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Abstract— Among user authentication methods, behavioural
biometrics has proven to be effective against identity theft as
well as user-friendly and unobtrusive. One of the most popular
traits in the literature is keystroke dynamics due to the large
deployment of computers and mobile devices in our society.
This paper focuses on improving keystroke biometric systems
on the free-text scenario. This scenario is characterised as very
challenging due to the uncontrolled text conditions, the influence
of the user’s emotional and physical state, and the in-use
application. To overcome these drawbacks, methods based on
deep learning such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have been proposed
in the literature, outperforming traditional machine learning
methods. However, these architectures still have aspects that
need to be reviewed and improved. To the best of our knowl-
edge, this is the first study that proposes keystroke biometric
systems based on Transformers. The proposed Transformer
architecture has achieved Equal Error Rate (EER) values of
3.84% in the popular Aalto mobile keystroke database using
only 5 enrolment sessions, outperforming by a large margin
other state-of-the-art approaches in the literature.

I. INTRODUCTION

Due to the increasing number of online transactions and
fraudulent activities in sectors such as Banking, Financial
Services and Insurance (BFSI), healthcare, e-commerce, and
government, among many others, the demand and the in-
vestments for more secure and reliable digital authentication
methods are rising [1]. Such trend is particularly relevant
with regard to mobile devices, given their popularity.

Recent authentication methods propose to increase the
security through an additional transparent layer based on
the user’s behavioural biometric information1, overcoming
potential identity theft in a user-friendly and continuous way
[2], [14]. Among the different behavioural biometric traits,
keystroke dynamics is one of the most popular authentication
methods in the literature [4], [10]. The information consid-
ered is the timestamp of the actions of pressing and releasing
a key, together with the information of the key typed.

Keystroke biometric systems are typically divided into two
groups [12]: fixed-text, where the keystroke sequence typed
by the user is prefixed, such as a username or password,
and free-text, where the keystroke sequence is arbitrary,
such as writing an email. In the latter, typing errors are

1In contrast to physiological biometrics, which pertains to the biological
characteristics of an individual, such as face or fingerprint, all means that
enable or contribute to differentiating between individuals throughout the
way they perform activities are labelled as behavioural, i.e., gait, keystroke
dynamics, handwritten signature, etc.

common, and the keystroke sequences between the enrolment
and test samples are different, contrary to fixed-test scenar-
ios. Consequently, the performance achieved with free-text
keystroke systems are traditionally lower than their fixed-
text counterparts due to the higher intra-subject variability
and complexity of the task.

In addition, focusing on keystroke biometrics on mobile
scenarios, many challenges must be considered to develop
robust authentication systems. In this particular scenario,
keystroke is typically acquired under uncontrolled circum-
stances, which can be affected by the user’s activity, body
position, emotional state, and the acquisition device [10],
[17]. The performance might also be affected if the same
subject is able to speak different languages [3].

In the present work, we explore and propose a Transformer
architecture to overcome the challenges commented before
and improve the authentication performance of free-text
keystroke biometric systems on mobile scenarios. Originally
proposed in [20], Transformers are defined by an encoder-
decoder architecture. They have quickly gained the attention
of the scientific community given their ability to model a
number of different processes, in fields such as computer vi-
sion, machine translation, reinforcement learning, time-series
analysis for classification and prediction, etc. [16]. These
new architectures have shown several advantages compared
with Convolutional Neural Network (CNNs) and Recurrent
Neural Networks (RNNs): (i) they process all sequences in
parallel being feed-forward models, (ii) they operate over
long-distance sequences applying self-attention mechanism,
(iii) they undergo a more efficient training allowing the
process of all samples in one batch, and (iv) they attend
to all of the previous sequence at the same time without the
need to summarise the seen information [20].

In summary, the main contributions of this work can be
listed as follows:

• Novel keystroke verification system for the challenging
free-text mobile scenario based on Transformers. Fig.
1 provides a graphical representation of the proposed
Transformer architecture. To the best of our knowledge,
this is the first study that explores Transformers for
keystroke biometrics.

• Comparison of the proposed Transformer with previous
approaches in the literature using the popular and public
Aalto mobile keystroke database [13]. The proposed
approach achieves Equal Error Rate (EER) values of
3.84% using only 5 enrolment sessions, outperforming979-8-3503-4544-5/23/$31.00 ©2023 IEEE
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Fig. 1. Graphical representation of the proposed Transformer architecture. T: Transposition; N, H: Number of layers of each of the modules.

by a large margin previous state-of-the-art approaches.
• We make our proposed approach and experimental

framework available to the research community in order
to advance the state of the art of keystroke biometrics
in free-text mobile scenarios2.

