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Abstract

This thesis documents the investigation of a technique for the computer-based assessment of
visuo-spatial neglect for use within a population of stroke patients. Analysing the hand-drawn
responses from a battery of neuropsychological tasks, a series of automated feature extraction
routines have been implemented to accurately and consistently assess performance in a novel

way, leading to a diagnostic indication of neglect severity.

An investigation into the reliability of existing neglect assessment methods highlights the
ambiguity in interpretation of marking criteria and the inaccuracy introduced due to human
error in score calculation. The implemented feature extraction routines overcome these

problems by algorithmically applying identical criteria to all test responses.

The results of a clinically-based trial using the developed system show that significant
performance differences can be identified both using conventional static features (the
outcome of the test response) and novel dynamic time-based constructional features which
establish previously unmeasured performance characteristics of neglect-based response while
increasing the sensitivity of the detection of neglect. The correlation between the static
features and existing assessments of neglect verify the ability of the computer-based battery to

detect neglect.

A feasibility study into the automated classification of feature measurements indicates the
sensitivity of the individual tasks to detect neglect performance and shows that it is possible

to classify responses by the analysis of the principal features extracted from test responses.
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Chapter 1

Introduction and Background

1.1 General Introduction

This thesis documents the investigation of the specification, development and evaluation of a
computer-based assessment battery for the detection of visuo-spatial neglect in stroke
patients. Extracting features measuring performance based on the pen movements made
during a series of implemented ‘pencil-and-paper’ neuropsychological tasks, the accuracy and
consistency of diagnosis compared with existing assessment metrics is increased through a
standardised algorithmic approach to assessment. The understanding of the clinical condition
is extended through the use of a range of novel time-based and constructional features which
provide information hitherto unavailable for assessment. The utilisation of pattern recognition
techniques introduce cross-feature multidimensional analysis enabling an examination of
performance interaction both within and between individual tasks leading to automated

diagnosis.

The impetus for the research and development of a new assessment of neglect is driven by
two main factors. Firstly, research into stroke-related illness is a priority area in the UK
Department of Health’s Research and Development Plan [1], specifically the measurement
and evaluation of rehabilitation outcome of stroke patients. Rehabilitation programmes
involve the long-term care of patients, making them expensive to fund, therefore the careful
evaluation of schemes will establish the most cost-beneficial treatment methods while the
development of better techniques can also offer cost benefits. Equally, from the point of view
of "quality of life", an effective rehabilitation program means a quicker recovery and a return
to normal everyday activities for the patient. Accurate measurement of conditions and

recovery progress is very important in facilitating this evaluation.

The second impetus is derived from an engineering perspective. Recent studies [2][3] have
indicated that the computer-based algorithmic assessment of handwriting and pen-based
movements can increase the accuracy and the diagnostic understanding behind a variety of

clinical conditions. In particular, the extraction of pen movement and sequencing features



(8]
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provide data which has not been available in traditional assessments of the tasks. These
developments have been matched by the expansion of the use of computer technology within
the area of healthcare for the monitoring, diagnosis and storage of performance data and

patient history.

The research reported in this thesis is primarily concerned with the extraction, computation
and classification of features from a series of pen-based neuropsychological tests. The
research programme draws on both the theoretical basis and practical experience of a number
of disciplines: Computer-based Image Processing, Psychology, Geriatric Medicine and
Occupational Therapy. Each of these areas has contributed to the choice of the techniques
implemented and interpretation of results obtained from the studies and experiments reported.
While the use of a cross-disciplinary team is invaluable for input and guidance in all areas of
the research, the wide range of supporting knowledge also presents a problem in reviewing
the literature and interpreting the data obtained from trials and studies. The work reported in
this thesis has therefore deliberately taken an engineering-based view of the system
development and the application of computer-based techniques and algorithms to provide a

solution.

1.2 Visuo-Spatial Neglect and Rehabilitation

The condition of visuo-spatial neglect relates to a dysfunction caused by brain damage [4].
The main effect of the condition is to cause subjects to fail to respond to stimuli in the visual
field on the opposite side to the location of the lesion. Traditional testing [5] has exploited this
effect by measuring the identification of objects within the visual field. Diagnosis of the
condition is critical for the selection of a rehabilitation process specially devised to
compensate for the effects of neglect. Inadequate detection of neglect at an early stage of
therapy will result in performance deficit from the patient during rehabilitation and a failure to
respond to treatment, prolonging the time-scale required for recovery and hence increasing

associated costs.

Accurate assessment is important throughout the rehabilitation process to enable planning,
monitoring and modification of treatment methods administered to individual patients. Figure
1.1 shows the basic feedback model of assessment, treatment planning and therapy.
Assessment inaccuracy or the application of an unsuitable treatment programme at any stage

of this model will cause a degradation of (and/or an extension to) the rehabilitation process.
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Assessment

)

Y

Treatment 1

Planning
(Progress |
. Monitoring) |

Therapy |

Figure 1.1 : Rehabilitation feedback loop

Neglect is assessed by observations and formal testing procedures undertaken by a range of
healthcare staff. Functional assessments obtained by Occupational Therapists establish
deficiencies in everyday activities such as washing, dressing and eating [6]. Clinical
assessment can determine the extent of neglect by observation of objects around a room and

limb acknowledgement [5].

The focus of this research is a series of standard pencil and paper based tests which can be
used to quantify performance. These tasks involve the completion or drawing of a task printed
on a sheet of paper which is placed directly in front of the patient. Using a pencil or pen,
typical tasks involve the cancelling of printed targets or the drawing of simple geometric
shapes. The responses of these tasks are then evaluated by therapists or trained assessors. Due
to the simplicity of the required apparatus, these tests can be used in a variety of confined

hospital environments, for example while sitting up in bed or whilst seated in a wheelchair.

While the performance effects of neglect subjects completing these neuropsychological tests
are well documented [4], a number of potential problems exist with the testing and assessment

methodology:
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o Fatigue - test batteries often cause tiredness within patients which in turn causes
modification of test performance. This effect is particularly prevalent in a geriatric
population. Test administration and assessment are also affected by therapist fatigue and

sometimes by complacency caused by overfamiliarisation with the testing procedure.

e Subjective Assessment — with ambiguous assessment guidelines, patient performance is
unstandardised between both therapists and subjects introducing repeatability errors in

cross-patient comparison and performance monitoring over time.

e Resource Intensive — the administration and assessment of tests involves the utilisation
of a trained therapist. Although task specific, existing tests for visuo-spatial neglect

typically take up to 3 hours to produce an assessment.

e Accuracy — Even with strictly defined marking criteria, test responses are still subject to
human error in assessment, such as score miscalculation and criteria application which

can affect the performance rating from a particular task.

e Distress to Patients — the processes of being tested, and recognising poor performance,

can cause distress and feelings of frustration for a patient.

Performance and assessment inconsistencies caused by one or a combination of these
problems will often prevent an accurate measurement of the patient’s ability and, in terms of
the rehabilitation feedback loop, mask the extent of a patient’s progress. The research
described in this study includes an evaluation of the current pencil and paper assessment

techniques to determine the level of agreement between test evaluations.

1.3 Computer Based Testing and Evaluation

In implementing a computer based capture and analysis system, the first consideration must
concern the operational requirements. The aims of using computer based data capture and

analysis techniques for the examination of test responses are threefold:

e Improve accuracy and assessment consistency — the subjectivity and inconsistency
described in the previous section can be removed by assessing performance with respect

to a predetermined set of rules and criteria.
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e The extraction and diagnostic analysis of new dynamic features — Two distinct types of
features are able to extracted from drawing response: Static features relate to the outcome
of the drawing (i.e. measurements taken from the completed drawings, for example total
distance drawn and size of drawing) whereas Dynamic features measure timing and
constructional ordering of drawings, for example the total time taken to draw and the
order in which the sides of a geometric shape were drawn. These features are not
available within conventional assessment methodologies and may provide additional

diagnostic features and performance measures.

e Performance classification and quantification — the use of pattern recognition techniques
may identify performance similarities between responses from groups of patients and

hence provide automatic classification and diagnosis of an unknown test response.

Capturing data using a computer peripheral such as a graphic tablet allows a test subject to
interface with the computer without modification of the standard pencil and paper based test
methodology. Other benefits of the computer-based analysis carried out here include the
ability to store raw pen data (such as coordinates), features and classifications and
consistently monitor performance over time. As the test response from a patient is stored as a
list of pen coordinates, this data can be replayed and reassessed without the need to retest with
the test subject. Most importantly, additional features can be extracted from a test response at

any stage of the study simply by replaying the stream of coordinates.

Figure 1.2 shows the standard implementation schematic for the capture and analysis of pen
based features adopted here [7]. Pen position data is captured from the input device and stored
as a stream of coordinates. Traditional static features are then extracted (with increased
accuracy) alongside the novel dynamic based features. From both sets of features,
performance based classification can be obtained using standard pattern recognition and data

clustering techniques [8].

The final stages of this schematic show the generation of a classification and performance
metric. The final outcome must also be verified against an existing test battery and a clinical

evaluation of a test subject to ascertain the performance and reliability of the devised system.
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Figure 1.2 : Computer based test system schematic

1.4 Thesis Structure

Following this brief overall introduction, the thesis is divided into a further six chapters

describing the following elements of the research programme:

Chapter 2 introduces the practical and theoretical background to the research, investigating
the condition of visuo-spatial neglect in stroke patients. Existing assessment methods are
examined alongside the physical symptoms of the condition. The application of computer-
based assessment methods are discussed with reference to the detection of neglect and
suitable pattern recognition techniques for the classification of features extracted from the

tasks are examined. Finally, the design aims for the research are defined.
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Chapter 3 presents the findings of an interrater reliability investigation of the current standard
for assessment of neglect, the Rivermead Behavioural Inattention Test (BIT). The BIT
infrastructure is described in detail and an assessment made on the agreement between raters
by comparing overall battery score and sub-task score identifying which task produces the
most disagreement and why this occurs. The extent of misclassification of drawing tasks is

investigated.

Chapter 4 describes the implementation options for a pen based capture system. Hardware
devices to facilitate data capture are investigated and sampling and storage requirements are
presented along with pre-processing and feature extraction routines to examine the captured

data.

Chapter 5 describes the implemented computer-based test battery and individual static and
dynamic features that are extracted from the pen-based data. Defined algorithmically, each

feature is examined in relation to known response characteristics defined in the literature.

After detailing the demographics of the test subjects participating in a trial of the computer-
based test, Chapter 6 presents the results from each of the features and the diagnostic
capabilities of each of the battery sub-tasks are established. The correlation of each feature
result against the obtained BIT classification is also established. The principal features
discriminating between test groups are identified. The chapter also presents the findings of a
feasibility study to assess a series of automated pattern classification techniques using the
significant features extracted from the computer-based test system. The choice of classifier
architecture is investigated with respect to increasing the accuracy and diagnostic ability of

the system.

Chapter 7 draws some conclusions about the research programme reported here and includes

suggestion for further work.




Chapter 2

Computer Based Diagnosis of

Visuo-Spatial Neglect: A Review

2.1 Introduction

This chapter presents an overview of the theoretical background to the research and defines
the developmental aims and objectives. The condition of visuo-spatial neglect in stroke
patients is investigated including the physical symptoms and the effects on everyday
activities. The importance of correctly diagnosing the condition is highlighted by the range of
specific rehabilitation strategies to compensate for neglect. Lacking a strict definition of
severity, the condition is difficult to diagnose accurately leading to a large variation in
reported incidence of neglect between studies. Current clinical methods designed to
standardise assessment are discussed with relation to neuropsychological impairments.

Expected outcomes from these tests are described.

The second strand of the review examines the role of computers in neuropsychological
assessment and in particular, the possibilities for extracting two types of feature data using
digitised handwritten responses. Firstly, by applying an algorithmic approach to assessment,
test response drawings and markings (static features) can be measured more accurately, with
greater resolution and with consistency. Secondly, with reference to the literature on pen
kinematics and dynamics, the types of additional movement and time-based features (dynamic

features) designed to emphasise the symptoms of neglect are assessed.

Finally in this chapter, a range of pattern recognition methodologies that can be used to
classify a feature set extracted from the devised tests are investigated. The advantages of
using a computer based system within a clinical environment are discussed with reference to
rehabilitation performance and an increased understanding of the condition of neglect. From

the review, a series of implementation objectives are defined.
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2.2 Stroke and Visuo-Spatial Neglect

Stroke is caused by either a blockage of blood flow or, less frequently, the haemorrhaging or
rupturing of blood vessels within an area of the brain. The level of oxygen reaching the
affected area is then decreased and damage is sustained. Stroke is the third commonest cause
of death in the UK, after ischaemic heart disease and cancer, with an approximate annual
incidence in the UK of 2 per 1,000 of the population. The true incidence of stroke in the UK
is not known as it is estimated that up to 25% of strokes and transient ischaemic attacks are
not reported. As 67% of strokes occur in persons over the age of 65 then stroke is

predominately related to care of the elderly [9].

Visuo-spatial neglect is a condition that may occur following a stroke or less commonly, head
injury [10]. The main effect of neglect is to cause the patient to fail to respond to or report
visual stimuli contralateral (opposite side) to the location of the cerebral lesion. Thus a patient
with neglect resulting from a right hemisphere lesion will fail to respond to a stimuli placed to
the left of his visual field [11]. Neglect is more commonly associated with a right hemisphere
lesion (right Cerebral Vascular Accident - CVA) where the symptoms are more pronounced
[12], although less frequent and less severe cases of neglect do result from a left hemisphere
lesion [13]. Definition and understanding of the condition has grown over the past two
decades in both the clinical and neuropsychological fields. Originally thought to be a
disturbance in visuo-spatial processing, more recent research has concluded that neglect is a
heterogeneous collection of dysfunction in areas of motor, sensory and intellectual

performance [14].

Neglect is not an ‘all-or-nothing’ condition [15]; the severity of neglect varies depending on
the location and volume of the lesion, but neglect is commonly associated with a lesion in the
right hemisphere posterior parietal region. The incidence rate of neglect varies considerably
mainly due to an inadequate definition of the condition and the lack of standardised testing
procedures. Halligan and Robertson [14] present a review of reported incidences of neglect
which varied between 12% and 95% of assessed stroke patients. These figures were obtained
by using a range of assessment techniques, all with differing sensitivities to the condition and
without strictly defined and standardised marking criteria. In several cases, tests that were not
designed to identify neglect (such as Parkinson's based writing tasks) have been used

clinically with the assumption that similar dysfunctions were being assessed [16].
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2.2.1 Effects on Everyday Activities

Depending on the severity of the condition, neglect can have a debilitating effect on everyday
activities. Tasks such as washing and dressing are affected as a patient with neglect may fail
to acknowledge their contralateral limbs and respond to objects placed to one side of space
[17]. Other tasks such as eating may result in the patient leaving food on one side of the plate.
Neglect patients also have difficulty in reading from books, clocks, and watching television.
Writing and drawing performance is affected, with neglect subjects compressing their left
hand visual field into the right (intact) side of the drawing. Writing tends to be right justified
on the page [18]. Figure 2.1 shows typical examples of these two effects. In Figure 2.1a a
neglect patient was asked to draw a clock face. The compression of numerals to the right hand
side of the clock face is evident. This right hand side bias can be seen in normal writing

performance (Figure 2.1b) where the text is justified to the right margin.

Whilst these tasks may cause frustration or leave a patient unaware of their actions to one side
of their visual field, navigational disorientation means that activities such as walking and
crossing the road present new dangers to which a person is not able to respond. Once a patient
becomes aware of the neglect, he will learn to compensate by relocating the centre of his field
of vision. Overcompensation to the attentive (non-affected) side sometimes causes failure to

respond to a person communicating within the contralateral field.

The accurate detection of the presence and severity of neglect is critical for two reasons.
Firstly, it enables the correct rehabilitation schemes to be used within a hospital
environment which can be specifically tailored to the needs of the neglect patient. Secondly,
without detection, a patient may be placed in a situation or confronted with activities where it
would be dangerous without specific recognition of the condition [19]. In many cases, these
effects are only present for the first few weeks post-stroke, although inattention to extreme
right sided stimuli may continue for several months. The average length of stay within a
stroke unit is 3 months, so the effects will still be present when discharged from hospital and
the patient is faced with normal everyday activities without the assistance of trained hospital

staff.
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Figure 2.1 : Clock drawing and writing from a neglect patient

2.2.2 Rehabilitation of Neglect

The types of rehabilitation scheme used to treat neglect are implemented clinically across the

range of therapy activities. Therapists attempt to make the patient aware of the condition and

learn to compensate for the inattention by directing (or cueing) visual attention to objects

placed in the inattentive field. Typical configurations for these rehabilitation exercises are the

location of targets on a sheet of paper or objects within a workspace. Many of these tasks are
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coupled with functional exercises administered by Occupational Therapists which require
patients to locate and use everyday objects found in kitchen or bathroom activities. An
overview of techniques used by therapists are presented in Ladavas, Menghini and Umilta

[20], Robertson [21] and Lennon [22].

Length of treatment varies depending on severity of neglect and the recovery rate of an
individual patient. Studies [23][24] indicate that the typical period for the condition to
stabilise is six months and that an assessment of neglect stability should be determined by
using a test battery on two separate occasions at least a month apart. This time estimate may
however be affected by other dysfunctions a patient may have. The next section examines

some of the standard techniques and tests used for the assessment of neglect.

2.3 Testing for Neglect

Many tests have been devised by clinicians, therapists and neuropsychologists to establish the
presence and severity of neglect within a patient. Whilst there is little (or no) evidence of
standardisation linking test performance to neglect severity across the entire range of devised
tasks, the underlying assessment criteria is to establish and monitor performance differences
between the left and right visual fields. Indeed, it is the case that some of the tasks are more

sensitive to neglect detection than the others.
Halligan and Robertson [14] define four categories of tasks designed to test neglect:

e Behavioural and Functional - observation and assessment of everyday activities and

object description in all areas of the visual field.

e Drawing and Copying — patients asked to copy and draw from memory geometric or

representational shapes on a sheet of paper placed in the centre of their visual field.

e Cancellation and Visual Search — another test completed using a pencil and paper. Here
the test subject has to locate and cancel (or mark) specific objects either with or without
visual distractors. As the overlay is placed in the centre of their visual field, objects are

located in both intact and inattentive fields for a neglect patient.
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e Line Bisection — a further paper based test. Given a straight line of specific orientation,
the test subject is required to mark (bisect) the midpoint of the line. Overlays may consist

of a single or multiple lines.

Subtask configuration and typical performance characteristic of neglect patients using the

pencil and paper based tasks are investigated in detail in the next sections.

2.3.1 Copying and Drawing Tasks

The diagnostic ability of using performance measurements from copying and drawing tasks to
establish the presence of neglect has produced two conflicting opinions to the usefulness of
the task. While studies such as Ericsson et al. [25] found that drawing performance decreased
in proportion to levels of dysfunction, others have questioned the diagnostic properties of
static features extracted from drawing tasks and have obtained results which do not correlate
with other tests of neglect [26]. The use of dynamic constructional features from drawing tests
[2] have, however, produced significant results for the assessment of neglect. Used
individually or in conjunction with the static features, drawings do contain important clinical

indicators.

Typical implementation of these tasks involve the copying [27] or drawing from memory [28]
of a variety of simple geometric shapes (such as a square, star and diamond) or
representational drawings (for example, a house, a man, and a tree). Modifications to this
basic test methodology are a completion-based task, where half an image is presented to a test

subject who is required to draw in the mirror image [29].

A general drawing characteristic with a right hemisphere neglect subject is the omission of
left hand side components of the copied or drawn attempt [30] [31]. An example of this is

shown in Figure 2.2.

Figure 2.2 (a) is a drawing from an age matched control subject. A neglect subject test attempt
is displayed in Figure 2.2 (b) clearly showing component omission from the drawing. While
the evidence of omission shown in the example demonstrates clear differences between test
groups, this type of response is only evident in moderate to severe cases of neglect. In cases

of very severe neglect, figure copying tasks that require the construction of geometric or
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representational shapes that comprise of many components or are difficult to visualise (such

as a three-dimensional cube) often produce an unrelated or no response from the test subject.
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Figure 2.2 : Cross figure copying task

Apart from task complexity, a major deficit with the assessment of drawing based tasks is the
subjectivity introduced through the absence of an objective marking scheme. In an attempt to
rectify this Andrews et el. [32] examined drawing performance across a range of stroke
subjects. In devising six conditions for drawing failure, categories for assessment could be
referenced for marking guidelines. Again, application of these categories to real data is not
clearly defined. This means that marking of individual responses are still reliant on the

subjective judgement of the assessor as no standardisation between assessors is established.
Figure 2.3 shows examples of the six failure conditions. In drawings (a) to (e), a
representational drawing of a house is required to be copied. Response (f) is a drawing of a

man.

The defined categories are :

a) disorganised drawing

b) perseveration (multiple drawing of a single component)
¢) simultaneous agnosia

d) overcopying

e) unrelated activity

f) visuo-spatial neglect
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Figure 2.3 : Drawing dysfunction criteria (Andrews et al. [32])

Kirk and Kertesz [33] and Swindel et al. [34] both devised a series of low level assessment
criteria for examination of drawing quality. In the former study, three sets of features were

used to assess drawings:

e Drawing accuracy : drawing overlap, spatial relationship, drawing simplification, angle
production, perseveration of lines, tremor within lines, perspective of three dimensional

shapes.

e Drawing positioning : orientation of drawing, position drawn on page.

e Item count within drawing : components, angles, redrawn lines, lines crossing, lines

joining, extra markings on the paper.

Swindel et al. used similar assessment criteria dividing features into qualitative (symmetry,
components present) and quantitative (drawing size and spatial placement). Both scales relied

on individual subjective judgement from an assessor.
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Thurmond and Hancock [35] examine the effects of figural complexity with respect to
drawing task response accuracy. The study concluded that as the complexity of the shape
increased, the more difficult it was for a neglect subject to produce an accurate response,
producing a better discrimination between subject groups. Ericsson et al. [25] found that
complex shapes such as a cube or pentagon are the most sensitive to changes in cognition,
whereas drawing a square or writing a sentence provide little discrimination. Accuracy of
shape perception within all test subject groupings was improved when an outline of the shape
to be copied was presented rather than a solid representation. Peru et al. [36] examined the
ability of neglect patients when required to copy whole, half and chemeric shapes. The study
showed that subjects based their drawing reference on the right components of shapes. When

these were absent, inaccuracies in copying ability resulted within a neglect population.

One of the most widely used tests for analysis of visuo-spatial neglect and other cognitive
dysfunction [37] conditions is the clock drawing task (Figure 2.1a). Several variations of this
task exist, the diagnostic properties of which are investigated by DiPellegrino [38]. Using a
single neglect case, DiPellegrino’s study showed that when the test subject was required to
draw a clock face and place the numerals in the correct positions from memory, then all
twelve numerals were positioned to the right hand side of the dial between the 12 o’clock and
6 o’clock locations. The same effect occurred when copying an image of clock face. Both
these tasks demonstrate the standard neglect performance modification on the left hand side

of a drawing.

