algorithms with the aid of complexity theory . The idea of 

complexity theory is due to A.L.Toom who used it to show how fast we can multiply?, 

and later S. A.Cook showed how Toom’s method can be used to calculate the minimum 

computation time of a function . This is known as Toom-Cook complexity algorithm 

[Knuth,1,1981] . We shall use their idea to evaluate the computational complexity 

corresponding to the transform implementation of convolution of two sequences see 

figure 3.1 and in a later chapter we shall show how these can be extended further to 

include the implementation of digital adaptive filters . For the ease of the argument at 

the moment, we assume that the hardware cost of arithmetic modulo Mersenne and
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Fermat numbers are the same .

In this thesis we shall refer to computational complexity as the number of 

arithmetic operations performed by these transforms for an arbitrary sequence length. 

Hie number of arithmetic operations related to computation of a specific transform 

depends essentially on two factors, addition and multiplications . However there might 

be other factors involved e.g. word length, but these are somewhat proportional to the 

number of addition and multiplication . Below, we summerise a number of formulae 

for the evaluation of the addition and multiplication for a number of transforms . Also 

we assume that one of the input sequences has a length L, which is true for the case of 

digital filters .

1) Mersenne Number Transform

These transforms suffer from the lack of fast transform algorithms, and therefore the 

number of additions and multiplications ( shifts when a = 2 ) are proportional to the 

transform length N [ 21 ].

3 . N . (N — 1)
N -  L

real additions

3 . (N — l ) 2 + N 
N -  L

real multiplications(shifts)

2) Fast Fourier Transform

the number of additions and multiplications for FFT is given by [ 12 ] ;

3 . (* + 1) . (r — 1) . N . log" + 2 . N 

N -  L

real additions

3 . k . (r — 1) . 4 . N . log" + 4 . N

real multiplications
N — L
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Since the Fermat Number Transform supports the fast transform type algorithm, it is 

possible to use the FFT formulae for the derivation of the complexity formulae for 

FNT. A modification is done to FFT and from that the required formulae for number 

of additions and multiplications for the FNT, CFNT and CPFNT are developed.

3) Fermat Number Transform

Unlike MNT’s, Fermat transforms will support the fast transform algorithms such as 

FFT . Let N = r" be the transform length, where r is the base ( radix ) and n is any 

integer . We shall evaluate the number of additions and multiplications as follows;

3 . (r — 1) . jV . log*
N -  L

real additions

real multiplications

3 . * . (r — 1) . N . log* + N 
N -  L

Where k depends on the symmetries of the root of unity a e.g. k = l if r is odd and 

* = —- if r is equal 2 . If however, a = 2 the multiplication in transform will be 

reduced to only bit shift ;

3 . (r — 1) . N . log* 
N -  L

real additions

real multiplications

3 . k . (r — l) . N . log* 
N -  L

shifts

For a = V2, the number of shifts and multiplication is the same , but the number of 

additions will increase . This is due to the fact that multipling by odd powers of a need
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an extra addition V2 = 2k/A . ( 2ka -  1 ) , hence ;

3 . (r -  1) . N . (log* + j  

N -  L
Let us assume that our two sequences are complex values rather than real values 

therefore, Using the FNT with a is not a power of two we need ;

real additions

6 . (r — 1) . N . log* 
N -  L

real multiplications

6 . k . (r — 1) . N . log* + 4 . N 
N -  L

The reason for the extra arithmetic operations is that, we compute the transforms of 

real and imaginary of the sequences separately . However , with the kernel being a 

power of two, then ;

real additions

6 . (/- — 1) . N . log* 
N -  L

shifts

6 . (r — 1) . N . log* 
N -  L

real multiplications

4 . N 
N -  L

4) Complex and Pseudo Fermat Transforms

In the case of complex and pseudo Fermat transforms with complex roots, we note that

2k = Mf  -  1 * -1

Hence, J = can be represented in the Fermat number ring by 2ka . Since for both
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the cases the transform length is composite , the number of additions and 

multiplications is given by ;

3 .N . (log;'1 + N2 -  1)
N -  L

3 . N . (log?1 + N2 -  1 + j  

N -  L
real additions

for the case of a = U , 1+J respectively .

3 • • (y  • log?1 + N2 -  1

N -  L
shifts

real multiplications

N
N -  L

N + N . Nl  
N -  L

for a = 2J , l+j  respectively.

Where A'j and n 2 are the factors of N and equal to 4p and 8p for a = U , 1+J 

respectively . The similar formulae are true for Complex and Pseudo Mersenne 

Transforms .

Summary

It can be concluded from the formulae that, for a given transform length N , the 

optimum computing efficiency can be achieved for L = Nil  in many practical cases . 

Table 3.6 and 3.7 shows the computational complexity' for various Number Theoretic 

Transforms . A first indication on the relative number of additions and multiplications 

of various transforms shows that the largest arithmetic operations correspond to MNT
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and at the lowest limit lies the FNT and CPFNT . It can also be seen that the FNT and 

CPFNT compares very favourably to that of the Fast Fourier Transform . However, 

each transform has its own drawbcak . In case of the FFT one of the disadvantages is 

that it needs memory spaces for storing the values of the trigonometric functions for 

the multiplications, and as the transform length increases so does the number of 

storage . Where as in the case of NTT the values of kernel is a power of two and 

hence, the general multiplications which greatly influences the performance of a 

system will be reduced to only shifts and therefore there is no need for storage of such 

quantities .

For the case of MNT, even though the multiplications are reduced to only shifts , the 

number of arithmetic operations is still too large for a given transform length compared 

with other transforms . This is because it dose not support the fast type algorithm . 

Where as the cases of CMNT and CFNT and PMNT and PFNT can be partly 

computed by a fast algorithm technique . Hence, they have a moderately small 

number of arithmetic operations compared to MNT but larger than FNT at the expense 

of using complex kernel for a given length, but the transform length is still small .

Hence, the most promising of all are the FNT and CPFNT . However , these 

transforms have their own limitations . The major disadvantages of using the FNTs is 

the word length . The number of bits required to represent the Mf  is equal to N/2 and 

N/4 for o = 2 ,  V2 respectively, hence as N increases so does the word length . In this 

respect, the CPMNT and CPFNT provide a significant improvement in the word length 

. The reason for this descent is because the Mp or Mf  can be factorised into small prime 

numbers. And each modulo can be represented by only a few bits . The advantages of 

reducing the word length while retaining the modest transform length and greater 

flexibility and some cases the speed, is offset by one major disadvantage . Because 

various operations are performed modulo Mp / Mi or Mf  / A/,, the corresponding 

arithmetic circuits are obviously much more complex than arithmetic modulo Mp or Mf  

. This difficulty can be circumvented by computing modulo Mp or Mf and obtain the 

final result by performing the last operations modulo Mf  / Mi or Mp / M, . This
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obviously increases the computational complexity of the algorithm as well as increasing 

in the word length .

However, it is possible to reduce the number of bits used in the Fermat Number 

Transform further, by taking the argument used in the PFNT and CPFNT . This way 

by choosing 2t_1 < M < 2k where M is prime, we can define another set of Fermat 

Transforms w'hich will support the Euler’s theorem for achieving the maximum 

transform length while having smaller number of bits for processing . The advantages 

in this instance are highly composite and therefore can be implemented more 

efficiently by using the mix radix technique . As an example Let M = 163 which is a 

prime number, with a word length of 8 bits and NmiX = 162 = 2 . 34 . Therefore a 162 

point radix 2 and 3 Fermat Number Transform with 8-bit wordlength can be achieved . 

A longer transform length also can be achieved by the same mechanism . E.g M = 

64153, a 16-bits 13 stage Fermat Transform of length N = 210 . 32 . 7 is possible . 

However, in this case the root a may not be a power of two and hence need a more 

general multiplications . So , in choosing an algorithm for transformation , there is an 

element of compromise between multiplications, transform length ,word length and 

shifts .

In general, there are two factors which greatly influence the choice between these 

transforms

1) Applications

2) Technology

In most application areas where digital adaptive filters are used, the required 

word length is between 8-16 bits . Therefore the later case seems to be more 

favourable than other techniques such as CPFNT where the number of bits are still too 

large .
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Transform ADD MULT. ADD SHIFT ADD A D D a -V 2 SHIFT MULT, a -

Length FFT FFT MNT MNT FNT FNT FNT FNT

32 49 34 186 180 30 32 17 17

64 58 40 390 372 36 38 20 20

128 67 46 762 756 42 44 23 23

256 76 52 1530 1524 48 50 26 26

512 85 58 3066 3060 54 56 29 29

1024 94 64 6138 6132 60 62 31 31

TABLE 3.6 N um ber o f  arithm etic opera tion  p e r  ou tpu t »am ple for variou s T ransform s

Transform ADD SHIFT ADD SHIFT ADD SHIFT

Length CMNT CMNT PFNT PFNT CPFNT CPFNT

40 • • 42 33 • •

44 72 a - 2 / 66 72 66 • •

68 108 o - 2 / 102 108 102 • •

88 79 o - l + / 69 78 69 79 o - l + / 69

76 120 o * 2 / 114 120 114 • •

136 115 o - l+ Z 105 • • • •

200 • • • • 163 o * l + / 153

392 • • • • 307 o - l + / 297

TABLE 3.7 N um ber o f  arith m etic op era tio n s p e r  ou tput sam ple for variou s T ransform s 

not given



CHAPTER 4

FREQUENCY ADAPTIVE DIGITAL FILTERING
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INTRODUCTION

Frequency-domain adaptive filters have been considered by many authors [100-

103], however, the approach varies considerably. For example, Qark [100,1981] has 

used the transform technique mainly to decrease the amount of computation needed in 

the convolution and correlation stages of the adaptive filters. There the approach was 

to update the filter weights in the time domain. Another approach was taken by 

Mansour [101, 1982], where the filter weights are updated in the frequency domain, 

while the error is obtained in the time domain. That is, after obtaining the error 

sequence in the time domain, it then converted the error sequence back into the 

frequency domain by using an FFT. The more direct approach of implementing the 

adaptive filters in the frequency domain was taken up by Reed [102, 1981] after the 

work of Dentino [103, 1978]. There, the calculation of the error and the updating of 

the filter coefficients is all done in the frequency domain stage rather than the previous 

work of Qark and Mansour.

The approach taken in this thesis is after the work presented by Dentino and 

Reed. However, the Dentino and Reed work does not cover complete mathematical 

analysis of the frequency adaptive filters, and does not at all consider the use of 

Number Theoretic Transforms of frequency adaptive filters and in particular when the 

NT I is used.

A block diagram of the frequency domain adaptive digital filter is shown in figure

4.2. The input signal x(n) is accumulated in a buffer memory to form an N-point data 

block, which can then be transformed. The result of each bin in the transform domain 

(which is the multiplication of the filter coefficient and the input data) is then 

subtracted from the desired response coefficient to produce an error which is then used 

to update the filter coefficient.

4.1. ADAPTIVE FILTERING

The adaptive digital filter discussed here is of the Least-Mean-Square (LMS) type 

presented by Widrow et.al [33,34,41] for which the performance index is the Mean-



Square-Error. All inputs are assumed to be real. The adaptive filter of Widrow is a 

Finite Impulse Response (FIR) digital filter of order N-l, for which the output, y, at a 

discrete time instant, k, is given as the convolution sum of the input, x, and the filter 

weights w :

y* = 2  wf xk - t  (4.1.1)i=0
The Widrow-Hopf LMS algorithm adjusts the filter weights in accordance with 

equation (4.1.2) :

+ 1 =  w k + 2 ^ e k ■ X k (4.1.2)

where p is the convergence constant, and x, w are the input vector and the weight 

vector respectively :

* II T o ....... W,V-1

o
'

HIIH

......, * A - l ]

and e is the error at the k-th instant given by the difference between the desired 

output d and the actual output y :

*k =  d i  ~ > k (4.1.3)

From an implementation point of view, the adaptive filter consists of two major 

operations, a convolution to produce the outputs y, and the LMS algorithm to adjust 

the filter weights, as illustrated in figure 4.1.

The main purpose of this thesis is to present the analysis of the frequency 

adaptive filters.

Therefore, in this respect, the error in the frequency domain can be defined as follows

\EJ M d j \ M- \ y j M (4.1.4)

Where D> is the desired response in the transform domain and YJ is the output of the
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Figure 4.2 General configuration of frequency ADF
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filter.

4.2. FREQUENCY WIENER FILTERING PROBLEM

Wiener filtering is, of course, the basis of the LMS adaptive filtering, as the 

adaptive filter converges in the mean to the Wiener solution[33,34,42]. Wiener 

filtering can be done in frequency, see Fig 4.2, using the following definition, along 

with the assumption that all the inputs are stationär)'. Let:

!£>'! = [|D °U ......... iß"'“' U  (4.2.1)

be the Nxl vector of desired response and let,

\&' = [\E0\M.......... IE*-1!*] (4.2.2)

be the Nxl vector of errors where E is defined in Eq(4.1.4).

4.2.1. FREQUENCY MEAN SQUARE ERROR

The key element in the analysis of the LMS in the time domain is the mean- 

square error. The same is true for the LMS in the frequency domain, but with a 

difference. As for the time domain analysis, the square of the expectation of the 

error is used for the analysis, however, this can be calculated in the frequency domain 

and is equivalent to the multiplication of the frequency component by its conjugate 

value, as for the case of DFT (Parseval’s Theorem). This is clearly not true for the 

NTT as it is purely real. However, using the properties of the NTT [Agarw'al,22], it is 

possible to define an equivalent square of the error in the NTT domain.

Frequency mean square error (FMSE) is defined by:

FMSE = E = t \ET' \M-\EJ \M (4.2.1.1)

where r denotes the transpose inverse, and e represents the statistical expectation or 

ensemble average operation [35], and | \M represent the residue arithmetic operations. 

Clearly, the FMSE is the expected value of a smoothed estimate of the square error 

over one block. The following analysis is acceptable to both the NTT and DFT except 

for the DFT case, t represents the complex conjugate and all the arithmetic is done in 

the conventional numbering system.
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Using the Eqs (4.1.4),(4.2.2), Eq (4.2.1.1) becomes:

E = e [ \ E* \ M ■ \ Ei \ M = e[( |D * \ M -  \Yri |M) ( \Dj \M -  \YJ |M)]

= e l l D ^ U - l D ^ U J  -  e[ \Dr’ \M-\XJ\M-\WJ\M)

-  e[ |* T> IM-\W'’ U • IDi  \u ] + e[ |WT' \u - \ X*\ m -\X> \m -\WJ J  (4 .2 .1 .2) 

The following correlation matrices are now' defined:

14*1 l*f = *l\x*\M-\xJ \M]

i<t>2U = e[l*T'U - | d >\m) (4.2.1.3)

wrhere ;<f>, and | <f>21M are the NxN input auto correlation and the Nxl cross­

correlation betw'een the input and desired response respectively.

The matrix ¡4», |M has got the following properties;

a) |<|>i \M is symmetric

b) ¡cf>i \M is positive definite

c) i <bj \M has N linearly independent eigenvalues and can 

always be reduced to diagonal form by a similarity transform.

Using these definitions, the FMSE, Eq (4.2.1.2) can be written as:

E = €[ i r  m-\d> ,M -  \v2\M-\wi\M

-  + I ^ U - |« |> i | . |^ |Af] (4.2.1.4)

Using the vector inner product, the third term in Eq, (4.2.1.4) can be written as i>J M • M''! , M, therefore Eq(4.2.1.4) becomes :

E = e [ \ D^\ M- \ Dj \ M] -2 .|4»2tU - |^ ! w + \ W^\ M- \ ^ \ M- \ w n M (4.2.1.5)

This is the same as the MSE [33] . Thus, FMSE can give similar results as the 

MSE, when all inputs are stationär}'. It follow's, then, that the optimal set of filter 

weights vc* for the frequency Wiener filter is similar to as it is for the Wiener filter 

[33,34,42] i.e:
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»'* = i<i>fVl<t>2u
The above development show's that the frequency Wiener filtering formulation 

can serve as a unifying framework for the Wiener problem, and the optimum solution 

tt',J of the frequency Wiener problem can give similar results to corresponding 

solutions of the Wiener problem.