The remainder of the paper is organised as follows: Sec.
II summarises the Aalto mobile keystroke database. Sec. III
describes the feature extraction process and the proposed
Transformer architecture. Then, in Sec. IV, we present a de-
tailed description of the experimental setup. Sec. V contains
the experimental results of the proposed approach, and the
comparison with the state of the art. Finally, Sec. VI draws
some conclusions and future research lines.

II. THE AALTO MOBILE KEYSTROKE DATABASE

The Aalto mobile keystroke database comprises free-text
keystroke dynamics data from around 260,000 subjects [13].
A mobile web application was implemented for the data
acquisition, in a totally unsupervised way. The subjects were
asked to read English sentences, and to type them as rapidly
and accurately as possible in their own smartphones. The
provided sentences were randomly withdrawn from a set of
1,525 sentences obtained from the Enron mobile mail [21]
and the Gigaword Newswire corpora [7]. The requisite for
each of the sentences was containing at least 3 words and at
most 70 characters. Around 68% of the participating subjects
were English native speakers. The raw data recorded consists
in the acquisition of key press and key release events from
the browser, with the resolution of 1ms. In the present work,
we select all subjects (62,454) that completed at least 15
acquisition sessions.

III. PROPOSED SYSTEM

This section provides the details of the proposed keystroke
verification system for free-text mobile scenarios.

2https://github.com/BiDAlab/TypeFormer
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Fig. 2. Example of the keystroke features extracted from the Aalto mobile
keystroke database [13]. HL: Hold Latency; IL: Inter-key Latency; PL: Press
Latency; RL: Release Latency; ASCII: Key Pressed.

A. Feature Extraction

The raw data are pre-processed following the approach
described in [4]. Data consist in the timestamp of the action
of pressing and releasing a key, together with the ASCII code
typed. The set of 5 features reported below are extracted per
each press-release action:

[hold latency, inter-key latency, press latency, release
latency, key pressed]

The five considered features are illustrated in Fig. 2. Since
the length of the text considered in each of the acquisition
sessions is not constant (free-text scenario), they are sliced
or zero-padded to obtain a sequence of L = 50 samples,
aiming to minimise the system input duration. The ASCII
code (key pressed) is normalised in the [0, 1] interval.

B. Transformer Architecture

Fig. 1 provides a graphical representation of the proposed
Transformer, based on an adaptation of the encoder part
of the Vanilla Transformer [20]. The Vanilla Transformer
was tested in several fields showing impressive results but
needs some adaptations in order to be used in time se-
quences. Several researchers introduced new aspects such as
reduced complexity, periodicity-based dependencies, or time-
depending encoding [16]. We describe next the key aspects
of our proposed Transformer.

https://github.com/BiDAlab/TypeFormer


The pre-processed input sequence X =
(x0,x1, ...,xl, ...,xL) is introduced into the Transformer
model. Adopting the idea presented in [8], we have first
changed the original positional encoding by a Gaussian
range encoding. Fig. 3 provides a graphical representation
of the Gaussian range encoding. The pre-processed input
sequence is modelled with G Gaussian distributions where
the Probability Density Function (PDF) vector is a L1-
normalized vector of the Gaussian PDFs. Furthermore, more
than one range can be used at the same time, obtaining a
more complex context position of each sample compared
with the original positional encoding. The global Gaussian
range encoding is the pondered multiplication of the PDF
vector in the different ranges. It is important to highlight
that, contrary to [8], we have considered the Gaussian range
encoding in both branches of the Transformer (Temporal
and Channel Modules).

After the Gaussian range encoding, the proposed Trans-
former changes the original layer considered in the Vanilla
Transformer by the two different modules considered in
[8]: (i) Temporal Module, and (ii) Channel Module. The
Temporal Module extracts information from the original
input sequence (temporal-over-channel features), while the
Channel Module transposes the input sequence to extract
channel-over-temporal features. The Temporal Module con-
tains a stack of N identical layers while the Channel Mod-
ule contains a stack of H identical layers. Each module
comprises two sub-layers: (i) a multi-head self-attention
mechanism, and (ii) a multi-scale keystroke CNN. Then, each
sub-layer is followed by a residual connection and a layer
normalisation (Add & Norm in Fig. 1). We provide next the
essential details of the multi-head self-attention mechanism
and the multi-scale keystroke CNN sub-layers.

