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Abstract

We study the global topology and geometry of the horofunction compactification
of classes of symmetric spaces under Finsler distances in three settings: bounded
symmetric domains of the form B = B; X --- x B, where B; is an open Euclidean
ball in C", with the Kobayashi distance, symmetric cones with the Hilbert distance,
and Euclidean Jordan algebras with the spectral norm. For these spaces we show, that
the horofunction compactification is naturally homeomorphic to the closed unit ball of
the dual norm of the Finsler metric in the tangent space at the basepoint. In each case
we give an explicit homeomorphism. For finite dimensional normed spaces the link
between the geometry of the horofunction compactification and the dual unit ball was
suggested by Kapovich and Leeb, which we confirm for Euclidean Jordan algebras
with the spectral norm. Our results also show that this duality phenomenon not only
occurs in normed spaces, but also in a variety of noncompact type symmetric spaces
with invariant Finsler metrics.
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1 Introduction

Compactifications of symmetric spaces is a rich subject which has been studied exten-
sively [9, 27]. Recently it was shown that various compactifications of noncompact
type symmetric spaces X = G /K can be realised as horofunction compactifications
with respect to G-invariant Finsler metrics. For the generalised Satake compactifica-
tions this was shown by Haettel et al. [28], and for the Martin compactification this was
established by Schilling [53]. The realisation of the maximal Satake compactification
as a horofunction compactification was given by Kapovich and Leeb [34].

For symmetric spaces with nonpositive sectional curvature it is well-known that the
horofunction compactification with respect to the Riemannian distance is homeomor-
phic to a Euclidean ball, see [12, 16, 17]. For various finite dimensional normed spaces
it was observed that the horofunction compactification is naturally related to the closed
dual unit ball. As a matter of fact, Kapovich and Leeb [34, Question 6.18] asked if for
finite dimensional normed spaces the horofunction compactification (with its natural
stratification) is homeomorphic to the closed unit ball of the dual normed space. This
was confirmed by Ji and Schilling [32, 33] for normed spaces with a polyhedral unit
ball.

In an analogous manner one can ask for noncompact type symmetric spaces if the
horofunction compactification with respect to an invariant Finsler metric is naturally
homeomorphic to the closed dual unit ball of the Finsler metric in the tangent space
at the basepoint.

The main goal of this paper is to confirm this duality phenomenon for two classes of
noncompact type symmetric spaces and a class of normed spaces. More specifically,
we will consider bounded symmetric domains of the form By x --- x B, where B;
is an open Euclidean ball in C", with the Kobayashi distance, symmetric cones with
the Hilbert distance, and Euclidean Jordan algebras with the spectral norm, i.e., finite
dimensional JB-algebras.

The bounded symmetric domains B = Bj x - - - X B, with the Kobayashi distance
are prime examples of noncompact type symmetric spaces with invariant Finsler met-
ric. In this case the open unit ball of the Finsler metric in the tangent space at the
origin coincides with B. We will show that the horofunction compactification of B
is homeomorphic to the dual unit ball, i.e., the polar of B. In fact, we shall work in
a slightly more general domains D = Dj x --- X D,, where D; is the open unit
ball of a norm with a strongly convex C3-boundary, even though these domains no
longer correspond to symmetric spaces. The horofunction compactification of these
spaces was studied in [40]. It should be noted that for general bounded convex domains
D c C", with the Kobayashi distance, various smoothness conditions on D are known
that imply that the identity map extends as a homeomorphism from the horofunction
compactification of D onto the norm closure of D, see [5, Theorem 1.2] and [7, 10,
11, 59]. In our setting, however, the domains are not smooth, and the identity does not
extend as a homeomorphism.

Symmetric cones with the Hilbert distance are another interesting class of sym-
metric spaces with invariant Finsler metric. A prime example is the symmetric space
SL(n, C)/SU(n), which corresponds to the projective symmetric cone consisting of
positive definite n x n Hermitian matrices. More precisely, one can realise this space
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as {A € Herm(n, C): A is positive definite with trace n}. In our analysis we use the
cone version of the Hilbert distance, see [42], which provides a convenient way to
analyse its Finsler structure [48] and the dual unit ball. The horofunction compactifi-
cation of symmetric cones with the Hilbert distance was determined in [44, Theorem
5.6] and is naturally described in terms of the Euclidean Jordan algebra associated to
the symmetric cone, which will be exploited.

Euclidean Jordan algebras V with the spectral norm, i.e., finite dimensional JB-
algebras [4], are an important class of real normed vector spaces. A prime example
is the real vector space Herm(n, C) consisting of n x n Hermitian matrices with
the spectral norm, ||A|| = max{|X|: A eigenvalue of A}. We use the Jordan algebra
structure to give a complete description of the horofunctions for these spaces and
provide an explicit homeomorphism between the horofunction compactification and
the closed dual unit ball. These normed spaces are related to an invariant metric on
symmetric cones coming from the Thompson distance. More precisely, for a symmetric
cone C in a Euclidean Jordan algebra V, the Finsler metric of the Thompson distance
in the tangent space V at the unit is the spectral norm, see [48].

In a sequel [41] to this paper the first author has shown for the Hilbert distance and
Thompson distance on symmetric cones that the exponential map at the unit extends as
a homeomorphism between the horofunction compactification of the normed space at
the unit with the Finsler metric, and the horofunction compactification of the symmetric
cone with the Finsler distance. It would be interesting to know if this holds more
generally for noncompact type symmetric spaces with invariant Finsler distances.

The origins of the horofunction compactification go back to Gromov [6, 21] who
associated a boundary at infinity to any locally compact geodesic metric space. It has
found numerous applications in diverse areas of mathematics including, geometric
group theory [12], noncommutative geometry [51], complex analysis [1, 5, 7, 10, 11,
59], Teichmiiller theory [15, 20, 36, 46, 56], dynamical systems and ergodic theory
[8, 19, 35, 44] and in the study of compactifications of noncompact type symmetric
spaces [28, 34, 53]. A general set up for metric spaces was discussed by Rieffel [51]. It
should, however, be noted that if the metric space is not proper, then the embedding into
its horofunction compactification need not be a homeomorphism. So, in that case, the
horofunction compactification would not be a compactfication in the usual topological
sense.

The horofunction compactification is a particularly powerful tool to study isometry
groups of metric spaces and isometric embeddings between metric spaces, see [40,
43, 57, 58]. Especially useful in this context are the so-called Busemann points in
the horofunction compactification, which are limits of almost geodesics. They were
introduced by Rieffel [51], who asked whether every horofunction is a Busemann
point in a finite dimensional normed space. Walsh [54] showed that in general this
is not the case and found necessary and sufficient conditions for a finite dimensional
normed space to have the property that all its horofunctions are Busemann points.

For the metric spaces considered in this paper, we show that all horofunctions are
Busemann points. As a consequence we get that the horofunction boundary has a
partition coming from the detour distance. Indeed, on the set of Busemann points
the detour distance [2, 43] is a metric, where two Busemann points can lie at infinite
distance from each other. This yields a partition of the set of Busemann points into
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so-called parts where two Busemann points lie in the same part if the detour distance
between them is finite. As all horofunctions are Busemann points for our spaces, it
follows from [57, Proposition 4.5] that this partition coincides with the partition of the
horofunction boundary into subsets, where two horofunctions /4 and g lie in the same
subset if sup, |h(x) — g(x)| is bounded.

On the other hand, the closed dual unit ball Bi“ is the disjoint union of the relative
interiors of its nonempty faces, see [52, Theorem 18.2]. In each of our settings we will
give an explicit homeomorphism that maps the metric space onto the interior of Bj,
and each part in the horofunction boundary onto the relative interior of a boundary
face of BY. It is this property of the homeomorphism that *naturally’ connects the
geometry of the horofunction compactification to the closed dual unit ball for our
spaces. The homeomorphisms we use are modifications of the maps used by Ji and
Schilling [32] in the setting of polyhedral normed spaces. As pointed out there, the
homeomorphisms resemble moment maps from symplectic geometry and Lie group
actions, but the exact connection is not well understood at present. Similar maps were
also used in the study of Satake compactifications of symmetric spaces in [31, 39].

The results are consistent with what is known for the horofunction compactification
of the symmetric spaces with nonpositive sectional curvature under the Riemannian
distance. In that case all horofunctions are Busemann points and each part is a singleton,
whichreflects the fact that each point in the boundary of the Euclidean ball is arelatively
open face, as it is an extreme point.

In general it is difficult to determine the horofunction compactification of a metric
space explicitly and only in relatively few spaces has this been done. For CAT(0)
spaces the horofunction compactification is well understood, see [12, Chap. 11.8] and
coincides with the visual boundary. Gutierrez [22-24] computed the horofunction
compactification of several classes of L ,-spaces. It has also been identified for finite
dimensional polyhedral normed spaces, see [13, 28, 33, 37]. For arbitrary (possibly
infinite dimensional) normed spaces the Busemann points in the horofunction bound-
ary have been characterised by Walsh [58]. For Hilbert metric spaces there exists a
characterisation of the Busemann points [55]. For the Hilbert distance on a symmetric
cone in a Euclidean Jordan algebra, the horofunction compactification was obtained
in [44], the cone in a (possibly infinite dimensional) spin factor was discussed in [14],
and results for the p-metrics, with 1 < p < oo, on the symmetric cone in Herm,, (C)
were obtained in [26].

2 Metric Geometry Preliminaries

We start by recalling the construction of the horofunction compactification and the
detour distance.

Let (M, d) be a metric space and let RY be the space of all real functions on M
equipped with the topology of pointwise convergence. Fix b € M, which is called the
basepoint, and let Lip, (M) denote the set of all functions /2 € RM such that h(b) = 0
and A is c-Lipschitz, i.e., |[h(x) — h(y)| < cd(x,y) forallx,y € M.

Then Lipj (M) is a compact subset of RM . Indeed, the complement of Lip} (M)
is open, so Lip; (M) is closed subset of RM . Moreover, as |h(x)] = |h(x) —
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h(®)| < cd(x,b) for all h € Lipj(M) and x € M, we get that Lipf (M) C
[—cd(x, b), cd(x, b)]™, which is compact by Tychonoff’s theorem.
For y € M define the real valued function,

hy(z) =d(z,y) —d(b,y) withz e M. 2.1)

Then hy(b) = 0 and |hy(z) — hy(w)| = |d(z,y) —d(w, y)| < d(z, w). Thus,
hy € Lip})(M ) for all y € M. Using the previous observation one now defines the
horofunction compactification of (M, d) to be the closure of {hy: y € M} in RM,

which is a compact subset of Lip}y(M ) and is denoted by M. Tts elements are called
metric functionals, and the boundary 93" = M"\{hy: y € M} is called the horo-

function boundary. The metric functionals in 8Mh are called horofunctions, and all
other metric functionals are said to be internal points.

The topology of pointwise convergence on Lip[L(M ) coincides with the topology
of uniform convergence on compact sets, see [47, Sect. 46]. In general the topology
of pointwise convergence on Lip})(M ) is not metrisable, and hence horofunctions are
limits of nets rather than sequences. If, however, the metric space is separable, then
the pointwise convergence topology on Lip}J (M) is metrizable and each horofunction
is the limit of a sequence. It should be noted that the embedding ¢: M — Lipé (M),
where ((y) = hy, may not have a continuous inverse on ¢(M), and hence the metric
compactification is not always a compactification in the strict topological sense. If,
however, (M, d) is proper (i.e. closed balls are compact) and geodesic, then ¢ is a
homeomorphism from M onto ¢ (M). Recall that a map y from a (possibly unbounded)
interval I C R into a metric space (M, d) is called a geodesic path if

diy(s),y@®) =1|s—t| foralls,rel.

The image, y (1), is called a geodesic, and a metric space (M, d) is said to be geodesic
if for each x, y € M there exists a geodesic path y : [a, b] — M connecting x and y,
i.e, y(a) = x and y (b) = y. We call a geodesic y ([0, 00)) a geodesic ray.

The following fact, which is slightly weaker than [51, Theorem 4.7], will be useful
in the sequel.

Lemma 2.1 If (M, d) is a proper geodesic metric space, then h € Bﬁh if and only if
there exists a sequence (x") in M with d(b, x") — oo such that (hyn) converges to

h e Mh asn — oQ.
A sequence (x") in (M, d) is called an almost geodesic sequence if for all & > 0
there exists a N > 0 such that

dix", x™) +d(x™, x%) —d(x",x%) <& foralln >m> N.

The notion of an almost geodesic sequence goes back to Rieffel [51] and was further
developed by Walsh and co-workers in [2, 40, 43, 58]. In particular, every unbounded
almost geodesic sequence yields a horofunction in a proper geodesic metric space
[58].

@ Springer



154  Page 6 of 57 B. Lemmens, K. Power

Lemma 2.2 Let (M, d) be a proper geodesic metric space. If (x"*) is an unbounded
almost geodesic sequence in M, then

h(z) = limd(z, x") — d(b, x")

exists forallz € M and h € 8ﬁh.

Given a proper geodesic metric space (M, d), a horofunction & € Mh is called
a Busemann point if there exists an almost geodesic sequence (x") in M such that
h(z) = lim,d(z,x") — d(b,x") for all z € M. We denote the collection of all
Busemann points by By;.

Suppose that i, i’ € 9M" be horofunctions and (M, d) is a proper geodesic metric

space. Let W), be the collection of neighbourhoods of % in Mh. The detour cost is
given by

H(h,h') = sup ( inf d(b,x)—i—h’(x)).
Wew, \x:t(x)ew

The detour distance is given by
S(h,hy=H(h,h')+ HW, h). 2.2)

It is known [58] that if (x") is an almost geodesic sequence converging to a horo-
function 4, then

Hh, W) =limd (b, x") + K (x") (2.3)

for all horofunctions 4’. Moreover, on the set of Busemann points By, the detour
distance is a metric where points can be at infinite distance from each other, see [58].
The detour distance yields a partition of 3, into equivalence classes, called parts,
where h and i’ are equivalent if §(h, h") < oo. The equivalence class of & is denoted
by Py. So (Py, 8) is a metric space, and By, is the disjoint union of metric spaces
under the detour distance.

It is known [57, Proposition 4.5] that two Busemann points 2 and g in the horo-
function boundary are in the same part if and only if sup, ., [h(x) — g(x)| < oo.
Furthermore, any isometry on M extends as an isometry to the set of Busemann points
under the detour distance, see [43].

For symmetric spaces with nonpositive sectional curvature, all horofunctions with
respect to the Riemannian metric are Busemann points and each part is a singleton.
For the spaces under consideration in this paper we show that all horofunctions are
Busemann points, but the parts can be nontrivial.
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3 Bounded Symmetric Domains

In this section we analyse the geometry and topology of the horofunction compact-
ification of bounded symmetric domains of the form B = Bj x --- x B,, where
Bi={zeCli:|z1P+ -+ |Zn; |2 < 1}, under the Kobayashi distance. In fact,
we shall consider slightly more general product domains where each B; is the open
unit ball of a norm on C" with a strongly convex C3-boundary. Even though these
domains no longer correspond to noncompact type symmetric spaces we shall see that
there still exists a homeomorphism between the horofunction compactification and
the closed dual unit ball of the Finsler metric at the origin. We will start by recalling
some basic concepts.

3.1 Product Domains and Kobayashi Distance

On a convex domain D € C" the Kobayashi distance is given by
kp(z, w) =inf{p(¢,n): 3f: A — D holomorphic with f(¢) = z and f () = w}

for all z, w € D, where

L+ |2 L — 1wy — 12129\ 2
p(z, w) = log —— 1 = 2tanh™"! (1 _ Q= el — i )>
mF -

is the hyperbolic distance on the open disc A = {z € C: |z| < 1}.

It is known, see [1, Proposition 2.3.10], that if D C C" is bounded convex domain,
then (D, kp) is a proper metric space, whose topology coincides with the usual topol-
ogy on C". Moreover, (D, kp) is a geodesic metric space containing geodesic rays,
see [1, Theorem 2.6.19] or [38, Theorem 4.8.6].

For the Euclidean ball B* = {(z1,....2,) € C": ||z|*> < 1}, where |z||®> =
Doz 12, the Kobayashi distance satisfies

I N e T B ||z||2))”2
an(Z, U)) = 2tanh (1 |1 — (Z, w>|2

for all z, w € B", see [1, Chaps. 2.2 and 2.3].

In our setting we will consider product domains B = []'_, B;, where each B, is
an open unit ball of a norm in C", and we will use the product property of kp, which
says that

.....
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where k; is the Kobayashi distance on B;, see [38, Theorem 3.1.9]. So for the polydisc
A" ={(z1,...,2r) € C": max,; |z;] < 1}, the Kobayashi distance satisfies

kar(z, w) = max p(z;, w;) forallw = (wi,...,w,),z2=(21,...,2) € A",
1

For the Euclidean ball, B", it is well known that the horofunctions of (B", kgn),
with basepoint b = 0, are given by

1 — (z, &)]?
ogﬂ forall z € B", (3.1)

he(z) =1
: 1= Izl

where & € 0 B". Moreover, each horofunction /¢ is a Busemann point, as it is the limit

induced by the geodesic ray ¢ — f;: g, for0 <t < oo.

Moreover, if B is a product of Euclidean balls, then the horofunctions are known,
see [1, Proposition 2.4.12] and [40, Corollary 3.2]. Indeed, for a product of Euclidean
balls B"! x - - - x B" the Kobayashi distance horofunctions with basepoint » = 0 are
precisely the functions of the form

h(z) = max (he; (z)) — ;) ,

where J C {1, ..., r}nonempty,&; € dB" for j € J,andminc; a; = 0. Moreover,
each horofunction is a Busemann point.

The form of the horofunctions of the product of Euclidean balls is essentially due
to the product property of the Kobayashi distance and the smoothness and convexity
properties of the balls. Indeed, more generally, the following result holds, see [40,
Sect. 2 and Lemma 3.3].

Theorem 3.1 If D; C C" is a bounded strongly convex domain with C3-boundary,
then for each & € 0D, there exists a unigue horofunction he, which is the limit of a
geodesic y from the basepoint b; € Dj to &;. Moreover, these are all the horofunctions.
If D = [[i_, Di, where each D; is a bounded strongly convex domain with C 3.
boundary, then each horofunction h of (D, kp) with respect to the basepoint b =
(b1, ..., by) is of the form

h(z) = max (he; (zj) —aj). (3.2)

where J C {1, ...,r} nonempty, §; € dD; for j € J, and minjecy aj = 0. Further-
more, each horofunction is a Busemann point, and the part of h, where h is given by
(3.2), consists of those horofunctions h' of the form,

h(z) = max (he; (zj) — Bj) -
withminjcy B; = 0.
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Now let D = [[;_, D;, where each D; is a bounded strongly convex domain with
C3—boundary. Given J C {1, ...,r} nonempty, §; € 9D; for j € J, and o; > O for
J € J withminjc; oj = 0, we can find geodesic paths y; : [0, 00) — D; from b; to
&;, and form the path y : [0, c0) — D, where

i(t —a;) forallj e Jandt > «;
y(t)jZ[Zj.( ) ! -

otherwise. (3.3)

Lemma3.2 The path y: [0,00) — D in (3.3) is a geodesic path, and hy,y — h
where h is given by (3.2).

Proof Let k; denote the Kobayashi distance on D;. By the product property we have
that

kp(y(s), (@) = max ki(y ()i, y(t)i)

for all s > ¢t > 0. By construction k; (y (s);, Yy ()i) < ki(yi(s), yi(t)) = s — t for
alli and s > t > 0. For j € J with a; = 0 we have that k;(y(s);, y();) =
kj(yj(s),yj(t)) =s —tforalls >t > 0, and hence

kp(y (s). y (1)) = maxki(y ()i, y (1)) = s —

foralls >¢ > 0.
Note that for z € D we have

t— 00 1—00
= lim max(k;(z;, y(1)i) — 1)
t—o00 |
= lim max(k;(zj. y(0;) 1)
= lim ma;((kj (2jyjt —aj)) —kj(yj(t — ), bj) —aj)

—00 je

= max (he, () — @)

which shows that 2, ) — h. O

Consider B = H?Zl B; € C", where each B; is an open unit ball of a norm in C"i.
Then B is the open unit ball of the norm || - || on C". In fact,

where || - || g, is the norm on C" with open unit ball B;.
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To analyse the dual norm of || - || g we identify the dual space of C"! x --- x C"™
with itself using the standard inner-product

r

(x,y) :Z(xi,yi) forx =(x1,..., %), y=01,..., ) €C" x ... x C".
i=1

So,y e C" x -+ x C" +— (-, y) € (C" x ... x C")* Note that the dual norm
| - II; satisfies

r

Iyl = sup Re(x.y)= sup » Re(x; )

xllz=1 Ixllp=17_4

,
=Z||yl“>g, fory=(ylv~”3yr)€(cnlX"'X(Cnrv
i=1

as ||x||p = max; ||lx;]| g,. So we see that the closed dual unit ball is given by
Bf ={yeC" x--- x C":Re(x,y) <l forall x € B}
r
={yeC"x---xC": Y llyillp < 1)
i=1

Now suppose that each B; is strictly convex and smooth. The closed ball B} has
extreme points p(gi*) =(,...,0, Ei*, 0,...,0), where $i* € C" is the unique sup-
porting functional at & € 9B;, i.e., Re(§;, &") = 1 and Re(w;, &) < 1 for w; € B;
with w; # &;.

The relatively open faces of B are the sets of the form

F({& €dBj: jel) =1 AjpEH: Y rj=1landr; > Oforall j € J ¢,
jeJ jeJ

where J C {1, ..., r}isnonempty and&; € 0B, for j € J are fixed. Here the relative

topology is taken with respect to the affine span of {p(§ 7‘): jelJ}

On B the Kobayashi distance has a Finsler structure in terms of the infinitesimal
Kobayashi metric, see e.g., [1, Chap. 2.3]. Indeed, we have that

kp(z, w) =il)}fL(V),

where the infimum is taken over all piecewise C'-smooth paths y : [0, 1] — B with
y(0) =zand y(1) = w, and

1
L()/)=/0 Kkp(y (), y' ()t
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with
kp(u,v) = inf{|€|: p € Hol(A, B) such that ¢(0) = u and (D¢)o(§) = v}.

Proposition 3.3 [1, Proposition 2.3.24] If B is the open unit ball of a norm on C",
then

kg(0,v) = ||v|lg forallv e C".

Forz e Bandi =1,...,r,if z; # 0, then we let 7 = ||Zi||1§,.1Zi € 9B; and we
write p(zf) = (0,...,0,zF,0,...,0), where z¥ is the unique supporting functional
atz, € 3B;. If z; = 0, we set p(z}) = 0.

—h . . . .
We now define amap ¢p: B° — B and show in the remainder of this section that
it is a homeomorphism. For z € B = By x --- X B, let

¢p(2) = Z( 1eki(Zi,0) 4 e~ ki(zi,0) (Z(é’ @ € i ))p(z;k) ’
=

i=1

where k; is the Kobayashi distance on B;. For a horofunction 4 given by (3.2) we
define

1
vp(h) = = Z e pE))
Zje] e jed
More precisely we prove the following theorem.

Theorem 3.4 If B = [];_, B;, where each B; is the open unit ball of a norm on C"i
L —h .
which is strongly convex and has a C3-boundary, then ¢p: B® — B is a homeomor-

. . —h .. .
phism, which maps each part of 9B onto the relative interior of a boundary face of
BT
1

3.2 The Map @g: Injectivity and Surjectivity
Throughout the remainder of this section we assume that B = [[;_, B; and each B; is

the open unit ball of a norm on C" , which is strongly convex and has a C3-boundary.
So for each &; € 9 B; there exists a unique £ € C" such that

Re(&;, &) = 1 and Re(w;, &) < 1 for all w; € B; with w; # &,

as B; is strictly convex and smooth.
We start with the following basic observation.
Lemma3.5 For each z € B we have that ¢p(z) € int BY, and ¢p(h) € 3BT for all
—h
hedB .
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Proof Note that for z € B and w € B we have that

1 -
— § i(zi,0) _ ,—ki(zi,0) s
Re(wv (pB (Z)) - Z:j_l gki(ziso) + e_ki(ziao) < (6 € )Re<wl k] Zl ))

i=1

1 a—
i(zi,0) _ ,—ki(zi,0)
= S kG0 4 e kiGi0) (Ze ¢ )
= i=1
<1-96

for some 0 < & < 1, which is independent of w. Thus, sup, .z Re(w, ¢p(2))
1 — 48 < 1, hence pp(z) € int BY.

To see that pp(h) € 3BT, note that for w = Zjej pé;) € B, where p&;) =
©,...,0,&;,0,...,0), we have that Re{w, ¢p(h)) = 1. O

A

To show that gp is injective on B, we need the following basic calculus fact, which
can be found in [32, Sect. 4].

Lemma3.6 Ifu: R" — Ris given by u(xy, ..., x,) = Zle e’ + e then x —
Vlog wu(x) is injective on R".

Note that

e¥i —e™Ni

Vol = S e e
i=1

for all j.

Lemma 3.7 The map @p is a continuous bijection from B onto int BY.

Proof Cleary ¢p is continuous on B and ¢ (z) = 0 if and only if z = 0. Suppose that
z, w € B\ {0} are such that ¢p(z) = ¢p(w). For simplicity write

ekj(Zj,O) _ e—kj(Zj,O) ekj(wj,O) _ e—kj(U)j,O)

> L = >
Yo ek 4 e—ki(zi,0) — 0 and f; Yy ekiwi,0) 4 o—ki(w;,0) — 0.

Olj:

Note that osz(zjf) = 0Oifandonlyif z; = 0, and ﬂjp(w;) = Oifand only if w; = 0.
Thus, z; = 0 if and only if w; = 0. Now suppose that z; # 0, so w; # 0. Then
(p(vj), 9p(2)) = (p(v}), p(w)) for each v; € B;. This implies that

otj(vj,zjf) = B;j(vj, wj‘) forallv; € Bj,

hence oz = Bjw7. It follows that o; = B; and z7 = w?. Thus z; = p;w; for
some pj > 0. Asa; = B; foralli € {I,...,r}, we know by Lemma 3.6 that
kj(zj,0) = kj(w;,0), hence z; = w; by [1, Proposition 2.3.5]. So z = w, which
shows that ¢p is injective.

As ¢p is injective and continuous on B, it follows from Brouwer’s domain invari-
ance theorem that ¢ (B) is an open subset of int B by Lemma 3.5. Suppose, by
way of contradiction, that ¢3(B) # int B]. Then dgp(B) N int B} is nonempty, as
otherwise ¢p(B) is closed and open in int B}, which would imply that int B} is the
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disjoint union of the nonempty open sets ¢p(B) and its complement contradicting the
connectedness of int Bf. So let w € d¢p(B) Nint Bf and (") be a sequence in B
such that pp(z") — w. As @p is continuous on B, we have that kp(z", 0) — oo.

Using the product property, kg (z", 0) = max; k; (z}', 0), we may assume after taking
subsequences that o) = kp(z",0) — k; (z},0) — a; € [0,00] and z} — ¢; € B; for
alli.Let I = {i: a; < oo}, and note that foreachi € I, ¢; € dB;, as k; (z, 0) — oo.
Then

1 k@0 ki (22,0
pp(") = S e (0 — GO p (")
2{21 ek’ (z},0) te ki (z,0) 0
1 r
_ —af! _ —kp(Z",0)=k;(z]',0) 1yk
l(:l e*“f’ + e*kB(Z",O)*ki(Z;’,O) iZl(e e )P((Zz )| -

Letting n — o0, the righthand side converges to

1
Y e <Z€_°‘ip(€i*>) =w.
iel

iel

But this implies that w € 9B}, asRe(} ;.; p(&), w) = land ) ;; p(&i) € B, where
p&i)=1(0,...,0,¢,0,...,0). This is impossible and hence ¢p(B) = int B;". O

We now analyse ¢p on 8Eh.

Lemma 3.8 The map ¢p maps 8§h bijectively onto d Bf. Moreover, the part Py, where
h is given by (3.2), is mapped onto the relative open boundary face

F({gj€dBj: je =1 rjpED: Y rj=1landrj>0forall j € J
jeJ jeJ

Proof We know from Lemma 3.5 that ¢ g maps E)Eh into 0 Bf'. To show that it is onto
weletw € dB}. As Bf is the disjoint union of its relative open faces (see [52, Theorem
18.2]), there exist J C {1, ..., r}, extreme points p(é;‘) of Bf,and 0 < A; < 1 for
Jj € J with Zjej)‘j = 1 such that w = Zjejkjp(é‘;f). Let u; = —logi; and
w* = minjey ;. Now set aj = pu; — u* for j € J. Theno; > O for j € J and
minjej oj = 0.

Leth € 8§h be given by 2(z) = max ey (hg; (zj) — o). Then

ZJEJ g—a_/’p@;) _ Zje] e_”-’P(E;) _ Zje] )LjP(éf) W

¢p(h) = — — =
Zje]e 4 Zje]e i Zje] Aj
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To prove injectivity let i, h’ € 8§h, where £ is as in (3.2) and
' (z) = max(hy; (z;) — B)) (3.4)
jeJ’
for z € B. Suppose that ¢g(h) = @g(h'), so

Yies e U pE)  YiepePip(n)

— ——— = pp(h).
Zje]e i Zjej/e P

pp(h) =

We have that J = J’'. Indeed, if k € J and k ¢ J’, then

0 = Re(p(&), p5(h")) = Re(p(&), ¢ (h)) > 0,

which is impossible. For the other case a contradiction can be derived in the same way.
Now suppose there exists k € J such that & # ni. If

e % e Pk

< b
Yjes€ T Yy e P

then
e_‘xk " e_ak
Re(p(n). pp(h)) = WRGW,&) < T
e Bk ,
< m = Re{p(n), ¢p(h')),

as By is smooth and strictly convex, which contradicts ¢g(h) = @g(h’). The other
case goes in the same way. Thus, J = J" and &; = n; forall j € J.
It follows that

e , e Pk
m = Re(p(&), pp(h)) = Re(p(n), pp(h')) = m

for all k € J. To show that oy = B for all k € J let v: R/ — R be given by
v(x) = Zje] e %i.Then for x,y € R/ and 0 <t < 1 we have that

v(rx 4 (1 —10)y) < v) v,

and we have equality if and only if there exists a constant ¢ such that x; = yx + ¢ for
allk € J.So,ifx #y+ (c,...,c) forall c, then —VIogv(x) # —Vlogv(y).
Asminjcy aj =0 =minje, B;, we can conclude that oy = B forall k € J. This

shows that 4 = h’ and hence ¢p is injective on 9B
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To complete the proof, note that ¢ g (h) is in the relative open boundary face F'({§; €
dBj: j € J}) of Bf. Moreover, h’ given by (3.4) is in the same part as & if, and only
if, J = J'and &; = n; forall j € J by [40, Propositions 2.8 and 2.9]. So, g (h') lies
in F({§; € 9B;: j € J}) if and only if A’ lies in the same part as /. O

3.3 Continuity and the Proof of Theorem 3.4

. . —h
We now show that ¢p is continuous on B .
I, —h . .
Proposition 3.9 The map ¢p: B — BY is continuous.

Proof Clearly ¢p is continuous on B. Suppose that (z") is sequence in B converging

toh € 3§h, where & is given by (3.2). To show that ¢p(z") — ¢p(h) we show
that every subsequence of (¢p(z")) has a subsequence converging to ¢p(h). So, let
(¢p(z"*)) be a subsequence. We can take a further subsequence (z"*) such that

ey

B} = kp(z"m,0) — kj(z;"",0) — Bj € [0,00] forall j e{l,...,r}

(2) There exists jo such that ,B’/?; =O0forallm > 1.
3) (z?k’m) converges to n; € B_, and hzf;k,m — hy, forall j e {l,...,r}

Let J' = {j: Bj < oo}. Then h . — h', where h'(z) = max ey (hy; (z;) — B;)
forz € B, as

lim kp(z, 2™y —kp(z"",0)
m—0o0

. Nk.m Ni,m
= mh_r)noo mjax(kj(Zj, ij' ) — kj(ij' ,0) =B = Tjneaj’ﬁ(hnj (zj) = Bj)s

by the product property of kp.

As h = h', we know by [40, Propositions 2.8 and 2.9] that J = J', §; = n; and
a; = Bj forall j € J. We also know by Lemma 2.1 that kg (z"*,0) — oo, as his a
horofunction. So,

=B - T —k: '?k,m -
YT (B — ka0 ki &R0y My
nk’
Y e Bl ke 0k 0)

N Ljer P = gp(h)
Zje] e_ﬂj ’ ’

which shows that ¢g(z"*) — @p(h).
We know from Lemma 3.5 that ¢p(B) C int B} and <p3(8§h) C 9B;j. So, to

complete the proof it remains to show that if (4,) in 8§h converges to h € aE”,
where £ is as in (3.2), then ¢p (h,) — @p(h). For n > 1 let h, be given by

@p(Z"m) =
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hn(z) = Ilneajni(hn; (zj) —B7) forz e B.

Again we show that every subsequence of (¢p(hy)) has a convergent subsequence
with limit ¢ (h).
Let (¢p(hy,)) be a subsequence. Taking a further subsequence we may assume that

(1) There exists Jo < {1, ..., r} such that J,, = Jo for all k.
(2) There exists joy € Jo such that ,370" =0 for all k.

(3) B — B; € [0, ool forall j € Jp.
4) n?" — n;j forall j € Jo.

. . —h . . -
Note that for each j € Jy we have that hnrfk — hy; in B, as the identity map on Bj,
J

thatis &; € B_j — hgj € E?, is a homeomorphism by [5, Theorem 1.2].
Let J' = {j € Jo: B; < oo} and note that jo € J'. Then for each z € B we have
that

. _ . N ngN . " N ".lk
mh—>moohnk(z) = ,g’;o%a}’j(hn;k (zj) = B;") = kgngorjrg;g(hnjk (zj) = B;")

= max(hy, (zj) — Bj).
jeJ’

So, if we let h/(z) = max ey (hy;(z;) — Bj) for z € B, then k' is a horofunction by

Theorem 3.1 and h,,, — h' in Eh. As h, — h, we conclude that A" = h. This implies
that /= Jandn; = &; and B; = «; forall j € J, as otherwise §(h, h) # 0 by [40,
Proposition 2.9 and Lemma 3.3]. This implies that ﬂf’" — «a; and 77/;"' — &; forall
J € J'. Moreover, by definition ,3;.”‘ — oo forall j € Jy\J'. Thus,

_g"k .
Yiene T p@hY Y e pED
)lk % - —Q
Y e e P D jese

op(hy,) = = gp(h),

which completes the proof. O

The proof of Theorem 3.4 is now straightforward.

Proof of Theorem 3.4 1t follows from Lemmas 3.7 and 3.8 and Proposition 3.9 that
¥B: B = B is a continuous bijection. As B" is compact and B} is Hausdorff, we

. . —h
conclude that g is a homeomorphism. Moreover, ¢ g maps each part of 9B~ onto the
relative interior of a boundary face of B} by Lemma 3.8. O
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4 Euclidean Jordan Algebras with Spectral Norm

Every finite dimensional normed space (V, || - ||) has a Finsler structure. Indeed, if we
let

1
L()/)Z/O lly’(®)llde

be the length of a piecewise C!-smooth path y : [0, 1] — V, then

lx —yll = il;f L(y),

where the infimum is taken over all C!-smooth paths y: [0, I] — V with y(0) = x
and y (1) = y. So, for normed spaces V the unit ball in the tangent space T}V is the
same forall b € V.

In this section we analyse the problem posed by Kapovich and Leeb [34, Question
6.18] concerning the existence of a natural homeomorphism between the horofunction
compactification of a finite dimensional normed space V and the closed dual unit ball
of V in the setting of Euclidean Jordan algebras equipped with the spectral norm.
So we consider the Euclidean Jordan algebra not as inner-product space, but as an
order-unit space, which makes it a finite dimensional (formally real) JB-algebra, see
[4, Theorem 1.11]. We will give an explicit description of the horofunctions of these
normed spaces and identify the parts and the detour distance. In our analysis we make
frequent use of the theory of Jordan algebras and order-unit spaces. For the reader’s
convenience we will recall some of the basic concepts. Throughout the paper we will
follow the terminology used in [3, 4, 25].

4.1 Preliminaries

Order-unit spaces A cone V; in a real vector space V is a convex subset of V with
AVy € Vyforall A > 0and V4 N—V, = {0}. The cone V; induces a partial ordering
<onVbyx <yify—xe V. Wewritex < yifx < yandx # y. The cone V.
is said to be Archimedean if for each x € V andy € V4 withnx < y foralln > 1
we have that x < 0. An element u of V, is called an order-unit if for each x € V
there exists A > 0 such that —Au < x < Au. The triple (V, V4, u), where V; is an
Archimedean cone and u is an order-unit, is called an order-unit space. An order-unit
space admits a norm

x|l =inf{A > 0: —Au < x < Au},

which is called the order-unit norm, and we have that —||x||,u < x < ||x||,u for all
x € V. The cone V; is closed under the order-unit norm and u € int V..

A linear functional ¢ on an order-unit space is said to be positive if ¢(x) > 0 for
all x € V4. Itis called a state if it is positive and ¢(u) = 1. The set of all states is
denoted by S(V') and is called the state space, which is a convex set. In our case, the
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order-unit space is finite dimensional, hence S(V') is compact. The extreme points of
S (V) are called the pure states.

The dual space V* of an order-unit space V is a base norm space, see [3, Theorem
1.19]. More specifically, V* is an ordered normed vector space with cone Vi = {¢ €
V*: @ is positive}, VI — Vi = V*, and the unit ball of the norm of V* is given by

B} = conv(S(V)U =S(V)).

Jordan algebras Important examples of order-unit spaces come from Jordan alge-
bras. A Jordan algebra (over R) is a real vector space V equipped with a commutative
bilinear product e that satisfies the identity

xzo(yox)z(xzoy)ox forallx,y e V.

A basic example is the space Herm(n, C) consisting of n x n Hermitian matrices with
Jordan product A e B = (AB + BA)/2.

Throughout the paper we will assume that V has a unit, denoted u. For x € V we
let L, be the linear map on V given by Lyy = x e y. A finite dimensional Jordan
algebra is said to be Euclidean if there exists an inner-product (-|-) on V such that

(Lxy|z) = (y|Lyz) forallx,y,zeV.

A Euclidean Jordan algebra has a cone V. = {x*>: x € V}. The interior of V, is a
symmetric cone, i.e., it is self-dual and Aut(V;) = {A € GL(V): A(V4) = V. } acts
transitively on the interior of V.. In fact, the Euclidean Jordan algebras are in one-to-
one correspondence with the symmetric cones by the Koecher-Vinberg theorem, see
for example [25].

The algebraic unit u of a Euclidean Jordan algebra is an order-unit for the cone
V., so the triple (V, V4, u) is an order-unit space. We will consider the Euclidean
Jordan algebras as an order-unit space equipped with the order-unit norm. These are
precisely the finite dimensional formally real JB-algebras, see [4, Theorem 1.11]. In
the analysis, however, the inner-product structure on V will be exploited to identify
V* with V.

Throughout we will fix the rank of the Euclidean Jordan algebra V to be r. In a
Euclidean Jordan algebra each x can be written in a unique way as x = x* — x ™,
where xT and x~ are orthogonal element x* and x ™ in V., see [4, Proposition 1.28].
This is called the orthogonal decomposition of x.

Given x in a Euclidean Jordan algebra V, the spectrum of x is given by o (x) =
{A € R: Au — x is not invertible}, and we have that V, = {x € V: o(x) C [0, 00)}.
We write A(x) = inf{A: x < Au} and note that A(x) = max{A: A € o(x)}, so that

lx[ly = max{A(x), A(—x)} = max{|A|: A € 0(x)}
for all x € V. We also note that

Alx + pu) = Alx) + p
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for all x € V and u € R. Moreover, if x < y, then A(x) < A(y).

Recall that p € V is an idempotent if p> = p. If, in addition, p is non-zero and
cannot be written as the sum of two non-zero idempotents, then it is said to be a
primitive idempotent. The set of all primitive idempotent is denoted J1(V) and is
known to be a compact set [30]. Two idempotents p and ¢ are said to be orthogonal if
p e g = 0, which is equivalent to (p|g) = 0. According to the spectral theorem [25,
Theorem III.1.2], each x has a spectral decomposition, x =Y _;_, A; p;, where each p;
is a primitive idempotent, the X;’s are the eigenvalues of x (including multiplicities),
and p1, ..., pr isaJordan frame, i.e., the p;’s are mutually orthogonal and p; +- - -+
pr =1u.

Throughout the paper we will fix the inner-product on V to be

(x]y) =tr(x o y),

where tr(x) = Y 7_; A; and x = ) _;_, A; p; is the spectral decomposition of x.
For x € V we denote the quadratic representation by Uy : V — V, which is the
linear map,

Ury=2xe(xey)—x>ey=2L,(Lyy)—L,y.

In case of a Euclidean Jordan algebra U, is self-adjoint, i.e. (U,y|z) = (y|Ux2).

We identify V* with V using the inner-product. So, S(V) = {w € V4 : (u|lw) = 1},
which is a compact convex set, as V is finite dimensional. Moreover, the extreme points
of S(V) are the primitive idempotents, see [25, Proposition IV.3.2]. The dual space
(V, Il - 1) is a base norm space with norm,

llzlli = sup{(x|z): x € V with |x|, = 1}.

If V is a Euclidean Jordan algebra, it is known that the (closed) boundary faces of the
dual ball Bf = conv(S(V) U —S(V)) are precisely the sets of the form,

conv (Up(V)NS(V)) U Uyu(V) N =S(V))), 4.1

where p and g are orthogonal idempotents not both zero, see [18, Theorem 4.4].
4.2 Summary of Results

To conveniently describe the horofunction compactification Vh of (V, | - llu), where
V is a Euclidean Jordan algebra, we need some additional notation. Throughout this
section we will fix the basepoint » € V to be 0.

Let p1, ..., pr be aJordan frame in V. Given I C {1, ..., r} nonempty, we write
pr = Ziel pi and we let V(p;) = Up, (V). For convenience we set py = 0, so
V(pp) = Up(V) = {0}.

Recall that V (py) is the Peirce 1-space of the idempotent py:

Vipr) ={xeV: pjex =x},
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which is a subalgebra, see [25, Theorem IV.1.1]. Givenz € V(p;), we write Ay (p,)(2)
to denote the maximal eigenvalue of z in the subalgebra V (py).

The following theorem characterises the horofunctions in V' .
Theorem 4.1 Let py, ..., pr be a Jordan frame, I,J C {1,...,r},withINJ =@

and I U J nonempty, and o € R'Y such that min{e; : i € 1 U J} = 0. The function
h:V — R, given by

h(x) = max {AV([,I) (—Umx — Z(X,‘p,‘) ,Av(pj) (Upjx — Z(ijj) } forx eV,

iel jedJ

4.2)

is a horofunction, where we use the convention that if I or J is empty, the corresponding

. . . . h
term is omitted from the maximum. Each horofunction in V' is of the form (4.2) and
a Busemann point.

To conveniently describe the parts and the detour distance (2.2) we introduce the
following notation. Given orthogonal idempotents p; and p; we let V(p;, py) =
V(p1) + V(py), which is a subalgebra of V with unit p;; = p; + p;. The subspace
V(pr, py) can be equipped with the variation norm,

1% |lvar = AV(p,,pJ)(x) + Av(p[,[?j)(_'x) = diamUV(pl,pj)(x)a

which is a semi-norm on V (py, p;). The variation norm is, however, a norm on the
quotient space V (pr, py)/Rpry.

Theorem 4.2 Given horofunctions h and h', where

h(x) = max § Ay (p) (-Upzx - Zoum) AV | Upix =D ajp;

iel jeJ
4.3)
and
B (x) = max { Avg,) (—Uq,,x - Zﬁitﬁ) s Avign | Ugx — Z Bjaj | ¢
iel’ jeJ’
4.4

we have that

(i) h and b’ are in the same part if and only if p; = qp and pj = q .
(ii) If h and W' are in the same part, then §(h,h') = |la — b|yar, where a =
Dier®iPi+ 2 jesajpjandb =3 iy Bigi + 3 jey Biqj in Vpr, pi).
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(iii) The part (Py, 8) is isometric to (V(pr, py)/Rpry. Il - llvar)-

Remark 4.3 A basic example is (R, || - ||s0), Where ||z]lc0 = max; |z;|, which is an
associative Euclidean Jordan algebra. In that case every horofunction is a Busemann
points and of the form

h(x) = max{max(—x; — «;), max(x; — o;)},
iel jeJ

where I,J C {I,...,n} are disjoint, I U J is nonempty and a € R/Y/ with
mingeuy o = 0, (see [22, Theorem 5.2] and [40]). Moreover, (P, §) is isomet-
ric to (R’Y//R1, || - |lvar), where 1 = (1, ..., 1) € R1Y/,

We will show that the following map is a homeomorphism from Vh onto Bf. Let

@: v B be given by

ef —e™*

1 r
—— = — (" — e ) p (4.5)
(X +e*u)y Y et teH (; l

forx =3 ;_,Aipi € V,and

p(x) =

1
@(h) = — — e ¥ipi— ) e %p; (4.6)
Dier€ MY ey ; jZE;

forh € 3V" given by (4.2).
We should note that ¢ is well defined. To verify this assume that the horofunction
h given by (4.2) is represented as

h()() = max AV(q,/) <_Uq,/x - Zﬂlgt) B AV(qJ/) qu/x - Z ﬂjqj

iel’ jelJ’

for x € V. Then it follows from Theorem 4.2 that p; = g, and p; = q,;. More-
over, as §(h, h) = 0, we have thata = ), ., a;ipi + Zje] ajpj = Y icp Bigi +
Zje]’ Bjqj = b, as min{e;: I U J} = 0 = min{B;: I U J}. This implies that
Up,a=Ug,band Uy,a =U,,Db, so that

Za,-p,' = Zﬁiqz' and Zajpj = Z Bidqj-
iel iel’ jel jel’
Using the map v € V + e " we deduce that ), ;e % p;, + (u — p;) =

YierePigi+ u — qp), and hence 3, ;e %p; = Y, ;e Pigi. Likewise
Yjerepj = ;e e Pig;. Wealso find that
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Yoe Y e =Y e ipi+y e p;|u
iel jeJ iel JjeJ
_ Ze—ﬂiqi + Z e Pigilul = Ze—ﬂi + Z e,
iel jeJ’ iel’ jelJ’

so ¢(h) is well defined.

We will also show that ¢ maps each part of the horofunction boundary onto the
relative interior of a boundary face of the dual unit ball. Recall that the relative interior
of a face F of BY is the interior of F as a subset of the affine span of F'.

Theorem 4.4 Given a Euclidean Jordan algebra (V|| - ||,,), the map ¢ Vh — B is
a homeomorphism. Moreover, the part Py, with h given by (4.2), is mapped onto the
relative interior of the closed boundary face

conv (U, (V) N S(V)) U (U, (V) N =S(V))).

4.3 Horofunctions

In this subsection we will prove Theorem 4.1. We first make some preliminary obser-
vations. Note that x < Au if and only if 0 < Au — x, which by the Hahn—Banach
separation theorem is equivalent to (Au — x|w) > 0 for all w € S(V). As the state
space is compact, we have for each x € V that

A(x) = max (x|w). “4.7)

weS(V)
As || - ||, is the JB-algebra norm, |x @ y{|, < |lx[lu[l¥ll., see [4, Theorem 1.11]. It
follows that if x” — x and y* — yin (V, | - ||,), then x" e y"* — x e y. Thus, we

have the following lemma.
Lemma4.5 Ifx" — xand y" — yin (V, | - lu), then Ugny™ — Uy y.
We will also use the following technical lemma several times.

Lemma4.6 Forn > 1, let p'l’, ..., p} be a Jordan frame in V and 1 C {1,...,r}
nonempty. Suppose that

(i) p! — piforalli el
(i) x" € V(p}) withx" — x € V(pp).
Qi) B! > 0 with B — B; € [0, 0ol forall i € I.

IfI' ={i € I: B; < oo} is nonempty, then

A AV (x" - Zﬁf’l)z") = Avip) (U,,,,x - Zﬂipl) :

iel iel’
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Proof We will show that every subsequence of (Ay o) (x" =% "ics B'p!) has a con-
vergent subsequence with limit Ay, ) (Up, x — Y icr Bipi). Solet (AV( nk)(x’lk _
s B %)) be a subsequence. By (4.7) there exists d" € S(V (p}*)) with

dnk) |

By taking subsequences we may assume that d* — d € S(V(py)).
Using the Peirce decomposition with respect to the Jordan frame p?k, i el in
V(p}*), we can write

(- (-

iel iel

4 = ZM:lkplnk + Z di”jk'

iel i<jel

Note that as d* > 0, we have that ,u:.”‘ = (d"™ |p?") > (0foralli € 1.
We claim that for each i € I\ I’ we have that M?k — 0.Indeed, as I’ is nonempty,
there exist [ € I’ and a constant C > 0 such that

(xnk _ Zﬂl_’ll«p?k dl’lk) > (x Zﬁnk ng

iel iel

= (" | p") = B = — 1"l — B* > —C

for all &, since (x"k|p[k) < ||x"||,,. Moreover,

dnk> — nk |dmk Z ,Bnk

iel

e R P N AT Y A T

iel’ iel\I'

(- S

iel

As :31 ;¥ > 0foralli € I and B* — oo foralli € I\I', we conclude from the
previous two inequalities that /L?k — Oforalli e I\ I'.

Using the Peirce decomposition with respect to the Jordan frame p;, i € I, we
write

d= Z,uipi + Z dij.

iel i<jel
We now show that

d=2uipi+ Z dij, (4.8)

iel i<jel
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and hence d € V(py’). Note that
wi — it = (dlpi) — @™ p;*) = (d —d"™|pi) + (d"*|pi — pi*) — 0.

We conclude that u;* — pw; foralli € I,andhence (d|p;) = u; = Oforall j € I\I’.
This implies by [25, III, Exercise 3] that d e p; = 0 for all j € I\I'. So,

0=dopj=% Zdlj+zdjm )

I<j j<m

which shows that dj; = 0 = d;,, forall ] < j < m, as they are all orthogonal. This
gives (4.8).

Next we show that limy oo Ay (,m (X" — 3 e Bpi*) = WUp,x — Yicp
Bi pild). First note that

By (i >< - Bp ’lk) =( - B d”k)— > (B pt1a™)
iel iel iel\I
Z,Bnk nk ) Z ,Bnk n/\
( iel’ ie\I'
< (x”k - > B d”k>
_— 1 L
iel

as B, u;* > 0 for all i and k. This implies that

hmsupA ( ) ( Zﬂnk nk> < klingo< Zank N

k—o0 iel iel

ZG_Z&MO

iel
Up,/d) = (Up,/-x - Z:Bipi

iel

dnk)

As Up,d =d and U, , is self-adjoint, we find that

d) ,
d) . 4.9)

G—Z&w

el

d) = (x =D Bipi

iel

so that

hmsupA e ( Zﬁnk n") < (Up,,x—ZﬁiPi

k— o0 icl iel’
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Now let pif =", pi*. As p}f — py, it follows from Lemma 4.5 that U, ned —>

1/
Up,d = d. This implies that

Up;l,"d> (Up:lcd|p;lk>_l <A ( "k) ( Z'Bnk ”k)

iel

(- St

iel

forall k large, as (U nkdlplk) — (Up,dlpr) = @d\Up, pr) = d|pr) = |pr) = 1.
Moreover,

lim ( Zﬂ"" 1k

—1
d)(Umd ”k)
k—o00 Up’llfc Up;l{( |p1
iel
= lim < nkx Zﬂnk ni
k— o0
iel’

= (U,,,,x - Zﬁim d) .

iel’
This shows that (U, x —Ziel, Bipild) < liminfy_ Av(p,;k)(xnk _ Zie] ﬁ?k p?k).
From (4.9) we conclude that

d) = m Ay () ( - Zﬂ?"p;’k) L @10

iel

(Upl/x - Z IBipi

iel’

To complete the proof we show that

d) = Avipy) (Up,,x —~ Z,Bip,) . (4.11)

iel

(Up,/x - Z ,BiPi

iel’

As (d|py) = (d|pr) = 1, we know thatd € S(V,,). So, we get from (4.7) that

)

(Up,/x - Zﬁipi d) < sup (Up,/x - Zﬁipi

iel’ 2eS(V(py)) iel’
~ vy (U= T
iel

On the other hand, if w € S(V(p;/)) is such that
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w) = sup (U,,I,x — Z,Bipi Z)

zes(V(pr)) iel’

=Av(p) (Up,/x - Zﬂm) ;

iel

(Uplrx - Z ﬁipi

iel’

then by definition of d"* we get for all k large that

(x—Z:B”k i d"k) > (x—Zﬁ"" i

iel iel

:( nkx—Zﬂnk nk

iel

-1
n
uk u)) (Up;l%u) ‘ p[k)
—1
n
)

as (Up;:fcw|p'1”‘) — (Up,wlpr) = (w|py) = 1. This implies that

klggoAv 7k ( Z'Bnk nk)

iel

-1
i e ) ) =)
iel iel
and hence (4.11) holds by (4.10). O

To prove that all horofunctions in Vh are of the form (4.2), we first establish the
following proposition using the previous lemma.

Proposition 4.7 Let (y") be a sequence in 'V, with y" = Y7 _ A p!'. Suppose that
hyn — h € th and (y") satisfies the following properties:

(1) There exists 1 < s <r such that |\}| = r" for all n, where r" = [|y" |,.
(@) pi — prforalll <k <r.
(3) Thereexist1,J C {1,...,r}disjoint with [ U J nonempty, and o € RIY ywith

min{e; : i € I UJ} = 0such that " — A} — a; foralli € I, r”—i—)\;f —
forall j e J, andr" —|A}| — ocoforallk ¢ I U J.

Then h satisfies (4.2).
Proof Take x € V fixed. Note that foralln > 1,

X =yl = 1" le = max{A(x — y"), A(=x + y")} — 1"
= max{A(x — y" —r"u), A(—x + y" —r'"u)}.

As h is a horofunction, ||y"|l, = r" — oo by Lemma 2.1. Thus, A — oo for

alli € I and )L;f — —oo for all j € J. Now suppose that J is nonempty. Then
Ay =" — A — ooforallk ¢ J. As
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A =" =r"u) = A(x = Y (" + XDt =Y "+ 1)),
jel k¢J

it follows that

. _ n _ n — p— . .
nli)rgol\(x Y =r"u) = Ay, Up,x Z;“JPJ)
JE

by Lemma 4.6. Likewise, if I is nonempty, then

Jim A(=x +y" =r"u) = Avpp (=Upx = X,:aipi)
e

by Lemma 4.6. We conclude that if / and J are both nonempty, then

h(x) = lim [lx = y"{lu = Y" ]l
n—o0

lim max{A(—x + y" —r"u), A(x — y" —r'*u)}
n— o0

= max{Ay () (—Up,x = Y aipi), Av(p)(Up,x = Y ajp)}.

iel jeJ
To complete the proof it remains to show that lim,_ o [|x — y"||, — [Vl =
lim, 0o A(—x + y" — r"u) if J is empty, and lim,— X — Y|, — 1Yl =
lim, 00 A(x — y" — r"u) if I is empty. Suppose that / is empty, so J is nonempty.
Then foreach i € {1, ..., r} we have that 7" — A? — oo. Note that

—x+y'—r'"u=—x— E (" = AHp! < —x —min(r" — A)u
. 1
1

IA

(e lly = min(" = 2.

Thus, A(=x + y" —r"u) < A((llx|ly — min; (""" — 27)u) = [|x]ly — min; (r" — A})
for all n, hence A(—x + y"* — r'*u) — —oo. As

max{A(x — y" —r"u), A(—x +y" —r"w)} = |x = y" |, = |¥"], = = xllu.

we conclude that ||x — y" |, — |Y"ll, = A(x — y" — r"u) for all n sufficiently large,
hence

h(x) = nll)ngo Ax —=y"—r"u) = Ay (Up,x — Zajpj).
jelJ

The argument for the case where J is empty goes in the same way. O

The following corollary shows that each horofunction is of the form (4.2).
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Corollary 4.8 If h is a horofunction in Vh, then there exist a Jordan frame p1, ..., py
in 'V, disjoint subsets I, J C {1,...,r}, with I U J nonempty, and o € RIY with
min{e;: i € IUJ} =0, such that h: V — R satisfies (4.2) forall x € V.

Proof Suppose that (y") is a sequence in V with hyn — hin Vh. Then foreachx € V
we have that

lim flx = y" [l = 1Y le = h(x)
n—00

and ||y" ||, — oo by Lemma 2.1.

To show that the limit is equal to (4.2) it suffices to show that we can take a
subsequences of (y") that satisfies the conditions in Proposition 4.7. First we note that
by the spectral theorem [25, Theorem III.1.2], there exist for each n > 1 a Jordan
frame p}, ..., pyinV and A}, ..., A} € R such that

Y'=Mpl 4+ A

where r is the rank of V. Denote " = [|y" ||, = max; [A}].
Now by taking subsequences we may assume that there exist 7, € {1, ..., r} and
1 <s < r such that for each n > 1 we have r" = |A}| and

Al >Oforalli e Iy andA? <Oforalli ¢ L.

Now foreachi € {1,...,r} and n > 1 define

n_ | "= A foriely
! rt Al fori ¢ Iy.

Note that o' € [0, co) for all i. Again by taking subsequences we may assume that
a;’ — «; € [0,00] as n — oo, for all i. Recall that &} = O for all n, so ag = 0.
Furthermore, we may assume that p;’ — p; in J1(V) for all i, as it is a compact set
[30]. Note that p1, ..., p, is a Jordan frame in V.

Now let

I={i:aj<ocandiely} and J={j:aj <ocoandj ¢ I}

So, INJisempty,s € IUJ andmin{e; : i € IUJ} = oy = 0. Then the subsequence
of (y™") satisfies the conditions in Proposition 4.7, hence & is a horofunction of the
form (4.2). O

The next proposition shows that each function of the form (4.2) can be realised as
a horofunction, and is a Busemann point.
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Proposition4.9 Let py,..., pr be a Jordan frame in V. Suppose that 1,J C
{1,....,r}withINJ = @ and I U J nonempty, and o € RV yith min{a;: i €
1UJ}=0.Ifforn > 1 welet y" =N pi+---+ A p,, where

n—ao; ifiel
M=|-n+a ifiel
0 otherwise,

then (y") is an almost geodesic sequence and hyn — h, where h satisfies (4.2) for all

. . . . h
x € V. In particular, h is a Busemann pointin V.

Proof Let k > max{w;:i € I U J} and note that for n > k we have that r" =
Iy* |l = n,as min{e;: i € I UJ} = 0. The sequence (y"), where n > k, satisfies
the conditions in Proposition 4.7. Indeed, for n > k we have that r”* — )L? = «; forall
iel,r"+ A =a;foralli € J,and r" —A! = n otherwise. Also for s with oy = 0,
we have that [A}| =n = [|y"],.

Finally to see that (h,») converges, we note that if we define z = ), .; —o; pi +
Yjesojpjand w = 3 pi — 3 i, pj, then y" = nw + z, which lies on the
straight-line r — tw + z. Hence (y") is an almost geodesic sequence, so

h(x) = lim [lx — y"{lu = [1y" [l
n—o00

exists for all x € V. Thus, we can apply Proposition 4.7 and conclude that / satisfies
(4.2), and & is a Busemann point in the horofunction boundary. O

Combining the results so far we now prove Theorem 4.1.

Proof of Theorem 4.1 Corollary 4.8 shows that each horofunction in V" is of the form
(4.2). It follows from Proposition 4.9 that any function of the form (4.2) is a horo-
function and by the second part of that proposition each horofunction is a Busemann
point. O

4.4 Parts and the Detour Metric

In this subsection we will identify the parts in the horofunction boundary of Vh, derive
aformula for the detour distance (2.2), and establish Theorem 4.2. We begin by proving
the following proposition.

Proposition 4.10 If

h(x) = max { Ay (p)) (-Umx - atPi) Avion | Upx =D aipi | ¢
iel jelJ
(4.12)
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and

h'(x) = max AV(q,/) (—Uql,x — Zﬁi%’) , AV(q,/) qu,x — Z Bjaqj
iel jeJ’
(4.13)

are horofunctions with p; = qp and py = qy, then h and h' are in the same part
and

d(h, h/) = lla = bllvar = AV(p;,pJ)(a —b)+ AV(p;,pj)(b —a),

where a = 3 aipi + X jeyojpj and b= 3 p Bigi + ey Bjqj in
Vipr, py) =VpD +Vpy).

Proof As in Proposition 4.9, for n > 11let y" = A{p1 + - -- + A} p,, where

n—a; ifi el
M=|-n+ao ifiel
0 otherwise,

and let w" = u'fqr + - - - + ) g, where
n—p ifiel
wi =\ -n+p ifiel

0 otherwise.

By Proposition 4.9 we know that (y") and (w") are almost geodesic sequences with
hy» — h and hy» — h'. Note that

Upw™ = Ugw™ =Y ul"Ugqi = ) 1'gi

iel iel

for all m, so

Avipn) (—Up,w’” — Y aipi+ IIwmllum)

iel
= Avip) (—Uq,/ w' = oipi+ ||w’"||uq1/)
iel
= Avip) (Z (lw™ = w") qi — Zaipl-) :
iel iel
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Thus,

limooAV(m) (—Uplwm — Zaipi + ”wm”upl>

m—
iel
= lim Ay (Z (lw™ e — 1i") @i — Z%‘Pi)
iel’ iel
=Avpp (Zﬁi%‘ - Z%‘Pi)
iel iel

= Avpp b—a).

In the same way it can be shown that

lim Ay, | Up,w™ — Zajpi + lw™llups

je
= Avpy) Z Bjqj — Za.jpj =Avp) (b—a).
jeJ’ jelJ

So, it follows from (2.3) that
H(h, h') = mli_)moo lw™ ||,

+ max IAV(pI) (_Uplwm - Zoeipi) sAvipy) (Upjwm - Z“jpj) }

iel jel

m— 00 4
iel

= lim max {Av(pl) (—Uplwm - Zaipi + ||wm||up1) ,Av(pj) (Up]wm
=Y ajipj+ W llupy
jedJ

max {Awm (Z Bigi — Zaim) Avipy) (Z Bjaj — Z%‘P;) }

iel iel jeJ’ JjeJ

= Avpr,py b —a).
Interchanging the roles of # and A’ gives H(h', h) = Av(p, p,)(a — b), hence
8(h, ") = lla = b|lvar O

To show that 4 and i’ are in different part if p; # g or p; # q, we need the
following lemma.
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Lemma4.11 If p and q are idempotents in V with p % g, then U,q < p.
Proof We have that U,q < Upu = p.Infact, Upq < p.Indeed, if U,q = p, then

p=Upu=Uy(u—q)+Upq=Upu—q)+p,
and hence U, (u — ¢g) = 0. This implies that p + (# — g) < u by [29, Lemma 4.2.2],

so that p < g. This is impossible, as p % g, and hence Upq < p. O

Proposition 4.12 Ifh and h’ are horofunctions given by (4.12) and (4.13), respectively,
and p; # qr or pj # qy, then

S(h, h') = co.

Proof Suppose that p; # qy. Then p; £ gy or g % pr. Without loss of generality
assume that p; £ g,. Let (y"") in V(p;) and (w") in V (g) be as in Proposition 4.9,
$0 hyn — hand hym — h’. To prove the statement in this case, we use (2.3) and show
that

HW by = lim_[[w” |l + h(w") = co. 4.14)

Note that

lw™ e+ h (w™) = ™l + Avpy) (—U,,, w" — Zaim)

iel
= Avipp (—Um w™ =Y aipi + IIw’”Ilupz) :
iel
Asw™ < |[[w™|,q forall m, we have that Up,, w™ < ||[w"|,Up,qy for all m. Thus,
—Upw™ = aipi + W™ lupr = =W 1uUpqr = Y eipi + W™ lups
iel iel

lw™lu(pr = Up,qr) = Y @ipi

iel

for all m.

We know from Lemma 4.11 that p; — Up,qp > 0. As p; — Up,qp € V(pr) we
also have that p; — Up,qp = Z;zl vjrj, where y; > 0 for all j and the r;’s are
orthogonal idempotents in V (py). It now follows that for all m,

Avipp) (-Umwm =Y aipi+ IIw’”Ilup1>

iel

r | (prir)™!

s
> w™ e Y viri =Y eipi
J=l1

iel
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= (nw'"nuyl - (Zoupi r1>> AL

iel
The right-hand side goes to co as m — o0, and hence (4.14) holds.
For the case pj # g a similar argument can be used. O

We now prove Theorem 4.2.

Proof Parts (i) and (ii) follow directly from Propositions 4.10 and 4.12. Clearly the
map p: P, — V(pr, p;)/Rpyy given by p(h') = [b], where

h'(x) = max { Ay, ( anx Zﬂ%) s Avign | Ug,x Z Bigaj | ¢

iel jeJ’

and b = Ziep Bigi +Zjej, Bjq;j € V(pr, py) withmin;¢;uy Bi = 0, is a bijection.
So, by Proposition 4.10, p is anisometry from (P, §) onto (V(pr, p1)/Rprs, || llvar)-
O

4.5 The Homeomorphism onto the Dual Unit Ball

In this subsection we prove Theorem 4.4. To start we prove a lemma that will be useful
in the sequel.

Lemma4.13 If g < p are idempotents in V and z € V(p), then Ay ) (Uyz)
Ay (p)(2).

IA

Proof If 1 = Ay(p)(z),then 0 < Ap —z,sothat 0 < AU,p — Uyz. As g =
Uyq < Uyp < Ugu = q> = g, we find that 0 < AU, p — U,z = Aq — U,z, hence
Ay (Ugz) < A 0

We will show that ¢ given by (4.5) and (4.6) is a continuous bijection from Vh

onto Bf. As Vh is compact and Bik is Hausdorff, we can then conclude that ¢ is a
homeomorphism. We begin by showing that ¢ maps V into the interior of BY.

Lemma 4.14 For each x € V we have that ¢(x) € int By.

Proof For x € V there exists y € V with ||y]|, = 1, such that

le@ly = sup  [(wlp)| = (ylpx)),

weV: wll,<1

where (v|w) = tr(v e w). So, if x has spectral decomposition x = Zle Ai pi, then
we can consider the Peirce decomposition of y,

y = ZMZP! +Zyz]9

l</
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to find that
1 r
lo I = (@) 1Y) = ———— > (" —e ) pi|y
u Z?:l eri e = i
Yoy (eM — e il

=<

<1,

doiop et e

O

as i = (ylpi) < (ulpi)) = 1and u; = (y|pi) = (—ulp;) = —1.
Lemma 4.15 The map ¢ is injective on V.

Proof Suppose that x,y € V withx = Y ._,0ip; and y = Y ', Tig;, where o]
.<orand 71 < ... < 1, satisfy ¢(x) = @(y). Then ¢(x) = Y i, aip;
Y i_1 Bigi = ¢(y). where

1A

€% — e et —e T

= and Bj=————— forallj.
i €% e Fi Y€t teT /

OljZ

Asa) <...<arand B; < ... < B,, it follows from the spectral theorem (version
2) [25, Theorem III.1.2] that ; = B; for all j. Lemma 3.6 now implies that o =
(Gla"'aar) = (.’:17"'7.[}“) =7T,as

(a¢1,...,00) =Vlogu(o) and (By,...,Br) = Viogu(r).

Note that o; = «; if and only if 0; = o}, and B; = B; if and only if 7; = 1,
as Vlog u(x) is injective. It now follows from the spectral theorem (version 1) [25,
Theorem II1.1.1] that x = y. O

Lemma4.16 The map ¢ maps V onto int B}.

Proof As ¢ is continuous on V and ¢ (V) C int BY, it follows from Brouwer’s domain
invariance theorem that ¢ (V') is open in int B}'. Suppose, for the sake of contradiction,
that (V) # int B}. So, we can find a z € d¢(V) Nint B}. Let (y") in V be such that
@(y") — zand write y* = >/ A’ p!'. As ¢ is continuous on V, we may assume
that " = ||y"||, — oo. Furthermore, after taking a subsequence, we may assume that
(y™) satisfies the conditions in Proposition 4.7. So, using the notation as in Proposition
4.7, we get that

Y. pan g
oy = Tt =Dt L =
Yii e e S p e

The right-hand side converges to

1 . »
o —r e 'pi— e pjl=z
Zie[e o +Zj€.]e o Z J Z J

iel jeJ
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But this implies that z € d B}, which is impossible. Indeed, if we let p; = >, ; pi
and py =) iy pj.then 1 > |zllf = zlpr — py) =l,as —u < py — py <u. 0O

For simplicity we denote the (closed) boundary faces of B} by
Fpq =conv((U,(V)NSV)UWUu(V)N=S(V)))

where p and ¢ are orthogonal idempotents in V not both zero, see [18, Theorem 4.4].

Lemma 4.17 If h is a horofunction given by (4.2), then ¢ maps Py, into relint F,; ;.

Proof Clearly, (h) € F, ,, if h is given by (4.2). So, ¢ maps Py, into F, ,, by
Theorem 4.2(i). To show that ¢ maps P, into relint F), it suffices to show that
@(h) erelint Fp, p,.

To do this we first consider w = (|| + |J]) " (p; — pJ) € Fp, .4, and show that
w € relintF, 4,.Letc € F), ,, be arbitrary. Note that we can write c = ) ;. Aigi —
2jes i, where 3y qi = prs X ey qj = prsand Yy hi + 3 ey =1
withO < A;, A; < 1foralli and j. We seethat w+¢e(w—c¢) = (1+&)w—ec € Fy; p,
for all ¢ > O small, so w € relint F,, ,,, by [52, Theorem 6.4].