In the study of Alzheimer’s patients performing the clock drawing task, Cahn [37] tested the
stability of the test across a wide age range of control subjects. The results showed that
performance did not deteriorate with age, thus indicating the task’s suitability for diagnostic
use within a geriatric population. However, in a cross-task comparison for the assessment of
neglect, Ishiai et al. [26] found that clock drawing performance did not correlate with neglect
severity identified by cancellation and bisection tasks. The conclusions of the study supports
the use of other tasks such as cancellation and bisection, but demonstrated that the clock
drawing task was not an accurate diagnostic tool. Other studies have used handwriting and
drawing output from this task for the diagnosis of clinical conditions including Alzheimer's

disease [39] and Parkinson's disease [40][41].

The constructional aspects of drawings have been examined through the use of computer
based recording of pen movements. Smith and Fairhurst [42][43] examined the use of both

static and dynamic features extracted from the drawings made by a range of test subjects
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including children and hospital patients with dementia. By implementing a set of tools and
feature extraction routines, both accuracy and consistency in static assessment were obtained.
New dynamic or timing based features also extracted from the test response revealed
differences between test populations which were previously unobtainable. This work was
supplemented by Clar [44] and Higson [45] for the analysis of dyspraxia through an

assessment of Beery Test [46] responses.

Kinematic profiling of movements made by right CVA neglect patients was explored by
Mattingley et al. [2]. By obtaining a series of horizontal pen movements across a graphics
tablet surface, the group found differences in severe neglect patients from a normal population
when a pen movement was made from the right hand side of the page (their intact field) to the
left (their inattentive field). By assessing the velocity profile, severe neglect patients drew
more slowly and with a profile which was dissimilar from the standard bell-shaped velocity
profile obtained when drawing a straight line [47]. The group were also slower to reach the
peak velocity within the profile (indicating a longer acceleration phase). This peak velocity
was lower than that produced by a normal population and the velocity profile contained more
submovements indicating poor force control. Patients with mild neglect exhibited similar
performance characteristics to a control population. Figure 2.4 shows two velocity profiles of
pen movement from the Mattingley study. The first profile (a) is from a control patient while
the second (b) is from a neglect subject. The difference in peak velocities, timings and
profiles of leftward movement is apparent. Similar velocity profile results were found by
Konczak and Karnath [48] examining the movement times to reach targets from a base

position.

Kinematic algorithms and features for the assessment of pen based movement, are explored in

detail in Section 2.4.2 , along with other time based dynamic features.

2.3.2 Cancellation and Visual Search Tasks

Many standardised implementations exist of cancellation and visual search tasks for the
detection of neglect. One of the first developed, and widely regarded as a standard for
assessing neglect, is the Albert’s Cancellation Task [49]. In this task, a test subject must
cancel 40 lines printed in a pseudo-random orientation on a single sheet of paper (Figure 2.5).
Other tests include the star cancellation task [50] which introduces distractors (letters and

large stars) amongst the cancellation targets (smaller stars).
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Figure 2.4 : Velocity profiles of an RCVA neglect subject (Mattingley et al. [2])

With all these cancellation tasks, typical right CVA neglect performance results in failure to
cancel the targets on the left hand side of the overlay. The severity of the neglect can be
assessed by counting the number of targets not cancelled on the complete overlay [51].
Chatterjee et. al [52] propose a power function to express neglect severity in relation to

cancellation performance and number of targets on the cancellation sheet. Thus:

Targets cancelled = K X (Targets presented)® 2.1)
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Figure 2.5 : Albert’s cancellation task [49]

In this study, improvements in performance over time were noted by the increase in the
constant, K. Chatterjee et al. reasoned that, as the exponent, B, did not change across the same
multiple test attempts, an aspect of the neglect dysfunction remained the same. Chatterjee also
concluded that an increase in the number of targets contained within the cancellation task also
increased the sensitivity to detecting neglect. Studies have also shown that there is a timing
increase for completion of the test overlay in proportion to the number of cancellation targets

[53].

The power function performance relationship was derived from a series of cancellation tasks
without distractor targets (without selective attention). Kaplan et al. [54] found that an
increase in the number of distractors on the cancellation overlay caused neglect patients to
omit more of the targets and hence increased the sensitivity of the task. Further experiments
indicated that if the objects used for cancellation targets and distractors are similar, this also

increased the sensitivity in detecting neglect and slowed completion time. Henderson [55]
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demonstrated this effect using two cancellation tasks, the first where the shape of the targets
were similar (‘C’ as a target, ‘c’ as a distractor) and the second where the shape differed in
each case (‘A’ as a target, ‘a’ as a distractor). Accuracy was increased for the second test
where the shape differed significantly (using the ‘A’/‘a’ characters). Geldmacher [56] also
showed this effect by conducting a series of experiments using different target and distractor
characters. Using the letters ‘I" and ‘O’ as targets and the letter ‘L’ as a distractor,
cancellation accuracy for ‘I’ was lower than for the letter ‘O’. In an earlier study, Geldmacher
[57] investigated the ratio between the number of targets and distractors contained on an
overlay. The findings of the study showed that all test subject groups were slower and less
accurate when the ratio of distractors to targets was higher. Cancellation tasks using a large
number of distractors such as the Bells test [58] have been shown to be more sensitive to

neglect than the Albert’s test.

Several studies have investigated the cancellation performance of neglect patients dividing the
cancellation overlay into quadrants rather than on left and right visual fields. Using a standard
Albert’s Task with Right CVA neglect patients, both Halligan and Marshall [59] and Mark
[60] found that as in previous studies, more omissions were made on the left hand side of the
task. Quadrant analysis showed that the greatest number of omissions occurred in the bottom
left hand quadrant of the overlay. Figure 2.6 represents the findings of Mark. The squares
represent the locations of the cancellation targets within the task and the number of omissions
made at each point. The diagram shows how the number of omissions can be represented by a

series of diagonal contours running across the overlay from the top left to the bottom right.

The timing and constructional properties of cancellation task completion have been
investigated by observed and videoed analysis. Search patterns and cancellation strategies
have been analysed by Chatterjee et al. [61] by forcing test subjects to cancel in horizontal
and vertical movements. While typical target omissions on the left hand side of the overlay
were reported, regular patterns of cancellation with movement predominantly in the
vertical plane were made by the single neglect patient used as a case study for the trial.
Introducing more targets in the horizontal plane made no difference to the regularity of the
cancellations. As with other measures, the cancellation sequence may be sensitive to the
severity of neglect a patient exhibits. Further investigation of this feature across a larger

population of test subjects is therefore necessary.
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Figure 2.6 : Number of omissions in Albert’s cancellation task

Age-matched control performance for the cancellation task was established by Geldmacher et
al. [62] using a letter cancellation task containing 10 targets and 45 distractors. 26 % of all
control subjects failed to completely cancel all of the targets. However, 74 % of these subjects
only omitted a single target, leading to a figure of only 3.9 % of age matched subjects failing
to cancel more than 2 targets. The study found that more cancellation omissions were made
by older subjects and that omissions were generally made on the right hand side of the test
overlay. Normal non-geriatric population performance on the cancellation task shows overall

greater accuracy, confirming the effect of age on task performance [63].

2.3.3 Line Bisection Tasks

The bisection task is widely used as a simple clinical diagnostic test for neglect and results
and observations are well documented within the medical and neuropsychological literature
[64][65]. Right CVA neglect patients characteristically tend to bisect the line to the right of

the centre point [66][67] which can be explained by an attentional bias causing the patient to
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overestimate the left hand segment of the line and consequently underestimate the right
segment. Several studies have focused on obtaining normal performance for the task
[68][69][70][71] finding that accuracy amongst healthy adults at locating the midpoint is high
with slight deviations usually to the left of centre. Chokron and De-Agostini [72] examine this
slight left deviation in relation to normal reading and scanning direction. By analysing the
normal performance of 30 French (Western, left to right scanning) and Israeli (Arabic, right to
left scanning) subjects, the slight left deviation was again found in the French subjects but for
the Israeli subjects a deviation to the right was observed. Scarisbrick et al. [73] assessed the
effect of normal writing hand on normal performance within a left to right scanning normal
population. Again a slight deviation to the left of the midpoint was observed regardless of

dominant hand.

These studies also assess the effect of line length on accuracy, which can be exploited in
testing neglect patients. Bisection error is linearly related to the overall line length in that the
longer the target line, the greater the bisection error. Two studies have looked at this effect
within a population of neglect patients [74][75] and have found that the bisection-error-to-
line-length ratio is greater for neglect patients than it is for a normal population. Attempts
have also been made to model the error mathematically as a power series [52] whereas recent
studies [76] have developed a computer-based connectionist model to produce a quantitative

analysis of the bisection results.

Halligan and Marshall [77] found that the severity of neglect can be directly obtained from

the bisection error distance (again scaled by the line length effect), linked by the formula:

Bisection error distance .
= Neglect severity 2.2)

Line length

This effect is shown in Figure 2.7, using hypothetical performances by mild, moderate and

severe neglect subjects over two line lengths x and 2x.
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Figure 2.7 : Hypothetical performance of (A) mild, (B) moderate and (C) severe neglect
patients over two line lengths

Other studies of normal bisection performance have concentrated on the effects of age, gender
and scanning direction found in oriental languages. Fujii et al. [78] assessed patients across
the entire adult age range (21 to 82) and have found that performance deteriorates in the
oldest age group (61 to 82). As this grouping encapsulates the population of the test subjects
to be included in the current neglect trial this deterioration can be ignored. The study showed
that even though there was an overall performance deficit compared to two younger age
groupings, the deviation of the results within the old group was small, indicating that age will
not affect the validity of a control population of geriatric subjects. Roig [71] examined the
effect of gender on bisection performance within a young population (16 to 42 years) and

found no significant variation between performance.

Several studies have examined different assessment techniques for the administration of the
line bisection task. Halligan and Marshall [67] implemented a computer-based system using a
mouse to control an on-screen cursor indicating the midpoint. Hjaltason [79] used a head-
mounted pointing device to locate the centre of the line. These studies show that although
similar rightward deviation are noted for neglect subjects, the effects are not so pronounced as

with traditional pencil and paper administration.
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2.3.4 Test Sensitivity and Neglect Test Batteries

The tests of neglect defined in the previous three sections are usually administered to subjects
as a battery of subtasks. Batteries such as the Rivermead Behavioural Inattention Test [80] are
widely used as a diagnostic tool (Chapter 3 provides a full exploration of this test battery).
Other test batteries that have been recently devised specifically for the detection of neglect
include a modified Milner Landmark task (physical and verbal location of objects) [81], a
battery of identification and location based tasks designed specifically for geriatric patients

requiring coarser motor control [82] and a series of reading based tests [83].

CVAs in particular areas of the brain are known to cause varying performance characteristics
across the range of tasks and therefore neglect severity assessed by a single task may not
provide an accurate analysis of the extent of the neglect in a subject. Marshall et al. [84]
documented the results from a range of tasks for three neglect subjects and identified task

specific performance in relation to the location of the subject’s lesion (Table 2.1)

Patient Number Lesion Location Deficit
1 Posterior Parietal Poor line bisection and
drawing
2 Temporoparietal/ Poor line bisection response
Occipital
3 Anterior / Subcortical Good bisection, poor
drawings

Table 2.1 : Lesion location and task specific deficit

Other studies [85] have examined the drawings produced from a series of figure copying tasks
and have concluded that a CVA in the parietal region of the brain causes the most drawing

dysfunction.

In an attempt to assess the diagnostic ability of the subtasks, Marshall and Halligan [86]
presented the performance results of a single case study tested with a variety of tests of
neglect. They found that the subject performed very badly on a line bisection and a
cancellation task, whereas the drawings made for a geometric copying task contained only a
few errors; the test subject could accurately copy most of the left hand side components of the

shapes. From these results they concluded that the bisection and cancellation tasks were able
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to identify less severe cases of neglect and were therefore more sensitive to detection of the
condition. It should be noted that these findings applied to the generalised testing of neglect
are hypothetical. As only a single case study patient was used in the trial, other performance
variables such as lesion location and post-stroke testing time could affect performance on any

of the sub-tasks.

Within the Rivermead BIT, Halligan and Robertson [14] established the ability of each of the
tasks to detect neglect within 30 patients who had been diagnosed with the condition by
clinical assessment and functional observations. Table 2.2 details their findings in order of
task effectiveness. From this study, the cancellation tasks clearly provide the best test for the

detection of neglect.

An important finding for the administration of tests of neglect (and other clinical based tests)
within a geriatric population was presented by Casagrande et al. [87], who found that the
performance on a task was sensitive to the time of day, test subject energy levels and the

amount of sleep obtained by the test subject prior to testing.

Task Number of Neglect % of Neglect Patients
Patients Detected Detected

Star Cancellation 30 100

Letter Cancellation 24 80

Figure Copying 22 73

Line Crossing 17 57
(Albert’s)

Line Bisection 16 53

Representational 11 57
Drawing

Table 2.2 : Test sensitivities of Rivermead BIT subtasks

2.4 Computer Based Neuropsychological Testing

The use of computer based systems within the field of neuropsychological testing has enabled
the measurement of features with greater resolution and accuracy. Elithorn et al. [88]
presented the general principles and practices of automated testing and outlined the
advantages of using such systems. Computer implementation allows greater accuracy in

timing measurement and enables the recording and storage of response data while test
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parameters such as stimulus size, position and display times can be modified with ease. More
importantly for use in large scale trials, procedural consistency between tests can be
maintained and an objective outcome can be produced algorithmically which is not

susceptible to fatigue or assessor experience.

The majority of existing computer-based tests use on-screen prompting and reaction time
assessment [89] by some form of interface, usually keyboard or external button or trigger. A
number of studies have implemented on-screen bisection tasks [90] [67] with the test subject
moving a cursor left and right to mark the centre of the bisection line. The results from these
tests have been found to correlate with the standard pencil and paper implementation, but with
reduced sensitivity to neglect. Rehabilitation therapy strategies have also been implemented
using on-screen prompting and scanning exercises where a patient has to discriminate
between different stimuli placed at varying positions within the visual field [91]. To date, the
effectiveness of these rehabilitation strategies has been very limited. Lincoln [92] concluded
that there was currently no effective computer-based rehabilitation treatment to compensate
for neglect, indicating the need for innovation in methods of stimulus and assessment [93].
The study by Bergego et al. [94] supported these findings, noting no reduction in neglect
severity following a scheme of computer-based recreation and rehabilitative on-screen
scanning tests. Studies that do claim to improve performance are almost universally assessed

on a single case study, highlighting the need for increased population trials [95].

While a computer based implementation has many advantages in accuracy and consistency,
the use of technology can modify test subject performance. This is particularly prevalent
within a geriatric community where apprehension towards using unfamiliar technology is
increased [96]. Tseng et al. [97] concluded that a quarter to a third of the population are
anxious about using computers and that test performance is affected proportionally to anxiety
levels. The main cause of unfamiliarity is the communication interface between the human
and the computer, in particular the use of a standard keyboard and inadequate instructions for
use. Test subjects who are not familiar with a keyboard and general computer use worry about
breaking’ the computer or causing an unexpected response. This effect is compounded by the
situation when on-screen or audible feedback of user action is delayed or not evident, causing

multiple responses by the test subject [98].

Roberts et al. [99] and Collinson et al. [100] both surveyed input devices for handwritten
responses to neuropsychological tests. Both studies found that a traditional pencil and paper

infrastructure provided the best method for testing, preventing the introduction of other test
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variables such as equipment unfamiliarity. However, a pen based graphics tablet maintained
the test construct equivalence to pencil and paper tasks while enabling computer based
analysis. As direct contact with the technology (such as keyboards, mice, cursor keys and
touch screen) is abstracted, the test subject did not feel that the computer was imposing on his
test performance or that he had to attain a level of computer literacy to perform well in the
test. Other studies [101] [102] have supported these findings by examining pen-based
technology for clinical use focusing on the speed of data entry and response times for a range
of input peripherals. For the inexperienced user, the pen-based interface provided the fastest

and most efficient method of computer communication.

The types of data that can be extracted from the use of pen-based capture systems have been
widely explored within the fields of biometrics, signature verification and handwriting
recognition [103][104]. Data capture and analysis methods can be classified into two

groupings:

e On-line analysis examines the position and other pen status data in real-time or as a
stream of coordinates stored in a file. This enables the extraction of both static data
pertaining to the measurement of drawn images [105] and also dynamic time-based,
movement and constructional data [106]. On line analysis is the obvious assessment
method for data capture using a graphics tablet as additional dynamic data can be

explored.

e Off-line analysis uses image processing techniques to analyse the drawn (static) image.
Attempts have been made within the fields of forensic analysis of documents to obtain
dynamic data from these static images [107], extracting features such as direction of
stroke, pen movement velocity and pressure. Some of the techniques developed in this
field will increase the measurement accuracy of drawn images from neuropsychological

tests such as spatial and angular assessments of drawings.

With reference to neuropsychological testing, the types of features that can be extracted and
the additional diagnostic information than can be obtained from pen-based drawing studies

are now examined.
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2.4.1 Static Features

The static features extracted from drawings or other handwritten responses are based on the
accurate measurement of outcome. Static features such as length of drawing stroke, drawing
location from an origin, angle between two components in a geometric shape, distance from
target, number of formed corners, error distance in formed corners, drawing area and level of
perseveration (number of times a single side has been drawn) have been used effectively in
diagnostic studies [108][45]. Task specific features (such as the number of
cancellations/drawing components) defined as the standard marking criteria for the detection
of neglect [33][34] (Section 2.3) can be extracted using static analysis. Any measurement that
can be extracted from the final drawing response - the completed test overlay that would

traditionally be assessed by a therapist — is classified as a static feature.

The major advantages of computer based static assessment are accuracy and consistency. An
algorithmic approach can be applied to the assessment of drawings which enables the
application of identical marking criteria across the entire test population. Applying such a
marking scheme is one of the inherent problems in the assessment of drawings (Section
2.3.1), so defining a set of rules based, for example, on the number of sides or components
drawn or accuracy in corner formation provides a clear and consistent marking criterion and

system of assessment.

Use of an algorithmic approach to task assessment removes any ambiguity in the
interpretation of marking criteria. For example, failure by an assessor to mark a particular
cancellation target will affect the overall score for the task. A computer based approach will

sequentially visit each target enabling accurate inspection of the response.
As shown in Chapter 3, the assessment of drawing tasks varies because of a subjective

interpretation of the marking guidelines described in the BIT manual. Using a standardised

static analysis of the drawn image removes any assessment variation between test subjects.

2.4.2 Dynamic Features

The dynamic features extracted from the test responses are derived from the sequencing and

time-stamping of pen coordinates (and other data such as pressure and tilt) returned by the
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capture device. With reference to the detection of neglect, the research documented in this
thesis attempts to establish the diagnostic properties of these dynamic features. In particular, it
is interesting to ask, for example, whether spatial differences that are evident within the static
parameters, such as drawing or cancelling to one side of the page, are replicated by dynamic
features. Marquardt and Mai [109] provide a background to the extraction of dynamic features
from pen-based applications including guidelines to the necessary sampling frequencies and
resolutions required to avoid loss of data and techniques for eradicating errors caused by

sampling noise.

The velocity (amount of movement per second) of the pen has been investigated over a series
of tasks and neuropsychological conditions and has proved to reveal interesting diagnostic
differences between test groupings. Using a series of straight line drawings, Plamondon [47]
defined a model describing rapid-aimed movements made by subjects which can be linked to
physiological impairments. Deviations from the normal bell-shaped velocity profile indicate
motor and cognition problems within a test subject. A velocity skew measure calculated from
the ratio between the time to reach peak velocity (acceleration time) and time after peak
velocity (deceleration time) enables profile differences to be quantified. MacKenzie et al.
[110] explored the target specific nature of movement-based tasks with reference to Fitt’s
Law of movement and the normal velocity profile. Across all test groups, the time to peak
velocity within the profile increased proportionally to both the amplitude of movement
(distance between targets) and to the target size, leading to the definition of a power function

linking time after peak velocity, distance between movement targets and target size.

Teulings et al. [111] used the bell-shaped profile to note differences within Parkinson’s
patients in overall stroke size, drawing duration, peak velocity and time to peak velocity.
Other studies [112] have examined the velocity profile at angles within geometric shape
drawings constructed by a normal population which identified a higher pause time (no

movement) at obtuse angles.

The work of Mattingley et al. [2] indicates that velocity profiling can be used within a
population of neglect patients to identify velocity changes within spatial areas of the visual
field (Section 2.3.1). Examination of normal performance for velocity profiling within a
healthy geriatric population [113][114][115] reveals a deterioration in movement efficiency (a
skew from the normal bell-shaped curve), with increased hesitation and sub-movements
within the drawing. This deterioration increases the difficulty in differentiating between a

healthy geriatric subject and a dysfunctional patient especially if the dysfunction is slight.
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These results explain why Mattingley et. al. only found significant differences in a severe
neglect group. Other studies have examined the velocity profiles in a range of dysfunctions:
Tourette’s Syndrome [116], Schizophrenia [117], Alzheimer's Disease [118] and

Huntington’s Disease [119].

Apart from the examination of velocity profiles, movement disorders such as tremor [120]
have been investigated within dysfunctions with motor-based symptoms (for example
Parkinson’s Disease). Whilst tremor may be of interest to a neglect-based study, the main
effects for examination are the spatial differences throughout the overlay. Investigation of
dynamic features such as cancellation sequencing, starting position, timing regression and
quadrant analysis of movements will indicate if dynamic features replicate the visual static
differences within the drawing. Differences in movement times towards targets located to the
left of the visual field [121] have indicated that a detailed timing analysis on a side or
quadrant basis provides significant performance differences between neglect and other subject
groups. Extracting time, movement and sequence based dynamic features for task specific
analysis may enable detection of differences which cannot be identified by static features and

hence increase the sensitivity of the test battery.

2.5 Classification Techniques

In the previous section, the possible types of data that can be extracted from a series of pen-
based visuo-spatial tests have been investigated. While, ideally, every performance-based
feature can be used to classify a patient, in reality each feature has a different classification
ability. Analysing the interaction between two or more features may result in patterns of
classification (or clusters) forming which can separate test subject groupings. This section
presents an overview of a series of techniques that can be used to assess the ability of
individual features for data classification and how combinations of features can be used to

automatically classify the responses to indicate a patient grouping.

Classification architectures can be separated into two categories: supervised and
unsupervised. The distinct property of a supervised classifier is that it requires a training
phase involving the attribution of classifier behaviour to a class of input vector. Training the
classified involves providing the required system output value (or class) with an input feature
vector and establishing the classifier performance characteristics common to all input vectors

of a particular class. In some architectures (such as neural networks) this involves the
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modification of internal weights to reinforce correct classifier performance. In other systems
such as cluster analysis, training involves the identification of cluster centres which describe
the mean position in n-dimensional space occupied by the features from a particular class.
Upon completion of this first phase using a series of training data, the system can be used to

classify using an input feature set.

An unsupervised classifier is not provided with a required output, but forms classifications
based on similarities between input feature vectors. As such, the training phase of an
unsupervised architecture is the process of the classifier forming an internal structure based
on the provided input vectors. With a vector presented to the system, similarities with other
vectors are analysed. The area of the network, or cluster, best representing the input feature
vector can be identified and reinforced. These areas can then be labelled to indicate the
particular classifications. Following training and classifier initialisation, the network area
which becomes the most active or the cluster nearest to the position in n-dimensional space

formed by an input feature vector indicates a classification.

There are several advantages to using unsupervised architectures, most importantly the
‘automatic’ nature of the result generation enables the abstraction of the data from any biased
or miscalculated grouping. The classification patterns and self-organisation of the system can
also be studied, which may indicate interactions and groupings that are not immediately

apparent through direct inspection of data.