4.3. FREQUENCY ADAPTIVE FILTERING AND FLMS ALGORITHM

In analogy to LMS adaptive filtering a frequency algorithm can be derived to 

sequentially solve for the Wiener weight vector, in real-time, by an implementation of 

the method of the steepest descent.

Figure 4.2 shows the general configuration. Because it is desired to keep the weights 

constant, while each block of data sequence is being processed, let the weight vector be 

adjusted once per data block sequence, rather than once per data sample, as with LMS 

algorithm. The algorithm then becomes:

\w)+1\m = \Wj \m ~ v-f V/ M (4.3.1)

where diagonal matrix is the convergence constant, V/

is the Nxl FMSE gradient, and WJ is the Nxl weight vector. The gradient is taken 

with respect to the weights as follows:

w (4.3.2)

Because the computation of an ensemble average is difficult and impractical for this 

problem, an estimate of the gradient ¡V/ \ M is used in place of | V/ \ M.

Define the frequency mean-square error gradient estimate as:

T T rl\EtJ\m ' \Ej \m 
"2

d

w3[\E*\m-\&\m]

W*
|v/U =

M
(4.3.3)
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-¿ r[ |£ TV l E >L]

wA

Taking advantage of Eqs (4.2.1.3) and (4.2.1.5 ) and ignoring the expectation, 

the gradient estimate can be written as:

\ n \M = -2-  \DT‘ \M-\Xj \*i + 2-1WT' \m ' i^T i A# ' ¡XJ \M

= -2- |WT'U - l* T'U ] = - 2 \ W \ u - \E+\m

or

W l*  = -2  - \XT’ \ -\ D] \M + 2- \X*\M- \ W\ M-\Wi\M = -2- \XT' \M - \E-i \M 

Using this block gradient estimate in the weight adjustment algorithm Eq (4.3.1) gives 

the frequency least mean square (FLMS) algorithm:

\WJ+1\M = \Wj \m +2-M.f|*TV l ^ U  (4-3.5)

Qearly, the weight update term is a correlation, implemented either with a parallel or 

with a serial processor.

4.4. CONVERGENCE PROPERTIES OF FLMS ALGORITHM

The convergence properties of interest in frequency adaptive filtering are the 

required bounds on the \lf ( convergence constant ) and adaptation speed. The 

convergence constant must take on values in a particular range in order to insure 

convergence of the algorithm. Adaptation speed refers to how fast the FLMS is 

reduced to its lowest level ( Hmin ). These convergence properties are examined below', 

one-by-one, for frequency adaptive filters, and compared with the convergence 

properties of LMS filters.

4.4.1. BOUNDS ON TO GUAR ANTEE CONVERGENCE

First, it must be prove that the FLMS algorithm converges. This proof is given in
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Appendix (A). The approach taken is to show, that as the weight index j approaches 

infinity, the expected value of weight vector ( e[|W-'+1|M] ) approaches the Wiener 

weight vector, under the assumption that \XJ \M and \DJ \M are ergodic. The proof also 

shows that the requirements on the convergence constant ( for FLMS and ^ for 

LMS ) are similar. That is, y.F and y. must take on values in a similar range in order 

to ensure the convergence.

The bounds on the convergence constants are:

For FLMS:

0 < ^ < — 1—  - (4.4.1.1)
I m̂ax IM

For LMS:

0<jjl< — (4.4.1.2)
m̂ax

Where \ max is the largest eigenvalue of matrix |<t>j\M .

The convergence proof in Appendix A is carried out in order to establish the 

mathematical model for FLMS convergence.

4.4.2. ADAPTATION SPEED

Adaptation speed is given in terms of a, " FMSE time constant " which indicates 

how fast the weight vector converges to the Wiener weight vector [33,34,42 ]. There 

are N time constants TpMSE, one for each pth " mode " of the different equations 

describing the adaptation process. These time constants are derived in Appendix B. 

The derivations follow the form of the corresponding derivations for the LMS 

algorithm, but with a few differences. The convergence constant ^ (LMS) is replaced 

by [lf (FLMS). But more important, the time unit for adaptation for LMS is one time 

sample, whereas, the time unit for adaptation of (FLMS) is the data block sequence. 

Thus, the equation for the two different algorithms has the same form but different 

meaning. This has been resolved in Appendix B. The time constant tMSE for LMS and 

Tfmsf for FLMS is given as follows:
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= I 1
" I4'“ * !  W  ‘  (4.4.2.1)

Where R is the input power in time domain and rr ( | <hi !a# ) is the input power in the

transform domain .

4.4.3. FILTER SIMULATION

In order to verify the convergence properties of the FLMS algorithm, derived in 

previous sections, a computer simulation has been used .

The goal of the simulation is to apply the LMS and FLMS to two examples, and 

see that the mean square error will converge to an optimum solution .

In the first example the input signal which is a sinusoid of frequency f (sin(wt)), 

embedded in the white noise as shown in figure 4.3 is applied to an Frequency 

Adaptive Digital Filter (FADF). The output is compared with a desired response 

which is a sinusoid of the same frequency but different phase (sin(w't-i-T)), which is 

not coherent with the input signal. The error obtained is then used to update the filter 

coefficients according to equation 4.3.5.

In the second example the input signal is represented as a sinusiod of frequency f 

and 2f (sin(wt) + sin(2wt)) [Cow'an,40,1980] this is shown in figure 4.4, is applied to 

the same FADF as used in the first example. The desired response is a sinusiod of 

frequency f but different phase (sin(wt+T)). The error obtained is then used for the 

weight update.

The adaptive filter which is used in the above two examples, is of length 4 and 

implemented using the configuration of figure 4.2 . Since the filter is implemented 

using the transform technique described in chapter 3, certain conditions regarding the 

choice of modulo and the root of unity must hold . In this simulation the Fermat 

Number Transform is used for the conversion of the input data into its transform 

domain . A number of steps were taken for the simulation;

1) The modulo used is M=17, so as to be in line with the VLSI design of the filter

presented in chapter 6.
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2) A 4-bit wordlength is used for the data.

3) The filter coefficients are originally set to an initial value of zero.

The simulation results are done for both frequency and time domain filters for 

variety of phases and various values of convergence constant \Lf . These results are 

shown in figures 4.5 to 4.18 for the first 200 algorithm iterations.

4.4.4. SIMULATION RESULTS

The results shown in figures 4.5-4.18 verifies that the Frequency-Mean Square 

Error (FMSE) measured at the filter output does converge to an " optimum solution” . 

The convergence takes place at different rates. This is because as the convergence 

constant is changed, so does the adaptation speed. This becomes apparent when we 

compare them with the TADF case. The above results verify that the FLMS is not in 

general, equal to the LMS. Examination of the above curves shows a cyclic behaviour 

of the FLMS values. This may be due to the quantisation. It was also noted that 

when the input and reference signals are 90 degrees out of phase [fig 4.8], the result 

was different to the others. These two may be due to the usage of short transform and 

word lengths simulation.

4.5. COMPUTATIONAL COMPLEXITY OF LMS AND FLMS ADAPTIVE FILTERS

The main computational efficiency issues involved in the algorithm 

implementation are the storage, time (machine cycle, FO ) and computational 

complexity measured by the required number of multiplications and additions . The 

first two issues are processor architecture dependent, and will be discuss in later 

chapters . This section will concentrate on the computational complexity required when 

using a standard processor .

4.5.1. COMPUTATIONAL COMPLEXI FY OF LMS ADAPTIVE FILTERS

The convolution operation is done in the standard form ;
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Figure 4.5 Mean Square Error vs No. of iterations for FADF
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Figure 4.6 Mean Square Error vs No. of iterations for FADF with 30 degrees
phase shift
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Figure 4.7 Mean Square Error vs No. of iterations for FADF with 60 degrees
phase shift
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Figure 4.8 Mean Square Error vs No. of iterations for FADF with 90 degrees
phase shift
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Mean Square Error vs No. of iterations for FADF with 120 degrees
phase shift

Figure 4.9
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Figure 4.10 Mean Square Error vs No. of iterations for FADF with 30 degrees
phase shift and differ in input and reference signal

amplitude
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Figure 4.11 Mean Square Error vs No. of iterations for FADF with 60 degrees
phase shift and differ in input and reference signal

amplitude
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Figure 4.12 Mean Square Error vs No. of iterations for FADF with 90 degrees
phase shift and differ in input and reference signal

amplitude



Figure 4.13 Mean Square Error vs No of iterations for FADF in the second 
example
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Mean Square Error vs No. of iterations for FADF in the second
example with 30 degrees phase shift

Figure 4.14
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Mean Square Error vs No. of iterations for FADF in the second
example with 60 degrees phase shift

Figure 4.15
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Figure 4.16 Mean Square Error vs No. of iterations for TADF with
convergence constant = 0.0023
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Figure 4.17 Mean Square Error vs No. of iterations for TADF with
convergence constant = 0.023
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Figure 4.18 Mean Square Error vs No. of iterations for TADF with
Convergence constant = 0.23
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yk = 2>n ■ hk-n
r =0

To produce one output point requires N real multiplications and N - 1 additions. 

Therefore, to produce N outputs requires N2 multiplication and N ( N - 1 ) additions .

Recall LMS algorithm ;

wk +1 = wk + 2 • \l ,ek ■ xk

To produce N outputs require N2 adaptations . The second term requires N ( N + 1 ) 

real multiplications . The addition operations requires N2 real add . The cost of 

computing ek = dk -  yk is N real add . The total arithmetic operation per output block 

for the LMS algorithm requires N ( N + 1 ) real add and N ( N + 1 ) real 

multiplications . Thus, the total computational complexity for LMS adaptive filter is N 

( 2N + 1 ) real multiplication and 2N2 real additions .

4.5.2. COMPUTATIONAL COMPLEXITY OF FLMS ADAPTIVE FILTERS

It is well known that the digital filtering of an A^-length sequence with an n 2- 

length sequence can be achieved by linear convolution . Since, in many applications 

such as speech, seismic processing etc., the input sequence ( N2 ) is large , perhaps 

infinitely large . Thus , the linear convolution would be hampered by two obstacles . 

First the memory would be large , and secondly the result would be subject to 

enormous delay . These difficulties have been relieved by a scheme known as 

sectioning [ Gold,41,1969] . Sectioning can be performed in two ways overlap-add and 

overlap-save . Using either of this techniques, the linear convolution yields a sequence 

of length ;

N = Aj + N2 -  1

This fact is used to find the minimum transform size to use, when performing the 

transform implementation of convolution with sectioning method . As an example let 

us define a convolution of two sequences xn and hn by its circulant matrix ;

h \
¡1>'l _ *3 x 2 X1

y 2 x 4 x 3 x 2 n 2
h .
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In order to fully use the properties of the transform, for the implementation of the 

linear convolution, the dimension of the above circulant matrix must be of tv’ by n ' . 

Equation (a) can be augmented as follow to form a circular matrix ;

y\ *3 x2 X] *4 V
yi x4 x3 x2 Xj h2
y 3 X1 *4 *3 x2 h3
>4 x2 X  ! x4 x3 0

A careful comparison of the above development and the development described 

by Oppenhiem and Schafer [ ] shows that they are equal . Thus, by appending 

appropriate numbers of zero -valued, the linear convolution, by sectioning, can be 

achieved by the transform techniques . Because of the sectioning procedure used in the 

transform implementation of linear near convolution, it causes more than the necessary 

number of values to be computed . Since the weight vector has only TVj weights, all but 

the first Ni values must be discarded before using the FLMS algorithms .

In this respect, the computational complexity of the FLMS adaptive filters in the 

transform domain ( fig 4.2 ), using one the transforms having an FFT type algorithm 

described in chapter 4, can be summerised as follow :

The transform implementation of convolution requires 3 . ~  . log^ multiplications

and 3 . N■ . log^ additions, provided that N is a power of two .

Recall FLMS algorithm ;

= Hi + 2 . yLf , \Ek u  . \x;\M

To produce an N out put it requires 3A' real multiplications and 2n ' real 

additions . Thus the total arithmetic operations per TV' output for the FLMS adaptive

filters require 3 . ~  . log^ + 3tv' real multiplications and 3 . TV . log£ + 2tv’ real

additions . If however, the kernel of the transform is a power of two, the number of 

multiplications will reduce to only 37V ’ .
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4.5.3. COMPLEXITY RATIO

In previous sections we presented the number of arithmetic operations for the 

LMS and FLMS adaptive filters . A comparison is made between LMS and FLMS 

filters described above . A computer program was used to compare the above 

complexities. A complexity ratio (CR) which is the ratio of the number of additions 

and multiplications of the time and frequency adaptive filters is used for the 

comparison. A complexity ratio, "CR", is plotted, and tabulated, versus the filter 

length . For these implementations see figures 4.19 and 4.20 and table 4.1 .

The complexity ratio (CR) is defined as ;

^  _ complexity of LMS filters 
complexity of FLMS filters

We define the addition and multiplication complexity ratio as follows;

CR 2 -N2

3-N -log? +2N
addition

and

CR = —— + ^ —  multiplication
3 -y  log^ +3W'

This is only the case where filter length = N is analyzed . As discussed in previous 

sections, the convolution implementation requires a sequence length of 

N = Wj + n 2 -  1 - Because N' must be the power of two, for simplicity we assume 

that N = 2N . The complexity' is analyzed for N = 2 to 1024 . A line is drawn at CR 

= 1 in fig 4.19 and 4.20 for reference . It can be seen clearly from the graphs, that 

the frequency implementation of adaptive filters are attractive for most practical cases 

. For large filter lengths the complexity improvements are dramatic , reaching a factor 

of ten or greater .

4.6. CONCLUSION

In this chapter we presented the development and proof of FLMS algorithm for 

both DFT and NTT. It was shown that the weight update is proportional to the



4-28

correlation of the transform components of both the input signal and error achieved at 

the filter output. The proof also shows that the frequency adaptive filters can serve as 

a unifying framework for the Weiner problem.

The development of the FLMS algorithm was supported by a simple simulation of 

two applications. The results show that the FLMS does converge to an optimum 

solution, but the speed of convergence is dependent upon the convergence constant. 

However, in order to observe the convergence of the FLMS algorithm a complete 

simulation was presented.

We also showed that by analysis of a complexity ratio that frequency adaptive 

filters require fewer operations than time domain adaptive filters.



N N

CR radix-2 implementation 

of FLMS

real

multiplication

real

addition

2 4 0.42 0.25

4 8 0.60 0.36

8 16 0.94 0.57

16 32 1.6 0.94

32 64 2.7 1.6

64 128 4.8 2.8

128 256 8.6 4.9

256 512 16 8.8

512 1024 28 16

1024 2048 53 29

Table \
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CHAPTER 5

A SURVEY OF GENERAL AND SPECIAL PURPOSE SIGNAL PROCESSORS
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5.1. INTRODUCTION

In order to specify the architecture of a processor, it is necessary to examine the 

application areas, and to abstract from them the character and structure of processing 

requirements.

The concept and techniques of digital signal processing discussed in the literature and 

previous chapters have been, and continue to be, applied to a wide range of 

applications. The exact nature of individual signal processing problems tend to be 

highly dependant on the particular area of interest. The aim here is to list and discuss 

very briefly a number of major application areas in which digital signal processing 

techniques have been successfully used.

SPEECH PROCESSING

One of the earliest fields of research to employ digital signal processing 

techniques was that of speech processing. Two major problems exist in this field. 

First is the analysis of human speech for such applications as speech recognition, 

encoding, and compression for efficient transmission. The second general 

problem area is that of speech synthesis. It is in this area that the greatest 

advances are currently being made. The applications are speech synthesizers for 

handicapped, voice response computer terminals, etc. For further information see 

[Oppenhiem, 43, 1978].

MUSIC PROCESSING

The application areas for music processing to which digital signal processing has 

been applied are, mixing multiple music signals into single performance, 

enhancement of music signal by the addition of special effects. Digital technique 

have also been used for the composition, synthesis, recording and transmission.

GEOPHYSICS

The major utilisation of digital techniques is concerned with the analysis of
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seismic signals to aid the modelling of the structure and properties of the earth’s 

interior, and with the study of earth quakes and volcanic activity.