To complete the proof we argue by contradiction. So suppose that ¢(h) ¢
relintF,, ,,. Then ¢(h) is in the (relative) boundary of F, ,,, hence

P

ze={0+e)p0h) —ew ¢ Fpy, »,

forall e > 0, as w € relintF), ,, and F, ,, is convex. However, for each i € I we
have that the coefficient of p; in z,

(1 +¢g)e ™ €
Yiecr€ i+ e e I+ I

is strictly positive for all ¢ > 0 sufficiently small. Likewise, for each j € J we have
that the coefficient of —p; in z,

(1 +¢e)e 9 3
Yiere i+ ey I+

is strictly positive for all ¢ > 0 sufficiently small. This implies that z, € F), ,, for
all ¢ > 0 small, which is impossible. This completes the proof. O

. . R —h
Using the previous results we now show that ¢ is injective on V.
—h o
Corollary 4.18 The map ¢: V' — B is injective.

Proof We already saw in Lemmas 4.14 and 4.15 that ¢ maps V into int B} and is
injective on V. So by the previous lemma, it suffices to show that if ¢(h) = (k')
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for horofunctions z ~ h’, then h = h’. Let h be given by (4.2) and suppose that 2’ is
given by

h'(x) = max Av(ql,) (—Uql,x — Z,B,q,) ’AV(‘U’) qu,x — Z Bjdq;

iel jeJ’

Then

dicr € “pi— Y jese Ypj B Yiere Pigi— djer e Pig;
D€ Y e e Yiere i+ Y et

As ming o = 0 = minyg f, it follows from the spectral theorem [25, Theorem
II1.1.2] that

1 1
— — = lleMWlu = lle®)l. = : —
D€+ e e ! Yiere P+ D jere Pi

so that

Yoeipi=y e ipi= e figi—Y e Pig;.

iel jeJ iel’ jel’

As each x € V can be written in a unique way as x = x* — x~, where x* and

x~ are orthogonal element xT and x~ in V., see [4, Proposition 1.28], we find that
Yicre%pi =Y ;e Pigiand Yjes€ i =y e~Piq;. This implies that

D aipi = —log (Z e pi+ (u— p1)> = —log (Z e Pigi+ (u - 6]1'))

iel iel iel

=Y Biai

iel

and

Y ajpi=—log|Y e ipi+w—py|=—log| > e Pigi+w—qy

JjeJ JjeJ jeJ’
=D Bidj.
jeJ’
and hence h = h'. O

. . —h
The next result shows that ¢ is continuous on 9V .

Theorem 4.19 The map ¢ Vh — BY is continuous.
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Proof Clearly ¢ is continuous on V. Suppose (y") is a sequence in V with Ayn —

h e th. We wish to show that ¢(y") — @(h). Let (¢(y"*)) be a subsequence. We
will show that it has a subsequence which converges to ¢(h).

As h is a horofunction, we know that r"* = ||y"* ||, — oo by Lemma 2.1. For each
k there exists a Jordan frame g}*, ..., ¢/* in V and A|*, ..., 1;* € R such that

N

By taking a subsequence we may assume that there exist I, C {1,...,r}and I <

s < r such that for each k, r" = ||y"||, = |A*|, and 1]* > 0 if and only if i € I.
Foreachk,let 8/ = "t —A " fori € I, and B* = r"+A!* fori ¢ 1. Note that

B > 0 forall i and k, and ,3”" = 0O for all k. By taking a further subsequence we may

assume that :31 — Bi €10, co] and ql."" — g; foralli.Let I’ ={i € I+.: B; < o0}

and J' = {j ¢ I,: B; < oo}. Note thats € I' U J" and we can apply Proposition 4.7

to conclude that iy, — h' € th, where

K (x) = max AV(!{I/) (—Uql,x - Zﬂiqi) , AV(q]/ Ug, x Z Bjq;

iel jelJ’

As hyn — h, weknow that s = h" and hence 8 (i, h’) = 0. This implies that p; = g
and p; = gy by Theorem 4.2. Moreover,

Zaipi + Zajpj = Zﬁi% + Z Bid;-

iel jeJ iel jelJ’
It follows that

ZO![P[ =Up, Z%‘Pi + Za,/pj =Uy, Z,Bi%' + Z Biaj

iel iel jeJ iel’ jeJ’

= Biai

iel

and

Zajpj = Up, (Z%‘Pi + Zajpj) = Uy, (Z Bigi + Z ﬁjqj') = Z Bjaj,

jeJ iel jeJ iel jeJ’ jel’
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sothat ), ;e®p; = Y cpefigiand Yo, ;e pj =Y ePig;. We conclude
that

r — k4K —rk A"k ng
Dz (e to—e )4

nj nj
k—o00 k—00 Zi_’ (e—r"kJrAi _i_e—r"kfki )

. Yiere Pai - Zje]’e_ﬁjqj
Yiepe Pt et

=@ (h).

From Lemmas 4.14 and 4.17 we know that ¢ maps V into int B} and th into 9 B.

So to complete the proof it remains to show that if (h,) in V" converges to s € 9V,
then ¢ (h,) — @(h). Suppose A is given by (4.2) and for each n the horofunction #,,
is given by

hn(x) = max § Ay | =Ugp x = D Blal' | Avegy) | Ugy x = 3 Brd]
iel, J€n

for x e V, (4.15)

where I,, J, € {1, ..., r} are disjoint, I, U J,, is nonempty, and min{ﬂ,’j: kel,U
J.} =0.

To prove the assertion we show that each subsequence of (¢ (%,)) has a convergent
subsequence with limit ¢ (/). Let (¢(h,,)) be a subsequence. By taking subsequences
we may assume that

(1) Thereexist Iy, Jo € {1, ..., r}disjoint with [oU Jy nonempty, such that /,,, = Iy
and J,, = Jo for all k.

() B* — Bi € 10,00l and ¢;* — g; foralli € Iy U Jy.

(3) There exists i* € Ip U Jo such that g/f = 0 for all k.

LetI"={i € In: i <oo}and J' ={j € Jo: Bj < oo}, and note that i* € I’ U J'.
Using Lemma 4.6 we now show that ,, — h’, where

K’ (x) = max Av(q[,) (—Uq,,x — Z’Biq’) , AV(‘II’) qu/x — Z Bjaq;

iel jeJ’
(4.16)
Note that if I’ is nonempty, then by Lemma 4.6 we have that
. ng ng | _ .
klggoAV(q;zC) _Uq;z‘x - Z'Bi 4 | =Avap <_U‘11’x - Z'qu'> )
i€l iel’
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as U ;z(;cx — Uy, x by Lemma 4.5 and Uy, (Ug, x) = Ug,, x by [4, Proposition 2.26].
Likewise if J' is nonempty, we have that

. n n
klggoAV(q, ) qugx Z B; ‘q k = Avigy | Ugpx — Z'B."q/

Jj€Jdo jeJ

Thus, if I’ and J' are both nonempty (4.16) holds.
Now suppose that I is empty, so J' is nonempty. As —x < ||x||, u, we get that

ny
i < =
Uynx < Ielule = xlugy.

This implies that —Uq;lkx — Zzelo ﬁnk < Zielo(”x”“ _ ﬂnk)ql k. hence
0

— — "k "k < _ g% _
Ay gy | ~Ugpex = A" a™ | = max(ixllu — ") — —oo.

iely

On the other hand, &,, (x) > —|lx||, for all k. Thus, for all k sufficiently large, we
have that

_ ng nk
hnk (x) = Av(qj(/;) qu(/){x Z ,3 s

Jj€Jo

which implies that (4.16) holds if I’ is empty. In the same way it can be shown that
(4.16) holds if J' is empty.
As h,, — h, we know that 4’ = h, so §(h, h’) = 0. It follows from Theorem 4.2

that p; = qp, py =qy.and } iy aipi+ 3 ey ipj = Y iep Bidi + X jey Bidj-
This implies that

Y aipi=) figi and Y a;pj=) Bjqj,

iel iel jeJ jeJ'
—w B i B
sothat Y, e %p; =Y, e Pig and ) ;e %p; =) icpe Pig;. Thus,

g
—Bk —B;5 ny
e g ZjeJoe 1 q;
g
_ﬁ_"k —B.
Dien € F X jepe
Yiere Pgi— Zje]’e_ﬁjqj

= = —— = ¢(h),
Yiere Pty icpe Pi

which completes the proof. O

Jim, i) = Jim,
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Theorem 4.20 The map ¢: V' — By is onto.

Proof From Lemma 4.16 we know that ¢(V) = int B}. Let z € dB{. As B is the
disjoint union of the relative interiors of its faces, see [52, Theorem 18.2], we know
that there exist orthogonal idempotents p; and p; such that z € relintF),, ,,. Thus,
we can write

= Z)»ipi - Z)»jpj,

iel jelJ

where p;y =) ic; pisqs = Zjejqj,O < A < Iforallk e IUJ,and ) ;5 Mk =
1.

Define uy = —logiy fork € 1 U J. So, ux > 0. Let u* = min{ug: k € 1 U J}
and set oy = ur — u* > 0. Note that min{ay: k € TU J} = 0.

Then £, given by

h(x) =max { Ay (—Uplx — Zaip,) Avipy | Up,x — Zajpj
iel jeJ

for x € V, is a horofunction by Proposition 4.9. Moreover,

1
_ __ e Hip =S e Mip;
D¢ MY e et Z l Z !

iel jeJ

1
— Aipi — ripil,
DicrMi T jes Z P Z 1P

J \iel jel

hence ¢ (h) = z, which completes the proof. O
The proof of Theorem 4.4 is now straightforward.

Proof of Theorem 4.4 1t follows from Theorems 4.19 and 4.20 and Corollary 4.18 that

@: v B{ is a continuous bijection. As Vs compact and B} is Hausdorft, we
conclude that ¢ is a homeomorphism. It follows from Lemma 4.17 that ¢ maps each
part onto the relative interior of a boundary face of B}. O

Remark 4.21 1t is interesting to note that a similar idea can be used to show that the
horofunction compactification of a finite dimensional normed space (V, | - ||) with a
smooth and strictly convex norm is homeomorphic to the closed dual unit ball. Indeed,
in that case the horofunctions are given by 4 : z — —x™*(z), where x* € V* has norm
1, see for example [23, Lemma 5.3]. Moreover, for (y") in V we have that iyn — h
if and only if y"/||y"|| — x and ||y"| — oo.

In this case we define a map ¥ : Vh — Bf as follows. For x € V with x # 0, let

el _ gliely
A <e||x| F e ) e
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where x* € V* is the unique functional with x*(x) = |/x| and ||x*|| = 1, and let
¥ (0) = 0. Forh € V" with h: z > —x*(2) let

OEE

Itis straightforward to check that v is a bijection from V' onto B, and ¥ is continuous

on int Bf. To show continuity on 8Vh , we assume, by way of contradiction, that (%,,)
is a sequence of horofunctions with i, — h and h,(z) = —x(z) forall z € V,
and there exists a neighbourhood U of v (k) in B} such that v (h,) ¢ U for all n.
Then, for each z* € B} with z* ¢ U we have that z*(x) < 1. So, by compactness,
§ = max{l — z*(x): z* € 9Bf\U} > 0. It now follows that

hp(x) —h(x) = —x(x) +x*(x) =1 —x)(x) >8§ >0

for all n, which contradicts h,, — h. This shows that ¥ is a continuous bijection, and

hence a homeomorphism, as Vh is compact and Bf is Hausdorff.

More generally, one can consider product spaces V = [[;_, V; with norm || x|y =
max’_, |lv;ll;, where each (V;, || - |I;) is a finite dimensional normed space with a
smooth and strictly convex norm. In that case we have by [40, Theorem 2.10] that the
horofunctions of V are given by

h(v) = max(hg*(v/) —aj), 4.17)

where J C {1, ...,r} nonempty, min;cj; = 0, Sj € Vj?k with ||§;.‘|| = 1, and
hg*(v]) = é*(v]) One can use similar ideas as the ones in Sect.3 to show that
the horofunction compactification is homeomorphlc to the closed unit dual ball of V.
Indeed, one can define a map gy : v B} by

1 T T
vl = Z;:1 ellvilli 4 g=llvilli (;(elvl i — el ”l)p(vi )> for v e V' \ {0}

and gy (0) = 0. Here p(v}) = (0,...,0,v7,0,...,0)and v} is the unique functional
such that v} (v;) = |lv;|; and [|vf|l; = 1if v; # O, and we set p(v)) = 0, if v; = 0.
For a horofunction & given by (4.17) we define

h &)
oy () = Z,eJ (2o pEn

jelJ

Following the same line of reasoning as in Sect.3 one can prove that ¢y is a homeo-
morphism.

Remark 4.22 The connection between the geometry of the horofunction compactifi-
cation and the dual unit ball seems hard to establish for general finite dimensional
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normed spaces, and might not even hold. For the normed spaces discussed in this
paper and in [32, 33] all horofunctions are Busemann points, but there are normed
spaces with horofunctions that are not Busemann, see [54]. It could well be the case
that the horofunction compactification of these spaces is not naturally homeomorphic
to the closed dual unit ball, but no counter example is known at present.

5 Symmetric Cones with the Hilbert Distance

In this section we study the global topology and geometry of the horofunction com-
pactification of symmetric cones under the Hilbert distance. Recall that the Hilbert
distance is defined as follows. Let A be a real finite dimensional affine space. Consider
a bounded, open, convex set 2 C A.For x, y € Q, let £, be the straight-line through
x and y in A, and denote the points of intersection of £, and 92 by x” and y’, where
x is between x’ and y, and y is between x and y’. On Q the Hilbert distance is then
defined by

lx" =yl 1y’ —XI>

5.1
" = x| [y" =yl oD

pi(x.y) = log (

for all x # y in @, and py(x,x) = 0 for all x € Q. The metric space (2, pg) is
called the Hilbert geometry on 2.

These metric spaces generalise Klein’s model of hyperbolic space and have a Finsler
structure, see [48, 49]. In our analysis we will work with Birkhoff’s version of the
Hilbert metric, which is defined on a cone in an order-unit space in terms of its partial
ordering. This provides a convenient way to work with the Hilbert distance and its
Finsler structure. In the next subsection we will recall the basic concepts involved in
our analysis. Throughout we will follow the terminology used in [42, Chap. 2], which
contains a detailed discussion of Hilbert geometries and some of their applications.
We refer the reader to [49] for a comprehensive account of the theory of Hilbert
geometries.

5.1 Preliminaries and Finsler Structure

Let (V, V4, u) be a finite dimensional order-unit space. So, V. is a closed cone in V
with u € int V4. Recall that the cone V induces a partial ordering on V by x < y if
y —x € V4, see Sect.4.1. For x € V and y € V., we say that y dominates x if there
exist o, B € Rsuchthatay < x < By. In that case, we write

M(x/y) =inf{B e R: x < By} and m(x/y) =sup{e € R: ay < x}.

By the Hahn—Banach theorem, x < yifandonlyif ¢ (x) < ¢ (y) forally € V| =
{p € V*: ¢ positive}, which is equivalent to ¥ (x) < ¥ (y) for all ¥ € S(V). Using
this fact we see that foreachx € V and y € int V,
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M()C/y): sup M and m(x/y): . lﬁ(x)

f )
yes(v) V() yes(v) v (y)

We also note thatif A € GL(V) is a linear automorphism of V ,i.e., A(V}) = V.,
then x < By if, and only if, Ax < BAy. It follows that M (Ax/Ay) = M(x/y) and
m(x/y) = m(Ax/Ay).

If w € int V4, then w dominates each x € V, and we define

IX[w = M(x/w) —m(x/w).

One can verify that | - |, is a semi-norm on V, see [42, Lemma A.1.1], and a genuine
norm on the quotient space V /Rw, as |x|,, = Oif and only if x = Aw for some A € R.

Clearly, if x, y € V are such that y = 0 and y dominates x, then x = 0, as V is a
cone. On the other hand, if y € V;\{0}, and y dominates x, then M (x/y) > m(x/y).
The domination relation yields an equivalence relationon V; by x ~ y if y dominates x
and x dominates y. The equivalence classes are called the parts of V.. As V is closed,
one can check that {0} and int V. are parts of V. The parts of a finite dimensional
cone are closely related to its faces. Indeed, if V is the cone of a finite dimensional
order-unit space, then it can be shown that the parts correspond to the relative interiors
of the faces of V., see [42, Lemma 1.2.2]. Recall that a face of a convex set S € V is
a subset F of S with the property that if x, y € S and Ax + (1 — X))y € F for some
O<A<l,thenx,yeF.

It is easy to verify that if x, y € V;\{0}, then x ~ y if, and only if, there exist
0 < o < B suchthat ey < x < By. Furthermore, if x ~ y, then

m(x/y) =supfa > 0:y < ot_lx} = M(y/x)_l. 5.2)
Birkhoff’s version of the Hilbert distance on V. is defined as follows:

M(x/y)

dn(x. y) =log (05

) = log M(x/y) + log M(y/x) (53)

forall x ~ y with y #£ 0, dy (0,0) = 0, and dy (x, y) = oo otherwise.

Note that dy(Ax, uy) = dg(x,y) forallx,y € Vo and A, u > 0, sody isnot a
distance on V.. It is, however, a distance between pairs of rays in each part of V. In
particular, if ¢: V — R is a linear functional such that ¢(x) > 0 for all x € V;\{0},
then dgy is a distance on

Qy ={xeintV,: p(x) =1},

which is a (relatively) open, bounded, convex set, see [42, Lemma 1.2.4]. Moreover,
the following holds, see [42, Proposition 2.1.1 and Theorem 2.1.2].
Theorem 5.1 (Qy, dy) is a metric space and dg = pp on Qy.

It is worth noting that any Hilbert geometry can be realised as (Q2y, dy) for some

order-unit space V and strictly positive linear functional ¢.
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A Hilbert geometry (Q2y, dg) has a Finsler structure, see [48]. Indeed, if one defines
the length of a piecewise C'-smooth path y : [0, 1] — Qy by

1
L(V)=/O Iy Oy dt,

thendy (x, y) = inf, L(y), where the infimum is taken over all piecewise C I_smooth
paths in Qy with y(0) = x and y (1) = y.

It should be noted that in the case of Hilbert geometries the unit ball {x €
V/Rw: |x|, < 1} in the tangent space at w € Qy may have a different facial
structure for different w. This phenomenon appears frequently in the case where Qy
is a polytope, but does not appear in the Hilbert geometries considered here.

Let (V, V4, u) be an order-unit space, where V is a Euclidean Jordan algebra of
rank r, V4 is the cone of squares, and « is the algebraic unit. So, int V is a symmetric
cone and Isom(€2y) acts transitively on Qy .

Throughout we will take ¢ : V — R with p(x) = %tr(x), which is a state, and

Qy={xeintVy:pkx)=1}={x eint Vy: tr(x) =r}.
We shall call (Qy, dg) a symmetric Hilbert geometry. A prime example is
Qy = {A € Herm(n, C): tr(A) = n and A positive definite}.

These spaces are important examples of noncompact type symmetric spaces with an
invariant Finsler metric, see [50]. In particular, the example above corresponds to the
symmetric space SL(n, C)/SU(n).

In a symmetric Hilbert geometry the distance can be expressed in terms of the
spectrum. Indeed, we know that for x € V invertible, the quadratic representation

1V — Visalinear automorphism of V,, see [25, Proposition I11.2.2]. Moreover,
U= U, and U, 12x = u. Furthermore, for x € V we have that

M (x/u) =inf{A: x < Au} =maxo(x) and m(x/u) =sup{i: Au < x} = mino (x),

so that |x|, = max o (x) — mino (x). Also for x, y € int V; we have that
log M(x/y) = max o (log Uy_l/zx) and logM(y/x) = —mino (log Uy—l/2.x).
It follows that

du(x,y) =logM(x/y) +log M(y/x) = [log Uy-12x],
=diamo(logU,-1ppx) forallx,y €intV;.

Moreover, for each w € Qy we have that
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|Xlw = M(x/w) —m(x/w) = M(U,-12x/u) —mU,-12x/u)
= |Uy,-12x], forallx e V,

which shows that the facial structure of the unit ball in each tangent space is identical,
as U,,-1,2 is an invertible linear map.

5.2 Horofunctions of Symmetric Hilbert Geometries

The main objective is to show for symmetric Hilbert geometries (Q2y, dgy) that there

exists a natural homeomorphism between 5}{, and the closed dual unit ball of the Finsler
metric | - |, in the tangent space V /Ru at the unit u. To describe the homeomorphism,
we recall the description of the horofunction compactification of symmetric Hilbert
geometries given in [44, Theorem 5.6].

Theorem 5.2 The horofunctions of a symmetric Hilbert geometry (Q2y, dy) are pre-
cisely the functions h: Qy — R of the form

h(x) =logM(y/x) + logM(z/x_l) forx € Qy, 5.4

where y, z € V4 are such that ||y, = |zl = 1 and (y|z) = 0.

It follows from the proof of [44, Theorem 5.6] that all horofunctions are in fact Buse-
mann points. Indeed, if y and z have spectral decompositions

y= Zkipi and z= Zujpj,

iel jeJ

where I, J C {1, ..., r}are nonempty and disjoint, and py, ..., p, is a Jordan frame,
then the sequence (y,) € int V. given by

1 1
yn=z?»ipi+z—n2 pit Y Pk
iel jeJ Kj k¢IUJ
has the property that y, — v, ¥, '/lIly, 'llu — z and iy, — h, where & is as in (5.4).
Note that if we let v, = y,/@(yn) € Qv, then hy,(z) = hy, (z) for all z € Qy, so

hy, = h.
Also note that forn, m > 1,

2
Uyn—l/zym=ZPi+Z%pj+ Z %Pk-

iel jeld ke¢1UJ

This implies that for eachn > m > 1,
My /yn) = M(Uy;l/zym/u) = ”Uy;l/zym“u =n?/m?,
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so that log M (v, /yn) = 2logn — 21log m. Moreover, log M (y,,/ym) = log 1 = 0 for
alln > m > 1. It follows that

dy (U, vm) +dg (W, v1) = dg(Yn, Ym) +da Ym, Y1) = du(u, y1) = da(vn, v1)

for all n > m > 1. Thus, (v,) is an almost geodesic sequence in 2y, and hence each
horofunction in 5}‘1, is a Busemann point.

To identify the parts and describe the detour distance (2.2) we need the following
general lemma.

Lemma 5.3 Ler (V, Vi, u) be a finite dimensional order-unit space. If v € 9V, \{0}
and wy, € int Vo with w41 < w, foralln > 1 and w, — w € aV\{0}, then

lim M(v/w,) = |:M(U/w) if w dqninates v

n— 00 00 otherwise.

Proof Set A, = M(v/wy) for n > 1. Then for n > m > 1 we have that 0 <
Awy, — v < Aywy, — v. This implies that A, < A, for all m < n, hence (A,) is
monotonically increasing.

Now suppose that L. = M(v/w) < o0, i.e., w dominates v. Then 0 < Aw — v <
Awp—v,hence A, < Aforalln. Thisimpliesthatl, — A* < A < 00.AsO < A, w,—v
for all n and V is closed, we know that lim, oo Ayw, — v = A*w — v € V4. So
A* > X, hence A* = A. We conclude that if w dominates v, then lim,,—, oo M (v/w,) =
M@/w).

On the other hand, if w does not dominate v, then

Aw—v ¢ Ve foralld >0. (5.5
Assume, by way of contradiction, that (1,) is bounded. Then A,, — A* < o0, since
(1) is increasing, and A, w, — v — A*w —v € V4, as V. is closed. This contradicts

(5.5), and hence A, = M (v/w;,) — oo, if w does not dominate v. O

Before we identify the parts in 85}", and the detour distance, it is useful to recall
the following fact:

M(x/y) = M(y_l/x_l) forall x, y € int V4,
if int V is a symmetric cone, see [45, Sect. 2.4].
Proposition 5.4 Let (Qy, dy) be a symmetric Hilbert geometryandh, h' € 85}{, with
h(x) =logM(y/x) + log M(z/xil) and h'(x) =logM (' /x) + log M(z//xfl)

for x € Qy. The following assertions hold:

(i) h and h' are in the same part if and only if y ~ y' and z ~ 7.
(ii) If h and I’ are in the same part, then §(h, h') = dg(y,y) + du(z, 7).
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Proof Consider the spectral decompositions: y = Y ;; Aipi, 2= jeg MjDjs y =
Yier@iqi-andz' =3 ., Biq;. Set

yn:Z)»iPi'FZ ! pj+ Z rllpk and

2,
iel jed e k¢IUJ
1 1
wnzzai%"kz_nzﬁ"ﬁ‘i_ > k-
iel’ jer J k¢l'uJ’

Then hy, — h and hy,, — 1’ by the proof of [44, Theorem 5.6].
For all n > 1 large we have that ||wy |, = ||y'|l, = 1, so that

dpy (wn, u) = log M (wy /u) + log M (u/wn) = log l|wyly + log M (w;, ! /u) = log lwy ! lu.

Now set v, = wn_l/||wn_1 I, and note that by (2.3),

HW by = lim dp(wy, u) + h(wy)
= lim log w; " llu + log M(y/wn) +log M(z/w, ")

= nan;olog M (y/wy,) +log M(z/v; h).

Clearly wy,4+1 < wy, and w, — y’. Also,

w,' =Y o lgi+ Y n?Bigi+ > ngr.

iel’ jeJ' kgl'UJ’

So, for all n > 1 large, we have that [w; ||, = n?, as maxjey B; = |Z'|l. = 1. It
follows that

UnZZ%Qi‘FZ,Bij"‘ > %‘Ik
1

ier jeJ kel'uJ’

foralln > 1 large. So, v,+1 < v, foralln > 1 large and v, — z’. It now follows from
Lemma 5.3 that H(h', h) = oo if y’ does not dominate y, or, 7’ does not dominate
z. Moreover, if y’ dominates y, and, z’ dominates z, then H(h', h) = log M (y/y’) +
log M (z/7)).

Interchanging the roles between  and i’ we find that H (h, h’') = oo if y does not
dominate y’, or, z does not dominate z’, and H(h, k') = log M (y'/y) + log M (7' /z),
otherwise. Thus, §(h, ') = dy(y, y') +dy(z,7') if and only if y ~ y" and z ~ Z/,
and §(h, h') = oo otherwise. O

The characterisation of the parts and the detour distance is a more explicit description
of the general one one given in [43, Theorem 4.9] in the case of symmetric Hilbert
geometries.
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5.3 The Homeomorphism

Let us now define a map ¢p : ﬁi‘l, — B;", where BT is the unit ball of the dual norm
of | - |, on V/Ru. For x € Qy let

X x~!

PHO =00 T v

and for i € 852, given by (5.4) let

y __%
tr(y) tr(z)’

eu(h) =
We note that ¢ (h) is well-defined by Proposition 5.4.
We will prove the following theorem in the sequel.

Theorem 5.5 If (v, dy) is a symmetric Hilbert geometry, then the map @ ﬁi’, —

. . . —=h L .
BY is a homeomorphism which maps each part of 9Qy, onto the relative interior of a
boundary face of BY.

We first analyse the dual unit ball B} of | - |,, and its facial structure. The following
fact, which can be found in [45, Sect. 2.2], will be useful.

Lemma 5.6 Given an order-unit space (V, Vi, u), the norm | - |, on V /Ru coincides
with the quotient norm of 2| - ||, on V /Ru.

Recall that in a Euclidean Jordan algebra V each x has a unique orthogonal decom-
position x = xT — x~, where x* and x~ are orthogonal elements in V., see [4,
Proposition 1.28]. Let

Rut ={xeV:@ux)=0={xeV:uxh) =ux)).

It follows from Lemma 5.6 that

1
(V/Ru, | )" = Ru', S
So the dual unit ball B} in Ru~ is given by
B} = 2conv(S(V) U —S(V)) NRu’,

see [3, Theorem 1.19], and its (closed) boundary faces are precisely the nonempty sets
of the form

Ay = 2conv (U,(V) N S(V)) U (Uy (V)N =S(V))) N Ru,

where p and ¢ are orthogonal idempotents, see [18, Theorem 4.4].
To prove Theorem 5.5 we collect a number of preliminary results.
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Lemma 5.7 For each x € Qy we have that g (x) € int B}, and for each h € 85}‘1/
we have that ¢y (h) € dBY.