The multi-head self-attention mechanism is responsible for
linking each of the samples along the entire input sequence.
The procedure extracts long-range dependencies without lim-
iting the time window size. The output of the sub-layer is the
weighted summation of the values V in accordance with the
dot-product of the queries Q and the matching keys K [20].
The output of the sub-layer is the concatenation of applying
the attention mechanism to a F independent heads. The
multi-scale keystroke CNN comprises convolutional layers
with ReLU activation and different kernel sizes. A batch
normalisation and a dropout layer are introduced in between.

A convolutional block is placed after each module. The
CNN features are then concatenated and introduced to a
softmax layer. The feature embedding obtained is P =
(p0,p1, ...,ps, ...,pS), where S is the number of output
features. Finally, for the verification task considered in the
present study, the feature embeddings of the enrolment and
test samples are compared using the Euclidean distance. It
is important to highlight that the architecture configuration
and model hyperparameters of the proposed Transformer
have been adapted to free-text keystroke verification systems
on mobile devices. The specific details of the proposed
Transformer are described in Sec. IV-A.

Normalized
PDF Vector

Learnable Range
Embeddings

Gaussian Range
Encoding

G Gaussian Distributions

Fig. 3. Graphical representation of the Gaussian range encoding. PDF:
Probability Density Function.

IV. EXPERIMENTAL SETUP

A. Transformer Hyperparameters

This section describes the optimal hyperparameters of
the proposed Transformer. These hyperparameters have been
selected using the development experimental protocol de-
scribed in the following section, Sec. IV-B.

The Gaussian range encoding relies on G = 20 Gaussian
distributions. The Temporal Module comprises N = 10
identical layers whereas the Channel Module comprises
H = 1 layer. Regarding the multi-head self-attention sub-
layer, F = 10, 5 heads are considered respectively for the
Temporal and Channel Modules. In both modules, the multi-
scale keystroke CNN comprises 3 convolutional layers with
L units each, ReLU activation functions, and kernel sizes
1, 3, and 5, respectively, followed by dropout layers with a
rate of 0.1. Then, after the Temporal and Channel Modules,
we consider 2 convolutional layers (L units each, ReLU
activation functions, and kernel sizes 128 and 32 respectively,
followed by dropout layers with a rate of 0.5) with max-
pooling, and a linear layer with softmax activation function.
The size of the final feature embedding is S = 64.

B. Model Development

We follow the public experimental protocol presented by
Acien et al. in [4], considering the same 30,000 subjects
for training the models and 400 for validation. In total, 15
sessions per subject are considered. The proposed Trans-
former is implemented in PyTorch. Its training relies on
a triplet loss function based on Euclidean distance with a
margin α = 1.0. Adam optimiser with default parameters
and learning rate value of 0.001 is considered. We train
the Transfomer for 1,000 epochs in total, considering 29
batches sized 1024 per epoch, i.e., 29,696 triplets. The
selection of triplets takes place randomly with a uniform
distribution. At the end of each epoch, the model is evaluated
on the entire validation set, and when achieving a lower EER
value, the corresponding model is saved. Fig. 4 provides a
graphical representation of the training/validation results of
the proposed Transformer along the number of epochs. In
general, we can observe a smooth training curve in time.
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Fig. 4. The EERs [%] achieved on the training and validation sets at the end of each epoch of the training process are displayed above.

C. Model Evaluation

The best model selected in the development stage is finally
evaluated using the public experimental protocol considered
in [4]. This evaluation consists of 1,000 unseen subjects, not
considered in the development stage. In addition, from the
total 15 sessions available per subject, we perform experi-
ments using different configurations of enrolment sessions
(E = 1, 5, 10), similar to [4], in order to assess the system
adaptation to reduced availability of enrolment data. To
obtain the genuine score distribution, for each user, we
always consider the last 5 sessions for testing. Each of them
is compared with the E enrolment sessions obtaining 5×E
scores, which are averaged over the E enrolment sessions,
leading to 5 final genuine scores per user. Regarding the
impostor score distribution, we follow the same approach,
but this time each user is compared with one test session of
the remaining users, leading to 999 impostor scores per user.
Furthermore, it is important to highlight that from here two
different approaches can be adopted to compute the EER:
(i) selecting an individual threshold for each of the enrolled
subjects obtaining an EER per subject and then obtaining
their average value as the final EER value; (ii) selecting
a unique threshold for all subjects. Their use depends on
the particular application and scenario. The advantage of
(i) consists in a better performance in terms of EER, as a
specific threshold of the system is adapted to each subject.
This is the approach adopted in the comparison work [4].
However, the drawback is related to the fact that a large
impostor embedding distribution has to be compared with
each of the individual subjects’ feature embedding to tune
each specific threshold. Such solution might be in conflict
with the mobile environment resource constraints in terms of
memory, or with privacy and security concerns. In fact, it has
been shown that a significant amount of information can be
obtained from data of mobile devices such as keystroke [6].
On the other hand, if the system is trained offline on a large
database, deploying the system with a fixed pre-determined
unique threshold (ii) is undoubtedly more convenient due to
the described aspects. In the present work, both scenarios
are considered in the experimental framework, naming them
respectively “Average” EER for case (i), and “Global” EER
for case (ii).