RADAR

Radar systems are an example of how digital signal processing is used for high 

performance applications. The major signal processing functions of a modem 

radar system include signal generation, matched filtering, and estimation of target 

parameters. Another area of application is the adaptive digital beam forming 

radars.

SONAR

Sonar systems share many common signal processing concepts with radar. The 

application areas are associated with the detection and analysis of echos, 

navigation, mapping and spectral analysis.

IMAGE PROCESSING

The application of digital signal processing techniques to the processing of the 

images has been strongly influenced by the recent advances in integrated circuit 

technology'. The major categories of image processing problems to which digital 

processing techniques have been applied include data compression, image 

restoration, enhancement as well as the creation of visual images from X-ray 

projections.

COMMUNICATIONS

Digital techniques have been applied to the problems of signal modulation, 

multiplexing, noise cancellation, echo cancellation, and tone detection. Many 

audio band communication signal processing functions have been implemented as 

a single integrated circuit.

BIOMEDICAL SIGNAL PROCESSING



5-4

The use of digital signal processing techniques is becoming wide spread in such 

medical applications as the analysis of EEG and ECG signals, and computer 

aided tomography ( creation of 2 and 3-dimensional images) [Oppenhiem, 43].

Based on signal models ( the signal modelling determines how' the signal is 

interpreted to obtain information ) and the specific goals of various applications, the 

required structure of the processing operations must be formulated. The specification 

of processing requirements is carried out in terms of mathematical formulas which 

have been described in earlier chapters and in the literature. In general, the signal 

manipulation tends to be based on a relatively small set of basic operations, such as 

convolution, correlation, discrete transforms and vector or matrix operations. The 

appropriate combination of these operations specifies the processing requirements.

The actual implementation of the various signal processing techniques and 

functions in a specific application area, may be implemented in three ways. For 

research purposes they are often simulated on the mainframe computers, the limitation 

of such computers generally restricts their use to low bandwidth applications. 

Alternatively, they may be implemented on the general purpose signal processor, 

wtuch is a general purpose computer specially designed to carry out the signal 

processing algorithms. The third possibilities is to use a special purpose signal 

processor designed to execute one particular signal processing task. The aim of this 

chapter is to establish a dialogue between the implementation of special or general 

purpose processors and to outline the merits and limitations of both cases.

5.2. SPECIAL PURPOSE PROCESSOR

Special purpose processors fall into two categories:

1 Algorithm directed signal processors: are hardware implementations of 

particular signal processing algorithms. One example of this would be digital 

convolution.
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2 Application directed signal processors: are hardware implementations of one 

or more signal processing algorithms, designed to be used in a specific 

application.

5.2.1. ALGORITHM DIRECTED SIGNAL PROCESSOR

Filtering, convolution, correlation, and discrete transforms are the usual 

algorithms implemented by algorithm directed signal processors. The design of these 

processors must take into account the following factors:

1 SPEED The maximum bandwidth the processor can handle is determined 

by its maximum sample rate, so a decision has to be made about the maximum 

clock rate that will be required.

2 INTERFACING The way in which the processor is communicating with 

other equipment e.g A/D or D/A etc. .

3 COST/COMPLEXITY The faster and more complex a processor is, the 

more expensive it will be to build.

The choice of which structure to use must then be made. Special purpose 

processors have three basic type of cells:-

1 MEMORY - This can consist of shift registers or RAM (Random Access 

Memory) for implementing the delays, and use for storing the coefficients.

2 ARITHMETIC UNIT It performs the necessary arithmetic operations, and 

often require multiply-add operations.

3 CONTROL - This involves control of the overall operation of the processor. 

These basic blocks can be put together to realise processing algorithms.

5.2.2. SPECIAL PURPOSE PROCESSOR

One way of implementing the convolution of two sequences is as follow's. 

Consider the convolution structure shown in figure.5.1 . The direct realisation of the 

convolution of figure 5.1 is to have;
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1 An "N" shift register

2 A separate multiplier for each coefficient

3 An adder tree consisting of ,rN-l" adder 

This is shown in figure5.2. This several advantages:

1 It is fast because it uses a maximum amount of parallelism.

2 Also it is simple to control, because all it needs is a clock signal.

This approach can be applied to FFTs and N i ls as well. The main disadvantage 

of the structure shown in figure 5.2 is the cost, which can be quite high. Nevertheless 

it is often used in applications where speed and simplicity of control matters most 

[Swartzlander,44]. Analogue implementation, such as integrated optic devices, use 

this technique because it is simple to implement [45-47]. This structure is also used for 

correlators, which use a one-bit representation of the signal, and have to run at high 

speed. Examples of these are radio astronomy receivers [48], and matched filters for 

hard decision spread spectrum [49].

However, most of the early special purpose implementations did not use this 

amount of parallelism due to the cost/performance. Instead they used one basic 

arithmetic unit which does all the operations required by the signal processing 

algorithm. This is shown in figure 5.3. This structure needs N clock pulses to produce 

an output and uses less arithmetic hardware than the direct realisation, and thus is 

cheaper to implement. Again, any convolution or filtering, or even discrete 

transforms, can be realised using this structure [White,50], [Groginsky,51]. The major 

disadvantages are that it is slow and needs more complicated control for sequencing 

the processor. However, this is not usually the case. For low' frequency filters this 

technique with bit serial arithmetic is often used [Freeny,52]. Another system which 

uses the same structure is the microprogrammable arithmetic element(MAE) designed 

at the Plessey Research Center. A functional block diagram of the M.A.E is shown in 

figure 5.4 [Magar,53]. The multiplicand input register R1 can be loaded via two input 

ports XI and X2 selected by the multiplexer, thus facilitating easy operation in
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Figure 5.1 Convolution structure

Figure 5.2 Direct realisation  of the convolution
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multibus systems. The adder can be externally accessed via register R2 and R3. The 

control of the chip is achieved via a two phase clocked instruction set. The data is 

represented with a 4-bit, however the dynamic range can be extended by directly 

cascading the number of chips. As an example a full butterfly for a radix-2 FFT has 

been realised by cascading the 4 M.A.E devices.

The complexity of the arithmetic unit depends on the algorithm being 

implemented for convolution. Also correlation a simple multiply/accumulation is a 

sufficient gesture for low frequency. However, for FFT and NTT the arithmetic unit is 

usually the basic butterfly block of the transform. In this case the arithmetic element 

for the butterfly requires a relatively large memory', to provide two complex data and 

two complex coefficients, and to store the result in case of FFT. Gold [54] discusses 

the various trade-off involved.

5.3. APPLICATION DIRECTED PROCESSOR

The algorithm directed structure is useful when the processing consists of similar 

operations. However, certain applications such as modem and speech processing often 

need several different algorithms. For example, a modem may need filtering, 

modulation, and channel equalisation. Although algorithm directed processors can be 

used, this is often expensive because of the need to provide different functions, and the 

necessary control to tie them together. Hence, these need some general purpose ability' 

as well as dedicated hardware.

One solution is to use a general purpose LSI computer which is microprogrammable, 

and to add on to this the necessary special purpose processing element that the task 

may need. By doing this one has a more flexible microprogrammable signal processor. 

This technique is powerful because it has the advantage of adding extra facilities by 

adding or changing the microprogram. This technique has been used in many areas 

e.g. modem, speech processing [55-60].

A block digram of the Discrete Fourier Transform machine in [Chow,59] is shown
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in figure 5.5. It uses two processors, a microprocessor and a bit-slice microprocessor. 

Because of the nature of the task the machine have to perform, the problem of data 

handling will become significant. In this case, the microprocessor is used to manage 

the data and send instruction to the bit slice processor. All the arithmetic computation 

is carried out on the bit-slice processor. It uses four AM 2903 to form a 16-bit wide 

processor. The machine is organised so that the microprocessor handles the I/O of the 

data as well as controlling the bit-slice processor. The machine was able to compute a 

252 point Winograd transform with a sample rate of 6KHZ. However, the bit-slice 

can handle a sample rate of up to 18kHZ, but the microprocessor is not capable the 

data at this rate. The speed can be improved by loading and unloading the bit-slice 

processor using direct memory access. One major disadvantage of using this technique 

to perform the discrete transform of a sequence, is that by providing a fast processor to 

do the arithmetic it was found that the speed of computing a transform, using a 

microprocessor becomes limited by the number of memory access required another is 

the problem of calculating the address in order do the access.

A further approach is to have a special purpose hardware of an algorithm directed 

design and to control it using a general purpose microprocessor. In this case the 

special purpose hardware provides the speed, while the microprocessor will provide the 

flexibility. This approach has been used in image processing [Swartzlander,44], where 

a large amount of data has to be processed. A block diagram is shown in figure 5.6. 

It consists of two parts, a general microprocessor and a dedicated special purpose 

hardware. The general purpose microprocessor will handle the TO interface as w’ell as 

formating the data for the special purpose hardware.

The special purpose hardware is designed to be an efficient convolver. It requires 

the calculation of large numbers of the sum of the products in the form of the 

convolution. It is capable of 40 millions multiplications per second, which is needed in 

most image processing applications. Hence the dedicated hardware for this purpose is 

both cheap and efficient. The only limitation is the data bandwidth. Because the 

dedicated processor is connected to a general purpose processor, from which it receives
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Figure 5*^ A functional block diagran of M.A.E [re f . 533
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data and to which it returns the results, Special efforts may be necessary to assure that 

the transmission bandwidth of the general purpose processor is adequately matched to 

the requirements of the dedicated processor.

5.3.1. SPECIAL-PURPOSE HARDWARE

One of the advantages of the special purpose processor is that the operations 

required are well defined. Therefore, it is easy to determine the design requirements 

which are not available in the general purpose processor. Here we shall examine some 

of the hardware technique used for the control and arithmetic operations.

CONTROL

Most special purpose processors execute a fixed sequence of steps e.g FIR 

filtering, convolution, and transforms. This means that the control can be very 

simple and based on a counter. The control signal may be obtained by decoding 

the output of the counter using a ROM ( Read Only Memory ). In the example 

showTi earlier figure 5.1 shift registers are used for data storage. In this case all 

the control has to do is to control the movement of the data through the shift 

registers. The control for FIR filtering and convolution can be simple, relatively 

so in case of FFT’s and NTT’s.

ARITHMETIC

Special purpose processors have the advantage in that their arithmetic 

requirements e.g. word size, operation, etc are well-known before hand. This is 

especially attractive in cases where NTT’s use modulo arithmetic. This is so, 

because , for example, the number of bits required to represent the data samples 

is known well in advance. The designers usually use the bit serial logic which 

offers a reasonable trade-off between cost and complexity [ Lyon, ]. However, 

for high speed parallel arithmetic, such as parallel multipliers, the multiple input 

adder [61-63] must be used. Hence, most effort in the design of the arithmetic 

unit has been carried out in order to reduce the cost of necessary multiplication
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by coefficients.

Another advantage of the special purpose signal processor is that the coefficients 

are constant. An interesting technique, which was proposed by Peled and Liu [64-67], 

is known as distributed arithmetic. For example a digital filter perform the following 

operation;

v-i
yt = • K

n =0

where xk_n is a set of input data samples and hn is a set of pre-calculated filter 

coefficients. If both data samples are represented in two’s complement then

*  - 2*1 b k - n 2- ' ]
n =0 i =0

by reversing the order of the summations;

=  2 2 ~ '‘ [  X hn ■ bn- k ]
i =0 n =0

Hence, it is possible first sum all the coefficients multiplied by one bit of each data 

and then add and shift them. The advantage of this is that we can pre-calculate all 

possibile values of the result and store them in ROM (Read Only Memory ). 

However, the amount of storage will increase exponentially with the filter coefficients. 

Hence, this feature of the distributed arithmetic technique them less attractive in cases 

of adaptive filtering because of the large amount of update needed for the pre­

calculated coefficients.

Another aspect of the digital signal processing algorithms, such as filtering and 

discrete transforms, is the effect of finite-length register. In both cases sequence values 

and coefficients are stored in binary format with finite register lengths. This manifests 

itself in a variety of ways;

OVERFLOW

With data represented by finite word lengths, the processing results may need an 

additional bit for their representation. This is specially the case for the addition 

of two b-bit numbers. This situation is known as overflow'. It’s effect on the
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two’s complement numbers is shown in figure 5.7. In case of feedback loop 

digital filters, it can cause a full scale oscillations. A solution is to change the 

overflow' characteristic to one of those shown in figure 5.8. Characteristic (a) is 

known as saturation operation and both (a) and (b) have been shown to provide 

stable operation [Freeny,52,1975].

In some cases, for example, intermediate stages in the discrete transforms, 

overflow' is unacceptable. One approach is to divide the result of each butterfly 

stage by two. However, this aggravates another effect of finite wwd size, namely 

round off errors.

ROUND OFF ERRORS

Round off errors result from the arithmetic operations on two sets of data 

sequences. Since an M-bit data multiplied by an N-bit coefficient will produce 

M+N bit product, in all cases especially discrete transform the data word will 

grow' unmanageably. For practical reasons one cannot continuously increase the 

word size, unless it is shortened. This can be achieved by rounding or truncation 

after each arithmetic operations. This inevitably produces an error at the output. 

This is combated by temporarily increasing the length of the data word for the 

duration of the computation. However, the hardware cost to provide these extra 

bits will manifest itself by an increase in the required storage, adder and 

multiplier hardware.

One way of avoiding these problems is to use floating point arithmetic [Freeny,52 

Oppenhiem,68], but this is expensive to realise directly in hardware, or on a single­

chip.

Overflow and rounding problems are often the result of intermediate calculation in 

digital signal processing algorithms. In this case the use of Finite Field arithmetic, for 

the calculation of signal processing algorithms, will overcome the problem of overflow 

and rounding. When Finite Field arithmetic is used overflow does not matter as long 

as the output is representable in the number of available bits. This is because the
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Figure 5-7 Overflew characteristics of 2 's  complement arlthmatlc

Figure 5*8 Modified overflow characteristics
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output will be correct irrespective of the number of times the intermediate result have 

overflowed [Agarwal,22,23].

5.4. GENERAL PURPOSE SIGNAL PROCESSORS

A general purpose signal processor is a piece of hardware which executes a 

sequence of instructions that can be altered. In order to understand the requirements 

of a general purpose signal processor, it is best to study the architecture of a general 

purpose computer.

A block diagram of a general purpose computer is shown in figure 5.9. It consists 

of four basic units:

Figure 5.9 General purpose computer
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THE CONTROL UNIT

The job of a control unit is to fetch an instruction from memory and, then to use 

the information contained in the instruction to control the other parts of the 

computer.

THE PROCESSOR UNIT

This manipulates data, which is obtained either from the memory or the 

input/output unit, to perform the operations required by the instructions received 

by the control unit.

THE MEMORY

This is a set of storage locations. A particular location can be selected by giving 

the memory' unit its address.

THE INPUT/OUTPUT UNIT

The Input/Output unit is the point where data can be fed into the system and 

from which the result can be transmitted to the other systems or user.

The architecture of a computer is defined by the operations which it can perform 

and the precision and quantity of data it can handle. In this case the architecture of a 

computer will depend on the following features:

ARITHMETIC

The computer must have some form of calculating ability', and the provision of 

the necessary arithmetic operations, to perform a signal processing task.

DATA ACCESS

In a general purpose processor, the data accessing address must be programmed. 

Therefore, careful attention must be paid to make this efficient.

SPEED

The speed will be always determined by the technology. However, other 

techniques can be used, such as pipelining in order to increase the speed.
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INPUT/OUTPUT

Signal processors must receive and transmit data. Sometimes this can be quite 

complicated, and hence, affect the performance of the processor. Therefore, it is 

important that the Input/Output structure be efficient, otherwise the processor will 

be restricted in its application range.

CONTROL

Unlike the special purpose processor, general purpose computers have to make 

decisions, and unless the control unit permits this to happen efficiently, the 

machine will be restricted. Another aspect of the control is the fetching and 

decoding of the instructions. If this procedure is not done efficiently it can cause 

a significant overhead on a general purpose machine.

A great many digital signal processors [70,82] are based on a general purpose 

computer structure slightly modified to improve its efficiency. The main disadvantage 

of the general purpose processor is the lack of parallelism. It is usually only one 

arithmetic unit which is used and there is only one path to the main memory. 