The performance of any classifier can be established by the error rate (Equation 2.3). This
signifies the number of misclassifications by the trained system. An ideal classifier will have

an error rate of 0%.

Number of incorrect classifications

X 100% 2.3)

Error Rate = e
Number of classifications

2.5.1 Principal Component Analysis

Principal Component Analysis (PCA) does not produce a classification of data, but it can be

used to pre-process input feature vectors. PCA examines the correlation between independent
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input features to establish any clustering or groupings within the provided data. PCA can be
used to reduce the dimensionality of a feature vector by representing highly correlated
variables as a single feature. Pre-processing the input feature reduces the amount of data
presented to the classifier, generally improving speed performance. Dominant clusterings
formed by highly correlated features within the input vector may saturate a classifier and
prevent lesser correlated features contributing to the final classification calculation.
Algorithms for performing PCA calculations are described widely within the statistical

literature [122][123].

Recent data classification studies which have used PCA to assess data with a large
dimensionality include handwritten digit recognition [124] and vision-based target

classification for military purposes [125].

2.5.2 Bayesian Statistical Classification

The Bayesian classifier is a statistical approach to pattern classification. The classifier uses
frequency distributions in calculating the probability that an input vector belongs to a
particular class; the highest probability indicating class membership [8]. Where the frequency
distributions of a particular class are unknown then the classifier is trained (supervised mode
of classification) by obtaining a model of each class membership. The training set should be

statistically representative of the entire range of class members to ensure classifier accuracy.

The Bayesian decision rule is shown as Equation 2.4. The probability of a vector D being

assigned to a class G; (of g classes) is defined as:

P(D|G,)P(G,)

> P(DIG, (G

(2.4)

P(G/|D)=

!
where :

P(G,ID) is the probability that D belongs to class G;.
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P(G;) is the probability of a case belonging to group G; when no information about the case is
available. This probability can be estimated from the observed proportions of cases in each

group from the training data set.

P(DIG;) is the probability of obtaining vector D given class G; This determines the
probability distribution that a class G; yields vector D. In practical terms, P(DIG;) can be
calculated assuming a normal distribution from the training set. A method for calculating the

probability from a set of training data can be found in Fairhurst [126].

Membership of vector D to group G; is can be defined as:

De G, iff P(D|G,)P(G,)> P(D|G,)P(G,) Vi#j 2.5)

2.5.3 Cluster Analysis

Cluster analysis is an unsupervised classification method which groups objects according to
the similarity between feature vectors. The technique is widely used in the fields of biological
and medical sciences where many data are collected from a particular patient and an attempt
is made to classify a condition by grouping similar observations [127], [128] [129]. Figure
2.8 shows objects represented by two features in a two dimensional feature space. The object
feature vectors have formed three clusters each with separate densities (represented by the
circles by each grouping). Objects are classified by finding the nearest cluster centre to the
input vector position within the feature space. The nearest cluster contains objects which are
of greatest similarity as defined by the features under investigation. The object represented by
the hexagon is closest to Cluster B using (in this case) a Euclidean distance measure and

therefore can be classified as belonging to the group of objects represented by this cluster.

Objects can be classified in n dimensions where n is the size of the feature vector describing
objects, although subsets of the vectors can also be analysed possibly following pre-

processing by techniques such as PCA (Section 2.5.1)

The most popular method for classification using cluster analysis is the MacQueen K-means
algorithm [130]. In this algorithm the number of clusters within the feature space is

predefined, the inflexibility of which has led to much development and modification to the
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basic algorithm. Having defined the number of clusters, exemplar objects from each of the
classification groups are mapped into the feature space. These exemplars initially form the
centre of each of the clusters from which distances will be measured. The distances between

initial selection of exemplars therefore affects the performance of the classifier.
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Figure 2.8 : Two dimensional Euclidean distance cluster analysis

Classification of objects is performed in two stages.

e Stage 1 — Determination of Cluster Centres : Objects (apart from those used as exemplars)
are mapped individually into the feature space and the nearest cluster to the object is
identified. After adding the object to the cluster, the new centre is computed. The
resultant cluster centres after mapping all objects are then static for Stage 2 of the

classification.

e Stage 2 — Classification : Using the cluster centres defined in Stage 1, classification is
performed individually on objects by finding the nearest cluster centre using a selected

distance metric.
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Many improvements to this basic algorithm have been proposed [131][132]. Adaptive cluster

creation introduces a new cluster centre if the distances between an object X introduced to the
feature space and all existing cluster centres are greater than a predefined limit. The centre of
the new cluster uses the mapped position of object X which is utilised in further distance
calculations. Other strategies have included repeating the first stage of the K-means algorithm
until a defined convergence threshold has been reached and using a learning rate factor within
the cluster centre update calculations in Stage 1. This factor is decreased as the number of
objects presented to the classifier is increased. This results in the cluster centres being able to
adapt more to the initial objects when the classifier structure remains undefined. As the

stability of the cluster centres increases so the amount of modification is restricted.

2.5.4 Kohonen Self-Organising Map

A Kohonen Self-Organising Map (SOM) [133] is an unsupervised feed-forward learning
neural classifier used widely for classification investigation [134][135][136]. Using the

perceptron processing element [137] classification is similar to cluster analysis in that objects

Kohonen
Surface

Figure 2.9 : 4 x 4 Kohonen map with 3 input and output nodes
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with similar feature vectors are grouped together within the Kohonen surface. Figure 2.9
shows the configuration of a SOM. Feature vectors are introduced to the network at the input
nodes, the number of which match the number of input values. These nodes are fully
connected to the processing elements in the Kohonen surface (i.e. a connection exists between
every input node and surface node). Similar objects are stored in a topologically correct
position within the structure of the surface and thus nearby points within a surface also have
similar feature attributes. Such topological mappings occur in many physiological processes,
such as the mapping between the auditory cortex and the ear. As such, the self-organisation of
the network given a set of objects is of particular interest to neuropsychologists, since these
mechanisms may hold some clues about how neural systems in the human are organised and

function.

Training of the SOM involves presenting the image to the network input nodes which is then
propagated to all nodes of the Kohonen surface. The surface processing element with the
highest output value is selected to represent the input object and is reinforced, along with
surrounding neighbourhood nodes. Many models exist for neighbourhood reinforcement but
to extend the similarities with a human neural system, a Mexican hat or Gaussian function
models localised brain cell activation. To classify input objects with the trained SOM, the

node with the highest activation on the surface indicates the classification.

Several problems exist with the basic SOM model. Uncertainties arise when defining the
network topology in deciding how many processing elements are required to accurately
classify data. Optimum performance occurs when the number of processing elements equals
the known number of categories, which relies on having a priori knowledge of data
segregation. Methods, such as K-means cluster pre-processing and thresholding of the SOM
processing surface for estimating the number of output classes within the data when this is

unknown prior to classification have been discussed in a number of papers [138][139].

2.5.5 Adaptive Resonance Theory

Since the Adaptive Resonance Theory (ART) classification architecture was first described by
Grossberg in 1976 [140] there have been many modifications and variations to the basic
system structure. The ART was developed to model the brain’s ability to store and generalise
the classification of objects, the main objective of which was to enable the formation of self-

organising stable clustering of data. The main advantage of the architecture is its ability to
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modify the internal weightings (train) and classify objects in real time, removing the distinct
training and recognition phases of traditional neural architectures. The original ART
architecture was devised to categorise binary input patterns. ART2 [141] provided an
extension to the basic system to allow analogue values to be used as input features. Other
extensions have allowed faster response (ART-2A) [142], implementation of fuzzy logic set
theory for assessment of analogue patterns (Fuzzy ART) [143] and supervised learning of

object data (ARTMAP) [144].

A detailed description of the functioning of the ART classifier can be found in many neural
network references [145][146]. The basic functioning of the system (Figure 2.10) involves the
use of two layers of perceptron elements: Input and Comparison (F1) and Output and
Recognition (F2). An input vector is presented to the F1 layer which causes the selection of a
single representative node within the F2 layer. By propagating a prototype vector, indicating
the pattern represented by the F2 ‘winning’ node back to F1, the difference between the input
vector and the prototype vector can be assessed. Output classification occurs if the pattern is

above the threshold set by the vigilance parameter.
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Figure 2.10 : ART data flow schematic
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Recent examples of classification problems investigated using an ART architecture include

the diagnosis of chronic inflammatory bowel disease [147] and the classification of base oils

using their infrared spectrum [148].

2.6 Design Objectives

Having reviewed the background to the study and investigated the possible areas for

development and improvement over conventional testing systems utilising a computer-based

response capture system, a set of more specific objectives for the study can be defined. These

objectives draw on the neuropsychological and clinical basis of pencil and paper tests for

neglect combined with the advantages of accuracy, consistency and the range of dynamic

constructional properties that a computer-based implementation delivers.

Hence, the principal design objectives are as follows:

1.

To establish the reliability of the existing testing batteries and time overheads to

administer and assess an individual patient.

To implement a battery of pencil and paper tasks to accurately assess visuo-spatial

neglect. Pen movements and timings are captured using a computer-based system.

To collect a series of data with the computer-based system from patients with visuo-

spatial neglect, stroke patients without neglect and age matched control subjects.

By applying an algorithmic approach to feature extraction, improve the reliability,

resolution and consistency of static-based assessment.

To extract a series of dynamic time and constructional-based features and establish

performance levels within test groups.

To assess whether the dynamic features replicate the static spatial differences between

patient groups.

To enable the use of the system within a clinical environment both in terms of software

interface and hardware design.
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8. To establish which features extracted from the test battery provide the best discrimination

between test subject groups.

9. To evaluate the ability of a series of pattern recognition and classification architectures to

diagnose a test battery response.

2.7 Summary

This chapter has introduced and investigated the clinical condition of visuo-spatial neglect.
The manifestation of neglect within stroke patients reveals areas which can be exploited
through conventional pencil and paper tasks. In particular the need for accurate definition and
standardised assessment of neglect is highlighted by the wide variation in reported incidence.
The effects on everyday living show that thorough diagnosis of the condition is important for
choice of rehabilitation programme and support within the hospital and once the patient has

been discharged.

Several classes of task to detect neglect have been described and their relative diagnostic
ability discussed. While the cancellation and bisection based tasks are more sensitive to
detection of neglect, the drawing tasks contain dynamic or constructional data which can be
used to identify neglect severity. Dynamic features of other tasks suitable for computer
implementation have also been explored. Currently the drawing-based tasks suffer from non-
standardisation of assessment criteria and prove too difficult for patients with severe cases of
neglect. The variation in performance across a range of tasks, indicating the need for

assessment using a test battery, has been highlighted.

The use of computers for neuropsychological assessment has been investigated with respect to
interface peripherals and modification of test performance. Assessment using a graphics tablet
has been identified as introducing the least disadvantage in use. Clear user instructions and an
abstraction of the patient from direct contact with the computer is desirable as it reduces
anxiety in use, which itself affects test performance. The possible types of static and dynamic
features that can be extracted using a graphics tablet have been identified by examining the
current literature in neuropsychological testing and assessing how the symptoms of neglect

can be exploited.
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Four types of classification methodology have been described, all of which can be used to
analyse the feature vector of a patient’s performance across a battery of tests. By using an
unsupervised classifier, observations can be made about how clusterings are automatically
formed. Relative performance in terms of classifier size, learning rates and feature vector size

need to be investigated with trial data extracted from the responses from a set of patients.

Finally, in this chapter, the design objectives for the study have been defined on the basis of

the subject review.
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Chapter 3

Reliability of the Rivermead Behavioural

Inattention Test

3.1 Introduction

To support the rationale of implementing a computer-based neglect test, the advantages and
disadvantages of the existing conventional assessment method need to be established. One of
the aims of automating the assessment process is to remove the subjectivity in the assessment
ot; patient test responses. In this chapter the objectivity of current testing methods will be

investigated by studying the extent of the agreement correlation between trained assessors.

A review of the development and use of the current neglect testing standard, the Rivermead
Behavioural Inattention Test (BIT) is presented along with individual assessment techniques
for the subtasks which comprise the conventional test battery. An interrater trial methodology
is discussed along with appropriate assessment statistics. The agreement results of the BIT
conventional assessment trial are presented followed by a discussion of the level of agreement
between assessors on particular subtasks. It will be shown that agreement is acceptable, in
terms of the Kappa statistic agreement criteria, for the subtasks with basic marking criteria
(such as the number of cancellations on an overlay). However, in subtasks where objective
judgement is required (such as the drawing tasks) the rater agreement is low, particularly
where interpretation of the marking scheme supplied with the BIT is ambiguous. The

implications for accurate assessment of neglect using the existing methods are also discussed.

3.2 The Behavioural Inattention Test

The Behavioural Inattention Test [50] was developed in 1987 specifically as a test of
unilateral visual neglect. Intended for use within the fields of clinical evaluation and
Occupational Therapy, a clearer understanding and common interpretation of the level of

neglect within a patient is enabled through test standardisation across a range of tasks and
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scoring methodologies. Combined with a series of behavioural tasks, the BIT enables a
therapist to diagnose and monitor the effects of neglect on everyday activities which in turn
can be used to select a course of rehabilitation relevant to the patient’s condition. The use of
the BIT for assessment of neglect is widespread [149] and is an accepted standard within the

medical profession.

The test consists of two strands of subtasks:

e A conventional battery comprising a series of traditional pencil and paper based

neuropsychological tests such as the Albert’s cancellation task [49] and line bisection.

Assessment is made on items such as correct number of cancellations and quality of

drawings (Section 3.2.1)

e A behavioural battery comprising assessment of everyday activities such as reading,
telling the time and telephone dialling. Assessment is made on items such as the dialling
sequence in the telephone task, the number of items read on a menu and the correct

reading and setting of the time.

In analysing the agreement between assessors scoring a common set of responses from the
BIT, only the conventional battery will be used. Whereas the responses from the conventional
battery can be distributed to assessors on sheets of completed overlays, assessment of the
behavioural subtasks requires the use of techniques such as video recordings or arranging for
all assessors to observe the same testing session. The ability of a remote assessor to observe
specific marking items from the video is uncertain. The computer-based testing system is
designed only to implement pencil and paper tasks with the same testing methodology as the

conventional battery. The interrater study will therefore only concentrate on these subtasks.

3.2.1 Conventional Subtasks of BIT

The conventional battery of the BIT consists of six subtasks: three cancellation tasks, a line
bisection task and two drawing tasks. The following is a brief summary of individual tasks
and scoring methods. All methods and drawing examples are contained within the BIT
Reference Manual [80]. This manual is the only documentation provided to assist with

marking of the BIT.
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3.2.1.1 Line Cancellation

Using a standard Albert’s cancellation task [49] test subjects are presented with an overlay
containing 40 lines positioned in a pseudo-random arrangement. Subjects are required to
locate and ‘cancel’ (place a single pen stroke through) all of the lines. The overlay used is
shown as Figure 2.5 in Chapter 2. Assessment of this task involves counting the correct
number of line cancellations made on the overlay ignoring the central vertical column of 4
lines which are used to demonstrate the cancellation process to the test subject. This results in
a maximum score of 36 for the overlay. To aid the assessor in marking the task, a ‘mask’
overlay highlighting the targets using transparent areas is placed over the test subject’s

response.

3.2.1.2 Letter Cancellation

Figure 3.1 shows the overlay used for the letter cancellation task. The test subject is required
to locate all of the E’and 'R’ characters amongst distractor characters in the 34 by 5 grid. 40
correct targets are printed on the overlay, 20 to the left of the vertical centre and 20 to the

right. Again, the assessor uses a marking mask to aid the scoring.

3.2.1.3 Star Cancellation

The final cancellation task is shown in Figure 3.2. The test subject has to locate 56 small stars
randomly positioned amongst larger stars and distractor characters. In assessing the overlay,
the two stars directly above the central arrow are not counted as they are used to demonstrate
to the test subject the cancellation technique required. This gives a maximum score of 54. A
further marking mask is used for this overlay. This is particularly useful for this subtask as the

targets are not arranged linearly in columns or rows.
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Figure 3.1 : Letter cancellation task overlay

Figure 3.2 : Star cancellation task overlay
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3.2.1.4 Figure and Shape Copying

Two overlays are used in the figure and shape copying task. The test subject is first presented
with an overlay containing three simple drawings: a star, a cube and a flower (Figure 3.3).
The model shapes are located on the left of the overlay and the test subject is required to copy
the shapes directly to the right. This arrangement is also used on the second overlay which

requires three simple geometric shapes to be copied (Figure 3.4).

A single assessment score in the range of O to 4 is awarded across all six drawings. This score
reflects the ‘completeness’ or presence of major components within a drawing [80]. An
assessor is provided with a single or pair of reference examples for each of the drawing or
shapes. However, as example scores are not given with the drawings, assessors have to use
individual judgement and experience to mark each response on a component level. This

results in high subjectivity in assessment.

Figure 3.3 : Figure copying models

2

Shape 1 Shape 2 Shape 3

Figure 3.4 : Shape copying models
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3.2.1.5 Line Bisection

This task consists of a single overlay on which are printed three horizontal lines of length 8
inches (176 mm). The test subject has to locate and bisect at the midpoint of each individual
line (Figure 3.5). Each line is scored on the bisection deviation from the true midpoint. A
marking mask contains the scoring distance limits from the centre of each line. A score of 3 is
awarded if the bisection is within 0.5 inch (12 mm) of the true mid-point, 2 marks if within
0.75 inch (18 mm) and 1 mark if within 1.0 inch (22 mm). Separate marks are awarded for the

three lines on the overlay, resulting in a maximum score of 9.

Figure 3.5 : Line bisection overlay

3.2.1.6 Representational Drawing

For the final task of the conventional battery, the test subject is required to draw a clock-face,
a person and a butterfly, all without reference models, on a blank sheet of paper. Figure 3.6

shows some example responses from this task. As with the figure and shape copying task,
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marks are awarded globally across all three drawings based on the presence of major
components. Again this is very subjective as, although example drawings are provided, the
associated scores are omitted. To demonstrate the subjectivity in drawing assessments, the
following marking criteria (the only marking instructions provided for the drawing tasks) is

taken directly from the BIT manual [80]:

“The scoring of this subtest is based on the completeness of the respective drawing (0 to 3).

Failure to complete is defined as the omission of any major component of the drawing”

Without reference drawings for each score awarded, the assessment across the three drawings

requires the individual interpretation from each assessor.

@//4 '

Clock Face Person Butterfly

L1

Figure 3.6 : Figure and shape copying models and representational drawing responses

3.2.2 Battery Score Interpretation

To obtain a total score for the conventional test battery, the marks awarded for each sub-task
are summed producing a maximum score of 146. If a total score of 129 or below is awarded,
then the test subject can be diagnosed as exhibiting a visuo-spatial deficit such as neglect.
This neglect threshold was derived experimentally by Wilson, Cockburn and Halligan [30]
from the results of 50 asymptomatic control test subjects; a score of 130 represented the
lowest score obtained by this group and hence defined the threshold between neglect and
control subject detection. The precise implications of a test subject’s deficit can be

investigated further by the behavioural battery or other clinical investigations.
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On examination of the marking scheme for the conventional battery it is apparent that there is
a heavy bias towards the cancellation tasks (Figure 3.7). Indeed, as these three tasks account
for 89% or 130 marks, it is possible to ’pass’ the test without scoring on the drawing and
bisection tasks. The BIT scoring scheme does recommend however that any sub-task score
below a defined cut-off point (detailed in Table 3.1) should be investigated further, even if a
total score of above 129 is obtained. This indicates the importance of each sub-task in the

assessment of attention.

Representational Drawing
2%

Line Bisection
6%
Figure and Shape Copying

3% Line Crossing

25%

Star Cancellation
37%

Letter Cancellation
27%

Figure 3.7 : Distribution of marks with the BIT conventional battery

Wilson, Cockburn and Halligan validated the BIT using two independent assessors to score
13 test subject responses [80]. The result of their trial revealed total agreement in scoring
between the two assessors. It is unclear, however, if the agreement was based on the total
battery score or individual sub-task scores. If the former was the basis for agreement
assessment, then a variation in marks awarded may still have occurred within the subtask

Scores.
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Hartman-Maeir and Katz [150] validated the behavioural sub-tasks by comparing the results
from 40 test subjects against their activities of daily living (ADL) scores [151]. They found
that seven of the nine subtasks significantly differentiated between neglect and non-neglect
subjects and that six subtasks correlated with the finding of the ADL. Conventional subtasks
were not included in the trial. Further studies [152] have provided additional validation of the
behavioural subtests and the ADL. Cermak and Hausser [153] suggested areas on which the
functional assessments of the BIT could be validated more thoroughly including effects of
age, gender and education level. The reliability analysis of the behavioural subtests has not

been extended.

Subtask Max Score | Cut-off Score % of Marks
Line Crossing 36 34 24.6
Letter Cancellation 40 32 27.4
Star Cancellation 54 51 36.9
Figure and Shape Copying 4 3 2.7
Line Bisection 9 74 6.2
Representational Drawing 3 2 2.0

Table 3.1 : Conventional subtask marks and cut-off scores

3.3 Interrater Methodology

This section describes the experimental trial to explore levels of agreement between BIT

assessments. The objectives of the study are principally to:

a) investigate agreement in the conventional battery total score awarded over a common set

of test responses and establish implications for the diagnosis of individual test subjects.

b) identify the conventional subtasks that produce the most disagreement between assessors

and examine why these subtasks produce marking variance.

c) identify the shapes within the drawing tasks produce the most disagreement between
assessors and why particular responses result in varied interpretation of the component-

based assessment criteria.
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Eleven Occupational Therapist assessors from four separate test centres in East Kent
participated in the study. Ten sets of completed overlays from the BIT conventional battery
were presented independently to individual assessors who were asked to mark each set
separately to the guidelines defined in the assessment manual. Each subtask score was
recorded for all ten sets of responses. A battery score was obtained from a sum of these
subtask scores. All BIT sets were from patients admitted to Nunnery Fields Hospital,
Canterbury with a right sided cerebro-vascular accident (CVA). Of these ten test sets, five
were completed by patients who had been identified as exhibiting visuo-spatial neglect from

clinical examination (other than the BIT) by doctors and/or therapists.

Following the battery assessment using the conventional marking scheme defined by the BIT
manual, assessors were required to rate each of the individual drawings made for the Figure
and Shape Copying and Representation Drawing tasks using a scale of 0 (very poor) to 4
(excellent) as opposed to awarding a global subtask mark. This facilitated the investigation of

individual shape assessment agreement between raters.

To obtain a clearer understanding of the assessment correlation in the drawing-based tasks, a
further ten sets of completed Figure and Shape Copying and Representation Drawing overlays
were presented to each assessor. These overlays were responses from a further ten RCVA test
subjects, five of which exhibited neglect. Thus, a total of twenty subject’s drawings were
assessed. Again the drawings were assessed using the BIT defined guidelines and by
individual shape. This enables an examination of marking variance, and hence assessment

ambiguity, within each of the drawing shapes.

3.3.1 Assessment of Results

Several statistical methods exist to analyse the agreement between assessors’ scores and
hence the interrater reliability of the BIT. Many of the statistics (such as Cronbach's Alpha,
Cohen's Kappa and Kendal's Coefficient of Correlation) compute similar or ranked equivalent
results, but all involve finding the level of agreement between an assessment made by two or
more raters over a single or range of subjects. Prior to presenting the results from this
particular interrater study, measures for analysis are considered along with an interpretation of
scores. For a general discussion on interrater measures see Bakeman [154] and Williamson

[155].
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The simplest measure of agreement is the pairwise correlation between raters (when more
than two raters are used in a trial then a mean can be taken of individual pairwise
correlations). This method, however, leads to errors when applied to the interrater agreement
of continuous scoring data such as that awarded for the BIT assessment. Instead of measuring
direct numerical or ranked agreement, correlation measures the relationship between
assessors’ results sets. For example, Assessor A may constantly mark a single subject 5 marks
higher than Assessor B across all of the subtests resulting in a perfect correlation score of 1.
The assessors’ direct agreement (i.e. identical marks were awarded for an individual

assessment), however, is 0.

3.3.1.1 Percentage of Agreement (P,) and Agreement by Chance (P()

The obvious solution for assessment of agreement is the direct comparison between data
items (is Assessor A's mark for a single test subject the same as that awarded by Assessor B's
?), leading to a ‘percentage of agreement’ measure. For example, if 65 out of 80 assessments
were identical then an percentage of agreement of 81.25 % is obtained. This method,
however, suffers from judging bias if a large population of the test subjects belong to a
particular category or categories. Consider, for example, the data contained in Table 3.2. This
shows the agreement between two raters assessing 20 responses from the figure copying task

of the BIT.

Assessor A marks awarded

4 3 2 1 0 Total
4 8 - - - - 8
Assessor B — 3 3 N - - - 3
marks 2 1 1 1 B i 3
awarded 1 i B B _ B 0
0 - - - - 6 6
Total 12 1 1 0 6 20

Table 3.2 : Two assessor agreement in figure and shape copying task
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As can be seen from the diagonal entry, the percentage of agreement is:

_ Number of agreements _ (8 +1+ 6) _ 750, B.1)
Number of assessments 20

0

This result is biased towards the two extremes of the marking scheme (4, a ’perfect’ drawing
and 0, a very poor drawing). To quantify this bias, the probability of the assessors awarding

identical marks due to chance (P¢) is calculated by the following formula :

number of assessments number of assessments

p - i(( number of | awarded by assessor A jx[number of i awarded by assessor B j}
L =
=1
3.2)
where :

n = maximum in range of marks awarded

[ = score under observation

Examining the single case of an award of 4 marks, the ‘perfect’ drawing mark, the probability
of assessor A awarding a mark of 4 is estimated at (12 / 20) = 0.6 and a probability of (8 / 20)
= 0.4 for assessor B. Operating independently this means that there is an overall probability of

(0.4 x 0.6) = 0.24 for both assessors classifying with a mark of 4.

This table also hints at one of the problems associated with the existing marking scheme of
the BIT. Given a range of marks that a set of drawings are to be assessed between (in the case
of the figure copying task between 0-poor and 4-excellent), assessors tend to award marks at
the extremes of the scale. One hypothesis of why this occurs is that without a reference
drawing for any of the marks, assessors use the extremes of the scale to denote a simple
pass/fail assessment. Indeed, examination of the marks awarded for the 220 drawing tasks
assessed in this trial using the BIT guidelines showed that 80% of drawings were awarded

either a minimum or maximum score.
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3.3.1.2 Cohen’s Kappa (k)

Cohen’s Kappa statistic [156] [157] was devised to overcome the chance related assessment
problem described above, thus removing any errors in agreement due to the sample
distribution. The Kappa calculation produces a result between 0.0 (no agreement) and 1.0

(total agreement).

Kappa is defined by :
P, —P

k=-0_°C (3.3)
1—F,

where :

P, = the proportion of observed agreement.

P = the proportion of agreement due to chance.

Pc is calculated as described in Section 3.3.1.1. by summing the chance probabilities for each

marks awarded by a pair of assessors. Applied to the data in Table 3.2:

Pc (12/720) x (8/20) +(1/20)x(3/20) +(1/20) x(3/20)

+(6/20)x(6/20)

0.24 + 0.0075 + 0.0075 + 0.09

0.345

Again, applying the data in Table 3.2, the overall Kappa agreement, correcting for chance is:

0.75-0.345 _ 0.405

= =0.618
1-0.345 0.655

Comparing the chance corrected agreement (k) of 61.8% against the direct percentage (Pp) of

75 % we can observe that the agreement is lower.
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Interpretation of the Kappa statistic is not strictly defined. Fleiss [158] characterises the

agreement of the Kappa calculation in broad terms as follows:

Kappa Result Rating
<0.40 Poor
0.40 to 0.60 Fair
0.60 to 0.75 Good
>0.75 Excellent

Table 3.3 : Fleiss Kappa statistic interpretation

This reliability criterion is also derived by Landis and Koch [159]. Others such as
Krippendorff [160] are more subjective in their rating, concluding that a value of x > 0.8
indicates good reliability and 0.67 < ¥ < 0.8 “allows tentative conclusions to be drawn”. A
more statistical assessment of whether the Kappa result indicates significant agreement
between assessors is to examine the z statistic or the standard score. This is obtained by the

following formula:

{=— (3.4)

where :
K = Kappa statistic

o, = standard deviation of data used in calculating Kappa

z produces an assessment which indicates how the value of Kappa deviates from the zero
position in a normal distribution. A value above 1.65 (or —1.65 due to the symmetry of the
distribution) indicates that Kappa differed significantly from zero at the 95% significance

level or better.

Applied to the 11 assessor BIT interrater trial, an overall statistic for a particular subtask is
obtained by calculating a Kappa score (and standard error) for all pairs of assessors and a

mean taken of these values.
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3.3.1.3. Kendall’s Coefficient of Concordance (W)

Kendall’s W statistic is also used widely to assess the agreement between multiple assessors.
Instead of using the raw data values, results are ranked and then analysed to find rater
agreement. Because of its method of computation, the W statistic is most suited to trials
where assessors have to rank (and thus find the agreement in ordering) a range of objects on a
particular feature, rather than applied directly to quantitative data such as that obtained from
the BIT trial. Kendall’s W has the advantage of dealing with multiple raters in a single
calculation, therefore not requiring pairwise-means to obtain an overall result. W is obtained
by finding the variance in ranks for each assessment variable which is then divided by the
maximum variance in column totals to obtain a value between O and 1. If there is no variance

in ranks then there is total agreement between assessors for a particular variable.

W cannot be easily utilised in assessing the BIT interrater results. As the marking range for
each of the sub-tests differ then separate assessment and ranking must be computed separately
for each task. As in many cases the quantitative data from the sub-tests are at the extremes of
the marking scheme (see Section 3.3.1.1), many of the ranks would be identical and not

contain a continuous range of values that are most suited to ranking variables.

3.3.1.4. Cronbach’s Alpha (o)

Cronbach’s Alpha [161] measures the average covariance between items within a series of test
results therefore not requiring the standardisation of a marking range across all test data. This
is useful in the assessment of BIT data which has variability in the number of marks awarded
for each subtask. Bland and Altman [162] state a more direct interpretation of Alpha. If two
random samples of k items were taken from a data set and summed then this would result in
two separate scores from these selected items. Alpha represents the expected covariance

between the these scores.

Alpha is calculated using the following formula :

k X cov

((k iaIr )X cov)

var

. (3.5)

1+
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where :
k = number of items in test.
cov = mean covariance between items.

var = mean variance between items.

From an examination of Equation 3.5 it can be noted that the value of Alpha is dependent on
the number of items within the test as well as the covariance between items. Consequently, if
an identical covariance is obtained for two tests, a higher Alpha result is obtained for the test

with more items reflecting a wider agreement between assessors.

Interpretation of the Alpha score is again not standardised mainly because of the relationship
between sample size and Alpha result. Bland and Altman [162] also highlight several other
medically based studies using this statistic, suggesting a satisfactory agreement between

assessors produces a value of 0>0.7.

Cronbach’s Alpha is implemented within the SPSS statistics package [163] facilitating simple
calculation of the statistic. In particular, by calculating an individual Alpha score following
the removal of a specific individual data item (for example the number of cancellations from
the star task), it can be observed how that particular item affects the overall reliability scale,
providing evidence about which results cause the most agreement and disagreement between

aSSeSsSors.

3.3.1.5 Intraclass Correlation Coefficient (ICC)

The ICC [164] [165] measures agreement by assessing both the variance between assessors
and within individual rater assessments. Specifically, it analyses the interaction between a
assessor and test subject’s responses (how does an assessor modify his assessment when

presented with the responses of a particular test subject).

ICC is calculated using the following formula :
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MS[.\'ub = MSmte X tsub
(r(MSYUfe - MSrate X L\'ub))

n

Intraclass correlation =
MSA\‘ub + (r = ])MSmIe x tsub +

(3.6)
where :
MS,,., = Between test subjects mean-square.
MS, ... = Within test subject mean-square.
MS, e x sub = Interaction mean-square between rater and subject.
r = number of raters

n = number of subjects

The mean squared results can be taken from a standard two way analysis of variance

(ANOVA) calculation [166] .

As with Kappa and Alpha, the result of ICC is in the range of 0.0 (no agreement) to 1.0
(perfect agreement). ICC will return a value nearer to 1.0 if the agreement between raters is
high with small differences caused by interaction effects despite a potential large variability
between test subject performance. However, if there is a global disagreement between
assessors or an interaction effect caused by a particular assessor not consistently applying a
marking scheme across all test subjects, then the ICC result will be lower. The results of a low
ICC indicate that there is an inability for the assessors to apply a consistent and uniform
marking scheme either individually (variability of a single rater applying a scheme) or

globally (raters cannot agree on how to apply the scheme).

3.4 BIT Agreement Results

Table 3.4 details the total conventional battery marks awarded by each of the assessors for the

10 complete sets of BIT responses.

Of particular interest is the mark variation for each test response set. Here, a larger value
indicates that the patient’s test responses produce a greater error in interpreting the marking

scheme by the assessors. This may be due to ambiguity in a particular drawing or response
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Test 1 2 3 4 5 6 7 8 9 10
Response
Set
Assessor
1 146 138 146 106 42 146 122 129 81 146
2 145 138 145 105 42 146 122 128 87 146
3 144 136 146 105 42 147 124 130 86 146
4 144 136 146 100 42 146 122 1249 84 146
5 143 137 146 104 42 146 112 128 84 146
6 144 138 146 103 42 146 125 143 87 146
7 144 138 146 104 42 146 122 144 83 146
8 146 137 146 104 42 145 122 129 84 146
9 146 137 146 104 42 145 126 131 89 145
10 146 138 146 105 42 145 123 128 84 146
11 146 137 146 108 42 145 122 130 85 146
Max 146 138 146 108 42 147 126 144 89 146
Min 143 136 145 100 42 145 I'12 127 81 145
Mean 144.91| 137.27 | 14591 | 104.36 | 42 14573 | 122 | 131.55| 84.91 |145.91
Variation 3 2 1 8 0 2 14 17 8 1

Table 3.4 : Mean BIT results and marking variation

(for example, uncertainty to whether a particular target has been cancelled or to whether a
component has been drawn or not) or the assessor miscalculating the result (for example,
miscounting the number of cancellations made or assessing incorrectly the distance from the
midpoint to the bisection line by misreading the marking scale) on one or more of the

subtasks. Various possible reasons for the ambiguity are examined further in Section 3.4.3.

By examining the variation in marks, it can be seen that test subjects 4, 7, 8 and 9 produce the
most variation. Test set 8 is of particular interest as six of the assessors score the battery at or
below the 129 neglect threshold, whereas the other five are above this mark. This has
implications for the clinical classification of the particular patient based on the interpretation
of assessment. Only one out of the ten battery sets (test set 5) produced total agreement
between assessors. This test subject exhibited severe neglect and failed to produce any
responses for the drawing tasks. All assessors uniformly scored these tasks with O marks. Due
to the severity of the neglect, the cancellation tasks contained many omissions which
simplified counting the number of correct cancellations made. For example, only 12 of the 40
lines were cancelled on the Line cancellation (Albert’s) task, all of which were positioned in
two columns to the extreme right of the page which aided the assessment of the cancellations.
Again, all assessors uniformly scored the cancellation tasks due to the low number of

responses.
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Applying the Kappa statistic across all assessors for the total battery marks, a mean Kappa
score of 0.795 is obtained. Using Fleiss’ Kappa statistic interpretation, this indicates a
satisfactory agreement between assessors which is confirmed by the high significance of the z
value (21.62). The direct number of agreements (Py) is 0.81 or 81%. Comparing the Kappa
score (0.795) with P, (0.81) shows that the difference between the agreement probability due
chance and actual observed direct agreement is minimal (0.015). The levels of agreement are

supported by a high ICC score of 0.994.

Analysis of the agreement between assessors using the overall conventional marking scheme
presents two opposing outcomes on reliability. Whilst the calculated statistics indicate very
satisfactory agreement between assessors, inspection of the individual battery scores shows
that misclassification does occur (in test subject 8). Given that a diagnosis of neglect is a
contributing factor to the selection of an individual rehabilitation scheme, accurate assessment

is critical.

3.4.1 Subtask Agreement

One of the design objectives behind a computer-based assessment scheme is to remove any
subjectivity within a marking scheme. To obtain a more detailed understanding of the
component parts of the BIT, the assessors’ agreement in individual subtasks of the BIT was
analysed. By assessing the agreement, an indication to the ambiguity of each subtask's
marking criteria can be established. A disagreement indicates a varied interpretation of the
defined assessment scheme. Table 3.5 presents subtask Kappa agreement statistics for the 11

assessors over 10 sets of complete BIT responses.

Task K Py
Line Cancellation 0.879 0.938
Letter Cancellation 0.765 0.816
Star Cancellation 0.590 0.655
Figure and Shape Copying 0.677 0.798
Line Bisection 0.813 0.895
Representational Drawing 0.578 0.765

Table 3.5 : Subtask agreement for 10 sets of BIT responses
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Unsatisfactory agreement (using Fleiss” Kappa interpretation) occurs for the star cancellation
task and the two drawing tasks. Whilst the marking scheme for all three of the cancellation
tasks involves the assessment of the correct number of targets marked, the arrangement of the
targets on the star overlay is in a random configuration, as opposed to a pseudo-random grid
formation of the line and letter cancellation tasks. Beckwith and Restle [167] found that
counting objects in a random array was more difficult than when objects were arranged in
linear rows (horizontal or vertical) as the former required the implementation of a scanning
strategy. Without the imposition of linear structure, an assessor does not have a forced
scanning strategy for the assessment of individual cancellation targets and is not immediately
aware if a target has been 'counted', resulting in scoring errors. The application of an
automated computer-based assessment of the cancellation tasks would eliminate these

scanning and counting errors.

Reasons for disagreement in assessing the drawing tasks are investigated in Section 3.4.3.

3.4.2 Drawing Subtask Agreement

As shown in the previous section, the drawing tasks cause an unsatisfactory level of
agreement between assessors who have to establish their own marking rules and criteria
which is subject to variation during the marking process. Two hypotheses to the self-devised

criteria used by assessors when marking drawings are:

e Component Level : assessment of number of sides or objects (such as wings or body for
the butterfly task) within a drawing or range of drawings and applying a scheme based on
the presence of components. While awarding marks may be a simple task for the
geometric shapes, for example a mark for each side or vertex of a triangle or square,
definition of components is more subjective for the representational drawing tasks.
Failure to complete a component, accuracy in forming vertices and spatial arrangement

may also influence whether the assessor judges a particular component as being present.

e Marking Range : assessment of shapes is performed by assigning grading criteria across
the range of marks available. For example, full marks would be awarded to a 'perfect’
drawing down to zero marks for 'mo response' or 'unrecognisable drawing' with the

intermediate classifications assigned subjectively.
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As well as applying the standard BIT marking scheme to the drawing tasks, each assessor was
asked to mark individual shapes and drawings from the 20 sets of BIT data. To further
highlight the subjectivity within the drawing tasks, Table 3.6 shows the levels of agreement
over these 20 test responses using the standard BIT assessment for the two drawings tasks.
This table shows increased disagreement over a larger number of assessments particularly

within the Representational Drawing task.

Task K Py
Figure and Shape Copying | 0.578 | 0.732
Representational Drawing | 0.178 | 0.427

Table 3.6 : Drawing subtask agreement between assessors for 20 responses

From the assessment of individual shapes and drawings (rather than an single assessment over
the 3 or 6 shapes drawing) we can establish which produced the most disagreement,
indicating a level of difficulty in applying a standardised marking scheme. The range of
marks used was O to 4 for the figure and shape copying and O to 3 for the representational

drawings. Table 3.7 details the agreement analysis.

Drawing K Py
Star 0.460 | 0.691
Cube 0.226 | 0.389
Daisy 0.300 | 0.452
Shape 1 0.323 | 0.460
Shape 2 0.413 | 0.565
Shape 3 0.186 | 0.391
Clock Face 0.352 | 0.515
Person 0.254 | 0.429
Butterfly 0.419 | 0.565

Table 3.7 : Drawing object agreement between assessors for 20 responses

While all the agreement values for Kappa and P, are unsatisfactory, the data shows that the
cube, daisy and shape 3 (as shown in Figures 3.3 and 3.4) produce the most disagreement for
the figure and shape copying task and the drawing of a person for the representational
drawing task. The results, however, show similar disagreement levels across the entire range
of drawings. The next section describes an investigation of the reasons why particular

drawings cause such ambiguity in assessment.
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3.4.3 Patient Response Agreement

The results documented in Sections 3.4.1 and 3.4.2 show the agreement between assessors
over a set of 11 conventional test battery responses. In this analysis it has been identified
which subtasks produce the most disagreement. In this section, the 10 individual test
responses (20 for the drawing tasks) are analysed to establish whether a particular set of

responses causes ambiguity in assessment and why such ambiguity should arise.

Cronbach’s Alpha was used to establish which of the ten sets of patient responses caused the
most disagreement between assessors. By removing from the Alpha calculation the marks
awarded to a particular test subject by all of the assessors and then noting whether the overall
agreement improves or deteriorates, it is possible to establish the level of disagreement caused
by the excluded subject’s responses. The response sets were then ranked on levels of

disagreement for each subtask.

Table 3.8 shows the 3 response sets for each subtask that cause the most disagreement. The
values alongside the response set number are the standard deviation of the marks awarded for
the particular subtask response drawn by the identified test subject. These results indicate the
severity of the disagreement caused by the specified test response. Line cancellation and line
bisection tasks only have two entries as the other 8 batteries result in perfect agreement

between assessors.

Rank

1 2 3

Line Cancellation 8 (0.467) 4 (0.302) -
Letter Cancellation 8(1.689) 4(1.213) 9 (0.603)
Star Cancellation 8 (3.668) 7(3.015) 1(1.136)
Figure and Shape Copying 14 (1.293) 8 (1.264) 16 (1.213)

Line Bisection 8(0.522) 6(0.504) -
Representational Drawing 9(1.167) 7(1.035) 8(0.934)

Table 3.8 : Test subjects ranked by disagreement on standard conventional task marking
scheme

The same analysis technique was used on the individual drawing images across 20 battery

sets. Table 3.9 shows the three test response sets causing the most disagreement between
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assessors. Again, the numbers in parenthesis alongside the battery number detail the standard

deviation in marks awarded to a particular response and hence indicate the severity of the

disagreement.
Rank
1 2 3

Star 1(1.213) 20(1.136) 9(1.078)
Cube 8 (1.264) 3(0.981) 12 (0.924)
Daisy 8(1.103) 11 (1.035) 12 (1.026)
Shape 1 12 (1.221) 9(1.206) 14 (1.128)
Shape 2 9(1.264) 17 (1.190) 7(1.120)
Shape 3 4(1.537) 17 (1.420) 13 (1.414)
Clock Face 19 (1.361) 20(1.341) 14 (1.167)
Person 8(1.439) 15(1.136) 4(1.128)
Butterfly 19 (1.272) 8 (1.264) 17(1.136)

Table 3.9 : Test subjects ranked by disagreement on drawing tasks

Examining the results contained in Tables 3.8 and 3.9, test response batteries 8, 9 and 12
cause the most disagreement between raters. Visual analysis of these patient’s responses
shows that very light pen markings were made on all response overlays, causing some of the
drawings and cancellations to appear to be absent to the assessor unless closely analysed.

Because of this, cancellations and drawing components were calculated incorrectly.

As an investigation to why certain drawings resulted in disagreement between assessors, four
responses were analysed from each of the representational drawing models (Section 3.2.1.6),
two of which caused the most disagreement and the other two resulting in the maximum
agreement between assessors. The responses and results are detailed in Tables 3.10
(clockface), 3.11 (man) and 3.12 (butterfly) showing the two responses assessed with the most
agreement (Rank 1 and 2) followed by the responses assessed with the least agreement. The

range, average and standard deviation of marks is presented for each response.

Assessments made on test set number 5 were not included in this analysis. No drawing task
responses were made by this test subject and all assessors accordingly awarded a mark of 0
for all drawings. While this shows perfect agreement between assessors, the study's aim is to
assess reasons for agreement (and disagreement) with drawn images. Two other test subjects
failed to produce responses for the man image, resulting in the lowest rank (causing the most

disagreement between assessors) of 17.
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Test Set | Agreement Response Comments
Ranking

Mean score =4, SD =0

10 1st Max score = 4, Min score = 4
Mean score = 3.909, SD = 0.301

1 2nd Max score = 4, Min score = 3

Mean score = 3, SD = 1.341

20 18th Max score = 4, Min score =0
Mean score = 2.636, SD = 1.361

19 19th Max score = 4, Min score =0

Table 3.10 : Clockface drawing responses

Examining the results from the clockface drawings (Table 3.10), the assessors are most in
agreement when an image is drawn with a circular edge, 12 clearly drawn hour indicators at
the correct positions and two hands. Assessors have a higher level of agreement on shapes
that appear ‘'well drawn’ (the subjective assessment of the rater on the overall quality of the
drawing - correct number and spatial arrangement of the drawing’s components) and hence
are given high marks. Shapes that are badly drawn’ (again, a subjective assessment), where a
lower average mark is awarded for the drawing, results in lower agreement (the highest
ranked badly drawn’ image was 7th), although these drawings do not cause the largest

disagreement between assessors.

The two images causing the most disagreement both have the correct number of hour
indicators, however the numerals are unidentifiable in certain positions. The clockface edge is
not at all circular and is drawn with tremor. The response causing the most disagreement is

drawn smaller than the other images. Disagreement seems to occur between assessors
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marking on a component basis (awarding full marks as all are present) and those assessing on

the ‘clarity’ of the drawing both on a component level (they are all visible but not identifiable)

or as an entire drawing.

Test Set | Agreement Response Comments
Ranking
Mean score =4, SD =0
10 Ist Max score = 4, Min score =4
Mean score = 3.909, SD = 0.301
2 2nd Max score = 4, Min score = 3
~
O Mean score = 3.090, SD =1.136
15 16th 9 Max score = 4, Min score = |
.
!
Mean score = 2.454, SD = 1.439
8 17th Max score = 4, Min score = 0

Table 3.11 : 'Man’ drawing responses
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Examination of the responses from the representational drawing of a man (Table 3.11) shows

an agreement when components (limbs, body, head) are all draw in the correct position. As

with the clockface results, there is also agreement (to a lesser extent) in assessing badly

drawn’ responses. Most importantly, the drawings which cause the most disagreement

comprise of simple ’stick’ components. As with the clockface, these drawings are drawn

smaller than the other responses. While, to some assessors, these stick representations (with

the limbs positioned correctly) form a perfect representation of a man, to others, the image is

too simple and thus is scored lower.