TABLE I
SYSTEM PERFORMANCE COMPARISON BETWEEN THE

STATE-OF-THE-ART TYPENET [4] AND THE PROPOSED TRANSFORMER.

Number of
Enrolment
Sessions

Average
EER (%)

Global
EER (%)

TypeNet
[4]

Proposed
Tranformer

TypeNet
[4]

Proposed
Transformer

1 12.60 6.99 18.19 10.68
5 9.20 3.84 14.39 7.23
10 8.00 3.15 13.16 6.26

V. EXPERIMENTAL RESULTS

A. Comparison with the state of the art

Table I provides the system performance results in terms
of EER (%) of the proposed Transformer for the different
number of enrolment sessions (E = 1, 5, 10) and the two
different threshold configurations, i.e., computing an indi-
vidual threshold per subject and obtaining the mean EER
over all subjects (Average EER), and a unique threshold for
all subjects (Global EER). In addition, to provide a better
comparison of the proposed Transformer with recent state-
of-the-art keystroke biometric systems, we include the results
achieved by TypeNet [4]. TypeNet is based on a Long Short-
Term Memory (LSTM) RNN architecture, achieving state-of-
the-art performance results in both physical and touchscreen
keyboards. Several learning approaches were also studied
using different loss functions (softmax, contrastive, and
triplet loss). It is important to highlight that we opt for
the comparison with TypeNet as (i) they considered one
of the largest mobile free-text keystroke databases available
up to date, the Aalto mobile keystroke database [13], (ii)
their experimental protocol is publicly available in GitHub3,
so we can rigorously follow it, considering the same sets
of subjects and metrics, for development and evaluation,
and (iii) TypeNet has outperformed previous approaches in
keystroke biometrics.

As can be seen in Table I, the proposed Transformer
significantly outperforms TypeNet in all cases on the same
evaluation set of 1,000 subjects from the Aalto mobile
keystroke database [13]. Analysing the number of enrol-
ment sessions, the proposed Transformer achieves a 6.99%

3https://github.com/BiDAlab/TypeNet

https://github.com/BiDAlab/TypeNet
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Fig. 5. DET curves comparing the performance of the proposed Trans-
former with TypeNet [4]. E corresponds to the number of enrolment sessions
considered. The reported EERs (%) are for the global threshold.

EER when considering E = 1 single enrolment session.
This is an absolute improvement of 5.61% EER compared
with TypeNet (12.60% EER), proving the high potential of
the proposed Transformer compared with traditional deep
learning architectures such as RNNs. Increasing the number
of enrolment sessions per subject, we can see a general
improvement of the proposed Transformer, with values of
3.84% and 3.15% EERs for E = 5, 10 enrolment sessions,
respectively. This trend also shows the large improvement
of the proposed Transformer with the number of enrolment
sessions, outperforming TypeNet in both scenarios (absolute
improvement of around 5% EER).

Analysing the two different threshold scenarios (Average
and Global), we can observe better results for the Average
case regardless of the number of enrolment sessions, e.g.,
for E = 1 single enrolment session, values of 6.99% and
10.68% EERs are achieved by the Proposed Transformer for
the Average and Global cases, respectively. A similar trend
is observed for TypeNet. These results make sense as one
specific threshold is adapted to each subject in the Average
case, at the expense of more computational efforts.

For completeness, we include in Fig. 5 the Detection
Error Trade-off (DET) curves computed for the different
number of enrolment sessions available for the Global EER
threshold case. As can be seen, the proposed Transformer
outperforms TypeNet even in the case of having fewer
enrolment sessions available, i.e., E = 1 enrolment session
(proposed Transformer achieves 10.68% EER) vs. E = 10
(TypeNet achieves 13.16% EER).