However, there are a number of techniques which can be used in order to adopt the 

architecture of the general purpose computers for digital signal processing tasks.

Firstly, the program and data memory’ are separate. This allows the processor to 

fetch instructions and data in parallel, unlike the more usual general purpose 

computers which must fetch them sequentially, because they are both in the same 

memory'. The advantage of this technique is to remove the restrictions on the width of 

the instructions, wiiich can be made as wide as necessary to control the processor.

Secondly, the arithmetic and memory' access can be overlapped. This technique is 

known as PIPELINING. However, the designer aim is to keep the number of 

pipelining stages as low as possible, as the complexity' of the control increases with the 

pipeline stages.

Let us now look at a specific example of a general purpose signal processor the using 

the above ideas.
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5.4.1. THELSP/2

A basic block diagram of the LSP/2 [Blankenship,72] is shown in figure 5.10. It 

is a programmable signal processor realisation, based on multiple functional units. 

The main architectural features are 64 dual-copy, 32-bit general registers, three 32-bit 

parallel data busses and a set of dedicated functional units. The dedicated functional 

units include index arithmetic unit, an Arithmetic Logic unit, a multiplier and division 

units, also 4kx32 bit data memory. The LPS/2 instruction set is divided into four 

classes: Arithmetic instruction, constant handling, control and memory addressing. 

Each class may encompass several function modules; e.g

1. Arithmetic A + B — > D , A x B — > D ,.....

2. Constants A + B — > Y ( Y is supplied in command control )

3. Control Y — > P if A > 0 ( P is program counter )

4. Memory A — > M(B) , M(B) — > A

Code is supplied by a separate program memory. It is this separation of data and 

program memory which allows the execution of instructions, done in parallel with the 

fetching and decoding of the next instruction while the present instruction is in

progress.

Three streams of events work concurrently: see figure 5.11, accessing the program 

memory, the data register read/write and function module operations. The timing of 

the machine starts with the content of the program counter being altered, and new 

instructions being fetched from the program memory. When the program counter is 

altered, the instruction register is loaded with the instructions fetched during the 

previous epoch and decoding starts. In the epoch defined by T0 to 7, the operands A 

and B are read from data memory. During the intermin between Tj and T0 , selected 

function module operates on the buffered operands and reports the results to the data 

bus.

Die timing cycles between the processor elements are not the same. In order to 

accommodate the variation in timing, linkage between the decoding control and the
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timing generator is accomplished. In effect, spacing can be varied in discrete 

increments, according to the type of instruction being decoded. This is known as 

adaptive timing.

In summary, there are two main disadvantages;

1. Because the control mechanism is sequential, full utilisation of the potential 

parallelism of the functional modules cannot be achieved. Hence, only some of 

the hardware is active during each cycle.

2. The adaptive timing will cause a further complication in the system control.

5.5. LSI GENERAL PURPOSE SIGNAL PROCESSOR

The appearance of LSI technology in the mid seventies provided a special 

opportunity' for an economical solution to signal processing problems. In this respect, 

a number of LSI single-chip general purpose signal processors [83-87] were created and 

designed in order to capitalise on the new technology', in order to provide a quick and 

cost effective way to implement a broad range of signal processing applications.

The approach taken for the development and design of the LSI single-chip 

processor is based on the more general purpose computer architectures. Namely, there 

are based on the single processing element, control, and separate data and program 

memories. As an example we shall look at a number of these LSI processor.

5.5.1. THE BELL DIGITAL SIGNAL PROCESSOR

A block diagram of the Bell LSI single-chip processor [Boddie,84] is shown in 

figure 5.12. The digital signal processor is a general purpose building block w'hich can 

be programmed to perform a variety of digital signal processing functions in the 

telecommunication application areas such as filtering, modulation etc. It is fabricated 

in NMOS technology' and packaged in 40-pin DIP.

It has the following features;

1. A separate data memory (RAM) used for variable data, and delay, and
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F i g u r e  5 . 1 1 O v e r l a p p e d  t i m i n g  ( r e f .  72)

program and a fixed data memory (ROM) which they can be accessed in parallel.

2. An address arithmetic unit which generates addresses for the ROM and 

RAM.

3. An arithmetic unit which accept a 16-bit and 20-bit operand to form a 36-bit 

product, and which accumulates the product with a 40-bit accumulator, and 

rounds the accumulator to a 20-bit word for storage.

4. A serially input/output port.

The processor is also able to access an external memory, with no reduction in 

processing speed. The arithmetic unit is pipelined in three ways: i) the formation of 

the product of two set of data, ii) the addition of the product and previous result and
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iii) the transfer of the accumulator to memory. This pipeline structure keeps all parts 

of the arithmetic unit busy at all times and allows the processor to maintain a high 

throughput. Input and out put are handled through an 8-bit buffers with an automatic 

serial-parallel conversion.

Control of the processor is done by the control unit. Instructions from ROM are 

latched into the instruction register and subsequently decoded in the control unit. 

Then the decoded signal is transferred from the control unit to the other blocks and 

registers as needed.

The programming is done in assembly language. It has two types of instruction: 

arithmetic and auxiliary'. The arithmetic instructions control processor computation in 

the arithmetic unit in order to evaluate the required function. Auxiliary instructions 

are used to control noncomputational aspects of the processor such as initialisation of 

registers.

Because of the pipeline nature of the arithmetic unit, each instruction must contain up 

to four statements, one for each hardware components for example multiplier, 

accumulator, register, and store. In this case, in order to speed up the operation of the 

processor, each instruction is fetched from the ROM two cycles before its execution 

begins. This allows time to decode the instruction before execution begins. However, 

the prime difficulty' will occur in the jump instructions. In this case, that two 

instructions the follow the jump are already in the operating hardware when the jump 

takes effect, and their data field will affect instructions which follow' the jump. They 

may even differ from the data filed which would be fetched if the jump destination 

w'ere reached by normal program the counter. In this case, the assembly cannot 

determine any differences, and hence produce some strange result.

The performance is measured in terms of amount of signal processing and can be 

performed by the processor. This obviously depends upon the cycle time, which is the 

time for basic machine operations, such a multiply or register setting.

In summary, the digital signal processor provides a solution to many voice band
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application areas. Its particular advantage is the separation of data and program 

memory plus arithmetic operation operations done in the pipeline.

However, the main disadvantage of single-chip processor is the small amount of on- 

chip memory.

5.5.2. THE REAL-TIME SIGNAL PROCESSOR

The Real-Time Signal Processor has a fully programmable signal processing 

architecture with external data and program memory. A block diagram of the Real- 

Time processor [Mintzer,85] is shown in figure 5.13. The machine is designed for 

implementing the signal processing algorithm, and especially in the area of 

telecommunications. This machine is designed with consideration for easy 

programming, since the application software dominates the cost of a processor 

development time. The broken lines represent the chip boundary. The Real-Time 

processor interfaces with the external world through three parallel ports, one control 

and two data lines. The data port will allow' for a faster flow of data to and from the 

processor, w'hile the control port is used for loading programs into the machine, via a 

fully parallel Input/Output interface. The data and instruction memory are external, 

hence they provides flexibility but need more control instruction.

The Real-Time processor architecture consists of four functional subunits. They are:

1) The instruction fetch and sequencing

2) The data store address generator

3) The data store access

4) The arithmetic unit

Unlike the Bell processor[Boddie,84], the arithmetic unit of the Real-Time processor 

does not have a fast parallel multiplier. However, multiplications are mechanised by 

shifting the multiplicand in one of the arithmetic unit registers and accumulating the 

partial sums in the second arithmetic unit register. The reason for not having a fast 

multiplier hardware is traded off against its flexibility, and provides the other hardware
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with easy programming and with addressing of the data.

An instruction pipeline is used to increase the performance. Most Real-Time 

processor instructions use each of the first four units once, but only one of them is used 

during any cycle. In the first cycle of the instruction execution that instruction is 

fetched, followed by computing the data store address in the second cycle. In the third 

cycle the data store is accessed and in the forth cycle the arithmetic or logical 

operations are carried out as shown in figure 5.14.

The Real-Time processor is a one address architecture and has four addressing modes. 

These are, direct addressing, offset addressing, index addressing, and mask addressing. 

The index and mask addressing use two index registers which are extremely useful for 

testing, and the completion of loops. This address generation technique will provide 

the Real-Time processor with a robust of addressing capability, and it will also spend a 

sizable area of the chip.

One major disadvantage of the processor is the presence of the instruction 

pipeline. This instruction pipeline in conjunction with one of the addressing mode will 

create a pipeline hazard. That is, the processor, in an instance of time will want to 

transfer the result of an operation wtiich is not yet computed. In this case the user 

needs to provide a no operation instruction in his application program. But this is a 

formidable task from the user’s point of view. Hence, the processor needs a software 

support which accepts the naively written code and converts it to conform with the 

instruction pipeline. Hence, one needs a number of hardware supports for this 

procedure.

In summary', the Real-Time processor architecture w'as strongly influenced by the 

desire to make programming the processor as simple as possible. Hence, a number of 

desirable hardware supports such as a fast parallel multiplier for coefficient 

multiplication, have been traded-off for the hardware support of easy programming.
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Figure 5 • 13 The block diagram of the Real-Time signal processor
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5.6. CONCURRENT AND PARALLEL PROCESSING

Many signal processing algorithms, such as Number Theoretic Transforms, 

filtering etc. often deal with the array of data. It is possible to design computer 

systems which will speed up the computation of such data arrays. Computers which 

are designed to process large amount of data quickly are known as array or vector 

processors.

Parallel computers can be classified in terms of parallelism within the instructions 

and parallelism within the data. Flynn[89] observed that the method for achieving 

parallel operation depend on replicating the instruction stream and data stream. This 

gives rise to four classes of computers;

I) The Single-Instruction Single-Data stream (SISD) computer is a serial computer 

which has already been mentioned in the previous section.

II) The Single-Instruction Multiple-Data stream (SIMD) computer is an array 

processor.

ID) The Multiple-Instruction Single-Data stream (MISD) computer, which each 

operand operates upon simultaneously and by using several instructions.

IV) The Multiple-Instruction Multiple-Data stream (MIMD) computers, 

see figure 5.15

The array processor consists of a number, N, of identical arithmetic and memory 

units, all controlled by one control unit (which itself a computer). These processors 

are of the SIMD type class of parallel computers: figure 5.15b. Clearly if all the data 

is present at a right place the array processor can exhibit an N fold increase in the 

processing time.

This sort of architecture at first sight seems quite ideal for some signal processing 

algorithms. However, there are two difficulties with this type of architecture

1) Control flow'

Conditional branches are particularly vexing in a SIMD computer. Suppose, for
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example an action must be done if the result of a calculation is zero and different one 

must be done otherwise. What is to be done if some of the processors have results that 

are zero, and some do not? Because all the processors obey the same instructions, it is 

not possible to split the execution streams as one would desire. In this case, one has to 

test for zero conditions for those processors with zero results, and test for those 

processors with a non-zero result. In order to implement this facility a control bit is 

required in each processor. Which can be set or cleared, and will cause a processor to 

ignore the instructions. The processor which fails the test can be masked out.

Using this technique conditional instructions can be executed on an array 

processor. However, some of the processors are idle during the execution of 

conditional instructions, thus reducing the effective parallelism.

2) Data flow-

A SIMD structure assumes that each memory unit can provide the necessary data to its 

related processor. However, the ability to do this is dependent on the way the data is 

stored in the memory. The basic constraint which hampers the utilisation of memory7 

is, that it can only access a data per memory cycle. In the most favourable case the N 

data of a vector instruction lies in distinct memory, and thus can be fetched 

simultaneously. In the least favourable case, the N data ties in a single memory' and 

must be fetched sequentially. In one dimensional cases the vectors involved are 

normally stored so that one element of the vector is in each memory' module. 

However, the problem arises in the two dimensional cases. Stone[90] presents two way 

of storing the data in the memory which can be accessed in parallel.

The second problem which arises in the SIMD machines is, that which occurs 

when a processor is required data from its own local memory and from elsewhere. 

This is particularly the case for transform algorithms such as NTT. This problem 

arises the question of inteiprocessor communications. The ideal interconnection 

network between the processors and memories would be a cross-bar exchange. This 

w'ould allow any processor to connect to any memory' in one machine cycle.
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Unfortunately, the cost and complexity of such networks is too high. The simplest 

possible interconnection is the nearest neighbour one. This has the advantage of 

cheapness and modularity. However, there are other interconnections which can be 

found in the literature.

Another alternative way to processing vectors, is to use a highly pipeline 

structure. Such structures are known as M1SD machines. A block diagram of such a 

machine is shown in figure 5.15c. It contains its speed by having a highly pipelined 

arithmetic unit perform such basic operations. The stages are isolated from each other 

by registers. By cascading several of these stages an arithmetic operation can be 

performed at higher clock rates. The problems of M3SD machines are again data and 

control flow, but they are different to those of SIMD machines.

In the case of control flow, the speed of pipeline architecture will be reduce by a large 

amount when conditional instructions are performed. This is because a new instruction 

must be fetched, which means that all the data must be discarded, and thus the time 

taken to access that data and operate on them is wasted. Therefore, in the worse case 

M cycles of processor time are wasted by one conditional branch. Also, the necessary 

controls and interlocks which ensure that the correct sequence of instructions are 

obeyed can be quite complex. A related data flow problem is which makes sure that 

the memory' locations which may be modified by the output from the pipeline are not 

used until this has occurred. Another problem is the memory bandwidth. Hence the 

accessing of operands form memory will have a major effect upon the overall 

performance of the machine.

The problem caused by the conditional branch in the array(MlSD) processors can be 

overcome by allowing each processor to be autonomous and execute its own instruction 

stream. Then, wtien a conditional branch occurs each processor will continue to follow' 

its own instructions, and hence parallelism is restored. A further advantage is that 

completely different programs can be executed by different processors, allowing greater 

parallelism in tasks which require many different operations. This structure is known 

as an MIMD machine. A block diagram of such a machine is shown in figure 5.15d.
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The interconnections amongst these modules are extensive as shown in figure 5.15d. 

A switch connects every processor to every memory. The switch is an NxN cross bar, 

where every N2 cross point is a potential connection. As N increases, the complexity 

of cross bar network will increase enormously. To overcome this problem a technique 

known as bus interconnection is used [Angus, ]. Each processor can access its own 

local memory without using the main bus, unless it requires data contained in a 

memory other than its local one. This works well only for a small number of 

processors per bus.

Another approach is to have several bus connected in hierarchy. Several low' level 

busses with a small number of processors per bus are connected together by a large bus 

which can be connected to another one. This structure reduces bus contention by 

having several busses running in parallel. However, accessing via a higher bus take 

more time.

Further problems of M1MD machines are the related ones of synchronisation of 

separate processors and controlled use of shared data. As MIMD machines can 

execute different programs there is no guarantee that they will be in step. If one 

processor need some data that is being calculated by the other one the data may not be 

available when the program get to the part that requires the data. Hence, there is a 

need for some form of control where by each processor should inform each other. This 

will greatly increase the overhead control. The final problem which relates to the 

synchronisation is the possibility of the deadlock, which occurs when a processor is 

waiting for some results from other processors.

In general the major problem with these classes of parallel computers is the 

intercommunication betw'een the processors and memory units. This is due to the fact 

that most of these processors are of the Von-Nueman. That is every processing 

element has to communicate with its local memory in order to retrieve the data. It is 

this bottleneck and hence the memory bandwidth which will reduce the speed of

operation.
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As we explained earlier most designers have used microprogrammed computer-like 

architecture to retain a high throughput by providing hardwired multipliers and 

addressing units, separating the program, data and coefficient memories, and adding a 

complicated multiple bus structures in order to avoid bottlenecks. In this case 

programming is used to control the flow of data through each processing elements.

5.7. SYSTOLIC ARRAYS

One could look at the digital signal processing algorithms in a different way. 

