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Introduction

The technique usually employed for memory management in modern programming languages is one

of the variants of the mark�scan or copying algorithm� since it is di�cult to deal with self�referential

structures using a reference count method� A mark�scan garbage collection algorithm works in two

phases� When a machine runs out of space� computation is suspended and garbage collection is

performed� First� the algorithm traverses all the data structures in use� marking each cell visited�

Then the scan process places all unmarked cells onto a free�list� The time taken by the mark�scan

algorithm is proportional to the size of the heap �the work space where cells are allocated��

The copying algorithm is a modi	ed version of the mark�scan algorithm in which the heap is divided

into two halves� This algorithm copies cells from one half to the other during collection� Its time

complexity is proportional to the size of the graph in use� Mark�scan and copying algorithms generally

traverse all the reachable data structures during garbage collection� which makes them unsuitable for

real�time or applications that make use of large�virtual�memory�

In reference counting� each data structure or cell has an additional 	eld� RC� which contains the

number of references to it� During computation� alterations to a data structure imply changes to the

connectivity of the graph and� consequently� re�adjustment of 	eld RC of the cells involved� Reference

counting has the major advantage of being performed in small steps interleaved with computation�

The disadvantage of the simple algorithm for reference counting is the inability to reclaim cyclic

structures� To solve this problem� a mixture of mark�scan and reference counting has been used� See


�� for a detailed analysis of these algorithms�

Reference 

� presents a simple reference�counting garbage�collection algorithm for cyclic data

structures� which works as a natural extension of the standard reference counting algorithm� The cost

of this algorithm may be extremely low� Deletion of a pointer to a shared structure increases the

complexity of the local mark�scan to O�n�� where n is the size of the shared subgraph� In functional

languages� most structures have a reference count of one 
��� and the cost of the use of this algorithm

would usually be exactly the same as the standard reference�count algorithm� Unfortunately� this is

not the case for object�oriented languages� which make extensive use of sharing and of cyclic data

structures� making the overhead of this algorithm far too high�

We present an algorithm� called cyclic reference counting with lazy mark�scan� that removes the

drawback of running mark�scan every time a pointer to a cell with multiple references is deleted�

This new algorithm places a reference to these cells onto a queue� The deletion of the last pointer

�



to a shared cell will recycle it immediately� regardless of whether there is a reference to it on the

queue� This means that more shared cells will now be claimed directly without the need of the mark�

scan phase� Only if the free�list is empty or the queue is full is the local mark�scan required� Our

performance 	gures show that lazy mark�scan is far more e�cient than local mark�scan�

The algorithm presented here is the kernel of the shared�memory architectures for parallel cyclic

reference counting described in 
�� ���

The Local Mark�Scan Algorithm

The algorithm presented in 

� performs a local mark�scan whenever a pointer to a shared structure is

deleted� It works in three phases� In the 	rst phase� the graph below the deleted pointer is traversed�

counts due to internal references are decremented and nodes are marked as possible garbage� In phase

two� the subgraph is rescanned for cells with positive reference count� These are cells to which there

are external references� They are re�marked as ordinary cells and their counts are reset� All other

nodes are marked as garbage� Finally� in phase three all marked cells are returned to the free list�

We use the notation �R�S� to denote a pointer from node R to node S� Each node S has a colour

colour�S�� which is green� red� or blue� The initial colour of each node is green� the other two colours

are used only during execution of the algorithm that deletes a pointer� The colour of a pointer �R�S�

is the colour of node R�

The following invariant P is maintained by all procedures �assuming it is true initially�� That P

must be maintained is not mentioned in the descriptions given below� it is implicitly understood�

P� for all nodes S� RC�S� is the number of green pointers to it�

Procedure recolor mantains P as it changes the colour of a node�

f Change the colour of node S to C g

recolor�S�C��

for T in Sons�S� do

if colour�S��green and C �� green then decrement RC�T��

if colour�S� �� green and C�green then increment RC�T��

colour�S�	�C

The following two procedures are used only when all nodes are green� Free cells are linked in a struc�

ture called a free�list� When needed� a node is obtained from free�list using the following algorithm�

Note that 	eld RC remains the same for a node moved from the free�list� since the number of pointers

to it remains the same�

f Cell R is reachable from root


Obtain a cell U from free�list and create pointer �R�U�g

New�R� � select U from free�list� make pointer �R�U�

�



f�S�T� exists
 R is reachable from root� Create pointer �R�S�g

Copy�R� �S�T�� � increment RC�T�� make pointer �R�T�

We now present the procedure that deletes a pointer to a node S� The complexity arises in that deleting

a pointer to S may allow S to be placed on the free�list if all remaining pointers to it are cyclic in

nature�

If RC�S��� then subgraph S is coloured red so that RC�S� is the number of pointers from outside

subgraph S into S �see invariant P�� Then� S is scanned in a fashion that makes blue the subgraph of

graph S that indeed has no pointers into it and makes green the rest of it� Finally� the blue subgraph�

which must be rooted at S� is placed on the free�list�

f Delete pointer �R�S�g

Delete��R�S�� � remove �R�S��

f standard reference countingg

if RC�S� � � then for T in Sons�S� do

Delete��S�T���

link S to free
list

else decrement RC�S��

f local mark�scang

mark
red�S�� scan�S�� collect
blue�S�

A cell T belongs to set Sons�S� i� there is a pointer �S�T�� mark
red�S� paints red S and all the cells

in the subgraph S� It also decrements the reference counts of the cells visited� so the 	nal reference

counts are associated only with pointers from outside the subgraph�

f All cells are green�Paint red the subgraph S
g

mark
red�S� � if colour�S� is green then

recolor�S�red��

for T in Sons�S� do

mark
red�T�

scan�S� searches the red subgraph S for green pointers into S �a cell will have an external reference

if its reference count is greater than zero�� If during scan an external reference is found auxiliary

function scan
green paints green the sub�graph below the external reference� Cells with no external

references are painted blue�

fGraph S is red


Paint blue the subgraph of S with no green pointers to it


Paint green the subgraph of S with green pointers to it
g

scan�S� � if colour�S� is red then if RC�S� � � then scan
green�S�

else recolor�S�blue��

for T in Sons�S� do scan�T�

�



scan
green�S� paints green the subgraph S and increases the reference count of the cells visited� to

take into account the internal pointers within the subgraph �which had been set to zero by mark
red��

f Make green the red�blue subgraph below a green pointerg

scan
green�U� � recolor�U�green��

for T in Sons�U� do

if colour�T� is not green then scan
green�T�

collect
blue�S� recovers all the blue �garbage� cells in the subgraph given by S and links them to

the free�list�

f Place �possibly empty� blue subgraph S onto free�list�g

collect
blue�S� � if colour�S� is blue then

recolor�S�green��

for T in Sons�S� do collect
blue�T��

remove �S�T��

link S to free
list

Reference 

� contains examples of applications of the algorithm above� together with an informal

proof of its correctness�

The Lazy Algorithm

The new lazy algorithm uses a queue Q to avoid performing a local mark�scan every time a pointer to

a cell with multiple references is deleted� A reference to these cells is placed on Q� and the cells are

painted black� The new invariant P� is maintained by all procedures �assuming it is true initially��

P�� for all nodes S� RC�S� is the number of green or black pointers to it�

If a new cell is required and the free�list is empty� the cells on Q are mark�scanned� These operations

are performed as follows�

New�R� � if free
list not empty then select U from free
list�

make pointer �R�U�

else if Q not empty then scan
queue� New �R�

else write
out �No cells available�

Operation Copy is unchanged�

Delete is now far simpler than before� since the local mark�scan to multiple referenced cells is per�

formed lazily� The colour of cells is tested black to avoid multiple references on queue Q� If not black�

the cell is painted black and appended to Q�

Delete��R�S�� � remove �R�S�

f standard reference countingg

�



if RC�S� � � then colour�S� 	� green�

for T in Sons�S� do Delete��S�T���

link S to free
list

else decrement RC�S��

f lazy reference countingg

if colour�S� not black then

colour�S� 	� black�

Q 	� Q �� S f append S to Qg

Now let us explain how Q is used� The algorithm pops the cell on the front of Q and tests its colour�

If black� then a local mark�scan is performed as in the original algorithm� Otherwise� the cell was in

the path of a previous call to delete and has been recycled already� so scan�queue is re�invoked�

scan
queue � S 	� head�Q��

Q 	� tail�Q��

if colour�S� is black then

flocal mark�scang

mark
red�S�� scan�S�� collect
blue�S��

else if Q not empty then scan�queue

mark
red will now also allow black cells�

mark
red�S� � if colour�S� is green or black then

recolor�S�red�

for T in Sons�S� do mark
red�T�

scan and collect
blue are the same as in the original algorithm�

The algorithm presented above is lazy in the sense that the mark�scan phase is performed on

demand� i�e� only when the free�list is empty or when the queue Q is full� Di�erent strategies can