Test Set | Agreement Response Comments
Ranking
/,:' Mean score =4, SD =0
18 1st T T o Max score = 4, Min score = 4
[ \G/ & ™
5 l /
. ) \ 7‘)
e S
Mean score = 3.909, SD = 0.301
10 2nd Max score = 4, Min score = 3
Mean score = 3, SD = 1.264
8 18th Max score = 4, Min score =0
Mean score = 1.727, SD = 1.272
19 19th Max score = 4, Min score =0

Table 3.12 : Butterfly drawing responses

The butterfly drawings (Table 3.12) again show that assessors are able to agree on drawings

which are clearly constructed (symmetrical, semi-circular wings) and, as with the other two

tasks, are also able to agree on poorly drawn images. The shapes producing the least
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agreement once more show that individual interpretation of what constitutes a ’good’ image
can be based on the number of components present or the overall quality (correctly formed

symmetrical components, no perseveration) of the drawing.

This examination of the drawings indicates that it is not the very poor drawings that cause
scoring variability, rather it is those drawings which contain the correct number of, and
correctly positioned components, but are poorly constructed, non-symmetrical, contain tremor
or are not instantly identifiable. Raters assessing on a ‘component-present’ basis award higher
marks than those assessing the quality and clarity of the overall drawing for these images.

Very poor and very good drawings are universally recognised by all assessors.

3.5 Assessment Timings

A further trial concerning the current administration of the BIT was undertaken to establish
the amount of time required to assess a patient. Performance from a patient can be affected by
fatigue caused by the test administration, therefore a quicker testing time reduces any result
modification due to tiredness. The testing time can also have an effect on the assessor,

particularly in marking accuracy.

Patient Conventional Conventional Behavioural
ID Administration Marking Administration
and Marking
1 26 22 62
2 37 20 58
3 31 25 45
4 50 25 49
5 25 20 42
Mean 33.8 22.4 51.2
Values

Table 3.13 : Assessment and marking times (in minutes) for the conventional and behavioural

BIT batteries

The times taken for a therapist to administer and then mark five individual conventional BIT
test responses from stroke patients at the Nunnery Fields Hospital, Canterbury, were recorded

separately during normal therapy sessions. These times were also recorded for the behavioural
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subtasks, indicating the resources required to assess an individual patient with both BIT
batteries (The behavioural subtasks were marked as they were administered). As trained
therapist resources are at a premium within a hospital environment, this indication of
resources consumed in testing can be seen as a notional ‘norm’ in current practice, on which

an automated system should seek to improve. Table 3.13 details these timings.

From these data, we can calculate an average assessment and marking time of 56 minutes for
the conventional BIT test battery. If supported by the behavioural test battery, the average
time is increased by an additional 51 minutes. This compares with the computer based test

which on average takes 25 minutes to both administer and assess the responses.

3.6 Summary

In this chapter, the subtasks of the current standard for visuo-spatial neglect testing, the
Rivermead Behavioural Inattention Test, have been introduced and methods for assessment
examined. The proportion of marks each subtask contributes to the total battery score shows a

bias towards the cancellation based tasks.

A methodology to assess the levels of disagreement between assessors of the BIT was defined
and suitable statistical measures for examining the agreement levels were presented. The
study validates the interrater reliability of the BIT using the total battery score for the
conventional tasks. This indicates that the BIT performs satisfactorily in identifying neglect
patients across multiple assessors. Combined with the original validation of the test battery
against both clinical assessment and ADL and the acceptance of the BIT within the medical
profession, the BIT can be used with confidence as a standard on which to base patient

grouping, and with which to validate a computer-based system.

Examination of the subtask scores reveals significant levels of disagreement in the drawing
tasks, particularly where the assessment scheme is subjective (the drawing tasks) or confusing
for the assessor (the star cancellation task). This identifies an area in which a computer-based
test system can improve accuracy and repeatability in marking a test subject’s response.
Agreement across all of the drawing attempts was unsatisfactory. Subtasks with simple and
unambiguous marking schemes such as the line cancellation and bisection tasks produce

satisfactory agreement.
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Levels of disagreement on drawings are caused by individual interpretation of the basic
assessment criteria. Drawings which contain the requisite number of components and
correctly positioned but are badly formed cause the most disagreement between assessors.
Marking assessment rules can be imposed algorithmically by a computer-based assessment
system which can also be used to detect fine and light-pressured pen movement by
normalising drawing pressure or lowering the threshold at which a drawing mark is detected
on an overlay. This consistent application of a marking scheme leads to an increase in
accuracy and standardisation. The reduction in test administration and assessment time over

the BIT using the computer-based system lessens patient fatigue and frees therapist resources.
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Chapter 4

Experimental Infrastructure for

Pen Based Data Capture

4.1 Introduction

Before implementing software to capture data and extract features from a computer-based test
of neglect, the design options, constraints and requirements for the test infrastructure along
with the range of data required to maximise extractable features need to be considered. This
chapter explores the practical and theoretical issues concerning pen-based data capture, in
particular with reference to the design of a system for use within a hospital and clinical

environment.

Following an assessment of the system requirements, the options for an input peripheral
device are investigated and the selected Wacom graphics tablet and communications protocol
are presented. Data handling and storage requirements for captured test responses and
practical issues of data pre-processing prior to feature extraction are addressed, specifically
the filtering and interpolation of raw pen coordinate data. Finally, examples of feature

extraction methodologies are presented.

4.2 Handwritten Data Capture Requirements

The highest level design requirement for the system is the capture of drawing data in real
time and the extraction of a series of diagnostic features based on the pen movements.
Research into handwriting dynamics has defined many physical properties of normal
handwritten performance [168][169][109], the bounds of which must be within the

specification of the chosen input device to prevent any restriction in selectable features.

As defined in Chapter 2, the principal aims of a computer based implementation are to firstly

to validate the computer based system by obtaining comparable static (positional/image)
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feature results between the computer and the traditional pencil and paper-based
neuropsychological tasks. Secondly, to investigate when novel dynamic (constructional
/timing) features extracted from response data can be used to classify a test subject. To attain
test environment consistency between the computer test and the traditional test battery the
choice of the hardware must not impair or modify standard pencil and paper drawing
conditions, thereby preventing the introduction of another patient performance variable.
Geriatric patient performance is often affected by apprehension about using technology [98]
meaning that direct access, for example through the use of keyboards and mice which require
a degree of computer literacy (albeit modest) and competency in use are not suitable for this

type of patient testing.

4.2.1 Data Capture Peripheral

Teulings and Maarse [168], Maarmari and Plamondon [169] and Marquardt and Mai [109] all
present detailed theoretical background to the area of handwriting data capture, all three
studies using a graphics tablet as an input device. Whilst the graphics tablet is the standard
data capture device for handwriting and drawing analysis, other pen based devices exist such
as the digital ink pen and screen based tablets. These products all enable the capture of
drawing data, but performance is modified in that the feedback from the pen device is not

identical to a pencil and paper task.

The digital ink device consists of a conventional pen with a small roller-ball mounted at the
pen tip. As the pen is moved, its position relative to the previous location is reported. Pen
movement can therefore be detected, but only within individual drawing components when
the pen is on a drawing surface. Relative spatial positioning of components within drawings
are not obtainable as the pen does not report locations when the pen is removed from the
table surface. The screen based tablet, while using a pen for input does not use paper
markings for visual feedback, instead presenting the drawn data graphically on a screen. The

current cost of these devices is also prohibitive from routine use.

A graphics digitisation tablet with a marking ink pen is the obvious peripheral for data
capture. Paper can be overlaid on the tablet surface and marked using the pen, maintaining
the test environment of the traditional test system. Many test subjects have been impaired by

the adoption of older style graphics tablets [170] where the pen is attached to the tablet via a
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cable. Whilst not directly intrusive to the writing and drawing style, the standard pencil and
paper test configuration is not maintained. The introduction of tablets with cordless pens of
similar dimensions to a normal pencil overcomes this problem. Standard graphics tablets
report the position of the pen relative to an origin and also a range of additional items such as
pen pressure and tilt. Analysed, these data allow the extraction of static features. Dynamic
features require the use of a time-stamp which specifies the time offset at which a pen data
packet was captured. Order of construction, pen velocity and other rate of change measures
can be extracted by using this time-stamp which is added by the computer to the incoming

status packet as the data is stored.

Marquardt and Mai [109] define three type of errors inherent in collecting data from a
graphics tablet. These need to be considered to ensure the data provides an accurate

representation of the drawn response:

e Spatial errors are caused by a limited resolution or sample rate, noise, non-linearity of
reporting surface and missing coordinates. Interpolation of positional data can restore lost
coordinates and smooth non-linearity. Filtering of data signals can remove noise and

hence ‘smooth’ the response.

e Temporal errors are caused by irregularities in data sampling times. Again, time based

interpolation can restore regularity.

e [ntrinsic errors are introduced by the method of sampling such as pen tilt affecting the x
and y position coordinates. Smoothing of data can remove the signal noise introduced by

this error.

By designing and configuring the system to limit the impact of these inherent errors on the
quality of captured data, for example correct choice of peripheral and selection of adequate
sampling rates, the reliance on pre-processing operations implemented to overcome data loss

can be reduced.
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4.2.2 Sampling Rates and Spatial Resolution

The sample rate of the tablet determines how often the pen position and other pen status data
(such as pen pressure and tilt) is transmitted to the connected computer. Selecting too low a
sample rate introduces spatial errors and movement data is lost, resulting in an inaccurate
representation of the drawing. Too high a sample rate and the computer is unable to fully
buffer the incoming data and temporal timing error are introduced. Maarmari and Plamondon
[169] analysed normal handwriting performance by extracting a range of features such as pen
velocity and acceleration as well as displacement calculations. They found that a sample rate
of 100Hz did not allow the accurate extraction of acceleration components [171] and fine
transient responses contained within several biomechanical models of handwriting
performance (such as that described by Plamondon [172]). This problem can be overcome by
interpolating data as described in section 4.6.2., effectively increasing the sample rate. For
general movement and displacement calculations, however, experimental evidence has shown
that the highest frequency observed in drawing displacement data is in the range of 13.6 to
20Hz [173][169]. Taking this upper limit, the Nyquist frequency required to sample pen
movement without loss of data is 40 Hz which is well within the range of the graphics tablets
currently available. Any high frequency components of the input signal can be considered to
be insignificant as part of the hand-drawn image (for example noise from the tablet) and can

be removed using low-pass filtration techniques.

Spatial resolution defines the level of detail that it is possible to capture using the digitising
device. A coarse resolution leads to omission of fine details within drawings (spatial error).
Typical values of resolution for current graphics tablets are around 100 lines per mm.
However, the overall resolution is affected by the accuracy of the chosen pointing device.
Using the Wacom Inkpen with the UltraPad series of tablets reduces the overall resolution to
6.25 lines per mm. This resolution produces handwriting data which, although it suffers from
quantisational spatial errors, can be pre-processed (interpolated) prior to feature extraction to
produce a representation of handwriting data of acceptable quality for most current

applications.
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4.2.3 Additional Pen Based Features

Alongside the positional data, the graphics tablet can report other information such as pen
pressure and x and y coordinate tilt. Schomaker and Plamondon [174] examined the
relationship between pen pressure and tilt by constructing a simple biomechanical model. By
resolving the forces in each axis, the findings showed a small or negative correlation in
normal and cursive handwriting indicating the high complexity of the motor control involved.
The pressure data, however, resulted in a cyclical profile when executing a cursive script.
While this profile occurs in responses captured from a normal asymptomatic population,
comparison of the cyclical pressure profile obtained from stroke patient responses may reveal
differences and changes throughout the duration of the task. Other studies [175] have
examined the relationship between pen force and velocity. These additional data items
provide information on the motor-based constructional aspects of drawing. Although not a
primary aim of the neglect assessment, the relationship between the motor and positional

components of a hand-drawn attempt could provide additional diagnostic indicators.

4.2.4 Data Capture in the Clinical Environment

The ergonomic specifications of the data capture device are of importance especially within
the field of neuropsychological and clinically based studies. A number of recent studies have
used graphics tablets to capture hand-drawn data from stroke patients [2] and an elderly
population [113] proving the suitability of using the device with the target patient group. As
many of the test subjects will be confined to a bed, the ability for the test equipment to be set
up on a bedside hemi-table or other confined environment whilst not restricting the standard
pencil and paper test environment is important. The equipment therefore needs to be portable,
lightweight, robust and able to be used in environments with limited space and access. For
use within a clinical environment, the developed software must be intuitive, simple to use and
robust. Emphasis within neuropsychological testing is placed on standardisation in test
procedure [176] with patient instructions, environment [177] and seating position [178]
specified for all test attempts. The tablet must therefore be used in an environment in which
the tablet can be uniformly positioned directly in front of the test subject and does not restrict
particular sub-sets of test subjects (for example test subjects confined to wheelchairs). The
physical size of the tablet surface must be able to accommodate the test overlays and the

paper fixing system without impairing the normal handwriting movement of the test subject.
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4.3 System Infrastructure

The schematic of the developed computer-based system infrastructure is shown in Figure 4.1.
Data capture, feature extraction and processing occur in three distinct phases. The computer-
based system has been designed so that these phases are non time-dependent, meaning that
data can be captured and analysed (and re-analysed) at the convenience of the test

administrator.

Phase 1 - Data Capture : Test overlays are placed and secured individually on to the surface
of the graphics tablet. The test subject completes each task by drawing or marking directly
onto the surface of the overlay. Each overlay constitutes a test attempt. As the test subject
draws on the overlay with the pen, raw drawing data such as pen coordinate position and
pressure are captured and transmitted via a serial link to an attached computer. As the raw
drawing data is received by the computer, each packet is stored sequentially along with a
timestamp (referenced to the start of data capture) in an ASCII zest response file. A separate

test response file is created for each test attempt.

Phase 2 — Feature Extraction : Features are classified as being either static - based on the
drawn pen coordinates and include features such as drawing area, number of shape
components - or dynamic - based on timing or constructional properties of the drawn data,
such as construction order or time to complete a specific element of a shape drawing.
Individual features are extracted from the completed test response files rather than in real-
time from the tablet data-stream. The advantages of storing the raw data on the computer are
twofold: Processing the input stream in real-time reduces the report rate of the tablet due to
the increased processing required. This would be particularly pronounced if the raw data is
concurrently stored in a file. Secondly, by re-assessing individual response files, new and
developing features can be extracted without the necessity to retest subjects; particularly
important within a research environment where feature parameters and calculations are
constantly under review. Data can also be analysed repeatedly and replayed for on-screen
visual analysis. The feature set of extracted results for each test response file is stored back

on the computer in a separate feature set file.

Phase 3 — Classification and Report : The amount of the output data from the system
depends on the requirements of the end-user and thus the system’s output must be flexible to

a wide range of needs. Whilst a researcher will often be interested in individual features from
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all tasks as a performance metric, a clinician requires a concise performance indicator over
the entire test battery to assess a patient’s progress. To obtain a single indicator or series of
such indicators, multidimensional pattern recognition techniques can be used to reduce and
classify the feature sets from subtasks and the entire battery (Section 6.12). Features and
classifications are written to a results file which may be investigated using a spreadsheet or
other means, whilst the program must provide a concise report of the patient’s performance
for use within a clinical environment. For the researcher, the individual feature set files will

allow quantitative feature data to be analysed.

Feature
Extraction

Graphics

Tablet Compsrer

Pattern
Classification

"\[\\ Spreadsheet
7

Report
Generation

Figure 4.1 : 3 phase test system schematic
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4.4 Wacom Tablet and Portable Computer

The implemented system uses a Wacom WDI1212 UltraPad graphics tablet to capture the
drawing data. This tablet has a drawing area of 304.8 mm’ enabling an A4 sized overlay to be
placed on the tablet in both orientations (portrait or landscape). The Wacom tablet uses a
series of magnetic inductance based pens all of which are cordless and require no internal
power supply. This means that the input device can be of comparable dimensions to a normal
pen, thus maintaining the standard test configuration. An ink (biro) pen is used to draw onto
the overlay providing normal visual feedback for the test subject. The tablet has a resolution
of 100 lines per mm, resulting in a coordinate range in each axis of 0 to 30480. The pen has a
lower resolution than the tablet, being accurate to 0.15mm, so in practice the range of
coordinates reported are not continuous. This spatial resolution, however, is sufficient for the

capture of hand-written data as demonstrated by the system’s use in other pen based studies

[2].

The test overlays are fixed on the tablet surface by a specially designed clamping system.
Firmly securing the overlay to the surface is important for two main reasons: firstly to
prevent the paper moving when drawn upon, thus distorting the recorded image. Secondly, as
many of the tasks are location specific, relying on assessment of accuracy against a mask file
containing model response coordinates (for example location of targets on an cancellation
task), the positioning needs to be exact. The fixing method must not, however, restrict
movement across the tablet. Because of this, large clamping mechanisms either side of the

tablet cannot be used.

Figure 4.2 shows the selected test apparatus. The implemented system uses a straight location
edge mounted at the top of a plastic base. The overlay is secured at each side by two low
profile paper clamps adapted from a paper document folder. These clips allow the rapid
interchange of overlays during the administration of the test battery, whilst keeping the paper
taut and flat during drawing. The plastic base is attached to the tablet surface by strips of
Velcro. This prevents the base from slipping from a calibrated position but allows removal if
normal use of the tablet is required. Because pressure values are calculated at the pen tip and
transmitted back to the tablet rather than by measuring pressure on the actual tablet surface,
pressure values are still accurate despite the pen status being monitored through the layers of

the overlay and the base plastic sheet.
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Figure 4.2 : Test apparatus

The computer used for the trial is a standard portable PC. No special interfacing is required
as the graphics tablet directly interfaces with the serial port. Consideration was given to the
amount of file storage that would be required to hold a large number (~200) of test battery
responses. The average storage requirement for a complete set of battery responses is
590Kbytes, so 200 test subject each performing a single attempt of the test battery requires
disk space of around 100Mbytes. This capacity is easily obtainable using current storage

technology and therefore file compression is not required.

4.5 Data Transmission Protocol and Storage

Pen position data is transmitted in packet form to the computer via a serial link at a baud rate
of 19200 bits per second using the Wacom IVe protocol. A total of nine data items reporting
the status of the pen (Table 4.1) are sent in a packet of nine bytes with certain data items
being distributed over two or more bytes [179]. This results in a maximum report rate of 205

points per second (205 Hz). In practice this rate is reduced by the processing time required to
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obtain the information by the tablet, transmit the data, decode the data packet and write the
data to a file. On average 100 data packets per second (100 Hz) are transmitted to the
computer. Data is not transmitted from the tablet when the pen is out of range of the tablet

(over 5 mm above tablet surface).

Data Item Bit Value Description
Count Range
Proximity 1 Oto1 1 if pointing device detected, O
otherwise
Pointer 1 Oto1l 1 if pointing device is a cursor, 0
otherwise
Button Flag 1 Otol 1 if pointing device pressed, O
otherwise
X Position 16 0to 30480 X coordinate
Y Position 16 0 to 30480 Y coordinate
Button Value 4 Oto 15 *Button data (pen tip, pen barrel
button etc.)
Pressure 8 -127 to 127 Pressure of pen on tablet
X Tilt 6 -31to 31 X tilt value (-ve to the left)
Y Tilt 6 -31 to 31 Y tilt value (-ve to top)

* Button Value item describes the combined status of the pen barrel button (whether pressed
or not) and, mirroring the Button Flag item, whether the pen tip is on the tablet surface. The
data field is 4 bits wide to accommodate the three additional buttons found on the Wacom
data entry puck not used in this research.

Table 4.1 : Wacom IVe data components

An example of a single data packet returned from the tablet is shown in Table 4.2. The 9 raw
data bytes (a) are converted into binary representations (b) from which the individual data
items are reconstructed (c) according to the defined Wacom IVe protocol. Once the data
packet has been assembled into individual data items, they are written to the test response
file, stored within a separate directory structure organised by test subject identifier and test

battery attempt number.

Byte 1 2 3 4 S 6 7 8 9
Value | 200 15 92 24 8 45 50 1 20

Table 4.2a : Initial decimal packet contents
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Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
Byte
1 1 Prox. | Point. B.Flg. X.15 X.14
1 0 0 1 0 0 0
2 0 X.13 X.12 X.11 X.10 X.9 X.8 X.7
0 0 0 1 1 1 1
3 0 X.6 Xed X.4 X.3 X.2 X.1 X.0
1 0 1 1 | 0 0
4 0 B.3 B.2 B.1 B.0 P.0 Y13 Y.14
0 0 1 1 0 0 0
5 0 Y.13 Y.12 Y.11 Y.10 Y.9 Y.8 Y.7
0 0 0 | 0 0 0
6 0 Y.6 Y.S Y4 Y3 Y.2 Y.1 Y.0
0 1 0 1 1 0 1
7 0 SP P.6 P35 P4 P.3 P2 Pl
0 1 1 0 0 1 0
8 0 SXT | XTS5 | XT4 | XT3 | XT.2 | XT.1 XT.0
0 0 0 0 0 0 |
9 0 SYT | YTS | YT4 | YT3 | YT2 | YT. YT.0
0 0 1 0 1 0 0

Bit identification:

Y.xx — Y coordinate bit (0 to 15)

X.xx — X coordinate bit (0 to 15)

P.xx — Pressure bit (0 to 6),

SP - 0 if pressure is positive, 1 if negative (two’s complement)
XT.xx — X axis pen tilt (0 to 5),

SXT - 0 if x axis tilt is positive, 1 if negative (two’s complement)
YT.xx — Y axis pen tilt (O to 5),

SXY - 0 if y axis tilt is positive, 1 if negative (two’s complement)

Prox. — Proximity Flag, Point. - Pointer Flag, B.Flg. — Button Flag.

Table 4.2b : Binary representation of packet and bit identification
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Data Item Value
Proximity 1
Pointer 0
Button Flag 1
X Position 2012
Y Position 1069
Button Value 3
Pressure 100
X Tilt 1
Y Tilt 20

Table 4.2¢ : Reconstructed data items

Figure 4.3 is an example of a section of a test response file containing the reconstructed raw
drawing data. When the data is written to a file, a time stamp is added to the data. This
represents the time in milliseconds since the start of the capture file and enables the use of
time-based dynamic parameters such as pen velocity and constructional analysis. The first
column of this data is the time stamp in milliseconds followed by the pen x and y coordinates.
The other data items in the file represent pen proximity, button value, pen pressure and x and
y axis tilt. This data can be pre-processed prior to extraction of features, for example by
increasing the sampling rate through interpolation between data items (Section 4.6.2) and

filtering the data to remove noise and other high frequency components (Section 4.6.3).

510 2471 2107 1 1 25 14 35
520 2470 2118 1 1 28 14 35
530 2469 2128 1 1 30 14 34
540 2468 2138 1 1 32 14 34
550 2468 2149 1 1 36 14 34
560 2466 2163 1 1 39 14 33
570 2461 2177 1 1 46 14 33

Figure 4.3 : Example test response file

Individual data response files are identified by two numbers combined to form a single
filename. The test battery comprises seven subtasks, each subtask being assigned a number
detailed in Table 4.3. Modifications to the test battery have occurred during the course of the
study and subtask identifiers for redundant tasks have been reused. The test response
filename is composed of the subtask identifier followed by the overlay number within the

subtask. A file extension of .tst’ is used for all test responses files.
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Subtask Identifier’ Subtask

1 Point Location Task

2 Line Bisection Task

3 OX Cancellation Task

4 Albert’s Cancellation Task

S Figure Completion Task (Ver.1)
Drawing Tasks (Ver.2)

6 Figure Copying Task (Ver. 1)

8 Drawing from Memory Task (Ver. 1)

" ID 7 was assigned to a Trail Making Task which was included during task development but

removed from both versions of the test battery.