Because digital signal processing algorithms will process the same computation all 

over, it is possible to describe most digital signal processing algorithms strictly in terms 

of data-flow graphs. For example, the NTT of figure 5.16. Note that the flow of data 

is regular and there is no need for conditionals of any kind, and hence it is preferred 

to use special purpose processing elements. In fact this is in contrast to the general 

path computers where the flow of data is control either with a high level or low level 

programming language. However many designers have used the general data path 

computers rather than special purpose processing elements. This is because the 

overhead cost of using the special purpose machines was too high to be economical.

With the great advances made in the integrated circuit technolog)’ in recent years 

and in particular VLSI (Very Large Scale Integration), it is now' possible to design and 

implement special purpose processing elements cheaper than before. Therefore the 

cost-effectiveness can be reduced by the use of appropriate architectures. If a structure 

can truely be decomposed into a few types of simple substructures which are used 

repetitively, great saving in terms of design, implementation, and fabrication time can 

be achieved. This is specially true in the case of VLSI designs.

In order to utilise the potential advantages of VLSI technology new design 

philosophy and methodological concepts have to be defined. Mead and 

Conway[91,1980] have set up such concepts:

1) A few different types of simple cells.
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2) Simple and regular flow of data, so local and regular interconnection can be

achieved.

3) Use of pipelining and concurrency.

One solution to the above challenges is the concept of systolic arrays Kung[92,93,94]. 

A systolic array (system) is a collection of relatively simple processing units, either all 

of the same type or a mixture of a few different types, which are connected by a simple 

communications network and which operate in parallel. The basic principle 

architecture of a systolic array is illustrated in figure 5.17.

By replacing a single processing element with an array of processing elements, a higher 

computation rate would be achieved without increasing the storage bandwidth. In this 

case, the array uses a set of data which has been retrieved from the memory many 

times over without having to store or retrieve the intermediate result, thus allowing 

speedup relative to memory bandwidth. Kung[94-1979] has shown that a linearly 

connected array, figure 5.18, can be used to multiply an NxN matrix by a vector of N 

elements using a N/2 processor, each of which performs the inner product operation of 

Y=Y+X.W . As the matrix and vector shift into the array, they always move in the 

same way and hence require no control. In this case each processing element performs 

one computation at each step. Kung further used the same technique of linear systolic 

array in applications where two sequence of data have to be convolved [93,1982]. He 

illustrates several systolic convolution array structures:-

a) A systolic convolution array with global data communication

b) A systolic convolution array without global data communication

In design a) a broadcasting technique has been used, where one sequence is 

preloaded to the cells, one in each cell, and stays in the cell throughout the 

computation, while the partial results move systolically from one cell to another, that is 

each of them moves over the cell during each cycle. At the beginning of a cycle one 

data is broadcasted to all the cells, this is shown in figure 5.19. During each cycle the 

partial result moves from the left-most cell to its neighbouring right cell, and the final
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Figure 5*16 NTT structure

Figure 5.17 Basic principle of systo lic  array structure
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result is obtained from the right-most cell at a rate of one result per cycle.

The opposite of broadcasting is fan-in through which data items from a number of cells 

can be collected. This is shown in figure 5.20. Designs of this type, using the fan-in, 

have been known for quite a long time.

Although global broadcasting or fan-in techniques have partially solved the speed 

problem, implementing it in a modular and expandable way presents another problem. 

Providing a data item to all the cells in the systolic array requires the use of a bus. As 

the number of cells increases, wires become long for a bus, and hence expanding these 

non-local communication paths to meet the increasing load is difficult without slowing 

down the system throughput, which is very significant at chip and board levels. 

However, Kung argueed that it is possible to overcome this engineering difficulty by 

using the array structure without global communication. In this case both sets of data 

will move either in the same direction or in opposite direction as shown in figure 5.21. 

The problem of the case is that only half of the cells are active at one time so it will 

lose some computational power.

A number of author’s have investigated the implementation of the digital signal 

processing algorithms by applying the similar ideas explained so far at bit level, rather 

than the word level, as suggested by Kung. Foster [95,1980] designed a special 

purpose pattern matching chip. It uses a linear array of cells as depict in figure 5.22. 

The chip achieved in two modules, each consisting of a linear array of identical cells. 

Cell A is a one bit comparator and, has one bit of the pattern (datal) flowing from left 

to right, while a one bit of the string (data2) is flowing from right to left and the 

comparison result for the pair of the characters flowing from top to bottom to cell B. 

Cell B will accumulate the result receives from the comparator above. It maintains a 

temporary result, and at the end of the pattern it uses the temporary result to replace it 

instead of the final result which flows from right to left. This structure is again an 

example of non-global communication which is most important in the chip design.

Another example of such structures is presented in figure 5.23 [Evans,96,1983].
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This is a multi-bit convolver based on the bit level systolic array architecture. The 

convolver array consists of three distinct regions. Each region contains a different type 

of cell. However, the function of each cell type is similar, in that each contains some 

simple logic, a number of latches and either a half or full adder. The data flow' 

through the array is as follow';

On one phase of the system clock, signals enter these cells from the direction 

indicated. The required results will be generated, and together with the necessary' data 

are made available at the cell outputs on the opposite phase of the clock

The main convolution operation takes place in region 1. Within this region each 

coefficient row' is associated with a particular row' of the array. The interconnection of 

each cell is such that on each row' the coefficient bits are moved from right to left, 

while the data bits move serially from left to right. The interaction which occurs on 

each row' of region one, between bits of a given coefficient word and the incoming 

data, may be regarded as an individual multiplication operation, in that all the partial 

products required within the multiplication process are generated by the interaction 

between the two bit streams. However, rather than summing up these partial product 

to form a final result, each partial result is latched to the cell below'. This movement 

will result in a diamond shaped region. The reason for this action is that each 

diamond shape is associated with a single convolution result. Hence, the 

corresponding partial products generated within a particular row' of the array are 

accumulated as this diamond region moves down.

All partial products generated within a particular column of the array are 

accumulated in order to form the final result. This is done in region 2.In summary a 

single chip CMOS convolver has been implemented wtiich is based on the systolic 

array. The design and layout are simple with regular interconnection between the 

cells.

Other authors have used the systolic array structure for the implementation of digital 

signal processing algorithms and can be found in relevant literature [97-98].
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Figure 5.18 Systolic convolution array structure

Figure 5.19 A sy sto lic  convolution array with global data cannunicatio]

Figure 5.20 A sy sto lic  convolution array without global data ccmmunlcatic
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Figure 5.21 Systolic convolution array

Figure 5.22 S y sto lic  convolution a rray
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In Summary, systolic array architecture of digital signal processing algorithms 

have a number of advantages over conventional structures, namely;

1) The design makes multiple use of each input data without the need to restore 

and retrieve the intermediate result. Because of this property' high throughput 

can be achieved. The data flow communication between each element of the 

array can be achieved by either use of global communication, such as 

broadcasting or fan-in, or non-global communication. For modular expandibility 

the later approach is preferable.

2) The processing power of systolic arrays comes from concurrent use of many 

simple cells rather than sequential use of a few powerful processors, as in many 

conventional architecture. This can be achieved by pipelining the stages involved 

in the computation of each single result, or by multiprocessing many results in 

parallel, or by both.

3) Systolic arrays will use only a few' types of simple cells, and hence reduce the 

overhead cost of design and implementation will be reduced.

4) The data and/or control flow in the systolic array are simple and regular, 

hence it is easy to expand the array structure.

Systolic arrays will avoid long-distance or irregular wires, or bus-structure for data 

communication, because long wires or bus-structure at chip level will cause long delays 

and therefore reductions in the throughput.

The only long distance communication (apart from the supply lines) is the system 

clock. Of course, self-timed schemes can be used instead of synchronising(clocking) 

the neighbouring cells. However, for the following two reasons the synchronisation is 

preferred to self-timing [99];

1) Each cell in the systolic array performs the same kind of operation as every 

other cell in the array, thus there is little variation in the speed at which the array 

will operate.
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2) In cases where the variations do exist, the throughput of computation along 

the path in the array is limited by the slowest cell on the array.

In general, the systolic array architecture is simple, regular and expandable. The 

data flow is easy and simple, and once the data has entered the array can be processed 

without the need to communicate with the storage unit, which in terms is advantageous 

over the conventional parallel architecture. The control flow is very simple, and in 

most cases the data movement is controlled by a simple clocking system as opposed to 

the complex and complicated control for the conventional array processors. However, 

the only disadvantages of these architectures is the clocking skew between the two end 

cells(PES) in the very large linear systolic arrays. This limitation can be overcome by 

either lowering the system clock or introducing delays between each member of the 

array or simply folding the array.

SUMMARY

In this chapter we presented a survey of different digital signal processor 

architectures. The main advantage of general purpose processors is that they are 

flexible. However, their limitations are namely, speed, limited memory and data 

storage, lack of parallelism, and the need for efficient control mechanism. The 

advantage of special purpose processors is that they are built to perform a specific 

function hence, operate at high clock rate. This makes them economical to built 

especially in VLSI, as one needs to produce the hardware necessary for that function. 

The main disadvantage of these is inflexibility. As for the concurrent and parallel 

processors architectures, it can be concluded that systolic arrays are better suited for 

VLSI implementation in terms of data communication between the elements of the 

array, simple control, and regular interconnection between the cells.
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CH AFFER 6

THE VLSI ARCHITECTURE FOR ADAPTIVE DIGITAL FILTER
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6.1. DESCRIPTION OF THE VLSI ARCHITECTURE FOR ADF

In this chapter the design of a special purpose VLSI processor architecture for an 

Adaptive Digital Filter is presented. It was designed to have the following 

characteristics;

1) Highest possible speed

2) Ability to perform arithmetic operations required by NTT

3) A few simple and regular processing elements

4) Use of pipelining and concurrency

In this chapter we first outline the design considerations taking into account the 

new concepts in the system design utilising the VLSI technology, and then give an 

overall view of the machine. The constituent parts are then be examined in more 

detail down to the circuit logic and layout of each cell. Particular emphasis will be 

placed on the following;

1) Simple and regular processing elements which support the NTT arithmetic

operations

2) Local and regular communication between the processing elements which

minimises the time and silicon area

DESIGN CONSIDERATION

As explained in previous chapter, most digital signal processors use many off-shelf 

LSI and MSI integrated circuits to design and implement a general purpose system, 

and with an aid of programming it was possible to do as many as signal processing 

algorithms in a cost-effective manner. However, with great advances in the integrated 

circuit industry it is possible to design and implement a cost-effective special purpose 

processor for a number of signal processing algorithms. In this respect it was decided 

to design a special purpose processor for an adaptive digital filter utilising the VLSI 

technology.



6-3

In order to fully materialise the advantages of VLSI technology7 for designing a 

special purpose adaptive digital filter processor, new design concepts have to be 

defined. The cycle of designing such a system can be roughly broken down into a 

number of step as follows;

1) Task definition

2) Design

algorithm 

system level 

logic

circuit level

3) Fabrication

If all these three cycles are used hand in hand then the potential advantages of the 

VLSI can be realised. However, in this thesis we shall only concentrate on the issues 

concerning the design phase.

Our system design strategy7 is based upon the "top-down" design methodology7, that is, 

the problem(algorithm) which has to be solved is decomposed into smaller 

subproblems. Once we achieve the decomposition it is then possible to define the 

functional block for each subproblem into more detailed block diagram until we get 

down to the low-level operators such as adders, multipliers, etc. Then by assembling 

low-level operators into higher ones it is possible to say that the system is designed.

Based on the design methodology expalined, we first examine the decomposition of 

the algorithm which has to be done mainly ADF, follows by the functional block 

diagram for which the algorithm can be implemented. Once this stage has been 

achieved, it is possible to define how each functional block diagram can be designed.

6.2. DECOMPOSITION OF THE ADF ALGORITHM

As explained in previous chapters the adaptive filtering can be done either in the
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tíme or frequency domain. It was decided that, for greater accuracy and higher filter 

length, design a frequency adaptive digital filter. A block diagram of the ADF is 

shown in figure 6.1

It consists of three major parts, transformation from one domain into another, the 

adaptation, and inverse transformation.

Following the study outlined in chapter 3, it was decided to use the NTT for the 

transformation part. Recall equation 3.1

*(*) -  2 > (" )  • «(Bt) 
n =0

fork = 0,1,2,...... ,N-1

It is fairly easy to see that a simple multiply-add technique can be recursively 

used in order to obtain the corresponding coefficients. However, in order to utilise the 

VLSI design model set out earlier, the NTT algorithm can best be implemented by a 

decomposition technique. A common approach for the decomposition of the NTT 

algorithm is to partition the algorithm into smaller parts, find a solution for the parts 

and then combine the solution for the smaller parts into a solution for the whole. This 

approach is known as Divide-and-Conquer.

The analysis of the NTT algorithm is as follow's;

Evaluating X(k) given in the above equation is equivalent to evaluating the 

polynomial;

P ( x ) = ^ a , . x i (6.1)
i=0

for x= a0,a1,...... ja*-1 where a, is a length N input data vector.

The principle of divide and conquer will be applied to the polynomial evaluation 

of (6.1). If N is even and a power of two, then the polynomial P(x) can be written as;

P(x)  = P 0(x) + x W  />,(*)

Where

N/2 - 1

PoOO = 2/ =0
a, x
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N/2.

P\(x ) = S - 1g(,+N/2) ■ *'i=0

Recursively applying this divide-and-conquer approach until we are left with a 

N-l 1st degree polynomials. Then substitute the value of x and add the results. This 

direct sequential approach to the evaluation of P(x) is not efficient and it takes a 

considerable time for real time signal processing. However, a more efficient way is as 

follow's;

Evaluating the polynomial P(x) at a point x = a is equivalent to finding the 

remainder where the P(x) is divided by x - a .  Therefore the evaluation of the NTT is 

reduced to finding the remainder when N-lst-degree polynomial is divided by each

x - a ' ’S.

Simply dividing P(x) by each x -a '  ’s is a long procedure. To obtain a faster 

algorithm, we multiply each x - a '  ’s in pairs, then multiply the resulting N/2 

polynomial together until we are left with a polynomial and Q2 . Next we divide 

P(X) by each Q} and q2 , obtaining the remainders R1 and r 2 each of degree N/2. 

Since x —a‘ is a factor of Q1 and Q2, finding the remainder of P(x) divided by x — a' is 

equivalent to finding the remainder when each R1 and R2 divided by each N/2 

appropriate x -a '  ’s. We define the remainder R, when P(x) is divided by Q: as follow;

N/2

R j  =  2 “ 1 ( a i + • <W/2 )i=0

However if one were to compute the NTT of a sequence, one would work only with 

the coefficients, and that simplifies the procedure even further.

The best w'ay to show' how' the above decomposition for the NTT algorithm takes 

place is by using a tree type graph. We use a binary' tree as a model for the 

decomposition of the NTT. The decomposition procedure for N=4 ( transform length 

) is shown in figure 6.2. At the top of the tree lies the NTT algorithm wiiile on the 

consecutive level lies the remainder of the previous result divided by the corresponding 

x —a' ’s. Since one only works with the coefficients, it is possible to present the
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decomposition procedure strictly in terms of the input data. This is shown in figure

6.3. It can be seen that each node in any level of the tree will receive two sets of data 

from its previous level and after some simple arithmetic operation on the data, it 

passes the result to its descendant level for further processing until we end up with the 

base of the tree which is the final result.

This top-down decomposition of the NTT algorithm shows clearly that, the flow 

of data is simple and well-defined, as well as parallel and/or pipelining. Hence it is 

attractive for the VLSI implementation. The same procedure can be taken for the 

inverse transform algorithm. In the next section we shall look at some of the NTT 

structures which are suitable for the VLSI implementation.

6.3. VLSI ARCHITECTURE

Following the studies outlined in previous chapters, it was decided to design a 

special purpose processor. To this end attention was focused to the speed of the 

arithmetic operation rather than facilities to carry out the broad range of signal 

processing algorithms.

A broad overview of the frequency domain adaptive digital filter block diagram is 

shown in figure 6.4. It consist of three major parts;

1) The NTT processor

This provide the necessary arithmetic operation in order to transform a set of N-point 

data sequence to another domain for further calculation and processing.

2) Filter output and adaptation

This will provide the required filter output, by multiplying the coefficients of NTT(l) 

with the preloaded filter coefficients, as well as, performing the necessary operation 

needed for the adaptation procedure.

3) The inverse transform

This will process the filter output and present the results in the domain needed.
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Since all the operations are done in the finite field, and for the reason given in 

the previous chapters, it was decided to use the FNT technique for the transform

stages.

When designing filters, it is important to notice that the dynamic range of the 

filter should be sufficient, however, this is dependent upon the choice of the modulo 

M. For higher dynamic range M must be large, but the problem of large value of the 

modulo could cause great complexity and in most cases it is not realisable in hardware.

In this case one can use a composite modulo M = m l m2, ........ ,mL where each submodulo

is mutually prime.

In this instance the adaptive digital filter is divided into L identical sub-block 

filters, each of which processes on the same set of data but on different modulo, and 

the final result can be achieved by accumulating the outputs of each sub-block. And 

since the result of one sub-block is independent of the other sub-blocks, greater 

parallelism can be achieved. This new adaptive digital filter block diagram is shown in 

figure 6.5.

Let us now in great detail look at the structures for each part of adaptive digital filter 

block diagram.

6.3.1. THE NTT DATA PATH

The algorithmic structure for an FNT of length 4 is shown in figure 6.6. Each 

step consists of the parallel propagation of N data points along the data path, followed 

by the parallel execution of N butterfly operations. Each node in the butterfly 

operation can be depicted as a multiply and add operation which is shown in figure

6.7. Since the root of unity ( a ) is a pow'er of two, then the scaling stage in the 

butterfly operation would be reduced to only a word shift, hence reducing the 

hardware complexity. Let us now present a number of optimal or nearly optimal 

designs for an FNT network.
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Figure 6-3 Décomposition of the FNT coefficients

Figure 6 .4 Frequency Adaptive D ig ita l f i l t e r  s tru c tu re
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6.3.1.1. THE DIRECT FNT ON A SERIAL PROCESSOR

A block diagram of a highly serial implementation of the FNT algorithm is shown 

in figure 6.8. It has three basic parts;

1) Memory unit

this is used to store the FNT coefficients namely a the root of unity, as well as the 

intermediate results obtained from the processing element.

2) Processing element

This does the finite field arithmetic calculations required by the butterfly stage. It has 

two units, a programmable shifter and an adder. The design of these two units will be 

delt with in next following sections.

3) The microprogrammed control unit

This controls both the processing element and the memory’ unit simultaneously, thus 

avoiding any synchronisation problems. This is a finite state machine and we can use 

a programmable logic array for providing the required control signal needed by the 

other units.

The operation of this circuit is as follow's;

The appropriate data would be fetched from the memory' and fed into the shifter 

for scaling it with the correct value of a , which can be fetched from the memory' unit. 

In this case, it is the job of the controller to make sure that the correct address for 

retrieving the correct data from the memory is achieved. The second data would the 

be retrieved from the memory' and would be fed into the adder. The adder would the 

compute the sum of the latest data and the output from the shifter and store it back in 

the memory'. These operations would be carried out recursively until the required FNT 

coefficients have been achieved.

This highly serial implementation of the FNT would take a long time and hence it 

is slow'. This is because it has far too little parallelism, and therefore it does not fully 

fulfill the VLSI design consideration which w'as set up earlier.
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The designs in the next three sections employ progressively more parallelism to achieve 

better performance.

6.3.1.2. SYSTOLIC ARRAY FOR FNT

If one looks at the FNT decomposition algorithm of figure 6.3, any single 

butterfly stage can be viewed as a transfer from one register to another through a 

processing element. This is shown in figure 6.9. Here, we have a clocked input 

register, a processing element with no timing attached to it, and an output register 

clocked on the opposite phase. In this case the inputs are stored in the input register 

during the t}̂  , they are then propagated through the processing element with the result 

stored in the output register during the <J>2.

A sequence of FNT butterfly operations can be performed on a data stream by a 

series of such blocks separated by registers as shown in figure 6.10.

A 4-point FNT problem can be viewed as;

a jx 3 + a 2x2 + a i* + a0

where a3,a2,.....is the input data and x = l,a,a2,.. . Evaluating the FNT coefficients at

x distinct point gives;

>’0 = ( (a3 + a2) + al) + a0

yj = ( (a3 . a + a2) . a + flj) . a +

y2 = ( (fl3 . a2 + a2) . a2 + a j) . a2 + a0

y3 = ( («3 • «3 + «2) • a 3 + flj) . a3 + fl0

We see that all the y, ’s can be computed in a pipeline fashion by a single systolic 

array. It uses an array consisting of N-l linearly connected basic cells as depicted in 

figure 6.11. The array is initialised by loading the input data to each cell. The output 

coefficients which is initialised to a3 at left-most cell, together with the root of unity' a 

are moving from left to right and gather their values and achieves their final result as
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Figure 6.7 A node performing the butterfly operation

Figure 6.8
F iU e r )Rea1iSati° n f ° r 3 Fermat Number Transform (and entire Adaptive Digital

Figure 6.9 B u tte rfly  operation block



6-14

leaving from the right-most cell. The number of cycles (clocks) which takes place in 

order to achieve all the FNT coefficients is shown in figure 6.12.

It can be seen that with this structure there is no need for complex control signal 

for the movement of data through each cell except a simple two-phase clock signal 

<j>! and <(>2 . The communication between each cell is simple and local therefore 

minimises the time complexity since long wires is formidable in the VLSI design. The 

only disadvantage of this structure is that, as the number of cells increases the 

feedback wire for the recycle of the root of unity will increase. In order to overcome 

this limitation, one possibility would be folding the array.

6.3.1.3. PARALLEL AND SYSTOLIC STRUCTURE FOR AN FNT

In the previous section we presented a systolic FNT array that uses N-l processing 

elements (cells) in order to compute the FNT coefficient of a given sequence. It takes 

2N-2 cycles to obtain all the results. However, even though it is better than the 

sequential structure, the FNT coefficients are still obtained in series. It is therefore 

possible to boost the speed of the computation of the FNT coefficients by using a 

combination of parallel and systolic structure. This is shown in figure 6.13.

Unlike the systolic array structure where the constant FNT coefficients namely the 

root of unity which have to travel from one cell to another, the parallel-systolic array 

does not use this method. Instead the constant coefficients are stored in the processing 

cell and they will stay there throughout the processing procedure and the data input 

will move from left to right accumulating the results as it moves through the array. In 

this case the array will uses 2N-2 cells and it takes N-l cycle to complete and give an 

output of final results.

Each processing element in the array is comprised of a single multiply-add cell 

plus a register which hold a particular value of a. Note that communication between 

each cell in the array is local where, each cell is only connected to the cell in the row' 

following it.
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Figure 6.10 Pipeline structure for FNT
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Figure 6.12 Number of cycles of the FNT sy sto lic  array

Figure 6.13 Parallel-systolic structure for FNT
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This structure has advantages over the systolic structure namely, the FNT 

coefficients are available at the same time so it improves the speed of the filtering and 

adaptation procedure and more importantly the long feedback wire which is used for 

the recirculation of the a has been omitted at the expense of some extra hardware.

6.3.1.4. PARALLEL STRUCTURE FOR AN FNT

One of the most obvious ways of designing the FNT is to provide one processing 

element for each butterfly execution. This will lead to a highly parallel structure 

which is depicted in figure 6.14. The data movement between the processing elements 

are the same as the parallel-systolic architecture, where the a will stay and the data 

moves from one level (column) to the next and so on. The interconnection between 

the cell in one column to its neighbouring cell in the other column can be obtained 

from the following:

The cell i in the first column is connected to two cells in the second column, cell i 

and cell i + N/4. Cell i in the second column is connected to two cells in the third 

column and so on. It can be seen from the diagram that N vertical tracks are 

necessary and sufficient for the interconnection between the first two column, while the 

connection between the second and the third columns need only N/2 vertical tracks. 

In fact the interconnection between the first two columns can be cumbersome when it 

has to be implemented on a chip.

In order to complete the FNT algorithm, the structure shown in figure 6.14 will uses 

NlogN processing elements in logN cycle of time.

SUMMARY

In this section we presented four FNT structures. The later case of the four 

designs is optimal in terms of speed and processing power. The problem with the non- 

optimal design namely the serial processor is that, it is processor poor, that is the 

number of multiply-add cells does not grow' with the problem size.

The problem with the pipeline structure is that even though the processing power
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is increased, the results are still obtainable in the serial manner. But the advantage of 

this structure is that the interconnection between each cell is simple, that is a single 

track is used for the movement of data.

The problem of the parallel-systolic structure is getting the data into its correct 

place in the registers. That requires an extra hardware for the distribution of the data 

into its appropriate register cells. However, the advantage of this structure is that it is 

faster than the systolic array and the coefficients are available at the same time.

The optimum of all these structures is the parallel design. The data flow is easy 

and unlike the parallel-systolic structure, it does not need any distributor for loading 

the input data to the registers. But one limitation is the interconnections between the 

processing elements in the first row. The width of the tracks which will transfer data 

to each processing element depends upon the number of bits that each data is 

represents. On the other hand it is depends on the modulo that been chosen. The 

larger the modulo would be, the wider the tracks becomes, and since each track crosses 

over each other it could be quite costly in terms of the area on the chip. However, the 

assumption which we make here is if one track needs to cross over another one, that 

can be done by moving up to another level in the layout process. This in fact would 

not cause too much inconvenience in the fabrication process.

The architecture for the inverse Fermat transform is identical to that of the FNT, 

differing only in the pre-scaling of each input data.

6.3.2. FILTER OUTPUT AND ADAPTATION STRUCTURE

In this section we present the design of filter output and adaptation procedure 

From figure 6.4, it can be seen that each filter output procedure can be thought of as a 

first order filter, that is each FNT coefficient is first scaled with the appropriate filter 

coefficient and once the output is obtained the adaptation procedure which was 

explained in earlier chapter, can be proceeded. Therefore each stage of filtering and 

adaptation can be obtained independent of the other stages. Since all the stages are 

similar we shall present only a structure for one stage. A block diagram of the
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Figure 6.14 Highly parallel structure for FNT

Figure 6.15 Adaptation procedure structure
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filtering and adaptation structure is shown in figure 6.15.

It consists of two scalar (multiplier), two adder and a filter coefficient register 

unit. The register is first loaded with the initial value of the pre-calculated filter 

coefficient. The adaptation will take place in two stages;

Stepl) Once the FNT coefficient is obtained from the transform stage the filter output 

can be obtained by applying both the FNT and filter coefficients to the scaler.

Step2) As soon as the filter output is obtained, section "A" can be activated which is 

the adaptation procedure for updating the filter coefficient. In this case the filter 

output will be compared with the desired response data in order to obtain the error. 

After the scaling the error output appropriately, it can then be added to the previous 

value of the filter coefficient which can be discovered from the register. The output of 

the adder which is the updated value of filter coefficient can be fed into the scaler unit 

for the calculation of the next filter output as well as to the register for the next 

adaptation process.

However, there is an important feature about this structure and that of the FNT, 

that is the problem of synchronisation. It is appropriate to point out here that with 

structures explained so far for the FNT processor, its output coefficients are available 

at every' clock cycle. This is due to the fact that every stage in the procedure is 

pipelined, that is a new set of data can enter the network as soon as the previous set of 

data has left the first column of the processing elements. Hence, it is important from 

the synchronisation point of view for the filtering stage and adaptation to be done 

within one clock cycle. However, one has to be careful that the adaptation process 

should not take place until the filter output is available.

The system synchronisation can be achieved by placing a number of latches in 

appropriate places. For example, let us assume that the delay across the multiplier in 

the figure 6.15 for the calculation of filter output is of the order of T, then one 

possibilities would be to start the transformation of the desired response (NTT2 figure 

6.4) T units of time after the transformation of the input data (NTH, figure 6.4) has
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started.

6.4. THE PROCESSING ELEMENT ARCHITECTURE

In the previous section we presented a number of structures for the FNT stage of 

an adaptive filter for the implementation using VLSI technology'. The structures 

consist of two blocks, a) shifter register and b) processing element.

In this section we shall look at the functional blocks of the processing element in 

greater detail. The main functional blocks of a processing element are a multiplier 

and an adder as shown in figure 6.16. In computing the FNT, arithmetic is done

modulo M = 2* + l. In this case the only allowed integers are 0,1,2,..... ,M-1. Using a

b-bit register all integers from 0 to M-l can be represented, hence the arithmetic 

operations such as multiplication and addition are done on two sets of data. However, 

a problem arises when we want to represent M. To overcome this limitation it is 

possible to use an extra bit to represent M which means extra complex hardware. 

However, we will show later the approach we have taken to design the requirements 

for the FNT calculation which will almost eliminate this complexity. Or, in case M 

does occur we can round it to -2 or zero. Let us now discuss how various hardware 

requirements such as a multiplier and an adder can be implemented.

The implementation of hardware requirements for the residue numbering system 

can be accomplished by either designing a special logic network (mostly random logic) 

or by a table lookup method.

6.4.1. SPECIAL RANDOM LOGIC IMPLEMENTATION

When computing a residue arithmetic operation, attention has to be given to the 

output result of any stage. That is, it is possible that the result from an operation 

might lie outside the field of operation, which is the case in many operations such as 

multiplications. Therefore one has to be capable of converting the result from outside 

of the field back within the field we are operating. Writh this in mind let us look at the 

design of an adder and a multiplier.
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THE ADDER

When adding two b-bit integers, we obtain a b-bit sum and possibly a carry bit. If 

however the carry bit is set, it can be concluded that the result is outside the field of 

operation and it has to be converted in order to represent it in a b-bit register for 

further calculation. One possibility would be to subtract the carry from the sum. 

Therefore, the hardware should be of the carry-subtract type. This is shown in figure 

6.17.

Another approach is to have a programmable adder that is capable of selecting 

whether a subtract operation is needed or not. This is shown in figure 6.18.

THE MULTIPLIER

When multipling two b-bit integers, we need a 2b-bits register to show the product 

result. However, since one of the data inputs is a constant a and a power of two, then 

the multiplication is reduced to only word shift (except in the filtering and adaptation 

stage). Suppose we need to multiply the content of a register by a -  2k where 

0<k< b, all we need to do is left-shift the contents of the register by k bits and subtract 

the k overflow bits. A block diagram of a multiplier is shown in figure 6.19. It 

consist of a shifter which is capable of shifting the data to the left by the amount of 

required places, then the output of the shifter is divided into a low and high order part 

and they will be subtracted using the adder technique explained above.

Computation of the inverse transform requires a multiplication by negative power 

of two. In this case we need to shift the data to the right by the required number of 

places and the rest of the operation is the same as in the transform stage.

6.4.2. THE TABLE LOOKUP IMPLEMENTATION

The random-logic approach for the implementation of the adder and multiplier of 

previous section has two main disadvantages if one has to think about VLSI 

implementation of these cells;
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Figure 6.16 Functional description of processing element

Figure 6.17 A carray-subtract type adder
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Figure 6.18 Block diagram of the programmable adder
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Figure 6.19 Block diagram of the multiplier



6-24

1) Since the layout process of the random logic for each cell on a silicon could be 

cumbersome and more importantly the design and fabrication cost is too high and 

since they are not regular it is not suitable for the implementation utilising VLSI 

technology.

2) There is a need for extra cell for the situation that needs rounding. For example, 

in the adder design an extra cell (subtractor) is required when the carry bit is set. 

Since the speed is an important factor, and more importantly the data path is 

pre-defined, the result of the adder is fed into the subtractor regardless of whether 

the carry bit is set.

In order to over come these limitations and more importantly for the high speed 

realisation of such blocks, the lookup table approach offers better a solution.

To see how the arithmetic operation modulo M can be implemented using the 

table lookup approach, it is important to point out some of the properties of the 

modulo M. Since M is a cyclic group it can have only M distinct value and it will 

periodically repeat itself after M-l steps, hence one can recognise this as a finite state 

machine, with the number of states depending on the value of M. In this case any 

arithmetic operation modulo M can be thought of as a finite state machine too, hence 

it is possible to store these states and using the data to address specific state. In 

general, every discrete function of D operands (inputs) can be represented by a 

mapping table, and thus after encoding, by a binary-encoded truth-table it provide 

outputs for all possible 2° input combinations.