Proof Letx = Zle Aipi € Qy,s0A; > Oforalli. Note that (u|lpy(x)) =1—1=0
and hence gy (x) € Rut. Given —u < 7 < u, we have the Peirce decomposition of z
with respect to the frame py, ..., p,,

.
z= ZGiPi + Zzz‘j,
i=1 i<j

with —1 = —(u|p;) < 0, = (z|p;i) < (u|p;) = 1. As this is an orthogonal decompo-
sition we have that

a Ai A " Ai
Gler(x) = ) _oi | = - =] < —_
! ; (Zj:l)‘f Z‘_])‘jl) ;(ijl)‘])
= ()
+ = )=
S A\Xia

This implies that %||<pH(x)||;‘; = %sup_uﬁﬁu (zlor (x)) < 1, hence ¢y (x) € int B}.

To prove the second assertion let 2 be a horofunction given by 2 (x) = log M (y/x)+
log M(z/x~"), where [[yll, = llzll, = 1 and (y|z) = 0. Write y = Y;; atigj and z =
> jesBjgj-Mwenowletq; =3 ., giandg; =3, qj. then—u <q;—qy <u
and

1
lou ()l = 3@ —aslenm) =1+ 1/2=1.
Moreover, for each —u < w < u we have that

|(wlon (M)] < [(wly/tr()| + [(wlz/tr(2)] < (uly/tr(y)) + (u]z/tr(2)) = 2.
Combining the inequalities shows that ¢y (h) € dBY. O

To prove injectivity of g on Qy we need the following lemma, which has a proof
similar to the one of Lemma 3.6 given in [32, Sect. 4].

Lemma5.8 Let pi: R" — R, fori = 1,2, be given by pi(x) = Y :_,e" and
ua(x) =i e Y forx € R', and let g: x + log 1 (x) +logua(x). If x, y € R
are suchthaty # x +c(l,...,1) forall c € R, then Vg(x) # Vg(y).

Lemma 5.9 The map ¢y is injective on Qy.
Proof Suppose that ¢y (x) = ¢ (y), where x = Y ;_ Ajpiand y = Y i, iig; in

Qy. Note that 0 < X;, u; for all i and (x|u) = tr(x) = r = tr(y) = (y|u). After
possibly relabelling we can write
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e A At
¢H(x) = Z S - > M_l Za,pl

i=1

and

r

_ i _1
w(y)—Z(Zr S M}) Zﬂ,q,,

izl j=1Mj j=1

where 1 < ... <a, and B; < ... < B,. By the spectral theorem (version 2) [25] we
conclude that o; = B; for all i.

Consider the injective map Log: int R, — R’ given by Log(y) = (logy1, ...,
logy,). Let A ={y eintR/,: Y ;_, y; =r}. The map (Vg) o Log is injective on A
by Lemma 5.8 and

—1 —1

)/1 yl Vr yr

Vg(Log(y)) = - — - — .
Yimivi Yy Yiavi Yoyt

Writing A = (Ay, ..., Ar) and © = (g, ..., 4r), we have that A, 4 € A and

Vg(Log(M)) = (a1, ..., ) = (B1, ..., Br) = Vg(Log(n)),

sothat A = u

As (Vg) o Log is injective on A, we also know that oy = o441 if and only if
M = Xi+1. Likewise, Br = PBi+1 if and only if uxy = pg+1. From the spectral
theorem (version 1) [25] we now conclude that x = y. O

In the next couple of lemmas we show that ¢ is onto.

Lemma 5.10 The map ¢y maps Qy onto int BY.

Proof Note that Qy is an open set of the affine space {x € V: tr(x) = r}, which
has dimension dim V — 1. Also B C Rut has dimension dim V — 1. As ¢ is
a continuous injection from Qy into int B by Lemmas 5.7 and 5.9, we know that
@# (R2y) is a open subset of int B} by Brouwer’s invariance of domain theorem. We
now argue by contradiction. So, suppose that gy (Qy) # int Bj. There then exists a
w € dpy (Qy) Nint Bf. Let (v,) in Qy be such that gy (v,) — w.

As @p is continuous on Qy, we may assume that dg (v, u) — oo. After taking
a subsequence, we may also assume that v, — v € dQy. Now let y, = v, /||lvylu
and set y = v/||v||,. Furthermore, let z, =y, 1 ly, l,.. After taking subsequences
we may assume that z, — z € Vi and y, — y € Vi, s0 |[¥[lu = llzll. = 1. As
Yn®Zp = u/||yn_1||u — 0, we find that y e z = 0, which implies that (y|z) = 0.

Using the spectral decomposition we write y, = Y :_, Alptandy =3/ Aipis

ﬂ }’l

where A; > 0 for all i € I. Likewise, we let z, = ) ;_; u! p!' and z = Zjej Wjpj
with y¢; > O forall j € J. Note that ! = A"~ /|ly; lu.
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Then
r r —1 r r
on(Un) = i=t AP Xim DT P i MpE s M Yier kipi
k1M Sho ! Ph=1 M Dkt MY 2 kel Mk
D jes jpj
. jeJ Hjry
Dkes Hj

Now let w* =", .; pi — Zje] p;j and note that —u < w* < u, as (y|z) = 0. We
find that

1 1
Ellwll* > S(wlw) = (1+1)/2

u =

Il
—_

hence w € BB;" , which is a contradiction. O
Lemma5.11 The map ¢y maps 85}", onto 9B} .

Proof We know from Lemma 5.7 that ¢ 7 maps 35}‘1, into d B} To prove that it is onto
letw € E)Bik . Then there exists a face, say

Ap.g = 2conv (Up(V) N S(V)) U (Uy (V) N =S(V))) N Rut

where p and ¢ are orthogonal idempotents, such that w is in the relative interior of
Apg, as BI‘ is the disjoint union of the relative interiors of its faces [52, Theorem
18.2]. So,

w = Zaipi - Zﬁjqj,

iel jeJ

where o; > Oforalli € [, B; > Oforall j € J,and 3, ;o + 350, B = 2.
Moreover, } ;c; pi = pand ), q; =q.

As w € Rut, we have that 0 = (u|w) = Y, ., o — > jesBj.hence 3 o =
Zje] Bj=1

Put o* = max;¢; o; and f* = max ey B;. Furthermore, fori € I set A; = o; /o™
and for j € J set u; = B;/B*. Then

w — (Ziel Otil?i) (e Bigi | <Ziel AiPi) [ Xjes Hid
Zkel Ok Zke] P Zkel Ak Zke] Mk
Note that 0 < A; < 1foralli € I and max;¢; A; = 1. Likewise, 0 < p; < 1 for all
Jj€Jandmax;c; B; = 1.

Now let y = 3 ;c; Aipi and z = 3, jq;. Then ||yl = llzll, = 1 and
(y]z) = 0. Furthermore, if we let i: Qy — R be given by

h(x) =log M(y/x) +log M(z/x ")
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forx € Qy,then / isahorofunction by Theorem 5.2 and ¢ (h) = w, which completes
the proof. O

We already saw in Lemma 5.10 that ¢y is injective on Qy . The next lemma shows
C =
that ¢ is injective on Sy,

Lemma 5.12 The map ¢y : 5}", — BY is injective.

Proof We know from Lemma 5.10 that ¢ is injective on Qy . So, it remains to show
that if h, i’ € 8%, and g (h) = @y (W), then h = I'.
Suppose h(x) = logM(y/x) + logM(z/x~") and h'(x) = logM(©'/x) +
log M(z'/x~") for all x € Qy. Then
y z y/ Z/
w(y) @ wQ) @)

eu(h) = = o ().
Using the fact that the orthogonal decomposition of an element in V' is unique, see [4,
Proposition 1.26], we conclude that

/ /

y y Z Z
= y and ——
tr(y)  tr(y)

@) @)
As [yllu = IIYlu = 1, we get that tr(y) = tr(y’), and hence y = y’. Likewise,

lzllu = lIZ’ll. = 1 implies that z = 7/, hence h = I'. O

5.4 Proof of Theorem 5.5

Before we prove Theorem 5.5, we recall a fact from Jordan theory. For x, z € V let
[x,z] ={y € V: x <y < z} be the order-interval. Given y € V, we write

face(y) = {x € V4: x < Ay for some A > 0}.
In a Euclidean Jordan algebra V every idempotent p satisfies
face(p) N[0, u] = [0, p],

see [4, Lemma 1.39]. Also note that y ~ y’ if and only if face(y) = face(y’).

Proof of Theorem 5.5 We know from the results in the previous subsection that
—h - — . .

@n : Qy — Bf is a bijection, which is continuous on Qy.

To prove continuity of ¢y on the whole of 5}‘1, we first show that if (v,) in Qy
is such that h,, — h € 85}{/, then ¢y (v,) — @p(h). Let h(x) = logM(y/x) +
log M(z/x~ 1) for x € Qy, where ||y, = llzll, = 1 and (y|z) = 0. Forn > 1 let
Yn = Un/llvn|lu and note that ¢ (vy) = @u (yy) for all n. Let wy = g (vn,), k > 1
be a subsequence of (¢x(v,)). We need to show that (wy) has a subsequence that
converges to g (h).
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As h is a horofunction and (R2y, dy) is a proper metric space, dy (v,, u) =
dy (yn,u) — oo by Lemma 2.1. It follows that (y,,) has a subsequence (y, ) with
Yk, — ¥ € 0V4 and zx, = y,;11/||y,;n1||u — 7/ € V4. Note that as y € 9V, we
have that ||y,;n ! |, — oo. This implies that

-1

. Yk,
Vo= i Y o = i T S
1yl 1yl

hence (y'|z") = 0 (see [25, III, Exercise 3.3]) and 7’ € V4. For x € Qy,

Hm By (0 = imlog M (g, /x) +1og M(x/Yk,,) — log M (3, /u) — log M (u/3,)
o —1, -1y _ -1
= lim_log My, /x) +log MGy ! /x~) = log [y, !l
_ -1
= mll)moo log M (y,, /x) +log M (zk,, /x~ ")

=log M(y'/x) +log M(z'/x ™).

So, if we let #'(x) = log M(y'/x) 4+ log M(z'/x~"), then K’ is a horofunction by
Theorem 5.2 and hy, ~— h'. As h = I, we know that §(h, h') = du(y,y") +
dp(z,7) =0, hence y = y" and z = 7. It follows that

-1
Vi Vhkw Y 2
(k) tr(y, h o uy) (@

o (,) = o (Vk,) = = ¢ (h).

Recall that ¢y maps Qy into int Bf and ¢z maps 85}{, into 9 B by Lemma 5.7.
So, to prove the continuity of ¢ it remains to show that if (h,) is a sequence in 85}{,
converging to h € 85}‘1,, then g (h,) — @g(h).

Let (¢n (hy,)) be a subsequence of (¢y (h,)). We show that it has a subsequence

(¢n (hg,,)) converging to ¢y (h). We know there exists vy, w,, € dV4, with [lv, |, =
lwmll, = 1 and (v |wy,) = O such that

Ik, (x) = log M (v, /x) + log M (wy /x 1)

for x € Qy. By taking a further subsequence we may assume that v,, — v € dV4
and w,, — w € dV,. Then ||v||, = [|w|l, = | and (v|w) = 0. Moreover,

log M (v, /x) — logM(v/x) and log M(wm/x_l) — log M(w/x_l)

for each x € Qy, as y — M(y/x) is continuous on V, see [44, Lemma 2.2]. Thus,
% —h
hi, — h* € 0Qy,, where

h*(x) = log M(v/x) + log M(w/x 1),
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by Theorem 5.2. As h,, — h, we have that h = h*. This implies thaty = vandz = w
by Proposition 5.4. Thus, v,, — y and w,, — z, hence

Um Wiy y Z
= — — —
tr(uy)  tr(wy) () tr(z)

en (hi,,) = ou(h).

This completes the proof of the continuity of pg.

As oy : 51‘1, — B;‘ is a continuous bijection, 51‘1, is compact, and Bi‘ is Hausdorff,
we conclude that ¢y is a homeomorphism.

To prove the second assertion let /1(x) = log M(y/x) + log M(z/x ") be a horo-
function, where y = ) .., A;p; and z = Zjej wjpj with x;, wj > Oforalli € I
and j € J.Let py =3 ;c; piand py = 3 ., pj. As gp is surjective, it suffices to
show that ¢y maps P, into the relative interior of

Ap,y py = 2conv (Up, (V) N S(V)) U (U, (V)N =S(V))) N Ru.

So, let ' € Py, where h'(x) = log M(y'/x) +log M(z' /x~") for x € Qy. Then p; ~
y ~ y'and p; ~ z ~ Z’. Using the spectral decomposition write y’ = )", ;q;
andz’ =) ;. Bjqj, where o; > O foralli € I"and B; > O forall j € J". Now
letgy =) ;cpgiand gy = Zje]’ q;. It follows that p; ~ gy and p; ~ gq;. So,
face(p;) = face(q;/) and face(py) = face(qy /). As face(py) N [0, u] = [0, p;] and
face(q;’) N[0, u] = [0, g;/] by [4, Lemma 1.39], we conclude that p; = g;. In the
same way we get that p; = g;. Asa; > Oforalli € I"and B; > O forall j € J,
we have that

/ !

/ y Z
a() = -
et =10 T e @)
is in the relative interior of Afh/»qf’ = Ap; ps- |

6 Final Remarks

Besides the problem posed by Kapovich and Leeb [34, Question 6.18] for finite dimen-
sional normed spaces the results in this paper show that there should be milage in
analysing the following problem.

Problem 6.1 Suppose X = G/K is a noncompact type symmetric space with a
G-invariant Finsler metric. When does there exist a homeomorphism between the
horofunction compactification of X with basepoint b under the Finsler distance, and
the closed dual unit ball B} of the Finsler metric in the tangent space at b, which maps
each part in the horofunction boundary onto the relative interior of a boundary face
of By ?

Inasequel to this paper [41] the first author has shown for various classes of noncom-
pact type symmetric spaces X with invariant Finsler distances coming from symmetric
cones that the exponential map exp,, from the tangent space 7}, at the basepoint b onto
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X extends as a homeomorphism between the horofunction compactification of 7 as
a normed space under the Finsler metric and the horofunction compactification of X
under the Finsler distance. Moreover, the extension of the exponential map preserves
the parts in the horofunction boundaries. In particular, this is true for symmetric Hilbert
geometries (Q2y, dy) and the normed spaces (V /Ru, | - |,,). It would be interesting to
know if this is true for all noncompact type symmetric spaces with invariant Finsler
metrics.
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