Table 4.3 : Task identification numbers

A particular test subject may undertake the test battery several times. To prevent overwriting,
the test response files for each attempt at the battery is stored in a separate directory within
the test subject identification structure (Figure 4.4). A data set presence file stores the time
and date of each test attempt and is used to calculate the next set number when additional
attempts are made by a particular test subject at the test battery. This file is created at the start

of each battery attempt thus preserving files if only part of the whole battery is completed.

4.6 Pre-processing of Raw Test Response Data

The test response files contain raw data directly reported by the graphics tablet. In a number
of cases this data needs to be pre-processed prior to extraction of features. This section
details three operations performed on the raw data to increase accuracy in assessing time
based features (interpolation), remove noise and other high frequency components which are
not part of the handwritten response (Gaussian filtering) and location offset to remove errors

introduced by the misalignment of overlays on the surface of the graphics tablet.
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Data Capture Root
Directory

Test Subject ID 1
(Data Set Presence

File)

Test Subject ID 2

Test Subject ID n

| 1

Battery Attempt 1 Battery Attempt n

Task 1 Overlay Task 1 Overlay Task n Overlay
1 Test 2 Test n Test
Response File Response File Response File

Figure 4.4 : Test response file directory structure

4.6.1 Offset Calculation

movement in the overlay positioning. This may have been caused by a misalignment of either
the overlays within the paper clamps or the clamping system itself. Using an additional
overlay containing two location crosses located in top left (x;,y;) and bottom right (x;,y,)
corners (Figure 4.5), the test administrator positions the pen at these two locations. As the
mask files have been calibrated with the overlay clamp in a default x and y position, any
movement can be calculated from the actual (default) and drawn sets of coordinates. The
offset for each individual test battery attempt is stored in the offset data file which list test ID,
battery attempt number and x and y coordinate offset. The offset can be subtracted from the x
and y coordinate data within the test battery attempt to align each test response data to the

mask files.

|
\
Upon completion of a test battery, offset calculations are computed to overcome any
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Point A
Visuo-Spatial Test System
Marking Location Overlay
Point B
Figure 4.5 : Offset calibration overlay
The offset is calculated by the following formulae:
r+x,e +y,
xoffset = x,erro ,error yoffset = y,error + y,error @.1)
& 2

where:

x,error = x,drawn — x,actual
x,error = x,drawn — x,actual
y,error =y, drawn — y,actual

y,error = y,drawn —y,actual

An examination of the offset data file over 155 battery attempts (5425 individual overlays) in

a time period of 24 months without re-calibration shows that there is very little error variation

within each axis. The mean x axis shift was 3.17 mm (standard deviation 7.24 mm) and mean

y shift was 2.54 mm (standard deviation 6.88mm). This confirms the reliability of the paper

fixing system. These errors can be incorporated as tolerances in location based assessments.
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4.6.2 Quadratic Interpolation of Data

The number of data points extracted from the tablet (sampling rate) can be increased and
quantised by interpolating between samples. This is particularly useful when using velocity
and movement profile routines which perform optimally with a constant time-base at an
increased frequency. Several methods exist for interpolating between data points including
linear fitting, Fourier interpolation and the digital processing technique of oversampling. One
of the widely used methods is to fit a quadratic to a series of data points X;..X, and calculate
data points between 1 and n using the derived line equation [180]. Figure 4.6 shows a simple

2" order polynomial fitted to three data points.

(xlnter2’ Yin rerZ) ( X, y\?)

(xlnterl Y Interl )

(xpyI)

Figure 4.6 : Quadratic interpolation of line points

The points can be fitted to the line by the equations :

= ple2 + DX T Py 4.2)

Yo = szz2 +pix, + Py (4.3)
2

V3 = DyXy + piX;+ Py 4.4)

These three simultaneous equations can be solved by Gaussian Elimination resulting in the

coefficients p;, p» and p; and hence the equation of the spline that fits all three data points.
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The y coordinate of a g interpolated point with x coordinate xj,., where x;<xt.,<x; is

calculated by substituting the coefficients into the general 2™ order polynomial formula:

2
ylnrer = p2xlnrer + plxlnter + pO (45)

To double the sampling rate to 200Hz, the test response files are interpolated by taking three
continuous timing points from the file and processing pen status data items (x location, y
location, pressure etc.) individually. Visualising this graphically with relation to Figure 4.6,
the individual data items (y axis) are plotted against the corresponding timestamp value (x
axis). A quadratic polynomial is then computed between these point triplets. Any data item
value can then be calculated using this polynomial at a given time value between the first and
last selected timestamp forming the quadratic. This process is repeated for groups of three
timestamps until the end of the data stream is reached resulting is a list of data values with a

constant time-base and/or resampled frequency based on the existing feature data.

To double the existing sampling rate, three general solutions can be used to calculate the
quadratic coefficients. If the middle of the three points is assigned as a zero time reference
point (r=0) and if a constant time-base is maintained between the points, then we can
arbitrarily assign the first of the point to occur at #=-/ and the last of the three points to occur
at t=1. Substituting these times as x values into equations 4.2 to 4.4, the following general

solutions are obtained :

Po=D2 (4.6)
Yi—N
LA 4.7
P 5 (&.7)
— 2%, +
py= I (4.8)

An interpolated doubled sample rate is obtained by finding the data item (y) value at times

t=-0.5 and t=0.5. Figure 4.7 shows how the data stream sampled at 100Hz (a) is smoothed by
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interpolating the x and y coordinate points separately to a new frequency of 200Hz (b). Data

is taken from a square drawing task. The increased number of samples for the coordinate

positions can clearly be seen to follow the existing data contour.
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Figure 4.7 : Interpolation example a) original data (100Hz sampling rate), b) Data
interpolated to 200 Hz

4.6.3 Gaussian Low-Pass Filtering

As stated in Section 4.2.2., normal handwriting typically has a maximum frequency in
displacement movement of between 20 Hz and 13.6 Hz. Applying a low-pass filter with a cut-
off defined at the maximum displacement frequency to individual data items (e.g. separate x
and y coordinates) will eradicate any noise that is inherent to the output of the graphics tablet
and other high frequency components of the data that are not constituent of a handwritten
response (spatial errors). This will allow a reliable analysis of the handwritten data to be
obtained. The Wacom tablet used in the research has an intrinsic fault that the tilt of the pen

causes a modification to the x and y coordinate data including the condition when the pen is

stationary (or consistency is maintained along a specific axis).

The simplest method for implementing a low-pass filter is to apply a window based spatial
convolution filter to the data. Low-pass filtering of the data can be achieved using a mask
loaded with a Gaussian profile. The profile shown in Figure 4.8 is obtained from Equation

4.9. Apart from the distance from the mean of the distribution (x=0), the other variable is the
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standard deviation of the distribution - increasing this value widens the spread of the

distribution.
1 ‘_xz
2
G(x)=———e?° (4.9)
N2mo
where :
o = standard deviation of distribution
x = distance from mean of the distribution (centre point)
0.4
035 | / \
0.3} / \
& 0.25
=
5 2
c; 0
e
& 0.15 /
0.1
0.05
[
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Distance from centre pixel (pixels)

Figure 4.8 : Gaussian response profile (0 =1)

Masks (in any dimension) can be generated from a calculated Gaussian. Figure 4.9 shows a
one dimensional mask of width 2 (that is 2 data elements each side of the centre element).
The mask is loaded with a profile with standard deviation=1. Using the mask defined in

Figure 4.9, which operates on a single data stream (for example, on the pen x values), a
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spatial convolution process is performed by multiplying the current value under investigation
and two values each side within the stream by the values in the mask. This value is then
divided by the sum of the mask (in this case 10) to produce the Gaussian weighted result. The

mask is then shifted to the next item in the stream.

yx 05125 4 |25]05
10

Figure 4.9 : One dimensional Gaussian convolution mask (width = 2, c=1)

The standard one dimensional convolution process is described by the function :

F(x)=3 £(e+ (- o+ D)) Wi

=1
where :

w = width of mask
J =(wx2)+1
h [1..j] = mask elements

f[x-j..x+j] = data stream elements contained within mask

This method, providing a smoothing effect on the data, is very simple to implement and
computationally efficient. However, the response frequency of the filter cannot be controlled
as accurately as operating in the frequency domain of the data. In this second implementation
method, the data is transformed into the frequency domain by Fourier transform, filtered and
then inversely transformed to recreate the original data stream with the filtered components
removed. This method is computationally exhaustive involving the two Fourier transforms
(normal and inverse) and a filtering process. As the data response file is typically in the range

of 3000 to 6000 data items then each Fourier transform would be very slow.
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The cut-off frequency of the convolution mask implementation and consequently the amount
of smoothing to the data stream is controlled by the standard deviation of the Gaussian values
contained within the convolution mask and the width of the mask itself. Empirical results
show that as the width of the mask is increased and as smaller values of standard deviation of
the Gaussian are implemented, the greater the cut-off frequency of the filter and hence the
less smooth the data stream. An experiment was undertaken to numerically identify the
relationship between these variables and thus increase the accuracy of the cut-off frequency
of an implemented convolution mask. A random waveform sampled at 100Hz was filtered
using a range of one dimensional convolution mask widths (between 1 to 10 data items wide)
loaded with Gaussian profiles with standard deviations between 0.5 and 3. The resulting data
stream was then transformed into the frequency domain using a discrete Fourier transform.
The highest frequency component of the data contained within the frequency spectrum of the
filtered stream was recorded as the corresponding cut-off frequency of the low-pass filter.

Figure 4.10 shows the results of this study.
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Figure 4.10 : Gaussian low-pass cut-off frequencies
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With reference to the profile contained in Figure 4.8, it can be observed that values at a
distance greater than 3¢ from the centre of the distribution are negligible to the output of the
mask, therefore larger mask widths require higher standard deviations to enable values
further from the centre of the mask to have a noticeable effect on the mask result. Because of
this, the results from masks with a width greater than 3 times the standard deviation of the

loaded Gaussian profile are ignored.

From these results a mask can be constructed to implement the required low-pass cut-off
frequency of 20Hz (width = 3, o =1). Figure 4.11(a) shows the output of the designed
Gaussian filter on the data presented in Figure 4.7. The x and y coordinate data streams were
filtered separately. By comparing the two plots, the smoothing effect of the Gaussian filter
can be seen. Figure 4.11(b) shows the combination of two pre-processing operations with the
Gaussian smoothed data stream interpolated to a frequency of 200 Hz. This combination

filters out noise and provides a cleaner data stream for feature extraction.
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Figure 4.11 : Gaussian filtration example a) Low-pass Gaussian filtering of drawing shown

in Figure 4.7(a), b) Interpolated Gaussian filtering of drawing data

4.7 Feature Extraction

Features are extracted from the test response files by processing the stored list of data items.
Chapter 5 provides a full explanation of the range of features extracted from each task but

this section contains two simple examples of the extraction process common for all features.
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In particular, these examples represent two dynamic features which are not normally

obtainable from the completed test overlays.

Figure 4.12 shows the flow chart for the calculation of overall drawing time of a test
response. Coordinate data is read sequentially from the response file until pen contact is
detected on the tablet. The tablet will return coordinates of the pen up to a distance of Smm
from the surface. When the button value indicates pen surface contact for the first time within
the test response file, the drawing start time will be defined by the corresponding packet
timestamp. The time at which the pen is finally removed from the tablet surface (button value
= 0) will indicate at the drawing stop time. The overall drawing time is simply a matter of

subtracting the starting from the stop timestamps.

Constructional order can be extracted from a test response file by segmenting and analysing
rate of change in a pen data item. For the drawing tasks, side drawing order can be obtained
from the change in x and y pen coordinates extracted from the segmented sections. Figure
4.13 show the x and y coordinate profiles of test response data items from a square drawing
from memory task. Five segments can clearly be identified within the drawing and timings
for each stroke can be extracted from these profiles. The constructional order is extracted in

three stages:

1. The axis of movement is calculated (horizontal or vertical). Within each segment, does
the x or the y coordinate have a greater rate of change. This feature is easier to detect
within the drawing of the square where all the sides are parallel to axes. For a 45 degree
diagonal line the rate of change of both coordinate data items are identical. In the given
example, drawing movement in the first segment is in the y axis, followed by a movement

in the x axis in the second segment.

2. Having identified the axis of movement, the direction of movement (left or right, up or
down) is obtained from the start and end coordinates within the segment. With the zero
reference point for both axes being in the top left hand corner, pen movement is down in

the first segment and to the right in the second in the given example.

3. The final stage of extraction, segment labelling, concurrent analysis of both movement

profiles indicates whether a vertical movement constitutes a left or a right side of the



Chapter 4 — Experimental Infrastructure for Pen Based Data Capture

93

drawn square. Again, with the example data, the first segment is to the left of the drawing

and the second segment forms the lower side of the square.

Open Test
Response File

Read Next
Data Packet

Is Surface
Contact
Flag Set ?

Has Start Time
Been Recorded 2

End Time = Packet
Timestamp

Error:
No Pen Contact

Has Start Time
Been Recorded ?

Yes

Drawing Time = End -
Start Times

Close Response File

Set Start Time Found
Flag

Start Time = Packet
Timestamp

Figure 4.12 : Total drawing time feature extraction flow chart
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Figure 4.13 : X and Y coordinate profiles from a drawing from memory square task

An alternative graphical representation of the drawing is presented in Figure 4.14 using
colour codes to represent individual segments. The drawing order and positioning is clearly

visible from this representation.

4.8 Summary

This chapter has identified the central issues concerning the automatic capture of handwritten
data. The movement characteristics of a handwritten response have been defined and a range
of input devices explored with reference to both these characteristics and also the
requirements of a hospital-based environment. The pen status data items reported by a
graphics tablet were summarised, leading to a discussion about the types of features that can

be extracted from this data.
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1st Stroke

2nd Stroke
3rd Stroke
4th Stroke
— 5th Stroke

Figure 4.14 : Stroke order in a square drawing from memory task

The Wacom WD 1212 tablet was examined in detail and the system infrastructure for the
capture, feature extraction and result reporting explained. The accuracy of the system for
attaching test overlays to the tablet surface was verified by analysing the x and y axis shift
over 5425 overlays in a 24 month period without re-calibration. Performance was found to be
satisfactory. Three pre-processing operations were investigated to overcome some of the
defined inherent problems with data capture using a graphics tablet. These operations reduce
noise and increase the accuracy of the signal prior to feature extraction. Methodologies for

feature extraction were given and serve as a template for other extraction routines.

The defined system presents an infrastructure from which a range of existing and novel
features can be extracted within bounds of handwriting movement specification and which
can be used within the defined clinical environment and test subject grouping. Having
defined the experimental infrastructure, the individual tasks and features can be defined and

implemented.
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Chapter 5

Task Definitions and Feature Extraction

5.1 Introduction

This chapter provides a detailed description of the tasks implemented as part of the computer-
based assessment battery and defines the extractable performance features from each task.
Features are described algorithmically and, where applicable, the assessment criteria are
defined, resulting in a stable and objective set of marking rules for application to all test

responses.

Designed to maximise potential differences between a neglect and a stroke control population,
the testing procedures have also been devised on an experimental basis to test hypotheses

concerning dynamic feature performance in relation to spatial awareness.

5.2 Test Battery

A total of 35 overlays are used in the test battery. The graphics tablet on to which the overlays
are fixed is positioned on a table directly in front of the test subject, ensuring a normal writing
position. All overlays are of size 296 by 209 mm (A4) in a landscape orientation. The
overlays are fixed individually onto the surface of the tablet by the test administrator and are
removed following completion; the next overlay in the battery is then placed on the tablet
surface. A script containing verbal instructions given to each test subject is used by the test
administrator to ensure that a uniform testing procedure is maintained. A copy of the test
script, devised by a trained Occupational Therapist, is included as Appendix B. Capture of
drawing response and general computer interaction is controlled by the administrator,
ensuring that the patient has no direct contact with the computer and thus preventing any
performance modification due to an unfamiliar testing environment. The test infrastructure

appears to the patient to be identical to that used for conventional pencil and paper tests.
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The task order within the test battery is: Point Location, Cancellation Tasks (OX1, OX2,
Albert’s, Star), Figure Completion, Figure Copying, Drawing from Memory and Line
Bisection. In addition, a series of Movement Profile tasks were added to the battery to provide

kinematic analysis of test performance.

No time limit is imposed for any of the tasks. However, aborting any or all of the overlays is

an option left to the discretion of the administrator.

5.2.1 Point Location Task

The point location task is used as a simple screening test at the start of the test battery. A total
of four overlays are used containing two black dots of diameter 15 mm. One of the dots (the
starting dot) is located in the same position, at the bottom centre, in all four overlays (33 mm
from the bottom and 146 mm from the left of the overlay). The other target dot is positioned
in one of the four quadrants of the overlay, thus over the four test overlays all areas of the
immediate visual field are tested. Table 5.1 details the position of the target dot. Figure 5.1
shows overlay 1 with the target dot in the top left hand corner. The starting dot is positioned

in the lower centre of the overlay.

s
1 - Point Location Test

Figure 5.1 : Point location task overlay |
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Overlay Quadrant x Position from y Position from
Number Left Hand Edge Bottom Edge
1 Top Left 45 mm 165 mm
2 Top Right 220 mm 127 mm
3 Bottom Left 49 mm 44 mm
4 Bottom Right 239 mm 60 mm

Table 5.1 : Position of target dot in point location task

The test subject is presented with the individual overlays in sequence and is

perform the following events to complete the task:

e Move the pen to the starting dot and place the pen on the dot.

e Remove the pen.

e Move to the target dot and place the pen on this dot.

5.2.2 Line Bisection Task

required to

The line bisection task comprises eight overlays each containing a single horizontal target

line which the test subject has to locate and bisect at the midpoint. The line length is 50mm

for the first four overlays and 140mm for the second set of four. Figure 5.2 shows the first

overlay from this task, with a short (50mm) line positioned in the top left hand quadrant. As

with the Point Location Task, the line is positioned with its midpoint within each quadrant

over a set of four overlays. Table 5.2 details the position and location of each line.

Overlay Quadrant Length x Position from y Position from
Number Left Hand Edge Bottom Edge

1 Top Left 50 mm 85 mm 142 mm

2 Top Right 50 mm 254 mm 155 mm

3 Bottom Left 50 mm 85 mm 54 mm

4 Bottom Right 50 mm 196 mm 66mm

5 Top Left 140 mm 107 mm 141 mm

6 Top Right 140 mm 201 mm 152 mm

7 Bottom Left 140 mm 85 mm 44 mm

8 Bottom Right 140 mm 207 mm 77 mm

Table 5.2 : Position of target line in line bisection task
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R 1 une et

Figure 5.2 : Line bisection task overlay 1

5.2.3 Cancellation Tasks

Three cancellation tasks have been implemented in the computer-based test battery. The first
task is a standard Albert’s Cancellation Task [49] which has been used for many years as a
neuropsychological test of neglect (Section 2.3.2). The test subject is presented with a single
overlay containing 40 lines of length 25mm arranged at a random orientation and in a pseudo-
random grid formation measuring 222 mm x 181 mm (Figure 2.5). The test subject is
required to cancel all of the lines on the overlay. The test response is assessed by
counting the number of cancellations, ignoring the centre vertical line of four targets which

are used to demonstrate the cancellation process.

The other two tasks (OX1 and OX2) use a series of targets (‘O’ characters) and distractors
(‘X characters) arranged in a pseudo-random grid formation (Figures 5.3 and 5.4). The test
subject is required to cancel all the O characters on the overlay. In the first task, there are 12
of each type of character, of dimensions 7 x 7 mm, arranged in a pseudo-random grid of
dimension 198 x 107 mm. The second overlay has 16 targets and distractors, also of
dimension 7 x 7 mm, again arranged in a pseudo-random grid, with larger dimensions of 214
x 158 mm. Only 12 out of the 16 targets are assessed for the correct number of cancellations,

resulting in 3 target and 3 distractors characters per quadrant. The boxed area in Figure 5.4
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details the characters which are not assessed in calculating the correct number of
cancellations. Studies [167] have shown that by fixing the positions of targets in linear
horizontal and vertical rows, test subjects are able to form methodical axis-based cancellation
strategies (for example, cancelling all targets in a particular row and then moving on to the
next row) easier than if the targets were arranged in random’ positions. Categorising the
cancellation strategy is therefore simplified if a lesser number of strategies are used across the
test population. Linear (or grid) positioning of the targets forces the test subject to scan and
cancel along vertical and horizontal axes reducing the number of output sequences. As with
the Albert’s task, the basic analysis of this test is to count the number of cancellations on the

overlay.

R 1-0X Cancelistion

O O X O

O X X @) X

X ) X O X O
X o) o) X

X o) X o) X

Figure 5.3 : OX cancellation task overlay 1
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Figure 5.4 : OX cancellation task overlay 2 detailing targets which are not assessed in the

number of cancellations

5.2.4 Figure Completion Tasks

The figure completion task consists of six overlays each containing half of a simple
representational shape (Figure 5.5) split vertically. The shapes are located so that the vertical
split is positioned at the horizontal centre of each overlay. Three different representational
shapes of increasing complexity are used: a diamond, a man and a house. The test subject is
first presented with the left hand side of the image which requires completion (i.e. to draw the
mirror image of the shape) to the right hand side of the overlay. The second in the pair of
overlays, which requires copying of the same shape to the left of the overlay, is then
presented. Table 5.3 records the maximum width and height of the half images. As a vertical
mirror image is required to be drawn, this is also the size of drawing expected from each

subject.

Analysis of neglect concentrates on the performance differences between copying info the

affected visual field (the left side in right CVA patients) and when copying from this visual

field. /‘m

[ TEMPLEMAN |
| LIBRARY |
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Shape Max. width Max. height
(mm) (mm)
Diamond 50 95
Man 36 83
House 62 83

Table 5.3 : Figure completion half images sizes

C
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Figure 5.5 : Figure completion representational drawings

5.2.5 Figure Drawing Tasks

The figure drawing tasks involve the copying and drawing from memory of a series of simple

geometric shapes. The four shapes used in these tasks are shown in Figure 5.6. Two of these

shapes (the cross and the cube) were used in a copying trial by Warrington, James and

Kinsbourne [85] and were found to give the best separation between neglect and non-neglect

right CVA subjects based on assessed performance characteristics.

Figure 5.6 : Figure copying and drawing from memory models
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The two other shapes were selected for their simplicity, signified by the low number of sides
(the square) and their relative complexity to the other shapes used in the battery (the five
pointed star). The star shape presents many dynamic feature possibilities as it is possible to
construct without pen removal. As most subjects are familiar with the standard two-triangle

six pointed star, the shape requires detailed copying analysis.

In the first of the drawing tasks, figure copying, the shapes are printed individually in the top
horizontal centre of four separate overlays. The test subject is required to copy the shape
directly below the printed image. The order in which the shapes are presented (square, cross,
star and cube) remains constant for all attempts at this task. The sizes of the model/target

image are given in Table 5.4.

Shape Max. width Max. height
(mm) (mm)
Square 21 21
Cross 42 42
Star 22 22,
Cube 36 36

Table 5.4 : Figure copying shape sizes

The second drawing task, drawing from memory, uses only two of these shapes, the square
and the cube. The test subject is asked to draw these shapes on separate blank overlay sheets
without any prompting or copying model. The choice of image represent the extremes of
complexity of the shapes used in the figure copying task and enables the assessment of
dimensionality within a drawing (the cube is particularly interesting as it embraces three

dimensional perspective properties).

5.2.6 Drawing Profile Tasks

The final set of tasks is a series of line drawing assessments involving visual discrimination
and sequence processing. Using 8 overlays, the drawing profile tasks enable a more detailed
understanding of the movement dynamics involved in drawing images. The overlays can be

divided into 4 distinct task groupings.
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The first three overlays contain a series of dots at each side of the page. The dots are 10mm in
diameter, located 57 mm from each vertical edge of the overlay and are separated vertically
by 46 mm. Figure 5.7 shows the first of this group of three overlays. Starting at the bottom
right hand side of the overlay (selected because the right hand side is least affected by the
patient’s neglect), the test subject must move the pen across the page to the lowest left hand
side dot. Having located this target, a movement is made back across the page to the second
lowest target. This ‘zigzag’ pattern is repeated until all dots have been visited, finishing in the
top right hand corner. By asking the test subject to draw a line the length (or width) of the
overlay, the pen is in contact with the tablet for a greater time, thus producing a clearer
movement feature dynamic, such as velocity and acceleration, whilst also allowing the
extraction of the various kinematic-based timing measurement, such as acceleration and
deceleration phase timings. Repeated movement back and forth across the width of the page
also means that differences can be observed as a neglect subject moves the pen in and out of

the neglected field.

The two other overlays contain variations of this task (Figures 5.8 and 5.9), introducing
distractors (10 x 10 mm squares) placed amongst the circles. The test subject must
discriminate between the targets and only move the pen to the circles. Whilst the order of
targets and distractors is uniform on each side of the second overlay, the order is randomised

in the third overlay.

The second set of two overlays require the test subject to join numbered dots in sequence to
form a square. The dots are located in the four quadrants of the overlay, 30 mm from each
edge, so analysis can assess movement in and out of the affected vertical visual field as well
as on a horizontal basis. Figure 5.10 shows the first of these square drawing overlays. In this
overlay the dots are numbered in an anti-clockwise direction from the bottom right corner.

The second overlay reverses this ordering whilst maintaining the positions of the dots.

Another square drawing task is implemented on overlays 6 and 7. The dots for this task are
located 64 mm apart in a single side of the visual field. No drawing sequence is specified for
this task. The first of the overlays has the dots printed in test subject’s right visual field,

swapping to the left in overlay 7 (Figure 5.11).

The final overlay in this task sequence contains twelve dots arranged at a 70 mm radius
around a single central dot in a clock-face configuration (Figure 5.12). The test subject is

required to draw from the central dot to each of the outlying dots. The pen is then picked up
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and moved back to the central dot. Analysis of this task provides data on the sequence in
which the dots were visited and also the timings and movement dynamics at the various

positions within the overlay.

Figure 5.7 : Line drawing task

Figure 5.8 : Line drawing task with distractors
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Figure 5.9 : Line drawing tasks with distractors and
pseudo-random ordering

Figure 5.10 : Dot joining square task
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Figure 5.11 : Visual field square drawing task

Figure 5.12 : Clock-face line drawing task
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5.3 Performance Features

This section defines the features extracted from each drawing or task response undertaken by
a test subject. Section 4.7 described the procedure for extracting features from a stream of raw
coordinate and pen status data whereby calculations are made by reading sequentially through
the data stream and extracting features from the test response file. All time-based features
utilise the timestamping which is assigned (or extrapolated) to the pen status data during
sampling. Each feature has been implemented as a separate function which can be applied to a
standard test response file. Obviously, applying a task-specific feature function to a response

file from the incorrect task causes an erroneous result.

The features that are documented in this section have been arranged according to the tasks to
which they are applied. Several features are generic to all tasks (such as overall drawing time,
number of pen lifts within drawing etc.) and many features are common across the analysis of
all four of the drawing based tasks. These features are described in Sections 5.3.1 and 5.3.5
respectively. Features that are specific to an individual drawing task, such as number of

cancellations on an overlay, are documented separately at the end of this section.

5.3.1 Generic Task Features

The features described in this section can be extracted from any test response file captured
using the computer-based assessment system. This means that they are suitable for use outside

the immediate scope of this project.

5.3.1.1 Overall Task Execution Time

The overall task execution time indicates the real time taken to complete a task. As task
complexity increases the overall time taken, this measure can only be used as a comparison
between pairs or groups of test subjects on a single task. The time is calculated using the pen
button flag contained in the test response file. This flag is set to >0 when the pen is placed on
the tablet surface (i.e. a drawing is made), so the overall execution time can be calculated

thus:
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Overall Execution Time = t g - tyun (5.1)

where :

t..q = last time when pen tip was on graphics tablet surface in test response file.

tyar = time of initial pen tip contact.

5.3.1.2 Pen Contact/Pen Movement Ratio

This ratio is again obtained by monitoring the pen button status flag within the test response
file. By individually accumulating the times within the response file when the pen is on and
removed from the tablet surface, a ratio can be formed. A result over 1.0, indicates a greater
time spent with the pen off the tablet which in turn indicates a larger planning phase of the
task completion. Pen removal from the tablet surface usually occurs when the test subject is

moving to the start of a new component.

The ratio can be defined:

Total time pen off tablet

: (5.2)
Total time pen on tablet

Pen Contact Ratio =

The time accumulation only occurs between the times ¢,,, and t,, as defined in Section
5.3.1.1., so as not to include the variable time phases introduced by the test administrator
arbitrarily starting and stopping the sampling procedure. This ensures that the ratio only

accounts for timing within the active period of drawing or response.

5.3.1.3 Mean and Peak Pressure

The pressure on the tablet surface produced by the pen is returned in the range of 0 to 255.
Accumulating the pen pressure value for every packet returned when the pen is on the tablet
and then dividing the number of pen contact packets results in the mean pressure over the test

response:
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Mean Pen Pressure =

2.(p) 5

n
where:

p = pressure values from a data packet when pen is on tablet (pen tip status # 0)

n = number of packets when pen is on tablet
The maximum pen pressure recorded during the drawing process can be used as a

performance feature. However, this suffers from a ceiling effect of the maximum pressure it is

possible for the tablet to detect.

5.3.1.4 Pen X/Y Tilt Standard Deviation

Pen tilt is recorded in both the horizontal (x) and vertical (y) axis. By computing the standard
deviation of tilt values when the pen is on the tablet, the variation in posture throughout the

drawing processes can be established.

The standard deviation of the pen x-axis tilt is calculated by :

M (5.4)

n

xtilto =

where:

xt = x axis tilt value from a data packet when pen is on tablet (pen tip status # 0)

n = number of packets when pen is on tablet

y axis tilt is calculated using the same method.
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5.3.1.5 Pen Lifts within Drawing

This is a measure of the number of times the pen was removed from the tablet during the
drawing time (not including the final pen lift at the end of the drawing hence the deduction of
a single occurrence within the calculation) and gives the number of movement segments

within the drawing.

=0

Pen lifts within drawing = [zn: [(Z(t -1)— Z(t)) = (1 — 0)]]— 1 (5.5)

where:

n = number of packets

Z(t-1) = pen tip status at time -1
Z(r) = pen tip status at time ¢
Z(t) = 0 = pen tip not on tablet
Z(t) = 1 = pen tip on tablet

5.3.2 Point Location Features

The features extracted from the Point Location task are limited by the simplicity of the task.
Time for pen movement between targets is calculated from the overall execution time defined
in Section 5.3.1.1 indicating the processing time required for identification, location and
movement to the target dot. The other two features obtainable from this task concern the

accuracy of target location and a comparison between quadrant performance.

5.3.2.1 Target Distance Error

Assessing if the test subject has located and hit the farget dot is calculated by finding the
Euclidean distance between the drawn location where the test subject positioned the pen and
the actual location — the coordinates of the centre of the target dot stored in a model of each
overlay. If the calculated distance is outside the radius of the dot (7.5mm) then the patient

failed to hit the target. The same measure is used for calculating the error distance on the
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starting dot. If both results are within the dot radius the test subject has successfully

completed the overlay.

2

Target Distance Error = \/(xdrawn - xactual )2 T (ydrawn - yactual ) (56)

where :

Xarawn = the x coordinate of the pen when placed on the tablet
Xaemat = the model centre x coordinate of the target
Yarawn = the y coordinate of the pen when placed on the tablet

Yaeuat = the model centre y coordinate of the target

5.3.2.2 Quadrant Comparison

Having extracted the timing and distance error for all four overlays, a comparison between
feature measurements from the two left hand side and right hand side targets and,
furthermore, on a quadrant basis, may provide performance discrimination between test
subject groups. Expected performance from severe right CVA neglect subjects will be
identified by the inability to locate (or locate with a large distance error) the left hand side

target dots.

5.3.3 Line Bisection Features

As with the point location task, the number of features that can be extracted from the line
bisection overlays is limited because of the simple task composition. Completion of the task
only requires a single bisection mark to be made on the overlay. The task completion time is
therefore insignificant as this feature is directly related to the length of bisection mark drawn
by the test subject, which is not an important measure in assessing the outcome of the task.
Because two different line lengths are used as bisection targets, an intra-subject measure can
be established concerning performance differences between short and long lines, in addition

to the quadrant positioning of the bisection line.
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5.3.3.1 Deviation from Actual Midpoint

The main accuracy measure extracted from the line bisection task is to assess the distance
between the test subject’s midpoint estimate and the true midpoint coordinate. Figure 5.13 is
an example of the deviation calculation from a hypothetical neglect response. By vectorising
the result, the direction (left or right of the midpoint) of the error can be obtained. A neglect

response should theoretically bisect the target line to the right of the midpoint.

Deviation

Actual
Midpoint

. Subject’s
. Bisection

Figure 5.13 : Horizontal midpoint deviation calculation

The actual deviation from midpoint calculation is given by:

Midpoint Deviation = Xgraun — Xactual 5.7)

where :

Xarawn = test subject’s x coordinate at model y coordinate

Xenar = Model midpoint x coordinate

A negative result indicates that the test subject has bisected the line to the left of the actual

midpoint.

The extraction routine for horizontal target lines initially uses the y coordinate of the true

midpoint position (Vueua) to assess if the test subject has moved the pen through this location
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on y axis. A secondary check assesses if the drawn x coordinate at this point (Xg..) iS
between the length limits of the target line, thus determining whether the line has been
bisected. The model information for each target line, containing the true midpoint coordinates

and length are stored in a separate text file to facilitate modification.

If direct correspondence of y coordinate (i.e. Yuma = Yarawn) cannot be found in the test
response file, then an attempt is made to find a pair of y coordinates in the test subject’s
response either side of yueuq» Within the x coordinate line length limits. Interpolation is used to
obtain the drawn x coordinate at y,. In Figure 5.14 the crosses show the sampled
coordinates which pass either side of the target line. The circle shows the interpolated

crossing point.

Figure 5.14 : Interpolated crossing point

The interpolation routine uses the two points vertically either side of the target line to
calculate the x coordinate (Xgyawn) at Yaemar: (X1,y;) above the target line and (x,,y,) below the

target line (Figure 5.15).
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xpy))

(xdrawn’ Y actual )

(*5Y,)

Figure 5.15 : Interpolation calculation points

The equation of the crossing line is calculated by finding the line equation common to the two

points:
yi=mxi+c¢ and y:2=mx2+c (5.8)
giving
mz(ilz) and c¢=yi—mx (5.9

——

The x coordinate interpolated crossing point is given by:

Xdr — (yactual —C)
drawvn — —————— (5.10)

m

The bisection error is normalised by length of target line. The midpoint deviation error is

represented as the percentage of the half-length of the target line:

Midpoint Deviation

- x 100 (5.11)
Target Line Length j

Bisection Error % =
[P
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5.3.3.2 Direction of Bisection

The direction of bisection is calculated from the y coordinates of the test patient’s cancellation
stroke. As the zero origin for the tablet is in the top left hand corner, an increasing y
coordinate trend indicates a downwards (towards the test subject) movement. Trends are
calculated by comparing pairs of y coordinates representing the pen cancellation mark and
accumulating the number of y value step increments and decrements. For example the

following list of y coordinates contains 3 increment steps and 1 decrement:

1345, 1347, 1350, 1352, 1348

The highest accumulator value indicates the direction trend, in this case downwards, towards

the test subject.

5.3.3.3 Quadrant and Line Length Comparison

The 8 overlays used in the bisection task provide opportunities for performance comparisons
relative to the vertical side and quadrant position, as well as line length. Expected
performance from a neglect population is for a greater bisection error to the right of the
midpoint for lines positioned on the left of the overlay. Mean bisection error should increase
proportionally for all population groups when bisecting the longer target lines, with the

neglect group accordingly still producing the largest error [75].

5.3.4 Cancellation Features

The features implemented for the analysis of the cancellation task include many new dynamic
assessments of sequence, timings and construction. These can be used to supplement or,
indeed, enhance the traditional static assessment of the number of targets cancelled on a
single overlay. In particular, work has concentrated on the detailed assessment of timing
within the cancellation process. Care must be taken when using the generic overall task time

feature (as defined in Section 5.3.1.1) on the cancellation overlays, as although it will
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accurately represent the execution time of the completed task, the result is dependent on the
number of cancellations made. Thus a neglect patient cancelling four targets will probably
have a smaller task execution time than a control patient cancelling all forty targets on the
Albert’s task. Because of this, features have been devised which are normalised with the

number of cancellations made in the particular area of the overlay under investigation.

5.3.4.1 Total Number of Cancellations

To assess the number of cancellations made by a test subject, a mask file for each overlay,
containing the position and identification of each target, is compared against the rest response

file. The following is an extract from the mask file for the first OX cancellation task:

1, 4490, 3200,
1, 5310, 1700,
1, 5310, 2430,
24 1170, 2430,
2, 1170, 3200,
2, 2000, 2070,

The first column contains the type of target (1 is a ‘O’ target character, 2 is a ‘X’ distractor
character) followed by the coordinates of the centre of the target. The target’s identifier is

assigned by the position of the record within the mask file.

In analysing the test response file, if the pen has been positioned within the cancellation area
of the target, it is recorded within the cancellation array (a record of the number of
cancellations per target). Figure 5.16 shows the cancellation area for the two types of task. In
the OX task, the area is a 7x7mm zone enclosing the target character. In the Albert’s task,
where the orientation of the line is pseudo-random, the cancellation area forms a box with the

line ends forming opposite corners of the active area.

Multiple cancellations of a single target Z’ are recorded only if the pen has left the tablet
surface or another target has been cancelled subsequent to Z’ within the cancellation
sequence. This prevents erroneous multiple recognition as the test subject moves the pen

through the cancellation area.



Chapter 5 — Task Definitions and Feature Extraction 118

The sequence in which the cancellations occurred is stored in a separate sequence response
file which contains a list of target identifiers and the time at which the cancellation occurred.

This file is also used to extract further timing data which is described in Section 5.3.4.10.

7 mm X Length

A
v

7 mm Y Length

Figure 5.16 : Target areas for cancellation tasks

Calculation of the number of cancellations on the overlay is obtained by counting individual
entries in the cancellation array. For the OX tasks, the number of incorrect cancellations can

be obtained from observing the array entries for the ‘X’ distractor characters.

5.3.4.2 Number of Cancellations per Quadrant

Using the known centre y and x coordinates of the overlay, the target positions can be divided
into quadrants. The same detection routines as defined in Section 5.3.4.1. are utilised which
calculate the number of correct (and incorrect) cancellations. Table 5.5 shows the number of

targets per quadrant:

Task Top Top Bottom Bottom
Left Right Left Right
0X1 32 212} 34) 4 (4)
0X2 303) 303 303 333
Albert’s 7 10 11 8

distractors

Table 5.5 : Targets per quadrant in cancellation task. Figures in brackets denote number of
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The second OX task was devised to overcome the quadrant target imbalance of the other two
tasks. The analysis in this second OX task does not include the centrally placed targets on

each axis as described in Section 5.2.3.

5.3.4.3 Time per Cancellation

The overall time is calculated as for all other tasks by subtracting the time the pen was first
placed on the tablet from the time the pen is removed at the end of the final cancellation. This
measure, however, does not account for the number of cancellations within a sequence. A
shorter global time may be caused by fewer cancellations on an overlay. Conversely, a test
subject cancelling all targets will take longer than a subject only locating a few targets and
therefore a raw time measurement will not reflect the patient’s ability in location, planning

and motor aspects of the cancellation.

The time per cancellation feature provides a more accurate overview of performance speed
giving a mean time per cancellation. Timing features relating to individual phases of
cancellations are extracted through other measures from these tasks (See Section 5.3.4.10)

The time per cancellation measure is calculated by :

Overall Execution Time
nt (+nd)

Time per cancellation = (5.12)

where:

nt = Number of target cancellations.

nd = Number of distractor cancellations (only on OX task).

5.3.4.4 Processing Time per Quadrant

The time spent cancelling within each quadrant is calculated from the sequence response file.
Each quadrant time is calculated separately. The processing time, PT, associated with the n"

target cancelled by the test subject is calculated by :
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PT, =time, —time,_, 5.13]

where :

time,= time when n"™ target was cancelled.

time,.; = time when n-1" target was cancelled.

The processing time per quadrant is the sum of the processing times associated with targets
cancelled within the quadrant under investigation. For example, if the 5" target cancelled is in
the upper right quadrant, the time PT’sis added to the accumulator for this quadrant. Positional
data of targets is obtained by cross-referencing with the mask file to obtain the coordinates

from which the quadrant can be computed.

5.3.4.5 Processing Time per Cancellation in Quadrant

This measure uses the processing time per quadrant feature calculated in the previous section.
Dividing by the number of cancellations obtained from the sequence response file, the time
spent in each quadrant is normalised according to the number of cancellations the test subject

makes.

Separate features are calculated for each quadrant by the following formula:

PTQ,,

PICO =—7— (5.14)
NCQ,,

where :

PTCQ; = Processing time per cancellation within quadrant x

PTQ., = Processing time within quadrant x

NCQ, = Number of cancellations within quadrant x
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5.3.4.6 Sequence Starting Location (and Quadrant)

The first entry in the sequence response file gives the initial target (or distractor) cancelled by
the test subject. By again cross-referencing the mask file, the coordinates of the initial target
can be extracted and the starting quadrant found. Right CVA neglect patients with a left side
affected visual field would be expected to start a sequence towards the right hand side of the

overlay whereas normal subjects tend to start to the left of the overlay [61].

5.3.4.7 Sequence Analysis

Directly extracted from the sequence response file is the order in which the test subject
cancelled the targets. Assessment can be made about how the drawn sequence differs for a
series of standard predefined sequences for each overlay. These model sequences have been
categorised as either raster or snake patterns and have been defined for each corner target (top
left, bottom right etc.) and movement direction (left to right, top to bottom movement etc.)
Figure 5.17 shows the two types of traversal method. Whereas the snake pattern
systematically moves up and then down columns or rows, the raster pattern moves down a
column (or across a row) and then jumps back’ to the beginning of the next. Table 5.6
details the 16 archetypal sequences defined for the OXI1 task. The numbers in each

sequence correspond to the target identifier which are shown in Figure 5.18.

Figure 5.17 : (a) Raster and (b) snake cancellation traversal method

a
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Sequence | Traversal | Start Start Traversal Sequence
ID Method Side Position in | Direction
Column

1 Raster Left Top Vert 1 (2134|567 (8]|9(10|11]12
2 Raster Left Bottom Vert 2 | 1(4]13(6]|5[8]|7(10]9]12]11
3 Raster Right Top Vert 11(12({9(10(7|8|5]|6|3|4|1]2
4 Raster Right Bottom Vert 12 |11{10{9 8|7 |6|5[4(3|2]|1
5 Raster Left Top Horiz 1 |5)11{2]|19[3|7[12)/6|8|4]10
6 Raster Left Bottom Horiz 4 1101683712129 1]5 |11
7 Raster Right Top Horiz 1151921273 |8|6|10|4
8 Raster Right Bottom Horiz 101486127319 ]2]|11|5]1
9 Snake Left Top Vert 1 [2(4(3]5]6]8|7|9/(10]12]11
10 Snake Left Bottom Vert 2|1 |3]4(6|5|7]8(|10]9(11]12
11 Snake Right Top Vert 1112|1019 |7 (8]6|5]|3|4|2]1
12 Snake Right Bottom Vert 121119 (10|18 7 |5(6]|4|3|1]|2
13 Snake Left Top Horiz 1 |5|11]19]12|3|7(12(8]6]4 |10
14 Snake Left Bottom Horiz 4 110181637 (1219(2]|1]5|11
15 Snake Right Top Horiz 11435 2191121713 |6|8|10]4
16 Snake Right Bottom Horiz 10(4(6[8|12|7|3|2[9]11|5]|1

Table 5.6 : Archetypal sequences defined for OX1 cancellation task

Ol
OZ
X O’

X

X

X O

OS
X
X
06

X

07
OS
X

Oll
O’ X
X 012
X
O X

Figure 5.18 : Location identification numbers (OX1 task)

Due to the small number of targets on the OX1 task, this is the only cancellation overlay to be

assessed by sequence.
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The drawn sequence is classified by finding the best match against the model sequences.
Before classification, the drawn sequence is pre-processed to remove all ‘X’ character
(distractor) identification references, as only ‘correct’ cancellation locations (targets) are
included in the predefined sequences. Sequence duplications within a sequence are also
removed, forming a list describing the order in which the ‘O’ characters were located,

allowing a direct comparison against the reference patterns.

In an initial implementation, classification was determined by finding the largest correlation
between all of the model patterns and the test attempt sequence. Correlation reflects the linear
relationship between two data sets and, as shown in Figure 5.19(a), will correctly classify a
sequence even with a data item missing. The items within the sequence are, however,
identifiers rather than weighted or scoring values and so, when a single item is misaligned
with the model sequence (shown in Figure 5.19(b)) then the correlation score does not

accurately represent the similarity between the drawn and model sequences.

112|134 |5|6|7)|8]|]9]|10]11]12 Model sequence

2(3|4|5|6|7|8|9]|10]11|12]| - a) Correlation = 1

2|1 3|4|5|6|7]|8|9]|10|1112] 1 b) Correlation = 0.54

Figure 5.19 : Sequence correlation error example

To overcome this problem, a direct correctness-of-match between the each model and test
sequence is calculated which assesses the match in each of the sequence positions. The
number of correct matches is recorded. The test attempt sequence is then barrel shifted one
position to the right (the location identifier in the extreme right hand position is moved to the
start of the sequence) and again a correctness of match score is calculated. This procedure is
repeated until the drawn sequence ‘returns’ to its original position. Figure 5.20 shows this

process. As can be seen, the number of matches varies as the pattern is shifted.

Recording the highest number of matches (a measure of the conformity of the completion

sequence) produces two other performance results:
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e The number of shifts required to obtain the highest match. This result also represents the
position within the model sequence where the test attempt started to conform to a

predefined sequence.

e The pre-defined sequence producing the highest match.