In general, the RNS arithmetic operations namely multiplication and addition 

truth-tables may be implemented in storage unit by two distinct addressing techniques. 

The first is by using Location-Addressable Memories (LAM) such as Read-Only or 

Random-Access Memories (ROM,RAM). The second technique uses Content- 

Addressable Memories (CAM) such as associative memories or various Programmable 

Logic Arraies (PLA, PAL, etc). The basic advantage of the Content-Addressable 

Memories over Location-Addressable memories is that the later require storage of the
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entire function truth table where as the Content-Addressable Memories require only 

the minterm portion of the table. Thus, by using the latter approach, a substantial 

saving in silicon area may be achieved.

The basic idea of the table lookup implementation by Content-Addressable 

Memory is illustrated in figure 6.20. In this structure, all input bits are simultaneously 

applied to each CAM module, while each output bits correspond to a distinct module. 

The operation is based on the matching property of Content-Addressable Memory, that 

is, the processing consists of comparing input patterns to prestored information in the 

CAM module, with the appropriate output bit signifying detected matchings.

Among many array logic configurations we use the Programmable Logic array of 

figure 6.21. The overall arrangement of a PLA is shown in figure 6.21. It consists of 

two switching matrices in cascade performing the AND and OR functions, two sets of 

buffers, an interarray drivers, and precharge section. The operation of the PLA is as 

follow's;

The inputs are run vertically through a matrix of circuit elements called AND 

plane. The AND-plane generates specific logic combinations of the inputs and their 

complements. The outputs of AND-plane run horizontally through another matrix 

called OR-plane. The outputs of the OR-plane will run vertically and can be obtained 

from the output buffers. In order to clarify the operation of a PLA let us look at an 

example;

The circuit diagram of a specific PLA is shown in figure 6.22. The input is 

applied to inverting and noninverting buffers. The buffers drive two lines run 

vertically through the AND-plane, one for input term and one for its complement. The 

outputs of the AND-plane are formed by horizontal lines with pull-up transistors at 

their left most end. The function of the PLA’s ANDplane is then determined (from a 

truth table) by locations and gate connections of pull-down transistors connecting the 

horizontal lines to the ground. Each output running horizontally from the ANDplane 

carries the NOR combination of all inputs that lead to the gates of transistors attached
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to it. The OR-plane circuit elements is identical in form to the AND-plane.

We shall now detail the truth table implementation scheme of residue based 

functions in PLA logic. We shall assume that a multioperand residue-based function is 

given in tabular form. This is illustrated in figure 6.23(a) for two operand addition 

modulo 5. Then, by encoding the function residues, we generate a binary-encoded 

truth table as shown in figure 6.23(b). Note that the truth table consists of an input 

and output parts. The input and output table bit entries correspond to the AND-plane 

and OR-plane fusable link of a PLA respectively. Qearly each column of the output 

table (figure 6.23b) corresponds to a PLA output. The rows or minterms of the input 

table are simply the PLA word patterns to be embedded as product terms (P-term) and 

to be matched by appropriate input combinations.

Similar approachs can be taken for the implementation of the shifter and 

multiplier. However, since the number of shifts at each stage of the FNT structures is 

known, it is possible to combine the shifter and the adder so that in all cases the 

processing element is simply a PLA.

As we shall see in the next section, the VLSI system performance is directly 

proportional to the time-space complexity' of each processing element. Since 

processing elements are identical, that is they are only a single PLA, we shall 

concentrate only on the area-time complexity of the PLA. To formulate our frame 

work, we define the time-space complexity' in terms of total number of truth table 

minterms required in order to implement a specific function. A direct implementation 

of the truth-table minterms using a PLA could be very costly in terms of the area and 

time. However, it is possible to reduce the number of P-terms in the AND and OR 

planes with the aid of a minimisation procedure. A PLA layout for a modulo 5 and 

17 adder is shown in figure 6.24 after using a minimisation program [u£]. In case of 

modulo 5 adder the number of P-terms is reduced from 25 to 18, where as for the 

modulo 17 adder the P-terms reduced from 268 to 71 which is a great saving both in

time and area.
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input bits
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Figure 6.20 Content addressable memory modulo orgnisation

Figure 6.21 General PIA configration

Figure 6.22 C ircu it diagram of a PIA
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6.5. SYSTEM PERFORMANCE

The measure of VLSI device performance often involves both speed and device 

area. Given that the architecture of figure 6.14 can be realised on a chip, or partially 

on a chip, we are also interested in its overall data throughput.

In most structures explained so far, we assume that the register array are driven 

by a biphase clock. The minimum clock period is determined by the sum of the 

register and PLA delay. Taking account of the layout of a PLA of figure 6.24, an 

estimate can be derived for the worst case PLA delay which is dependent upon the 

number of product terms on each of the AND and OR plane and upon the possible 

outputs:

PLA delay = < input buffer >  + <  AND >  + < OR >  + < output buffer

>

Where < X > mean the delay across X.

Using the design rules of Mead and Conway, the following formula for the PLA delay 

can be derived;

w'orst case

where;

PLA delay = or
Ki

+ [{q, Kt)  + Kt] + h Kt + Kt

K is the aspect ratio 

t is transit time

qt is the highest number of ones or zeros on a specific line 

8 is the number of outputs being true simultaneously

Using typical parameter values for K and t of 9 and 0.3ns respectively, a total 

worst case delay for a PLA adder using two 4-bits input and output data and 

arithmetic done modulo 17 is approximately 90ns. Taking into account also the delay 

through the registers, and the fact that the clock is biphase, a reasonable estimate for
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the cycle time for the device is 200ns.

Let us now determine the minimum sample period for each of the structures 

explained so far. Since the architecture of figure 6.14 is designed to be used in a 

pipeline mode, eight data input samples can be processed every cycle, resulting in a 

minimum data sample of 25ns, and the data delay through the entire data path is 

between 700-800ns. As in the systolic architecture of figure 6.12, the eight data input 

samples can be processed every N-l cycles, resulting in a minimum data sample of 

90ns, and data path delay of 1.7 n s. A similar analysis can be performed for the 

serial architecture of figure 6.5. A summary of performance estimates is given in the 

table below:

architecture transform minimum sample data path

lenght period in ns delay in u s

parallel 8 25 0.7-0.8

systolic 8 90 1.4

serial 8 300 2.5

serial 1024 4 4

Another factor which will influence the complexity' of VLSI and hence the system 

performance is the area, that is the area which each processing elements will take on a 

silicon. Hence, it is possible to estimate the required area and thus work out the 

number of processing elements which can be intergrated on a chip.

The area for which we are trying to estimate is that of a PLA adder shown in 

figure 6.24b, and depend upon the number of inputs, outputs, and product terms:

PLA area = PLA high x PLA width

yielding to;

PLAarea = [ {2Wp + Wd ) + 8X ] P + L0R + P (Wm +77 ) + Lh

x [ (2Wp + Wd ) + 8X ] n + LmD + M (Wm + tt )
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where

Wp = width of poly-silicon 

wd = width of diffusion 

wm = width of metal 

N = number of inputs 

M = number of outputs 

P = number of product terms

l or l a sd  ~  ^ e  length of pull-up transistors in the AND & OR plane 

Lb = length of the buffers

Using typical parameter values for Wp , Wd , Wm , Lm  , LMD , Lb of 2,4,4,15,53 

lambda respectively, a total area for the PLA adder is 749x193 lambda square. Let us 

estimate the required area for a transform length of 4, shown in figure 6.14. One 

possible layout including the interconnection between each processing cell (figure 6.14) 

is shown in figure 6.25. The total area is given by:-

TOTAL AREA = H x W

where H is the total height and W is the total width.

The total width W is given by

W = width of PLA + width between each PLA 

= 4 x 204 Lambda + 3 x 3  Lambda 

= 915 Lambda

The total height H including the interconnection between each PLA is given

by:-

H = height of PLA + width of interconnection lines

Assuming using polysilicon for the interconnection lines (1-8), the area for a line 

(4 bits wide) is equal to 14 Lambda. Hence, the total area required for the 

interconnection lines is 112 Lambda. Therefore, the total height is:-
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H = 2 x 740 Lambda +112 Lambda 

= 1592 Lambda

If Lambda = 3 micron then it is possible to integrate between 8 to 16 PLA (not 

including the input/output pads) on a single chip of a size of 6000 micron by 6000 

micron.
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Figure 6.25 A possible layout for an FNT of length A
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7. CONCLUSION

This project began with the study of how signal processing algorithms and in 

particular digital adaptive filters can be implemented in VLSI utilising the NTT. It 

then covered the design of a special-purpose processor for an adaptive digital filter, 

based on the concept that the major operations performed are of the form AxB+c i.e. 

sum of product.

7.1. ADAPTIVE FILTER AND THE NTT

Adaptive filters perform two major operations: a) convolution of two sequences to 

compute the filter output and b) adaptation of filter coefficients according to the 

measured error. Implementing adaptive filters in the time domain has two major 

drawbacks;

1) There is a need for a significant amount of computational power for

convolving large sequences.

2) The entire adaptation process is performed once per sample of data, hence

introducing a further large increase in required computational power.

These drawbacks are somew'hat improved by using transform techniques such as 

the FFT. In this case the number of arithmetic operations needed will be reduced and 

more importantly the adaptation process will be done once per block of data. 

However, the drawback in using the FFT is mainly the need for complex arithmetic 

operations, w'hich are computationaly demanding. Another limitation of using FFT 

techniques is the problem of finite word length, that is, it is not always possible to 

represent the result of arithmetic operations, especially multiplication, with precision. 

In this case the result has to be either truncated or rounded to the nearest value hence 

introducing errors.

These Limitations can be somewhat improved by implementing these transform 

techniques in a ring of integers such as in the NTT. A study of the published 

literature on the use of various N'iTs such as FNT,MNT,..etc. was carried out and 

presented to ascertain how these transform techniques can carry out the required
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algorithms much more efficiently. With the advantages of NTTs, it is expected to 

make frequency adaptive digital filters more attractive. This thesis develop and 

present the design of frequency adaptive filters utilising the NTT. The choice of 

frequency mean-square error as performance index led to a frequency adaptive 

filtering formulae which adjusts the filter weights once per data block, by using a 

frequency mean-square error gradient estimate approach. Convergence properties of 

FMSE and LMS algorithms are analysed and compared. They are shown to be 

analogous and under the proper circumstances equivalent. A number of results have 

been presented, which shows that under certain assumptions the FMSE converges to 

Weiner filtering.

These assumptions can be summerised as follows;

1) The input data and its corresponding residue representation must be scaled 

so as to overcome any ambiguity (overflow) in the output result.

2) The convergence constant must take on values in a range that will insure the 

convergence.

Frequency adaptive digital filters utilising the NTT algorithms are shown to 

involve less computational complexity than the FFT and LMS adaptive filters when 

implemented on serial processor. This is specially true for large filters. For example, 

a 1024-tap adaptive filter would be well over ten time more efficient. Further speed 

gains are expected in implementations using parallel processing and VLSI.

7.2. CONCLUSION ON THE VLSI DESIGN FOR ADF

The most important conclusion from this study was that concurrency for 

compute-bound computation is an important aspect of any design in order to utilise the 

advantages of VLSI technology. This is because the speed of discrete digital 

components are increasing very rapidly and therefore, in order to meet the required 

computational power for digital filters, it is necessary to use parallel and 

multiprocessing techniques, and in particular pipelining and systolic arrays, which are
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suitable for VLSI implementation. It is ascertained by providing a survey of published 

literature on the design of various digital signal processors.

It was concluded that, fully effective use of VLSI technology for high 

performance digital signal processors to carry out a specific task, requires special 

purpose VLSI chips. In common with other researchers, it is found that architecture 

for high throughput circuits using VLSI technology when there is;

1) Simple flow of data and control.

2) locally connected, so as to minimise the long distance communication.

3) Simple and regular cells, so as to minimise the design and fabrication time.

With the features outlined above, and the fact that multiprocessing and pipelining 

is desirable a design of an adaptive digital filter utilising the FNT and residue 

numbering system has been presented. A full description of the design is given in 

chapter 6. The main characteristics are;

1) It is capable of performing the desired arithmetic operations required by

NTT with the aid of a table-lookup approach.

2) Massive pipelining and parallelism have been achieved.

3) Flow of data is regular and the control flow is simple and need only a simple

clock for the movement of data between the processing elements.

There are several conclusions which can be drawn from the design presented in 

chapter 6. First, the realisation of high or partially parallelism on a single chip is not 

possible for long sequences. Therefore it has to be fabricated on several chips. 

Second, the interconnection between the processing elements in the 1st stage of the 

transform can be cumbersome when it has to be implemented on chip. Third, the area 

of the table-look ups processing elements (namely the PLAs) is of great importance as 

these occupy the greatest proportion of chip area. Because each PLA consists of a few 

simple cells, the design time is minimised. However, the area which they occupy is 

large, this is because the size of each plane matrices of the PLA depends upon the 

number of product terms and the number of product terms may be high. It is therefore
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possible and highly desirable to reduce the number of product terms and hence the 

area by using a minimisation program and a proper coding of the input data.

Finally, in presenting the adaptive digital filter architecture a number of aspects 

of design have been considered. The largest processing block is clearly the transform 

and inverse transform. In fact, the multiplier array of the adaptation process can also 

be realised by a set of PLAs. The adaptation rate of the filter will be fast since only 

the minimum number of coefficients need be updated. The size of the PLAs in the 

design may appear somewhat daunting. However, at the expense of some regularity, 

these can be reduced very considerably by the introduction of decoders at the inputs. 

It was shown in chapter 6 that, for a filter length of four and dynamic range of 4-bits 

using the Fermat number transform, it is possible to integrate between 8-16 PLAs on a 

silicon area of 6mm by 6mm, However, for more realistic filter size, it may be 

possible to place between 1-6 PLAs on a silicon depending on the modulo, and the 

dynamic range.

In conclusion, a very promising VLSI architecture has been presented for adaptive 

digital filtering. The major characteristics of the design are its very high sampling rate 

capability, regular internal structure, capability to parallel devices for increased word 

length, sampling rate and adaptation time.

7.3. FUTURE WORK

As a result of the study presented in this thesis, the author would suggest three 

main areas for future research:-

a) Finite number system and NTT 

The main drawbacks of such transform techniques are:-

1) The rigid relationship between the transform length, word length, and root of

unity.
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This is because NTT has to support the residue arithmetic operations. However, a 

number of algorithms such as FNT, MNT, CFNT etc. have been adopted which allow 

for compromise between these relationships.

In fact it is difficult to specify which of these techniques has advantages over the 

others. However, these transform techniques can be compared, by considering 

computational complexity (number of additions and multiplications). Several results 

were examined, and from them it can be concluded that the most promising of all 

these transform techniques are the FNT and CFNT, due to the fact that it needs fewer 

additions and multiplications for a given transform length.

1) Choice of modulo

By choosing a non-Fermat or Mersenne number but a prime modulo (while holding the 

NTT conditions sets in chapter 3), it is possible to reduce the word length while 

retaining a modest transform length.

ii) Multi-dimensional transform

There is a need for exploiting the properties of multi-dimensional transform techniques 

for both high computational power and long transform lengths.

2) Overflow detection and wordlength

The overflow problem can be overcome by choosing an appropriate word length, 

usually the number of bits used for representing the data samples should be half of the 

w'ord length. However, the implementation of systems with large word length could be 

costly. There are however, a number of steps that could be taken in order to solve the 

word length problem:

i) Segmentation of data samples

A scheme to overcome the problem of word length is to segment the input words into 

several sets of smaller words and process each of these separately and combine the 

results.

ii) Other transform techniques
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Because many NTT algorithms require large word length, it is necessary- to study other 

orthogonal transforms and their properties regarding the adaptive digital filtering with 

short word length such as Walsh transform and their realisation in VLSI.

b) Frequency adaptive digital lattice filtering

We have considered in our work frequency adaptive digital filtering for finite impluse 

response (non-recursive) filters. However, these are not the only possible types of 

filtering. Many authors [108-110] have presented another class of adaptive filter 

structure known as lattice digital adaptive filters, where the adaptation process has 

been performed in the time domain. Hence, another interesting area for future work 

would be the implementation of these filters in frequency domain utilising the NTT.

c) VLSI architecture

There are various changes that could be made to the design of the system presented in 

this thesis that would increase the system performance i.e. time/area complexity:

i) The use of decoders at the PLA inputs, and the PLA folding technique.

ii) The use of other coding techniques rather than the binary' representation of the 

residue numbers for table look-up operation which has been used in this work.

iii) Custom cell design for the processing elements. It is highly desirable to design a 

set of custom hand crafted cells for the required processing elements in order to 

minimise the silicon area. These cells can then be part of a standard cell library which 

can be used for the implementation of a given semi-custom design.

iv) Other pipeline architectures.
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Convergence proof of FLMS

The approach taken in the proof is to show that the weight vector converges in 

frequency in the mean to the Wiener weight vector, as the data block sequence 

approaches infinity. The proof is based upon [Widro,33].