be easily incorporated to it� For instance� local mark�scans can be performed every time Q exceeds a

certain size or after a certain number of cells are claimed from the free�list�

Performance� Local versus Lazy

A formal analysis of the behaviour of these algorithms is not simple� The performance depends on

the number of shared structures� number of cycles� size of Q� strategy used to manage Q� and so on� In

the best possible case� the lazy algorithm would perform as many calls to mark�scan as the number

of cycles needed to be recovered to run a given program� The choice of a poor control strategy can

make� in the worst case� the lazy algorithm degenerate to the local one�

We present below some practical data obtained from evaluation of the program

fat � � fat � � fat � � fat �

where fat is the factorial function�






fat n � if n�� then � else n � fat �n���

This program was executed in a Turner combinator machine 
��� The code generated made intensive

use of sharing� The strategy used was mark�scan on the oldest 
��� if Q is full� mark�scan is executed

on the cell pointed from the front of the queue� i�e� on its oldest element� The new pointer is placed

in the back of the queue� The table below summarises the results obtained�

algorithm heap�size mark�red scan scan�green col�blue total

standard ��� � � �� � � �� � � �� � � �� � � ��
local �� ���� 
�� ���� ��� ����
lazy �� �� ���� 
�� ���� ��� ����
lazy �� �� ���� ��� ���� ��� ���

lazy �� �� ���� ��
 ��� ��� ���

lazy �� �� �
� ��� ��� ��� ����
lazy �
 �� ��� ��� ��� ��� ��
�
lazy ��� �� 
�� ��� ��� ��� ����
lazy ��� �� ��� ��� � ��
 �
�

Standard reference counting needs ��� cells to run the benchmark program� while the cyclic algorithm

needs only �� cells� As we can observe� a queue Q of size four ����� equivalent to about 
� of the

heap size� reduces the total number of functional calls to mark�scan to less than ��� of the number

of calls to the local mark�scan algorithm� The inexistence of calls to scan
green in the last line of

the table indicates that the algorithm has been used only to collect cycles� i�e� no unnecessary calls to

mark�scan took place� In this case� the data presented shows that the lazy algorithm is far superior

to the local one�

Variable�size Queues

In the lazy mark�scan algorithm� queue Q is implemented as a separate data�structure outside the heap�

It makes no use of the spare cells in the heap� The cells in the free�list can be used to implement Q�

Instead of placing a cell S in Q we get a cell U from the free�list� append U to Q� and store in U a pointer

to S�

Delete��R�S�� � remove �R�S�

if RC�S� � � then for T in Sons�S� do

Delete��S�T���

link S to free
list�

else decrement RC�S��

if colour�S� not black then

colour�S� 	� black�

�U � New�last
of
Q�� 	� S�

last
of
Q 	� U

If the free�list is empty New will de�queue cells from queue Q�

�



Performance� Fixed�size versus Variable�size

The use of the spare cells in the heap for implementing Q brings a substantial increase in the perfor�

mance to the lazy algorithm� as can be seen in the table below� for the same benchmark�

algorithm heap�size mark�red scan scan�green col�blue total

standard ��� � � �� � � �� � � �� � � �� � � ��
local �� ���� 
�� ���� ��� ����
lazy vs �� ��� ��� ��� ��� ����
lazy �� �� ���� 
�� ���� ��� ����
lazy vs �� 
�� ��� ��� ��� ����
lazy vs �� 
�� ��� ��� ��� ����
lazy vs ��� �� �� � �
� ���
lazy vs ��� � � � � �

Line lazy �� corresponds to the lazy algorithmwith queue size �� and lazy vs are data for the algorithm

with variable�size queue� As we can observe� a heap of minimum size to run the benchmark program

reduced the number of function calls to �
� of the local mark�scan algorithm� which is equivalent to

a queue of 	xed size �� Using �� cells in total� the algorithm with variable�size queue needs only ���

of the number of function calls performed by the 	xed�size algorithm� For a more detailed comparison

between these algorithms see 
���

Conclusions

The e�ciency of the algorithm presented in this paper is much higher than the original one for cyclic

reference counting with local mark�scan� More shared cells will now be claimed directly� without

any need for mark�scan� The deletion of the last pointer to a shared cell will recycle it immediately�

regardless of whether there is a reference to it on the queue� The queue will be left basically with

pointers to cycles and pointers to green cells in the free�list or recycled� In this case again� our

algorithm performs far better than the original one� In the best case� only one local mark�scan will

be performed per cycle� instead of as many as the number of external references to a cycle� as before�
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