Finally, to provide a better comparison of the proposed
Transformer with the literature, we include in Table II
the EER results obtained by other state-of-the-art systems
in keystroke biometrics: digraphs and SVM [5], Partially
Observable Hidden Markov Model (POHMM) [11], and
a combination of RNNs and CNNs [9]. All of them are
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Fig. 6. 2D graphical visualisation of the latent space through t-
SNE considering 15 sessions of 10 subjects [19]. Selected parameters5:
perplexity = 14, init = ’pca’, n iter = 1000.

TABLE II
COMPARISON OF THE PERFORMANCE ACHIEVED BY THE PROPOSED

TRANSFORMER WITH RELATED SYSTEMS (E = 5).

System Average EER (%)
POHMM [11] 40.40
Digraphs [5] 29.20

CNN+RNN [9] 12.20
TypeNet [4] 9.20

Proposed Transformer 3.84

trained under the same experimental protocol and evaluated
on the same set of 1,000 subjects in terms of Average
EER considering E = 5 enrolment sessions. Our proposed
Transformer outperforms all previous approaches with EER
absolute improvements of 36.56% (POHMM [11]), 25.36%
(Diagraphs [5]), 8.36% (CNN + RNN [9]), and 5.36% (Type-
Net [4]). These results evidence the success and potential
of the proposed Transformer for the challenging free-text
mobile scenario considered in the study.

B. Analysis of the feature embeddings

Fig. 6 provides a graphical representation of the feature
embedding space achieved with the proposed Transformer
for 10 different subjects of the Aalto mobile keystroke
database (15 acquisition sessions per subject). We consider
the popular mathematical method t-SNE [19] to visualise
data points in high dimensional spaces. Apart from few
outliers (one sample of users 4 and 7), most of the em-
beddings of each of the subjects are clearly separated. Fig. 6
demonstrates how the proposed Transformer is able to group
clearly the feature embeddings belonging to the same subject,
achieving small intra-class variability, and to distance as
much as possible between the feature embeddings of the
different subjects, increasing the inter-class variability.

5sklearn.manifold.TSNE -- scikit-learn 1.1.1
documentation. Accessed: 2022-07-13.

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html


C. Discussion

The system performance improvement achieved with our
proposed Transformer in relation with previous approaches
is due, in our opinion, to the following reasons: (i) our
model applies the self-attention mechanism, being able to
operate over long-distances in the input sequence; (ii) our
model attends to all the prior samples of the time sequence
at the same time, without summarising the previous seen
information; (iii) the features are extracted from two differ-
ent perspectives, from the time and the channel modules,
providing more complex information; and (iv) the Gaussian
range encoding together with the multi-scale keystroke CNN
allow to obtain a perspective of each sample in different
environments, as different ranges are treated at the same time.

VI. CONCLUSIONS AND FUTURE WORK

The present study has explored and proposed novel
keystroke verification systems based on Transformers. To the
best of our knowledge, this is the first attempt to apply Trans-
formers to keystroke biometrics. We have focused on the task
of free-text mobile keystroke authentication, traditionally
far more challenging than its fixed-text counterpart. Our
proposed Transformer has greatly reduced the performance
gap existing between the two scenarios, reaching numbers
as low as 3.15% EER with 10 short enrolment sessions of
50 samples each, and 3.93% EER with only 1 enrolment
session. Furthermore, for the popular and public Aalto mo-
bile keystroke database considered in the study, the proposed
Transformer has achieved remarkable improvements with
the same experimental protocol considered in the recently
state-of-the-art TypeNet [4] (3.15% EER vs. 8.00% EER).
Finally, it is important to remark that we will make our
proposed approach and experimental framework available to
the research community in order to advance the state of the
art of keystroke biometrics in free-text mobile scenarios6.

Future work will be oriented in several directions: (i) im-
provement of the Transformer architecture; (ii) an optimised
training approach considering hard triplet mining. Forcing
the model to learn from harder comparisons has in fact
proved to be an effective strategy in many applications [15];
(iii) a more sophisticated mechanism than the traditional
Euclidean distance for the comparison of feature embeddings
in the latent space, such as Support Vector Machines (SVM);
(iv) investigating the subject information contained in the
feature embeddings, i.e., gender, age, etc., to determine if
keystroke data should be treated as privacy-sensitive bio-
metric data. The metadata available in the Aalto mobile
keystroke database can be used to shed some light; and (v)
applying Transformers to other biometric modalities [18].

6https://github.com/BiDAlab/TypeFormer
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