For the purpose of the following proof, we assume:

1) The time between succesive iteration of FLMS is long,so the succesive data 

sequences are uncorrelated.

2) Because the weight vector is only the function of previous data samples, therefore 

the next weight vector is independant of present data samples.

3) all inputs are satationary.

Recall Eq. (3.2.5)

\WJ+1\M = IW'U + 2 ^ F-\X*\M-\Ei\M (A.l)

Expanding further and take expectation of both side:

e||W"+1L] = €[1^1*] + 2-iLF-e[\X^\M \EJ\M]

= * i \ W \ M) + 2 ^ , ^ \ \ X ^ \ m - \DJ\m] -  2[Lf c[ \Xji \M ■ \X] |w • | WJ jw ]
Using condition 2, the Eq. (A.2) becomes:

=  e[\Wj \M | +  2-vF -*l \XTJ\M-\Dj \M] - 2  ^ Fe [ \ X ^ \ M- \ X j \ MM \ W J \ M)

~  e l  ! \ M 1 +  2  - • | 4>2 i Af 2  ! 4>1 I A# e I i ^  ^ I A/ ]
Using the properties of |<j>j|w and |<j>2|M,a vector difference equation in the expected 

value of the weight vector is obtain.

£I 1 i M 1 = ~ 2'H.yr I 4>J ! w] €[ WJ M ] + 2 ' Jlyr ■ I <J>2 | M
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Where "I" is the identity matrix.

Our analysis is based on the scalar case of vector operation, thus, Eq. (A.3) is the 

first order Linear differece equation in the weight, whose explicit solution [36] is given

by:

e[|W7+1|w] = [/-2-^-|<t,1|Aip +1-|W°|A/

+ [ <t>2\m  ' 2  V  I <t>l ! Ai ]' (A .4)
¿=0

Where ¡W'°|Af is the initial weight vector.

Eq (A.4) can be written in diagonal form by using appropriate " SIMILARITY 

TRANSFORM P " [37,38] for the matrix 14>j \M, that is:

i4>il* =*[\XTi\M-\Xj \M]= (A.5a)

where

Ax 0 0 0
0 A2 0 0
0 0 0
0 0 0 0
0 0 0 A,

(A.5b)

is the diagonal matrix of eigenvalue of matrix [«biIa/ ■ Because is a positive

definite, thus all the eigenvalues are positive.

Rewrite Eq (A.4)

*l\WJ+1\M] = [ / - 2 - ^ - | P U . | A | J#-|P-1L y +1- |W °L

+ 2 ■  [ <}>2\m ' 2  V \P \M -1A\M -\P
i=0

= |P U -[/-2 - |i.f |A |Jip'+1-|/»-i|Jli.|w 0|il#

+ 2-n-yr • |<J>21Af' \P \m  ' ' i A M )* P 1 \m  (A.6)
i=0

The key to Eq (A.6) is to show that:

[/ — 2\lf \P \M ■ \ A\M ■ \P 1iAi]J,+1= \P M [l—2\x.F \K M ]} \P 1 \M
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Properties used in this development are the Binomial formula and the fact that for 

diagonal forms [A.4] it is true that

( Im ' I A I Ai ' l^ -1 l*f )' = \P\M-\^l \M -\P~l \M

Thus, as long as the diagonal matrix of eigenvalues outside Galios field is less 

than unity, the first term of Eq (A.6) is zero as j ------- °o

I i m 2 [ / - 2 ^ |A |MH+1 -0 (A.7)
^1= o

and vanishes as number of iteration increases.

Consider the second term in Eq (A.6). Becuse |A |M is diagonal , the N 

summation of the geometric formula gives:

lim 2[/-2-jqr-|A |A#]' = |1._ 1| (A.8)

Thus, in the limit the Eq (A.6) becomes:

lime[|w;+1|M] = |/’ |M-|A-1|M'|/ ’- 1|A,-!c|,2iAi
J^CC

~  ! 4*1 ! Ai1' I 4>2 ! Ai (A-9)
Compare this with Wiener-Hopf equation

W* = R-1 P

shows that as the number of iteration increases without limit the expected value of 

weight vector converges to Wiener solution.

The convergence insured if and only if \lf is set within a certain bound:

| [/ —2 \lf Amax] | <1

0<Hf < ——  (A .10)
^max

The condition in Eq (A. 10) is sufficient for convergence but the individual 

eigenvalue of |<f>, \M are rarely known and thus, Eq (A. 10) is not always easy to apply. 

Another quantity that is more easily measured is the ’TRACE" of |«{>, \M:

/V-l
zr ( 1 i ! Ai) = 2  A, -  tolalinputpower

i=0
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the fact that tr( |<f>j jM)>A suggest that Eq (A. 10) becomes:

___ l ___
lr(l<t>i1«) A (ll)



APPENDIX B

ADAPTATION SPEED

Recall equation 4.2.1.5

4 \ e; \ m . \Ej \m) = €[10/1*, . \Dj \m] - 2 \ * 2\m \Wj \m + \w;\M |«t>iU \wJL 

Tlie FMSE gradient for weight vector is ;

= -2|<j>2|M + 2 \ w; \ m \ ^ \ m (B.l)

The minimum MSE can be obtain from orthogonality principle [ 35 ] which is ;

^ m i n  =  £ ( I ^ / I a î  ■  \Ej I f f ]

= *[ld/ \ m(\dj \m -  I ^ u  wj)}

= e [ \ D/ \ M . Dj) — f \ \ D j | M . |Xj \ M . Wj ]

= €[ \ D/ \ M . D j] -  . Wj

m̂in

Substiute B.3 in 4.2.1.5 yields an alternative formula;

4 \ e; \ m • \Ej \m] = E ^  + { \ Wj \ u  -  w j y  . (eh, 1̂  . ( | w 7 jw -  Wj)  (B.4)

Let us define some quantity that transform FMSE into diagonal form ;

\Vj\M = \Wj \m - W j  (B.5)

Thus equation(B.4) becomes :

E =£min+ \VJ\M ■ |4>iU ■ \Vj\u (B.6)

Another form of gradient is formed by differentiating eq(B.6)

Vf = 2 .  14>i \ m  ■ \ V j  \ m  (B-7)

Using the Similarity transform

\ ^ \ M = P . \ \ \ M . P ^  = P . \A\M ,PT (B-8)
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Where P is the orthomormal model matrix of |«J>, . Thus ;

E =£min+ |V /L  .P . \A\„ P-'  . \Vj\M (B.9)

By linear transformation ;

\ V j \ M  = P - ' .  \ V j \ m  IV j \ M  = P  . \ V j \ u  (B.10)

Using this new corrdinate system , eq(B.9) becomes ;

E =Emin+ Wjr \M ■ \ A \ m  . \ V ] \ M  (B. 11)

A new weight vector is obtain by appling the same transform corrdinates ;

Wj = p - 1 .Wj Wj = P . Wj (B.12)

THE METHOD OF STEEPNESS 

Recall equation 4.3.1

+ = IW/ i*f + V-F '^F (B.13)

Taking the advantages of equations B.7-B.12 then eq(B.13) can be written as;

|v;+i \u -  (/ -  2 . ^  . |A|„) . \V-\M = 0 (B.14)

This diagonal homogenous vector difference equation has a geometric solution ;

\Vj\f4 = if ~ 2 ■ [i-f . I a | M y  . | v0 i M (B. 15)

Where V0 is the initial vector weight .

The transient solution of the eq(B.14) is geometric with geometric ratio of p* mode 

being ;

rpF ~ (1 — 2 ■ [Lp • |Ap 1 )̂ (B.17)

To define a time constant for the solution , an exponential envelope can be fitted to 

the geometric ratio . Call the frequency time constant V , thus;

rp f  ~  [ 1 7 . Hyr . I A p  | M ] —  e
T pF
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r F can be estimated by first two terms of eq(B.18)

rP = 1 “  2 . »v ■ |AP \u = 1 ~  7 -
1 p

Thus;

7~ = ---------- -----------
P 2 . JAyr • | | M

TIME CONSTANT FOR LEARNING CURVE

Consider the FMSE during the adaptation as the weight vector adapts 

Wiener solution . Recall eq(B .ll) ;

\ E j \ m  ~  ^ m in  +  \ V j 7 \ m  •  ^  ■ \ ^ j  \ m

Assume no noise in weights vector and using eq(B.15)

\Ej ' M ~  ^min + I V  \M ■ I A \m (I ~  2 • V-f ■ I A : M)"] ■ \ V0 \M

= ̂ min + ! V I 2 . p-yr • IA | M )J . \ A ; M . (/ — 2  . \lf . | A \M ) J . \ V 0 \M

= -̂ min + 2  (1 — 2 . JA/r . i Ap j M )"] ■ j h p \M . ( ] Vp 0 ) 2 M
p=0

Where | Â  \M is the pth eigenvalue of |4>j\M . 

and vp0 is the pth component of V0 .

The FLMS decays with a geometric ratio for the pth mode ;

rFMSE = (1 ~ 2 • • ¡A | M)2
p r

Where \ef is chosen so that FLMS algorithm converges .

Let us assume :

limEmin = 4minJ

l i m ( /  -  2 . \lf . | A U V  =  0

(B.18)

(B.19)

(B.20)

towards

(B.21)

(B.22)

(B.23)

This follows that
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Thus , the geometric ratio r can be used to define a time constant

-l
rFMSE. = * = (1 -  2 . *F . |Ap \M)2

? T = = e '

' FMSE 2 . T 4 . . j A ! M
In special case where all eigenvalues are equall;

'FMSE 4  ' • l A l M
1

'FMSE 4N ■ V-f ■ trace(1$! ¡M)
Altere :

trace = input power = — . '£ j = l | A,  \M
/V J

(B.24)

(B-25)
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TOPICS IN NUMBER THEORY 

Congruence and Equivalence relation

Definition 1 : If the difference of two integers a,b is divisible by M , we shall say 

that a and b are congruent modulo M and can be written as :

a = b modulo M

Example : Let us consider the set H = {h} consisting of those positive rational integers 

that of the form h = 4n +1 . When these integers are divided by 4 , they leave a 

remainder equal to 1 . Such i ntegers are said to be congruent to 1 modulo 4 .

THEROEM 1 : The following congruences are equivalent modulo any integer M

( that is each implies and implied by each one of the other three):

a = b b = a a —b =  0 b—a — 0

Definition 2 : If x is an integer and b = x modulo M , then b is said to be a Residue

of x modulo M . If 0<ib<M then b is called LEAST POSITIVE RESIDUE of x 
— M M

modulo M . If ——  < b < —- then b is called a LEAST RESIDUE of x modulo M .
2 2

Definition 3 : A set of integers is called a complete set of residues , if no two of 

them are congruent and if every ratio nal integer is congruent to one of them .

Definition 4 : i ) Given a set S of elements ( not necessarily integers ) , any set R = 

{(a,b)} of ordered pairs , a £ S , b £ S is called a " RELATION " if a € S , b € S and 

( a,b ) ( R . We say that "a" is in relation R to "b" and write a R b . 

ii ) A relation R among the elements of a set S is said to be :

a) REFLEXIVE if a S a R a

b) SYMMETRIC if a,b S a R b b R a

c) TRANSITIVE if a,b,c S a R b , b R c  a R c

iii) A relation R which is reflexive , symmetric , transitive is said to be an " 

EQUIVALENCE RELATION " .
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iv ) If R is an equivalence relation and a R b then a is said to be equivalent to b under 

R .

THEROEM 2 : For any integer M , the congruence modulo M , is an equivalence 

relation.

proof : By Theroem 1 and definition 1 modulo any integer M , a = a and also 

a = b b = a so we left to check the transitivity if

a — b b =  c then a =  c

a - b = kM b - c = 1M hence a - c = ( a - b )  + ( b - c )  = ( k  + l ) M implies 
M

M --------- a =  c(o - c )

Definition 5 : Given a set S and a relation R on S , all elements equivalent under R to 

a given one are said to form an " EQUIVALENCE CLASS " .

Definition 6 : The equivalence classes induced by the congruence modulo M are called 

" RESIDUE CLASSES MODULO M " .

- M  M
THEROEM 3 : The sets 0 < r < M and —y  s  r < — form complete sets of 

residues.

Definition 7 : the set O ^ r  s m - 1 is called a complete set of least positive residue ; 
- M  M

and the - y -  < r < — is called a complete set of least residue .

THEROEM 4 : The following statements hold ;

1) a =  b oIII

2) a 111III a + c =  b + d

3) a — b ,c =  d ar + cs =  br + ds

4) A

-aIII-oIII ac =  bd

5) a =  b a n =  bn

THEROEM 5 : If P(x) is a polynomial with integer coefficient , and a = b , then 

P ( a )  -  P( b )  .
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So far , the properties of congruence appear to be almost identical with the 

corresponding properties of ordinary equality. This observation illustrates well the 

point , that to some extent the properties of an equivalence relation are d ue to the fact 

that it is an equivalence relation . Ordinary equality and congruence (modulo M ) , 

being both equivalence relations , share , of course , all those properties due precisely 

to the fact that they are equivalence relations . It might , therefore , be appropriate to 

point out at least one difference between two relations ;

if c a = c b and c =¿0 then we may cancel the common factor c and infer that a = b . 

However if c=0 (mod M) means c is not prime to M and ca = cb we can not in 

general conclude that a = b .

However , it is comforting to know that a common factor may be canceled in a 

congruence ,provided that it is coprime to the modulo .

Operations with Residue Classes

Let us consider the set { 0,1,......., M-l } of least positive residues modulo M. By

Theroem 3 , each of these integers belongs to exactly one residue class . All 

congruences being understood modulo M , let A be a residue class to which belongs 

the least positive residue rx

; then A -  a \a = r x . Similarly , let B = b \b = r2 ■ By theroem 4 , a A , b B

, then a + b =  r x + r2 and a . b — r x . r2.
If r 3 and r4 are least positive residues such that r x + r2 = r3 and r x . r2 = r4 then for 

every element a of A and b of B , one has a + b =  r3 and a . b =  r4.

Moreover , if we define the residue classes C = c |c = r3 and D = d \ d =  r4 ,

then a + b = c and a . b = d hold , regardless of the particular choice of elements 

within their residue classes . This shows that the residue class of a sum or of a product 

does not depend at all on the summend , and factors themselves , but only on their 

respective resi due classes .

THEROEM 8 : The operation of addition and multipication of residue classes are



C-4

well defined . The set of residue classes is closed under both operations .

The set residue classes modulo a prime integer will form a " FIELD " , while those 

modulo a composite integer will form a " COMMUTATIVE RING " with divisors of 

zero . The simplest way to aviod these divisors of zero is to restrict our attention to 

residue classes that are relatively prime to the modulos ; this motivates the following 

definitions ;

Definition 8 : A residue classy a \a = r modM is called a prime residue class if 

( r , M ) = 1

Definition 9 : A complete set of reduced ( or prime ) residues is a set 5 = r,

satisfing the followin g conditions :

i) i+ J  r j  ~ rj

ii) r S  ( r , M ) = 1

iii) ( a , M ) = 1 r S a = r

If , in addition , 0 < r <  M , then S is called a reduced set of least positve residues , if
- M  M
—-— < r < —  then S is a reduced set of least residues .2 2

In w'ords , a complete set of reduced residues consist of a set of mutually incongruent 

integers , all coprime to the modulo, and such that every integer coprime to the 

modulo is conguent to one of them .
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