
Lins, Rafael D. (1992) Cyclic Reference Counting With Lazy Mark-Scan. 
 Information Processing Letters, 44 (4). pp. 215-220. ISSN 0020-0190. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/22347/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1016/0020-0190(92)90088-D

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/22347/
https://doi.org/10.1016/0020-0190(92)90088-D
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Cyclic Reference Counting with Lazy Mark�Scan

Rafael D� Lins

Dept� de Inform�atica � U�F�PE� � Recife � Brazil

Computing Lab� � The University � Canterbury � England�

Key Words� Compilers� Garbage Collection� Functional Programming

Introduction

The technique usually employed for memory management in modern programming languages is one

of the variants of the mark�scan or copying algorithm� since it is di�cult to deal with self�referential

structures using a reference count method� A mark�scan garbage collection algorithm works in two

phases� When a machine runs out of space� computation is suspended and garbage collection is

performed� First� the algorithm traverses all the data structures in use� marking each cell visited�

Then the scan process places all unmarked cells onto a free�list� The time taken by the mark�scan

algorithm is proportional to the size of the heap �the work space where cells are allocated��

The copying algorithm is a modi	ed version of the mark�scan algorithm in which the heap is divided

into two halves� This algorithm copies cells from one half to the other during collection� Its time

complexity is proportional to the size of the graph in use� Mark�scan and copying algorithms generally

traverse all the reachable data structures during garbage collection� which makes them unsuitable for

real�time or applications that make use of large�virtual�memory�

In reference counting� each data structure or cell has an additional 	eld� RC� which contains the

number of references to it� During computation� alterations to a data structure imply changes to the

connectivity of the graph and� consequently� re�adjustment of 	eld RC of the cells involved� Reference

counting has the major advantage of being performed in small steps interleaved with computation�

The disadvantage of the simple algorithm for reference counting is the inability to reclaim cyclic

structures� To solve this problem� a mixture of mark�scan and reference counting has been used� See


�� for a detailed analysis of these algorithms�

Reference 

� presents a simple reference�counting garbage�collection algorithm for cyclic data

structures� which works as a natural extension of the standard reference counting algorithm� The cost

of this algorithm may be extremely low� Deletion of a pointer to a shared structure increases the

complexity of the local mark�scan to O�n�� where n is the size of the shared subgraph� In functional

languages� most structures have a reference count of one 
��� and the cost of the use of this algorithm

would usually be exactly the same as the standard reference�count algorithm� Unfortunately� this is

not the case for object�oriented languages� which make extensive use of sharing and of cyclic data

structures� making the overhead of this algorithm far too high�

We present an algorithm� called cyclic reference counting with lazy mark�scan� that removes the

drawback of running mark�scan every time a pointer to a cell with multiple references is deleted�

This new algorithm places a reference to these cells onto a queue� The deletion of the last pointer

�



to a shared cell will recycle it immediately� regardless of whether there is a reference to it on the

queue� This means that more shared cells will now be claimed directly without the need of the mark�

scan phase� Only if the free�list is empty or the queue is full is the local mark�scan required� Our

performance 	gures show that lazy mark�scan is far more e�cient than local mark�scan�

The algorithm presented here is the kernel of the shared�memory architectures for parallel cyclic

reference counting described in 
�� ���

The Local Mark�Scan Algorithm

The algorithm presented in 

� performs a local mark�scan whenever a pointer to a shared structure is

deleted� It works in three phases� In the 	rst phase� the graph below the deleted pointer is traversed�

counts due to internal references are decremented and nodes are marked as possible garbage� In phase

two� the subgraph is rescanned for cells with positive reference count� These are cells to which there

are external references� They are re�marked as ordinary cells and their counts are reset� All other

nodes are marked as garbage� Finally� in phase three all marked cells are returned to the free list�

We use the notation �R�S� to denote a pointer from node R to node S� Each node S has a colour

colour�S�� which is green� red� or blue� The initial colour of each node is green� the other two colours

are used only during execution of the algorithm that deletes a pointer� The colour of a pointer �R�S�

is the colour of node R�

The following invariant P is maintained by all procedures �assuming it is true initially�� That P

must be maintained is not mentioned in the descriptions given below� it is implicitly understood�

P� for all nodes S� RC�S� is the number of green pointers to it�

Procedure recolor mantains P as it changes the colour of a node�

f Change the colour of node S to C g

recolor�S�C��

for T in Sons�S� do

if colour�S��green and C �� green then decrement RC�T��

if colour�S� �� green and C�green then increment RC�T��

colour�S�	�C

The following two procedures are used only when all nodes are green� Free cells are linked in a struc�

ture called a free�list� When needed� a node is obtained from free�list using the following algorithm�

Note that 	eld RC remains the same for a node moved from the free�list� since the number of pointers

to it remains the same�

f Cell R is reachable from root


Obtain a cell U from free�list and create pointer �R�U�g

New�R� � select U from free�list� make pointer �R�U�

�



f�S�T� exists
 R is reachable from root� Create pointer �R�S�g

Copy�R� �S�T�� � increment RC�T�� make pointer �R�T�

We now present the procedure that deletes a pointer to a node S� The complexity arises in that deleting

a pointer to S may allow S to be placed on the free�list if all remaining pointers to it are cyclic in

nature�

If RC�S��� then subgraph S is coloured red so that RC�S� is the number of pointers from outside

subgraph S into S �see invariant P�� Then� S is scanned in a fashion that makes blue the subgraph of

graph S that indeed has no pointers into it and makes green the rest of it� Finally� the blue subgraph�

which must be rooted at S� is placed on the free�list�

f Delete pointer �R�S�g

Delete��R�S�� � remove �R�S��

f standard reference countingg

if RC�S� � � then for T in Sons�S� do

Delete��S�T���

link S to free
list

else decrement RC�S��

f local mark�scang

mark
red�S�� scan�S�� collect
blue�S�

A cell T belongs to set Sons�S� i� there is a pointer �S�T�� mark
red�S� paints red S and all the cells

in the subgraph S� It also decrements the reference counts of the cells visited� so the 	nal reference

counts are associated only with pointers from outside the subgraph�

f All cells are green�Paint red the subgraph S
g

mark
red�S� � if colour�S� is green then

recolor�S�red��

for T in Sons�S� do

mark
red�T�

scan�S� searches the red subgraph S for green pointers into S �a cell will have an external reference

if its reference count is greater than zero�� If during scan an external reference is found auxiliary

function scan
green paints green the sub�graph below the external reference� Cells with no external

references are painted blue�

fGraph S is red


Paint blue the subgraph of S with no green pointers to it


Paint green the subgraph of S with green pointers to it
g

scan�S� � if colour�S� is red then if RC�S� � � then scan
green�S�

else recolor�S�blue��

for T in Sons�S� do scan�T�

�



scan
green�S� paints green the subgraph S and increases the reference count of the cells visited� to

take into account the internal pointers within the subgraph �which had been set to zero by mark
red��

f Make green the red�blue subgraph below a green pointerg

scan
green�U� � recolor�U�green��

for T in Sons�U� do

if colour�T� is not green then scan
green�T�

collect
blue�S� recovers all the blue �garbage� cells in the subgraph given by S and links them to

the free�list�

f Place �possibly empty� blue subgraph S onto free�list�g

collect
blue�S� � if colour�S� is blue then

recolor�S�green��

for T in Sons�S� do collect
blue�T��

remove �S�T��

link S to free
list

Reference 

� contains examples of applications of the algorithm above� together with an informal

proof of its correctness�

The Lazy Algorithm

The new lazy algorithm uses a queue Q to avoid performing a local mark�scan every time a pointer to

a cell with multiple references is deleted� A reference to these cells is placed on Q� and the cells are

painted black� The new invariant P� is maintained by all procedures �assuming it is true initially��

P�� for all nodes S� RC�S� is the number of green or black pointers to it�

If a new cell is required and the free�list is empty� the cells on Q are mark�scanned� These operations

are performed as follows�

New�R� � if free
list not empty then select U from free
list�

make pointer �R�U�

else if Q not empty then scan
queue� New �R�

else write
out �No cells available�

Operation Copy is unchanged�

Delete is now far simpler than before� since the local mark�scan to multiple referenced cells is per�

formed lazily� The colour of cells is tested black to avoid multiple references on queue Q� If not black�

the cell is painted black and appended to Q�

Delete��R�S�� � remove �R�S�

f standard reference countingg

�



if RC�S� � � then colour�S� 	� green�

for T in Sons�S� do Delete��S�T���

link S to free
list

else decrement RC�S��

f lazy reference countingg

if colour�S� not black then

colour�S� 	� black�

Q 	� Q �� S f append S to Qg

Now let us explain how Q is used� The algorithm pops the cell on the front of Q and tests its colour�

If black� then a local mark�scan is performed as in the original algorithm� Otherwise� the cell was in

the path of a previous call to delete and has been recycled already� so scan�queue is re�invoked�

scan
queue � S 	� head�Q��

Q 	� tail�Q��

if colour�S� is black then

flocal mark�scang

mark
red�S�� scan�S�� collect
blue�S��

else if Q not empty then scan�queue

mark
red will now also allow black cells�

mark
red�S� � if colour�S� is green or black then

recolor�S�red�

for T in Sons�S� do mark
red�T�

scan and collect
blue are the same as in the original algorithm�

The algorithm presented above is lazy in the sense that the mark�scan phase is performed on

demand� i�e� only when the free�list is empty or when the queue Q is full� Di�erent strategies can

be easily incorporated to it� For instance� local mark�scans can be performed every time Q exceeds a

certain size or after a certain number of cells are claimed from the free�list�

Performance� Local versus Lazy

A formal analysis of the behaviour of these algorithms is not simple� The performance depends on

the number of shared structures� number of cycles� size of Q� strategy used to manage Q� and so on� In

the best possible case� the lazy algorithm would perform as many calls to mark�scan as the number

of cycles needed to be recovered to run a given program� The choice of a poor control strategy can

make� in the worst case� the lazy algorithm degenerate to the local one�

We present below some practical data obtained from evaluation of the program

fat � � fat � � fat � � fat �

where fat is the factorial function�






fat n � if n�� then � else n � fat �n���

This program was executed in a Turner combinator machine 
��� The code generated made intensive

use of sharing� The strategy used was mark�scan on the oldest 
��� if Q is full� mark�scan is executed

on the cell pointed from the front of the queue� i�e� on its oldest element� The new pointer is placed

in the back of the queue� The table below summarises the results obtained�

algorithm heap�size mark�red scan scan�green col�blue total

standard ��� � � �� � � �� � � �� � � �� � � ��
local �� ���� 
�� ���� ��� ����
lazy �� �� ���� 
�� ���� ��� ����
lazy �� �� ���� ��� ���� ��� ���

lazy �� �� ���� ��
 ��� ��� ���

lazy �� �� �
� ��� ��� ��� ����
lazy �
 �� ��� ��� ��� ��� ��
�
lazy ��� �� 
�� ��� ��� ��� ����
lazy ��� �� ��� ��� � ��
 �
�

Standard reference counting needs ��� cells to run the benchmark program� while the cyclic algorithm

needs only �� cells� As we can observe� a queue Q of size four ����� equivalent to about 
� of the

heap size� reduces the total number of functional calls to mark�scan to less than ��� of the number

of calls to the local mark�scan algorithm� The inexistence of calls to scan
green in the last line of

the table indicates that the algorithm has been used only to collect cycles� i�e� no unnecessary calls to

mark�scan took place� In this case� the data presented shows that the lazy algorithm is far superior

to the local one�

Variable�size Queues

In the lazy mark�scan algorithm� queue Q is implemented as a separate data�structure outside the heap�

It makes no use of the spare cells in the heap� The cells in the free�list can be used to implement Q�

Instead of placing a cell S in Q we get a cell U from the free�list� append U to Q� and store in U a pointer

to S�

Delete��R�S�� � remove �R�S�

if RC�S� � � then for T in Sons�S� do

Delete��S�T���

link S to free
list�

else decrement RC�S��

if colour�S� not black then

colour�S� 	� black�

�U � New�last
of
Q�� 	� S�

last
of
Q 	� U

If the free�list is empty New will de�queue cells from queue Q�

�



Performance� Fixed�size versus Variable�size

The use of the spare cells in the heap for implementing Q brings a substantial increase in the perfor�

mance to the lazy algorithm� as can be seen in the table below� for the same benchmark�

algorithm heap�size mark�red scan scan�green col�blue total

standard ��� � � �� � � �� � � �� � � �� � � ��
local �� ���� 
�� ���� ��� ����
lazy vs �� ��� ��� ��� ��� ����
lazy �� �� ���� 
�� ���� ��� ����
lazy vs �� 
�� ��� ��� ��� ����
lazy vs �� 
�� ��� ��� ��� ����
lazy vs ��� �� �� � �
� ���
lazy vs ��� � � � � �

Line lazy �� corresponds to the lazy algorithmwith queue size �� and lazy vs are data for the algorithm

with variable�size queue� As we can observe� a heap of minimum size to run the benchmark program

reduced the number of function calls to �
� of the local mark�scan algorithm� which is equivalent to

a queue of 	xed size �� Using �� cells in total� the algorithm with variable�size queue needs only ���

of the number of function calls performed by the 	xed�size algorithm� For a more detailed comparison

between these algorithms see 
���

Conclusions

The e�ciency of the algorithm presented in this paper is much higher than the original one for cyclic

reference counting with local mark�scan� More shared cells will now be claimed directly� without

any need for mark�scan� The deletion of the last pointer to a shared cell will recycle it immediately�

regardless of whether there is a reference to it on the queue� The queue will be left basically with

pointers to cycles and pointers to green cells in the free�list or recycled� In this case again� our

algorithm performs far better than the original one� In the best case� only one local mark�scan will

be performed per cycle� instead of as many as the number of external references to a cycle� as before�

Acknowledgements

I express gratitude to Prof� David Gries for his comments on a previous version of this paper� and to

M�arcio A�Vasques for providing the experimental data presented�

Research reported herein has been sponsored jointly by the British Council� CAPES �Brazil� grant

CBE����
���� and C�N�Pq� �Brazil� grants No ������������� and �������������

References


�� J�Cohen� Garbage collection of linked data structures� ACM Computing Surveys� ��������������

September �����

�




�� R�D�Lins� A shared memory architecture for parallel cyclic reference counting� Microprocessing

and Microprogramming� ���
��
�� North�Holland� August �����


�� R�D�Lins� A multi�processor shared memory architecture for parallel cyclic reference counting�

Microprocessing and Microprogramming� �
�
���
��� North�Holland� August �����


�� R�D�Lins and M�A�Vasques� A comparative study of algorithms for cyclic reference counting�

Technical Report �
� UKC Computing Lab� Report� The University of Kent at Canterbury�

August �����



� A�D�Martinez� R�Wachenchauzer and R�D�Lins� Cyclic reference counting with local mark�scan�

Information Processing Letters� �������
� �����


�� D�A� Turner� A new implementation technique for applicative languages� Software � Practice

and Experience� �� �����


�� W�R�Stoye� T�J�W�Clarke � A�C�Norman� Some practical methods for rapid combinator reduc�

tion� In Proc� of ACM Symposium on Lisp and Functional Programming� pages �
������ Austin�

August ����� ACM�

�


