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A B S T R A C T   

Mindless eating, or the lack of awareness of the food we are consuming, has been linked to health problems 
attributed to unhealthy eating behaviour, including obesity. Traditional approaches used to moderate eating 
behaviour often rely on inaccurate self-logging, manual observations or bulky equipment. Overall, there is a clear 
unmet clinical need to develop an intelligent and lightweight system which can automatically monitor eating 
behaviour and provide feedback. In this paper, we investigate: i) the development of an automated system for 
detecting eating behaviour using wearable Electromyography (EMG) sensors, and ii) the application of the 
proposed system combined with real-time wristband haptic feedback to facilitate mindful eating. For this, the 
collected data from 16 participants were used to develop an algorithm for detecting chewing and swallowing. We 
extracted 18 features from EMG which were presented to different classifiers, to develop a system enabling 
participants to self-moderate their chewing behaviour using haptic feedback. An additional experimental study 
was conducted with 20 further participants to evaluate the effectiveness of eating monitoring and haptic 
interface in promoting mindful eating. We used a standard validation scheme with a leave-one-participant-out to 
assess model performance using standard metrics (F1-score). The proposed algorithm automatically assessed 
eating behaviour accurately using the EMG-extracted features and a Support Vector Machine (SVM): F1-Score =
0.95 for chewing classification, and F1-Score = 0.87 for swallowing classification. The experimental study 
showed that participants exhibited a lower rate of chewing when haptic feedback was delivered in the form of 
wristband vibration, compared to a baseline and non-haptic condition (F (2,38) = 58.243, p < .001). These 
findings may have major implications for research in eating behaviour, providing key insights into the impact of 
automatic chewing detection and haptic feedback systems on moderating eating behaviour towards improving 
health outcomes.   

1. Introduction 

According to a report from the U.S. Department of Labour, the 
average person spends 1.18 h a day eating.1 Oftentimes, during eating 
people may engage in additional concurrent activities such as working, 
driving, or reading. By engaging in concurrent activities, people become 
arguably less aware of the extent of time they devote to eating. This 
mindless eating – or the lack of awareness of the food we are consuming 

– has been linked to the obesity epidemic and other health problems 
attributed to unhealthy eating behavior [1,2]. For example, the speed of 
food consumption has been associated with increased Body Mass Index 
(BMI) [3], diabetes [4], and various eating disorders [5]. Hence, 
investigating eating behaviour interventions may have wide ranging 
implications including weight management and eating disorder 
treatment. 

Self-reporting and reflection are often considered important 
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activities to facilitate behaviour change [6]. Such activities can help 
maintain a state of ‘mindful’ eating, which is important to counter 
automatic eating and environmental influences [2] and facilitate 
reflection upon behaviour change goals. Current studies looking into 
eating speed often rely on participant self-monitoring or manual 
observation in experimental settings. Alternative approaches to studying 
eating speed have made use of a mandometer, an electronic scale 
measuring the weight of food over time, to estimate intake rate [5]. 
Although such tools provide an objective measure of eating speed, they 
do not provide sufficient and detailed evaluation of eating processes 
such as chewing and swallowing. 

The focus of this work is therefore twofold: i) Study 1 focuses on the 
development of an automated system for detecting eating behaviour 
(chewing and swallowing) using Electromyography (EMG) signals; ii) 
Study 2 aims to investigate the feasibility of using haptic feedback using 
a smart wristband to facilitate mindful eating using the detection tech-
nique developed in Study 1. 

2. Related works 

2.1. Links between eating rate and health 

Previous studies have investigated the effect of eating rate on food 
intake quantity through controlled experiments. For example, Kokkinos 
et al. [7] conducted a study using timed eating period and food quantity 
to control eating speed, and measured hunger stimulating and inhibiting 
hormone levels in the blood. They reported higher concentration of 
hunger reducing hormones after a slower meal and hypothesised that 
this might indicate eating rate could be related to overconsumption of 
calories. Similarly, Zhu and Hollis [8] investigated the effect of 
controlled chewing thoroughness (chew count) and found that increased 
chewing thoroughness was associated with reduced eating rate and food 
palatability. Zandian et al. [5] compared linear eaters (people who eat at 
a constant rate) and decelerated eaters (people who slow down during 
the meal) during eating sessions with intake speeds where feedback was 
provided. They found that participants in the decelerated eating group 
demonstrated difficulty maintaining set eating speeds. 

Various diverse health factors may be related to chewing rate, 
directly or indirectly. For instance, Yamazaki et al. [9] examined 6827 
participants and concluded that masticatory performance and eating 
rate can be considered potential risk factors and are associated with 
diabetes. There have also been studies suggesting a link between eating 
rate and ‘stress-eating’. Adam and Epel [10] reported that those who 
release a large amount of cortisol in response to stress consumed more 
calories following application of high stress tests. Tasaka et al. [11] built 
on these hypotheses, relating salivary cortisol levels to chewing rate 
after study sessions involving stress loading and chewing at different 
rates, reporting reduced cortisol levels after fast chewing. Collectively, 
these studies concluded that there may be an association between psy-
chopathological stress responses and eating behaviour, and also that 
chewing faster might contribute to stress relief. Some other studies like 
[12] investigated the effects of the food masticatory in older people with 
different dental condition, where the eating behaviour in different 
people with natural and full denture via EMG signals were explored. 

2.2. Limitations of current techniques in logging eating behaviour 

The two main approaches for tracking eating are self-logging, and 
through manual observation (i.e. observations by human raters). Self- 
reported measures offer an easy approach to log diet for tracking 
eating disorders or weight management [6], or for large scale population 
studies of eating behavior [13]. However, such measures are intrinsi-
cally subjective and might be unreliable or prone to bias [14]. For 
instance, in a large study of 4808 participants to compare self-reported 
and clinically measured height and weight, Spencer et al. [15] reported 
overestimated height and underestimated weight. Similar effects were 

shown in other studies [16], and such bias was also observed during 
reliability assessments of eating disorder screening questionnaires [17]. 
The main limitation of manual observation-based studies is time and 
resource demands, which restricts the amount of recorded data one can 
analyse. In any large-scale study, the collection of high-quality data is 
time consuming and requires considerable resources. For example, Bajic 
[18] conducted a study of the effects of music on eating amongst 103 
participants, which involved manual analysis of approximately 52 h of 
video footage. Other studies overcome similar issues through strict 
experimental protocols to simplify recorded data [8]. Some automated 
solutions exist, such as using a mandometer, or automated systems of 
eating behaviours. However, these approaches are relatively restricted 
in purpose and are immobile, thus limiting their applicability in prac-
tical settings. 

2.3. Using mobile technology to promote healthy eating 

Over the last few years many studies highlighted advantages of 
mobile technologies in promoting healthy eating, i.e. the ability of 
mobile devices to provide users with an easily accessible platform which 
enables convenient recording of data regarding eating behaviours, and 
receiving relevant feedback about their dietary choices (see [19]). 
Notable examples include an image-based mobile food recording sys-
tem, which uses before-after photographs of foods and beverages 
consumed by users [20]. Such technology has also been sought to help in 
managing specific diseases where dietary monitoring plays a key role 
(such as in diabetes care where eating habits are monitored in combi-
nation with physical activity to help patients manage their blood glucose 
levels) [21]. 

Recently, the concept of mindful eating has been proposed as a 
technique to help regulate eating behavior [1]. Mindfulness is the psy-
chological process of bringing one’s attention to experiences occurring 
in the present moment. Since eating is generally considered as a type of 
automatic behaviour, we tend to consume food without conscious 
consideration. By helping people maintain a state of mindfulness during 
eating and more consciously examining hunger and satiation, in-
dividuals may be able to better “override” automatic eating behaviours. 
However, in order to effectively monitor eating behaviours, most 
existing studies rely on users manually entering details about their food 
consumption which requires considerable effort and could be prone to 
bias and participant error. Hence, for a behavioural change system to be 
effective, a monitoring technique would need to be employed to allow 
real-time monitoring of eating rate. 

Mobile technologies have been proposed as a low-cost way to mea-
sure eating rate [22]. Jasper et al. [23] implemented an automated 
system for monitoring bite rate based upon hand motion captured by a 
wrist worn gyroscope which was been evaluated under controlled and 
real-life conditions. They reported that feedback reduced the number of 
bites, but that this resulted in compensatory behaviour permitting 
increased intake [16]. Some technologies like computer vision has also 
been implemented for dietary and eating behaviour assessments where 
some focused on processing the meals picture [24,25] for monitoring the 
consumed calories and some other are focused on the motion recogni-
tion of body for eating behaviour analysis [26]. Among other technol-
ogies, some studies are also acoustic sensors like laryngophone for food 
intake recognition [27,28]. 

The use of automated EMG-based eating detection for the monitoring 
of eating rate is another viable alternative [29–31] as EMG signals are 
considered as gold standard for chewing and swallowing logging [32]. 
Prior EMG studies approach the detection of eating rate through the 
detection of chewing activities, by using signal thresholds to identify 
periods of signal activity which denote rhythmic chewing events. 
Chewing is typically represented in EMG signals of the masticatory 
muscles by a burst of signal amplitude, occurring in a rhythmic sequence 
throughout the course of eating. The onset and termination of muscle 
activity is generally determined through the use of a predefined 
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threshold; identifying onset and termination as the points at which the 
signal crosses the given threshold value. However, this approach has 
been found to be an unreliable approach, prone to false positives [33]. In 
addition, EMG signal activity of many facial muscle groups may be 
sensitive to inter-muscular cross-talk, where the detected activity might 
not be associated with underlying chewing aspects that we want to be 
characterising. 

3. Methods 

In this section, we present the methodology for both studies. We first 
discussed the data collection procedure, participant selection, feature 
extraction and classifications in subsection 3.1. Also, the development 
and implementation of the real-time chewing detection model, data 
processing as well as the experimental protocols for the second study are 
discussed in subsection 3.2. 

3.1. Study 1: automated detection of eating behaviour using EMG 

In this study, we developed an algorithm aiming to provide accurate 
and robust detection of chewing and swallowing events using EMG 
signals. 

3.1.1. Data collection 
The data collection system consisted of custom hardware and soft-

ware paired with a physiological sensor device and a standard laptop 
computer. Participants were mounted with standard surface electrode 
sensors (#H124SG, Covidien, Ireland) connected to a Bluetooth enabled 
EMG measurement and transmitter unit (Shimmer 3, Shimmer Sensing, 
Ireland). All data was collected with a sampling frequency of 1024 Hz. 
Chewing and swallowing activities were monitored using EMG signals. 
For mastication, the two primary masticatory muscles groups are the 
‘masseter muscles’ and the ‘temporalis muscles’ used predominantly to 
control the elevation of the mandible [29]. In the context of EMG, 
Criswell and Cram [34] demonstrate the similarity of the signals from the 
two sites during chewing; describing mastication as the predominant 
action identifiable from the masseter muscles, and “assistance in 
chewing” as an important action of the temporalis. The masseter has also 
been described as easy to identify and reliable, which is a valid 
consideration for the purpose of reproducibility of this work [35]. In the 
meanwhile, the Suprahyoid muscles, while also related to mandible 
motion (jaw opening), are heavily associated with the elevation of the 
larynx and the oral, pharyngeal, and esophageal stages of swallowing 
and as such have been suggested as potential muscles that could be used 

to detect swallowing activities with EMG [34]. Fig. 1 shows the 
approximate position of electrode placement in this study. 

The data collection software (see Fig. 2 for a flowchart) was 

developed using the C#.Net platform and the Shimmer API.2 Participants 
were able to self-report individual chews and swallows by performing a 
short click or long-hold of a ‘clicker’ device respectively. All data was 
recorded concurrently and was synchronised. Video footages of the 
participants were captured to complement ground truth recording via 
the ‘clicker’. In addition, the software also served to guide participants 
through the data collection, providing textual and verbal instructions. 
Approval for the data collection procedures was granted by University of 
Kent Faculty of Sciences Research Ethics Advisory Group for Human 
Participants (Ref No 0721718). 

3.1.2. Participants 
For this study, on a par with other prior studies [32,36,37] we 

recruited 16 participants from a research University (details not pro-
vided to protect participants’ anonymity). Participants were selected to 
include a range of physical attributes (age, gender, height, and weight). 
Overall, the age of participants was between 18 and 40. Nine of the 
participants were female. Seven were considered to be overweight. 

(BMI >25) and one was considered slightly underweight (BMI =
18.1). Participants were provided with a range of food items to consume. 
We selected five different food types which were representative of the 
textures and viscosities found in different food categories [30,33]; apple, 
jam sandwich, pizza, yoghurt, and water. Participants were each asked 
to consume 18 portions of each food item, over the two iterations of the 
experimental procedure and the various meal sections. Each solid food 
item was cut into small standard bite-size portions [32], approximately 
2.5 cm square in the case of pizza and sandwiches, and apple slices 2 cm 
by 2.5 cm. Yoghurt was provided in a small container along with a 5 ml 
spoon. A portion of yoghurt was defined as a single spoonful. Unlimited 
water was provided, and a portion was described to participants as a 
small mouthful. 

Participants were asked to follow on-screen instructions guiding 
them through the experimental procedure: 5 min of baseline measure-
ment, 5 min speaking aloud, head motion, and consumption of a small 
meal. Head motion was also carried out at times while eating to simulate 
normal movement during eating. Inclusion of reading and head motion 
was to permit training of classifiers which are robust to unrelated ac-
tivity. Fig. 3 shows the detailed protocol used in the study. Following 
completion, the sensors were removed from the participants, replaced, 
and the procedure was repeated. This process was followed to mitigate 
effects where minor changes in sensor placement might adversely 
impact the quality of data recorded. Each participant recorded two data 
sets, however for 3 of these participants only one dataset was considered 
viable due to hardware faults, and one participant elected not to return 
to take part in a session. Overall, a total of 28 datasets were collected, 
each comprising approximately 20 min of EMG data recorded during a 
combination of activities and food consumption. We processed 384 min 

Fig. 1. Surface electrode placement positions for EMG measurement of the 
(a) Masseter muscles, and (b) Suprahyoid muscles, based on [30]. 

Fig. 2. A flowchart summarizing experimental data collection system.  

2 https://github.com/openmhealth/shimmer. 
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of data from 16 participants. This includes 5 min of sitting still and 5 min 
of speech which were collected during each session. The remainder of 
the data consisted of participants consuming a small meal. During 
eating, a total 16,237 eating, 14,180 chews and 2057 swallows were 
recorded. The food types and associated labels (chewing and swallow-
ing) are summarized in Table 1. 

3.1.3. Data processing and feature extraction 
The data was filtered and processed to eliminate noise and move-

ment artefacts. Specifically, a unidirectional Butterworth bandpass filter 
was applied to the EMG signal with a low cut-off frequency at 20 Hz and 
a high cut-off frequency at 500 Hz (with cut-off order 5). The signal was 
then rectified using a full wave digital rectifier and normalised such that 
values lay within the 0–1 range. Each dataset was collected with self- 
reported ground truth labels (See Table 1). Whilst this gave a good 
indication of individual chew and swallow events, it was only an 

approximate indicator of the signal activity ground truth and did not 
guarantee the identification of uniform and predictable onset and 
termination times. To correct this, the ground truth for each dataset 
underwent automatic and manual review to ensure fidelity. Firstly, 
automatic correction of chewing event onset and termination was 
applied, using threshold-based activity detection (based on the EMG of 
the masseter muscle). Accurate ground truth timings could then be 
identified, where periods of potential EMG activity intersect or lay 
within close temporal proximity to ground truth timestamps and were 
used to correct ground truth. The same process was repeated for swallow 
ground truth correction, using submental activity. However, as these 
muscles also exhibited some activity during chewing, manual review of 
swallow EMG activity and video footage was used to confirm swallow 
ground truth onset and termination. The threshold value (thr) for this 
was determined using the suggest by Abbink et al. [38] and Li et al. [39] 
for EMG detection: 

thr = μ0 + j*δ0 (1)  

where μ0 is the mean of the baseline, δ0 is the standard deviation of the 
baseline, and j = 5. 

Given that swallowing typically spans a longer period of time 
compared to chewing, we decided to treat this as binary classification 
problems: i) chewing classification - where all activities (including non- 
eating activities) were considered NA apart from chewing; ii) swallow-
ing classification - where all activities were considered NA apart from 
swallowing. We down sampled the EMG signal by a factor of 10 and 
computed features using a sliding, overlapping Hamming window, 
which we set to 0.5 s (512 samples) for chewing and 1.625 s (1664 
samples) for swallowing (see section 4.1 for more information). 

Summarizing our data pre-processing approach: EMG signals were 
originally recorded with a sampling rate of 1024Hz, then filtered with a 
Butterworth band-pass filter with a range of 20Hz–500Hz. Subse-
quently, the signals were resampled using a sliding, overlapping Ham-
ming window set to 0.5 s (512 samples) for chewing and 1.625 s (1664) 
samples for swallowing. Finally, the features were extracted for those 
signal segments (respectively). 

Features were extracted from the two signal channels and the sample 
was labelled according to a period of inactivity (NA), or a chew (C) or a 
swallow (S) event. A total of 18 features were extracted across two 
channels of EMG and used in the classification models based on previous 
literature [31,40,41] (See section 7 for a detailed algorithmic definition 
of the features) 

3.1.4. Classification of chewing and swallowing 
We used different classifiers to assess binary differentiation of 

chewing and swallowing events: Support Vector Machine (SVM), Linear 
Discriminant Analysis (LDA), Decision Tree (DT), and Extra Trees meta 
estimator (ET). The statistical models’ performance was assessed on a 
random selection of 25% of participants (4 participants). Furthermore, a 
leave-one-participant-out evaluation technique was employed, where in 
each run we trained the model using the samples from the k-1 partici-
pants and testing on the outed participants. The hyper-parameters of the 
classifiers were tuned using k-fold cross validation (k = 3) with grid 
search. Analysis of the Support Vector Classifier (SVC) revealed that a 

Fig. 3. The detailed protocol used to collect data for study 1.  

Table 1 
The number of eating events recorded for each food type (N = 16).  

Type of Food Class label 

Chew Swallow Total 

Apple 3595 369 3964 
Sandwich 4282 376 4658 
Pizza 6073 395 6468 
Yoghurt 230 330 560 
Water 0 587 587 
Total 14,180 2057 16,237  
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SVC with a linear kernel was optimal for the classification of chews and 
swallows, and was able to perform generalised classification using data 
from unknown individuals as discussed in section 4.1. The model per-
formance was assessed using Precision, Recall, and the F1-score (See Eq. 
(2)) which are widely used in binary class classification settings. We 
have used the following standard definitions for these performance 
metrics. 

Precision=
Tp

Tp + Fp
(2)  

Recall=
Tp

Tp + Fn  

F1=
2 × Presicion × Recall

Presicion + Recall
,

where Tp = true positive, Fp = false positive, and Fn = false negative. 
There was considerable imbalance in the class labels in the final 

training and testing sets, towards the inactive class. Class imbalance in 
the test sets was also liable to cause anomalous results during testing. 
The problem with class imbalanced data is that a statistical learner may 
fail to generalize sufficiently well, indicating the majority class as the 
dominating output. Therefore, there are different strategies to tackle 
statistical learning problems with class imbalanced data to overcome 
this limitation. The simplest approach which can provide a baseline 
performance is to undersample the majority class(es) so that all classes 
are equally represented in the dataset. Moreover, we can explore 
different thresholds within classifiers, e.g. adjusting the thresholds of 
probabilistic outputs so that the output of the classifier takes into 
consideration of class dominance and is adjusted accordingly. Therefore, 
we have reported findings using all data, and subsequently also under-
sampled the data with the aid of RandomUnderSampling library with the 
resampling strategy of ‘majority’ to ensure that we provide a balanced 
dataset to the classifier. 

3.2. Study 2: real-time haptic feedback for mindful eating 

In Study 2, an experimental study was conducted to investigate the 
effectiveness of our proposed haptic feedback system. To achieve this, 
we first adapted the eating detection algorithm from Study 1 to work in 
real time. Then, a mobile application was developed integrating this real 
time algorithm and haptic feedback using a smart wristband; the entire 
process from feature extraction from the EMG signals, classification of 
the signals using the pre-trained classifier, and providing feedback to the 
wristbands was all conducted in real time. 

3.2.1. Development of real time chewing detection algorithm 
subsection 3.1 focused on the post-hoc classification of swallowing 

and chewing activity after data had been collected and pre-processed. 
The feedback system developed in Study 2 required real-time, or near 
real-time, detection of chewing events which could then be used to 
extrapolate information regarding chewing rate and providing feedback. 
The same dataset used in section 3.1 was used in the training and testing 
of the live chewing detection algorithm. Since we are interested in the 
chewing activity, only the EMG channel corresponding to the masseter 
muscle was used. This helped minimise participant’s exposure to unfa-
miliar sensors on their face which were potential distractors for the 
feedback study. 

We computed features processing each successive non-overlapping 
0.5-s signal segment, extracting: the mean of the signal for each 
segment, the standard deviation, maximum amplitude, root mean 
square value, integrated EMG, mean frequency, and mean frequency 
band power (see section 7 for more info). The features were normalised 
using reference voluntary contractions to determine the appropriate 
maximal amplitude expected during eating. The reference amplitude 
was obtained during a short period of calibration (through eating one 

piece of each of the available foods) for each participant, during which 
the reference values were calculated. Afterwards, each entry in the final 
feature array was labelled as either occurring during a burst of EMG 
activity related to chewing behaviour (C) or as inactivity or unrelated 
activity (NA). A linear SVM based model was then trained using the 
available data. As for the hyper-parameters, a penalty value (parameter 
of C in SVM classifiers) of 5 (through cross validation grid search) and a 
squared hinge loss function was used. Considering the quadratic, O(n2), 
training time complexity of our SVC classifiers on the Big-O chart, the 
training time of the regression model via all the features was recorded as 
11.87 s. For testing purposes, leave-one-participant-out approach was 
used. To compensate for class imbalances, the test sets were re-sampled 
at testing, down-sampling the majority classes to match the minority. 
The model was then evaluated based on the F1-Score, Precision and 
Recall (similarly to study1). Given the run-time complexity of SVC 
classifiers which mathematically defined as O(k∗d) [42], where k and 
d are defined as the number of support vectors and dimensionality of the 
data (i.e. number of features), respectively, the run-time of the model 
with linear kernel and penalty value of 5 was measured as 1.9 ms. The 
runtime of the feature extractor to extract the 18 features was measured 
as 1 ms. Thus, the overall runtime of the model for chewing classifica-
tion was measured as 500ms  + 1.9ms  + 1ms ≅ 500 ms. 

3.2.2. Implementation of the real-time chewing detection and haptic 
feedback system 

The system consists of a Bluetooth enabled EMG signal capture de-
vice (Shimmer 3) connected to standard surface electrodes (#H124SG, 
Covidien, Ireland) axed across the masseter muscles on the dominant side 
of the user. To demonstrate the application’s capacity in a mobile 
context, the measured signal was streamed live via Bluetooth to a 
smartphone (Samsung Galaxy S6) running Android version 3.0. The 
smartphone receives the signal via a custom application and acts as a 
local intermediary between the signal capture device and remote 
classier, and also handles user feedback regarding chewing rate. 

Fig. 4 provides an overview of the chewing detection, monitoring, 
and feedback system. A laptop (Dell, Inspiron 75,594) connected to the 
mobile device via Bluetooth connection acted as a remote server with 
custom software handling signal processing and classification. It calcu-
lated chewing rate information, permitted live monitoring and returned 
live chewing rate information to the phone for feedback. Feedback was 
delivered via a Microsoft Band device (Microsoft Band 2). 

3.2.3. Signal processing and classification software 
A custom application hosted on the laptop server was developed to 

process and classify the incoming data. The application was developed 
using Python 2.7 and TKinter, with matplotlib modules used for the 
purpose of providing a graphical user interface and visualising the live 
signal. The Linear SVM was implemented using the Sci-kit learn python 
library. Chewing bursts were estimated using a voting filter over a small 
window (of 8 samples), to reduce the probability of unexpected and 
individually occurring false positives. 

The classification model was designed to return a positive prediction 
for all samples classified as occurring during an EMG chew burst. This 
enabled the system to determine the chewing events, which is defined as 
the period occurring between the onset and termination of positive 
predictions. Upon the termination of each detected chewing event, the 
predicted label, timestamps of the onset and termination of the event as 
well as the time duration of each event were logged on an output file. 
The chewing rate was then calculated based on the onset and termina-
tion timestamps of each detected chewing event (calculated as the 
number of chews per second) using Eq. (3): 

CR=
1
n

∑L

i=0
f (chewevent) (3)  
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f (x)=
{

1 if xonset ≥ (t − n) and xterm ≥ t
0 otherwise 

Giving the average number of chews per second over the last n sec-
onds, where chewevent is a chewing event occurring during the session, L 
is the number of chewing events observed during the session, xonset is the 
starting time of chewing event x, xterm is the termination point of 
chewing event x, t is the current time, and n = 5. As the approximate 
duration of chewing events has been identified as 0.5 s in our earlier 
experiments, it was possible to measure chewing rate over the last 5 s 
with the timings of approximately 5 chews. This was deemed to provide 
acceptable accuracy for chewing rate calculation while attempting to 
minimise the time error for feedback response. 

3.2.4. Haptic feedback system 
Whilst biofeedback systems often make use of visual or audio feed-

back, visual feedback was disregarded for this study as it would require 
special attention while eating. Audible feedback on the other hand 
would be overtly obvious to other individuals in social scenarios. 
Therefore, in this study, we explored the use of haptic feedback. Haptic 
feedback is able to provide relatively covert feedback that would not 
demand special attention whilst still acting to draw the attention of the 
users back to their eating behaviour. The Microsoft band was configured 
to provide four different patterns of vibrations based on a normalised 
eating rate (between 0.0 and 1.0): i) No haptic pulses (representing a 
‘low’ eating rate of around 0.0–0.3), ii) Periodic individual haptic pulses 
(representing a ‘moderate’ eating rate of around 0.3–0.6), iii) Periodic 
double haptic pulses (representing a ‘high’ eating rate of around 
0.6–0.8), and iv) High intensity double haptic pulses (representing a 
‘very high’ eating rate of around 0.8–1.0). 

3.2.5. Experimental study 
A within-participant study was carried out to determine the effects of 

real-time feedback provided by our system on short-term eating 
behaviour. Each participant was asked to participate in three different 
conditions where i) in the control condition, they were asked to eat 
normally, ii) in the none-feedback condition, they were asked to self- 
moderate their eating rate, and iii) in the haptic feedback system, they 
were asked to self-moderate their eating rate using our proposed haptic 
system. The hypothesis of our experiment study is as follows: i) the 
haptic feedback system would result in a reduced chewing rate in 
comparison to the none feedback and control conditions and ii) the 
haptic feedback system would provide participants with more awareness 
in regard to the self-moderation of the eating rate in comparison to the 
none feedback and control conditions. Approval for the experimental 
procedures was granted by the University of Kent Faculty of Sciences 
Research Ethics Advisory Group for Human Participants (Ref No 
0721718). 

3.2.5.1. Participants. 20 additional participants were recruited from a 

research university (details of the University are not provided to protect 
participants’ anonymity) (aged 18–50, 10 female) [32]. Only healthy 
participants were recruited with no dietary restrictions to the foods 
provided for the study. Consent was obtained to record anonymised 
sensor data and survey responses as well as to the record audios of the 
interview. The majority of participants (13) were within a healthy 
weight range according to their BMI, whilst 3 were found to be slightly 
underweight (BMI less than 18.5), and 4 were found to be overweight 
(BMI greater than or equal to 25). 

3.2.5.2. Materials. The system specified in the previous section was 
used during the course of this study. Participants had adhesive electrode 
sensors axed over their masseter muscles, following the placement 
procedure outlined in Fig. 1, and were equipped with a Microsoft Band 2 
for the study duration. The smartphone and remote processing laptop, 
which were included as part of this system, were placed nearby, but out 
of line of sight of the participants. The food selection was duplicated 
from previous data collection methodology involved in the development 
of chewing classification algorithms (section 3). 

3.2.5.3. Study process. Each participant took part in a single study 
session consisting of three phases: a control phase involving unrestricted 
normal eating, and two treatment phases involving self-moderation of 
the eating rate, with and without feedback. At the beginning of the 
session, participants were equipped with the sensing equipment. Par-
ticipants were then presented with food allotted to them for the exper-
iment and asked if they would like to make any substitutions or 
reductions (participants ate the same type of food for all conditions 
which they participated in). Afterwards, the food was divided into three 
portions for each phrase of the study. Participants took part in the three 
phases of eating, completely consuming one portion of food during each 
phase. In the first phrase (the control condition), participants were asked 
to eat the food normally. This phrase served both to help assess the 
normal eating performance of each participant and allowed our software 
to be calibrated. Following this, participants were asked to self- 
moderate their eating rate based on two conditions:  

● Self-moderation eating without Haptic Feedback condition (No- 
Feedback): In this condition, participants were asked to attempt to 
moderate their eating rate, trying to estimate their normal eating 
speed and slow down while eating the provided food portion; it is 
done by estimating their normal eating rate they usually eat in a 
normal situation (low-stress), and then trying so moderate their 
eating rate to that level.  

● Self-moderated eating, with haptic feedback (Feedback): In this 
condition, participants were asked to moderate their eating behav-
iour with the help of our haptic feedback system. A brief training 
session was carried out at the beginning of this phase in which the 

Fig. 4. Overview of the chewing detection and Haptic Feedback system developed in this study.  
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chewing rate haptic feedback system was then demonstrated to 
them. 

The order in which participants took part in the Feedback and No- 
Feedback conditions were randomized to help reduce the order ef-
fects. Fig. 5 provides a visual summary of the study process. 

3.2.5.4. Outcome measures. The outcome measures consisted mainly of 
measures related to the chewing behaviour (i.e. chewing rate) and the 
self-awareness of participants regarding their eating activity. 

3.2.5.4.1. Chewing behaviour. During each meal phase, information 
was recorded in real time including the onset and termination of each 
individual eating event. A number of variables were extracted that were 
hypothesised as potentially affected by feedback, including: chewing 
rate across the entire eating phase, repeated measures of chewing rate 
across an eating sequence, the duration of detected events, and the 
period between detected events. 

The live chewing rate was calculated and recorded using Eq. (3). 
However, this rate was sensitive to pauses between mouthfuls of food 
and as such was not used as an accurate indicator of chewing rate whilst 
eating across the entire meal phase. Instead, during data analysis, sub-
stantial gaps between chewing events were considered an indication of a 
pause following completion of a chewing sequence, or mouthful of food. 
During such a pause, a participant would swallow food and take in 

another portion for processing. Based on this, an adjusted chewing rate 
could be calculated to compensate for such pauses, by attenuating pe-
riods between chewing events which exceeded a given threshold. In this 
way, corrected values were found for chew event onset, corrected on, 
and termination, corrected off (see Eqs. (4)–(6). Simultaneously, this 
process could be used to identify the onset of chewing sequences, seq on, 
and termination times of chewing sequences, seq off . The chewing rate 
over the entirety of a session, CR overall, was given as the average 
number of chews per second, and calculated as: 

CR overall=
1
L
(corrected offL − corrected onL) (4) 

where L was the number of observed chews, corrected offL was the 
time in seconds at the termination of the last observed chew and 
corrected onL was the time is seconds at the onset of the first observed 
chew. Additional measures of eating were derived from the detected 
eating events. These measures included: average duration of chewing 
events, average period between chewing events, average duration of 
chewing sequences, average period between chewing sequences, and 
average number of chews per chewing sequence. Average duration of 
chewing events, chew dur, was determined by the following equation: 

chew dur =
1
L

∑L

i=0
(chew offi − chew oni) (5) 

The average period between chewing events, chew gap, was deter-
mined by the following equation: 

chew gap=
1
L
∑L

i=0
(corrected oni − corrected offi− 1) (6) 

Following identification of chewing sequences based on a threshold 
for identifying significant gaps between chewing events, as discussed 
previously, the duration of and period between chewing sequences 
could be calculated. For instance, given the identification of chewing 
sequence onset (seq on) and chewing sequence termination (seq off), the 
average duration of eating sequences, seq dur, and average period be-
tween chewing sequences, seq gap, per meal could be calculated. Our 
hypothesis was that there would be significant differences between the 
six measures used to evaluate the chewing behaviour of participants, 
with the haptic feedback system significantly reducing the chewing rate 
and chewing event per sequence and increasing the chewing sequence 
duration, chewing event duration, time between chewing event and time be-
tween chewing sequence in comparison to the control and no-feedback 
groups. 

3.2.5.4.2. Self-awareness in the eating activity. A short survey was 
administered after each phase of the study to gauge the participants’ 
self-awareness of their eating activity and awareness of the food being 
consumed during that phase. The concept of ‘mindfulness’ of one’s 
eating activity has been suggested as an important factor in supporting 
eating behaviour change and countering automated eating behaviour as 
a result of environmental factors [2,43]. In order to measure such ef-
fects, previous studies [1] had employed surveys such as the “Kentucky 
Inventory of Mindfulness” to capture participants’ degree of mindfulness 
in day-to-day life [44], and the “Three Factor Eating Questionnaire” to 
identify participants’ dietary restraint, disinhibition and hunger in a 
general context [45]. Whilst these give a general context of participant 
mindfulness and eating behaviour, they do not provide details regarding 
participant mindfulness or eating behaviour in regard to a particular 
task, or during said task. Based on these questionnaires, a custom 
questionnaire was developed which consisted of 23 statements 
regarding participants’ self-awareness of eating, rated on a 5-point 
Likert-scale from ‘strongly disagree’ to ‘strongly agree’. The state-
ments were selected in an attempt to provide insights into participant 
awareness of their environment, eating behaviour, eating speed and 
their overall self-awareness. Participants were asked to consider a 
normal eating scenario and compare their experience with the recently 

Fig. 5. Overview of the chewing detection and Haptic Feedback system 
developed in this study. 
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completed eating phase, and then provide their responses on a Likert 
scale survey. The survey responses were numerically categorised, be-
tween 1 = “strongly disagree” and 5 = “strongly agree”. For each item, 
an awareness score was defined as an average of all responses for 
statements related to that factor. Overall, our hypothesis was that there 
would be significant differences between the self-awareness measures 
within the groups, with the Haptic feedback condition allowing users to 
focus more on their food, eating activity and eating speed and less on the 
environment in comparison to the control and no-feedback groups. 

3.2.5.5. Data analysis. Repeated measures of Analysis of Variance 
(ANOVA) were carried out to investigate the differences between the 6 
measures used to evaluate the chewing behaviour of participants 
(Chewing sequence duration, Chewing event duration, Time between 
the chewing event, Time between the chewing sequence and the Num-
ber of chewing events per sequence) between the control, No-Feedback 
and Feedback conditions. Prior to conducting ANOVA, normality was 
tested using the Shapiro-Wilk test of normality and sphericity was tested 
using Mauchly’s Test of sphericity. Where sphericity was violated, the 
Greenhouse-Geisser correction for violations of sphericity. The same 
procedure was also used to analyse the measures for self-awareness in 
the eating activity. For measures which were found to be significant 
after carrying out the repeated measure ANOVAs, Bonferroni adjusted 
post-hoc tests were then used to determine the statistical differences 
between conditions. The IBM SPSS statistic software (version 25) was 
used to carry out the statistical analysis. 

4. Results 

In this section, we first introduce the results and findings of the first 
study for classification of chewing and swallowing at subsection 4.1. The 
results of the second study are presented in subsection 4.2 where the 
real-time haptic feedback system and its effectiveness in mindful eating 
is discussed. 

4.1. Study 1: automated detection of eating behaviour using EMG 

In this study, we implemented different classification models to 
provide accurate and robust classifications of chewing and swallowing 
events using EMG signals. The performance of the different models, as 
measured by F1-score are presented in Table 2 which suggests that SVC 
outperforms the other classifiers. This confirms that SVC with linear 
kernel is better suited for binary classification, which is linearly sepa-
rable. Also due to the higher complexity of the DNN-based networks, 
and better performance of the conventional classifiers with limited 
datasets, DNN-based classifiers (e.g. LSTM) are not considered in this 
study [46]. 

Table 3 shows the results for the leave-one-participant-out evalua-
tion. F1-score for the evaluation of the model with each test case is 
shown in Table 4. Overall, there was a low standard deviation between 
test cases for the F1-score for both models, with a deviation of only 0.02 
for the chewing classifier and 0.04 for the swallowing classifier. This low 
standard deviation of the F1-scores support the conclusion that the 
models and extracted features generalize well to entirely unknown 
participants who might have different eating behavior in terms of the 
eating/swallowing rate. 