112 |3|4(|(5|6|7]|8]|9]10]11(12 Model sequence

-12]|13|4)|5|6|7]|9|11]10|12| 8 Right shift 1 (6)

8 - 213|4|5|6|7]9|11]10]12 Right shift 2 (2)

12| 8| -2 |3|4|5]|6]|7]|9]|11|10 Right shift 3 (1)

Figure 5.20 : Barrel shift correctness of match operation. The figure in the parenthesis is the
correctness-of-match score

5.3.4.8 Duplications

Interrogating the cancellation array, this feature indicates the number of duplicate
cancellations that are made within a sequence. Each entry in the array, corresponding to the
individual cancellation targets, is analysed to establish if the target has been cancelled more
than once. If this is the case, then the number of cancellations greater than the single case is

summed over the sequence.

n

duplications = Z (((can[i])— l)y(can[i] > 1)) (5.15)

i=0
where:

number of targets on overlay

n

can[i] = number of cancellations made at cancellation position i

Actual sequence (0)
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5.3.4.9 Path Crossings

An extension of the completion sequence analysis is an assessment of the number of ‘path
crossings’ within the strategy. Figure 5.21 is an example from the OX1 task of a strategy
with a single crossing point. The figure also shows a classic neglect response for this type of
cancellation task in that the cancellation sequence is started over at the right hand side of the

overlay (target 9) and targets to the left were not cancelled.

1 5
0 0
2
0 X X
3
X 0 X
&
X 0
4
X 0

Figure 5.21 : Path with single crossing point

Calculation of path crossings again uses the sequence list with reference to the list of target
coordinates contained in the mask file. Consecutive pairs of cancellation points within the
sequence form virtual lines indicating the sequence path. Each virtual line is compared
against others in the sequence to test for crossings using a line intersection routine [181]. The
case where one line starts and another ends at the same point (i.e. the next line in sequence) is

ignored.
Line crossings are detected by the following line intersection method: the two line segments
for inspection are defined by the coordinates of end-points: Line 1 from (x,, y;) to (xz, y,) and

Line 2 from (x3, y3) to (x4 y4). Using the standard equation for a straight line:

O=ax+by+c (5.16)
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The following equations were used to define each virtual line giving:

O=a;x+b;y+c for Line 1
O=ayx+byy+c for Line 2
where :

a; = (y2-y1), by = (x;-x;) and ¢; = (x2 X y;) - (X1 X y2)

az = (y4-y3), by = (x3- x4) and ¢; = (x4 X y3) - (X3 X y4)

using standard trigonometric principles.

(5.17)
(5.18)

A simple check to see if the segments intersected can be performed by separately substituting

the end location points of Line 2 into equation of the first line (Equation 5.17). If the result of

both equations were of the same sign then both end points of Line 2 were above (both

negative) or below (both positive) Line 1 and the lines did not intersect. A result of O from

either equation signifies that an end point of Line 2 lies on Line 1. For verification, the same

procedure is repeated for Line 1 substituted into Equation 5.18.
The point of intersection (x; y;) was defined as:
0=apx;+ b1y,~ +c; =axx + bgy,' + €

which rearranged gives :

- (alxi +c1) = (azx,- +cz)

Yi b] bz

This leads to the definition of two formulae to derive the point of intersection :

—cb, +c,b,

Y =S —

‘* —a,b +ab,

v = ={(ax; +¢;)
w4 b]

(5.19)

(5.20)

5.21)

(5.22)
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To calculate the number of path crossings an accumulation in maintained of all instances
found in the sequence. The case where an identical path crossing is detected caused simply by

the swapping of line segments assigned to Line 1 and Line 2 is ignored.

5.3.4.10 Inter-Cancellation Timings and Regression Analysis

The inter-cancellation times (the time interval between target cancellation points) are
separated into four features for assessment purposes: overall, drawing, movement and
premovement. In traditional testing (i.e. not using computer-based tests), the overall time
between components has been studied, usually by videoed or other observational analysis.
However, by dividing the timings further, investigations into the constructional aspects of a
cancellation sequence are enabled. With reference to Figure 5.22, the following is a

description of the implemented timing measurements:

e The overall time is defined as the period between the start of the first cancellation (Point
A) to the start of second cancellation (Point C). This is the conventional timing feature as

defined in Section 5.3.4.3

e The drawing time is defined as the timing period between the start of a cancellation (Point

A) to when the pen becomes stationary at the end of the cancellation drawing (Point B).

e The movement time is defined as the timing period between the point at which the pen is
removed from the tablet after the first cancellation to when the pen is replaced on the tablet

for the next cancellation (Point C).
e The premovement time is the amount of time that the pen is stationary at the end of the
cancellation movement (time pen stationary at Point B), indicating the time during which
a decision is taken about which cancellation point to move to next. This is generally a
relatively short duration in comparison with the movement time.

These times are related by the expression :

Overall = Drawing + Movement + Premovement (5.23)
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A
Cancellation 1

B ~ T ===a)C

Cancellation 2

Figure 5.22 : Cancellation task assessment - timing definitions

Mean values of these measures are taken over the entire overlay and also on a quadrant basis.
Again, a more accurate measure is obtained by dividing accumulated times by the number of

cancellations within the area of interest, thus normalising for performance.

Having obtained a series of timings across the sequence, the linear performance trend can be
calculated. This gives a indication of a speed-up (negative slope) or slow-down (positive
slope) of any of the timing measures between cancellations throughout the sequence. An
increase in speed (or timing reduction) indicates a performance improvement. Observing this
data, a correlation can be formed between timing performance and spatial location noting the
target position on the overlay. It is expected that neglect subjects will slow as they enter their

neglected visual field which usually occurs towards the end of the cancellation sequence.

The implemented linear regression algorithm uses the standard least-squares method for
calculating the best fit between a linear line equation (y = mx + ¢) and the supplied data
[182]. The slope of the calculated line (m) gives the trend for the supplied values. The

equations for calculation of m and c are as given as:

o)) 528
n(X )= (X )

and
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( y)(z,( )) ( XXZXY) (5.25)

where :

(X )-(E )

n = number of cancellations in sequence

x = cancellation sequence position

y = intercancellation (and other timing) values

2.75
235
2.25

1.75
1.5
1.25

Time (sec)

0.75 |

0.5

0.25

T

T

T

=-0.07345

~~~~~~~

PEESTIN | S | [ O T O O O O O O 1 0 O 9 O O O T O O O |

2 3 4 5 6 7 8 9 10 11 12

Cancellation Position

Figure 5.23 : Timing regression for overall timing

Figure 5.23 shows example data from the first OX cancellation task. The position in the

sequence is represented on the x axis while the overall time between cancellations is on the y

axis. As intercancellation times signify the time between cancellations, no time value is

attributed to the first cancellation. The negative slope in the linear regression confirms an

increase in performance (reduction in timing) as the test subject progresses through the
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cancellation sequence. The slope value (m) indicates the performance trend while the y-axis
intercept (c¢) provides the offset. This intercept value signifies the qualitative timing data

within the sequence. A larger offset value indicates a mean increase in intercancellation time.

5.3.5 Generic Drawing Based Features

Many of the features extracted from the drawing based assessments are computationally
generic and can be applied to drawings made in the figure completion, copying and drawing
from memory tasks. Following the segmentation of images into components, a range of
standard static assessments, for example, length, curvature and corner formation and a series
of dynamic features, such as pen velocity and time taken to draw a component, can be
applied. This section describes the standard segmentation routine used to extract individual
components from drawing data and then defines the generic features that have been

implemented to analyse these segments.

Task specific features such as component labelling and unique accuracy measurements are

defined in the sections following the description of the generic routines.

5.3.5.1 Segmentation and Component Count

Drawings are assessed on a component basis following a velocity thresholded segmentation
process. Shape models, detailing component breakdown, size and angular correspondence, are
defined for each of the shapes used within each of the tasks in Sections 5.3.6.1 to 5.3.6.3. For
the simpler shapes, such as the square copying and diamond completion, each side is
designated a component of the drawing, but for the more complex shapes, components are
related to major elements of the drawing, such as a leg in the "man" or window in the
"house". If any side is missing from these components, for example if only three sides of a
window were drawn, this constitutes an omission of a particular component. In counting the
number of components present, spatial organisation is ignored. Orientation, however, is
observed and in the case of the figure completion task, only components that are of the correct

vertical inversion of the given shape are counted.
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Segments are extracted from a test response file by analysing and thresholding the pen
velocity profile. A ‘dip’ in the profile indicates a slowing of the pen movement, which is
usually found at a corner or junction between components. Using the Euclidean displacement
calculation defined in Section 5.3.5.4, the velocity profile can be obtained. Figures 5.24 and
5.25 show two examples of (a) the drawing response and (b) the corresponding velocity
profiles extracted from a square drawn from memory. In the first example (Figure 5.24), the
segments, corresponding to individual sides of the square, are clearly separated. However, in
the second example (Figure 5.25), the separation is less clear, requiring the use of a threshold
to obtain the timing bounds of the segments. Calculation of features where a single
component comprises more than one segment in the velocity profile is obtained by summing

the features from the separate segments.

Segmentation of the drawing into individual components is performed by scanning
horizontally across the profile at the y=0 level and counting the number of segment areas (a
segment is an area under the profile, enclosed between two boundaries defined by the profile).
From the shape model of the square, it is expected that the drawing is comprised of at least
four segments. If the requisite number of segments are found at the y=0 scan (as is the case in
Figure 5.24), then the positions at which the profile rises and falls to the y=0 level defines the
start and end timings of the segments. The corresponding pen coordinates at these times can

be extracted from the pen response file.

If less than the expected number of segments are found at the y=0 position, then scans are
taken at incremental points on the y axis until a position is found with the required number of
segments. In Figure 5.25, a value of y=2.8 (labelled 7) is the lowest value of y to give four

segments.

The case where, after scanning across all values on the y axis, the required number of
segments is not found, the y position which resulted in the maximum number of segment is

used as the threshold level.

This segmentation method produces the best results on smoothed profiles, eliminating errors

caused by data spikes.
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Figure 5.24a : Velocity segmentation drawing |
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Figure 5.24b : Velocity segmentation profile 1

Labelling of the components is achieved with reference to the shape model file. Figures 5.26
to 5.29 show an example of this procedure using a drawing of a square. The drawing of this
shape is expected to consist of four sides, two vertical and two horizontal, with right angle at
each vertex. As the example is taken from a drawing from memory task, no size regulations

are imposed on the drawing. Figure 5.26 shows the original drawing.
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Figure 5.25a : Velocity segmentation drawing 1
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Figure 5.25b : Velocity segmentation profile 2
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Figure 5.26 : Original drawing

From this drawing, the one-third distance points are calculated separately for each axis,
dividing the drawing into a 3x3 matrix (Figure 5.7). The positions within the matrix are

labelled as shown in Figure 5.8.

173 2/3

Figure 5.27 : 1/3 point axis locations
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Figure 5.28 : 9 point sector definitions

Figure 5.29 shows an exploded view of the original drawing highlighting the individual
components as identified by thresholding. Arbitrary labels are first assigned to each
component (A to D). Using the pair of end-point coordinates (as shown by the circles on the
diagram), two features can be established for each component. Firstly, the dominant drawing
direction can be obtained by independently calculating the difference between x and y end-
point coordinates. The largest difference indicates the dominant direction, for example in
Figure 5.29, components A’s dominant direction is in the y axis (there is very little difference
in the x axis end-point positions). The second feature, is the spatial positioning. Using the
matrix shown in Figure 5.28, both end points of component A are located in left sided sectors.
From these two features we can establish that component A is a left hand vertical side of the

square. Table 5.7 details the other components within the drawing.

Component Dominant Direction End-point Positioning
A y axis Left-hand side
B X axis Bottom
C y axis Right-hand side
D X axis Top

Table 5.7 : Automatic component labelling
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Figure 5.29 : Exploded view with segment labels

To ensure correct assignment of component identifiers, labels can be manually verified. All
other processes from these assigned labels, such as size, drawing order and angle calculation

are automatically processed.

5.3.5.2 Component Drawing, Premovement and Movement Times.

The time taken to draw the individual components is divided into the drawing, movement and
premovement timing phases as defined in Section 5.3.4.10 enabling the accurate analysis of
the motor and planning phases of drawing construction. With more complex shapes, a
particular component may be drawn in more than one segment. Timing features are summed

for the segments comprising the individual components of the drawing.

5.3.5.3 Component Length and Euclidean Component Distance

The component length in pixels is the sum of Euclidean distances between pairs of points

drawn within a segment.

n—1

Component Length = Z\/(x,. = By )2 +(y, = yiu )2 (5.26)
i=1
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where :

n = number of coordinates in segment

Taking a Euclidean between start and end coordinates of the segment gives the shortest travel

distance of the lines but fails to account for curvature of the line.

2

Euclidean Component Distance = \/ (xmm =X,y 7 +( Ystart = Yend ) (5.27)

Analysis of the relative positioning of the start and end coordinates enables the x and y
segment movement trend (left/right, up/down) to be obtained. Paired coordinate sample trend
analysis as defined in Section 5.3.3.2 can be used to provide a more accurate directional

assessment.

5.3.5.4 Pen Velocity

Pen velocity across the surface of the tablet was calculated by taking the first derivative of the
coordinate pair displacement against time. Third order, four coefficient polynomial modelling
was used to obtain a derivative of displacement at each coordinate point [180]. Using a
constant sampling time-base, the following approximation uses displacement values of four

sets of coordinates at times -2, t-1, t+/ and 1+2.

-d—szL(—-Sr+2+8Sr+1—8Sr—1+S1—2) (5.28)

dt

The displacements used within the calculation can be extracted on an axis-component-basis
obtaining the separate horizontal and vertical velocity features or by calculating the Euclidean
displacement using both the x and y components. The mean velocity is obtained by summing
the velocities at individual points within the segment and dividing by the number of samples

taken.
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$(
M . io\dt
ean velocity = (5.29)
n

where
n = the number of samples.

The peak velocity is the highest recorded velocity value within the segment analysis.

5.3.5.5 Velocity Profiling

A velocity profile, plotting the obtained velocity values against time for an individual
segment, can provide additional information into the kinematic aspects of drawing. Typical
asymptomatic velocity response from a straight line segment produces a 'bell-shaped’ profile
[47]. Figure 5.30 models this normal performance in drawing a straight line segment. The
profile skew to the start of the segment indicates a shorter acceleration phase in comparison to

the deceleration phase following the peak velocity.

Velocity

A

peak
velocity

time a time b .
Time

Figure 5.30 : Velocity profile model of single line component
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Several timing features can be obtained from the profile. The time to reach the peak velocity
(acceleration phase) and the time from peak to zero velocity (deceleration phase) have been
used as performance indication features [2]. The segment drawing time is thus the sum of

these two phases:

Segment Drawing Time = Time to reach peak velocity (acceleration phase)
+ Time from peak to zero velocity (deceleration phase)

(5.30)

A comparison cannot be made across freeform drawings using these defined timing features
as the results are dependent on the distance drawn in the line segment. Only if this distance is
known or standardised, for example movement analysis between two targets of known
separation, is application of these features valid. To overcome this problem, the velocity skew
percentage is an intra-profile assessment which does not account for distance drawn or
variations in drawing time. This measure indicates the position in the profile in terms of total
segment drawing time where the peak velocity occurs. The calculation (with reference to

Figure 5.30) is made:

time to reach peak velocity (time a) < 100

velocity skew % = — - -
total drawing time of the component (time a +time b)

(5.31)

5.3.5.6 Pen Acceleration

Pen acceleration is the second derivative of the coordinate displacement. As with the velocity
profiling, either separate axis acceleration features or the combined Euclidean displacement

can be used in the calculation.

The third order, four coefficient polynomial approximation for acceleration is given by:

2
%t—ziz%(St+2—St+l—St—l+S1—2) (5.32)
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Peak acceleration, time to reach peak acceleration are calculated using an identical method to

the velocity feature calculation.

5.3.5.7 Pen Hesitation Percentage

Pen hesitation measures the percentage of time that the pen is below a velocity threshold and
on the tablet during the segment drawing. Using the polynomial differentiation velocity

calculation defined in Section 5.3.5.4, the following formula is derived:

n

12 a

n

1=0

[|:( —St+2+8St+I—8Sr—l+St—2)}< ]
x 100 (5.33)

Hesitation % =

where :

o. = hesitation threshold

n = number of samples

An accumulation is maintained of the number of samples that have a calculated velocity
below a variable hesitation threshold. Many studies, such as Mattingley, Phillips and
Bradshaw [2], use a threshold of 0, which means that hesitation is only recorded when the pen

is stationary on the tablet (i.e. a pause time).

5.3.5.8 Image Width and Height

These simple features measure the width and height of the drawn image and can be combined
to determine the area occupied by the drawing. For tasks such as figure copying and
completion, the accuracy of the drawn image can be assessed by comparing the dimensions of
the test subject’s drawing against the width and height of the model shape. These features can
be compared between patients for the drawing from memory task where no model image

dimensions are supplied.
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Image width is calculated by subtracting the minimum drawn x coordinate contained in the

test response file from the maximum x drawn coordinate.

Image Width = MAX (x) — MIN (x) (5.34)

Image height is calculated in a similar way but using the maximum and minimum drawn y

coordinates.

Image Height = MAX (y) — MIN (y) (5.35)

Image Area is calculated in the standard way by multiplying Image Width by Image Height.

5.3.5.9 Line Curvature Deviation

All drawings (with the exception of the man’s head in the figure completion task) consist of
straight line components. Line curvature measures the positional deviation from the best
linear fit straight line for a particular segment. Curvature is calculated by two separate

operations:

e Calculation of least squares best fit ‘ideal’ line.

e Calculation of perpendicular error distance between ideal and drawn position.

Firstly, the best linear line fit is calculated for the line segment by the least-squares method as
described in Section 5.3.4.10. Figure 5.31 shows a best fit linear regression of the line
segment drawn by a test subject. Points a and b signify the extremes of the best fit line,

located perpendicular to the ends of the drawn line segment (Points e and f).

The position of the points a and b are calculated by finding the equation of the line

perpendicular to the best fit line. Given the equation of best fit line as:

Y = Mpeyt X + Chest (5.36)
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Figure 5.31 : Best line fit to drawn segment
the equation for the perpendicular line at points e and fis:
Y= ’nperpen(/iz:ulur X+ Cperpendicu[ur (537)
where :
1
Mperpendicular = | — (5.38)
Mbest
Cperpendicular = Ye = Mperperdicular Xe for POim 4 (539)
Cperpendicular = Yf = Mperperdicular Xf for POimf (5 40)

Locations of the end points a and b are calculated by finding the intersection between the best

fit line and the appropriate perpendicular line equation.

The error distances between the best fit line and the test subject’s drawn line are calculated by

taking sample points along the drawn line. Figure 5.32 shows the sample points along the line.

The error distance is calculated at each of these points using the following method. With
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reference to Figure 5.33, a and b are the end points of the best fit line, L is the Euclidean
length of line ab, p is a point on the drawn line, e is the perpendicular location to p on the best

fit line and dist is error distance between points p and e.

Figure 5.32 : Error distance sample points

Figure 5.33 : Distance between best fit line and drawn line
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The area of the triangle formed between a,b and p is given by :

distxX L

area = (5.41)
where:
L=+/(bs—a)* + (by—ay)’ (5.42)
Therefore rearranging:

2X
dist =222 (5.43)

L
The area of the triangle abp is also calculated by the following standard formula:
1

area = 5 axby + bxpy + pxay — aybx — bypx — pyax (5.44)

The distance dist can therefore be computed.

The overall curvature deviation is calculated by summing the error distances and then

dividing by the number of sample points :

2 Error Distances

n

(5.45)

Curvature Deviation =

where :

n = number of sample point along drawn segment.
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5.3.5.10 Starting Position in Drawing

Using the individual shape models defined for each task in Section 5.3.6.1 to 5.3.6.3 this

feature records the point and component within the drawing at which the test subject started.

The starting position within the drawing is calculated automatically. The coordinates of the
position where the pen was initially placed on the tablet at the start of the drawing are
recorded. This position in relation to the entire drawing can then be obtained. This is achieved
by calculating the mean point and the 1/3 and 2/3 distance points in each axis. From these
points, the starting position within a nine sector division of the drawing can be obtained.

Shown in Figure 5.34 is a starting point in the top left hand sector. The nine starting sectors

are as shown in Figure 5.28.

Starting Point 1/3 Point 2/3 Point
~ &
L XY
4 A A A AT,
¢ ¢
¢ 4 1/3Point
¢ ¢
¢ ¢
+ s 2/3 Point
¢ ¢
¢ ¢ ¢ 0 ¢
A SR |
W 0 ¢

Figure 5.34 : Starting position calculation

Neglect subjects would be expected to start with components based on the right hand side of

the overlay whereas normal drawing and writing practice commences on the left.
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5.3.5.11 Component Corner Formations and Intersection Angle

Having obtained the start and end coordinates for individual components, the accuracy in
corner formation (how it joins’ to other components) can be established. A Euclidean distance
is again used to calculate the error in formation. If the corner is perfectly drawn then no error
distance is recorded. This measure is applied to each corner between components within a

drawing and summed to produce a total component error measure.

Given two components O and R which form a corner at their start and end coordinates

respectively, the formation error is calculated :

Formation Error = \/(Qxxtart - Rxend)z i (nytart - Ie_vend)2 (5.46)

Figure 5.28 shows two examples of corner formation error. In Figure 5.35a the two lines
forming the vertex do not intersect and thus a virtual intersection point is extrapolated using
the method described in Section 5.3.4.9. In the second of the examples (Figure 5.35b), the end

points intersect and ‘overshoot’. The same corner formation error calculation is used in both

cases.
Formation
Formation Error
Error
Line R
a) b)

Figure 5.35 : Corner formation distance error.
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The angle between two components can be calculated by using the intersection point
(interpolated or otherwise). Figure 5.36 shows the two components, Q and R intersecting at a
point S. The angle at the intersection is calculated using the Equation 5.47. In model based

copying tasks, the calculated angle is compared against the ideal angle to assess accuracy.

Figure 5.36 : Intersection angle calculation

intersection angle = x +y

_lle S|
IxSl

}Sy - Ry|

-1
oS T (le - Rxl

= tan ) (5.47)

5.3.5.12 Spatial Deviation

Defined within the shape models for each task are the location of the angle intersection points.
This feature is the error distance between designated points within the test subject’s drawing
and the ideal model. It is calculated by the summing of all distance errors contained within the
drawing divided by the number of intersection points. This feature is not applied to the

drawing from memory task which has no distance based model.
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n

Z \/(dewn_i — Xactual _ i)2 + (ydrawn_i — Yactal _ i)2

Spatial Deviation == (5.48)
n

where :

n = number of intersection points
actual_i = model location of ith intersection point

drawn_i = drawn location of ith intersection point

5.3.6 Drawing Task Specific Feature Extraction

Having defined generic analysis procedures for application with the drawing tasks, this
section details task specific features and component models for the individual shapes used
within each task. These models contain information concerning the component count,
composition, size and expected angles between components which are used by the generic

routines to assess accuracy.

5.3.6.1 Figure Completion Features

The components in each of the representational shapes used in the Figure Completion task are
defined in Figure 5.37. Components are labelled alphabetically with corners of interest, at
which angular accuracy between components is assessed, labelled numerically. Table 5.8

details the components, while Table 5.9 defines the expected angle and vertex positions.

The positional data detailed in Table 5.9 are for the overlays requiring copying to right hand
side (i.e. the left hand side of the overlay is printed on the overlay). The locations for the
mirror image