The confusion matrixes of the offline chewing and swallowing 
detection models, evaluated in leave-one-out manner are also presented 

in Fig. 6. 
Furthermore, the variation in age, gender, and BMI value across the 

participants in Table 4 suggest that these factors have little impact on 
the detection and classification of EMG signals during eating. For 
chewing, no test cases reported an F1-score of under 0.91 and the high 
scoring cases for chewing prediction (with F1-score above 0.96) were 
found to be evenly distributed between high BMI and normal BMI. 
Window size evaluation was performed to investigate the effects of the 
window sizes on the F1-score on both chewing and swallowing detection 
models. The evaluation for the binary chew classification case (Fig. 7a) 
presents a rapidly increasing accuracy until 512 observations in length 
(0.5 s) for all algorithms, followed by a gradual decline with increasing 
window size. For swallowing detection, accuracy gradually increasing 
with much greater window sizes (Fig. 7b). The optimum window size 
was found to be 1664 observations (1.62 s) for the linear kernel SVC, 
however the optimum window size was less uniform in this case, and 
varied between algorithms. 

Additionally, analyses of the performance of the linear SVM chew 
and swallow classifiers using the unbalanced dataset were carried out. 
We investigated the use of thresholding applied to the sample confi-
dence scores to determine predicted labels based on the decision func-
tion confidence score. 

From this Fig. 8, we can aim to determine a convenient trade-off 
(which can be subjectively set by the user). Here, we set that to be at 

Table 2 
Performance summary for the binary chew and swallowing for each classifier 
algorithm.  

Class SVC LDA DT ET 

Chewing (C) 0.95 0.90 0.87 0.89 
Swallowing (S) 0.87 0.76 0.63 0.59  

Table 3 
Performance summary for the chewing and swallowing offline classifier based 
on the Leave One Out evaluation method.  

Class Precision Recall F1-score 

Chewing (C) 0.95 0.95 0.95 
Swallowing (S) 0.87 0.87 0.87  

Table 4 
F1-score for the leave-one-participant-out.  

Test case Number F1-score per Classifier 
model 

Demographics 

Chew Swallow Age Range Gender BMI 

1 0.95 0.89 18–25 Female 25.00 
2 0.96 0.88 26–35 Female 21.00 
3 0.95 0.81 36–45 Male 24.30 
4 0.96 0.86 26–35 Male 20.00 
5 0.97 0.92 18–25 Female 25.50 
6 0.92 0.94 26–35 Female 25.95 
7 0.93 0.87 18–25 Female 25.97 
8 0.94 0.86 18–25 Female 25.00 
9 0.95 0.86 18–25 Female 22.28 
10 0.94 0.83 18–25 Female 34.21 
11 0.97 0.95 26–35 Male 27.00 
12 0.97 0.80 18–25 Male 20.07 
13 0.98 0.88 26–35 Male 18.08 
14 0.94 0.82 26–35 Male 36.16 
15 0.93 0.86 26–35 Male 20.32 
16 0.91 0.91 18–25 Female 30.00 
Average 0.95 0.87  
SD 0.02 0.04  

Fig. 6. Normalised Confusion Matrixes for Offline a) Chew and b) Swallow 
detection; N/A = Unrelated Activity, C= Chewing, S= Swallowing. 
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0.65 as a good compromise between good Precision and Recall, although 
this could be adjusted for specific applications (e.g. where Precision is the 
primary outcome of interest at the cost of worsening performance in 
terms of Recall). The confusion matrix based on this threshold approach 
was presented in Fig. 9. 

4.2. Study 2: real-time haptic feedback for mindful eating 

In Study 2, an experimental study was carried out to investigate the 
effectiveness of our proposed haptic feedback system. Table 5 shows the 
performance of the real-time chewing detection algorithm that was 
developed and integrated into the haptic feedback system used to 
conduct the user experiment, and Fig. 10 visualised the confusion ma-
trix. Overall, for the classification of chewing activity in a real-time 
scenario from single channel EMG, the model resulted in an average 
Recall, Precision and F1-Score all of 0.92. Although these results 
demonstrate a small loss in performance from the model developed in 
the previous section, this loss was not substantial enough to suggest any 
detrimental impact resulting from the real-time approach to signal 
processing. 

As for the results of the user experiment, Table 6 presents a summary 
of the differences between the measures used to assess chewing behavior 
(including details regarding chewing duration and time between 
chewing events and sequences etc.) 

Overall, the repeated ANOVAs showed that there was a statistically 
significant difference between the 3 conditions with regards to Total 
chewing rate (F (2,38) = 58.243, p < .001), Chewing sequence duration 
(F(2,38) = 31.696, p < .001), Chewing event duration (F(2,38) = 5.843, 
p = .006), Time between chewing sequence (F(1.3, 24.7) = 16.65, p <
.001), Time between chewing event (F(2,38) = 66.01, p < .001) and 
chew events per chewing sequence (F(1.52,28.99) = 9.78, p = .001). 
Post-hoc tests showed that there was a statistically significant difference 
between the (haptic) Feedback condition and the No (haptic) Feedback 
and control conditions. 

Fig. 7. Evaluation of sample window sizes for binary a) chew and b) swallow classifier models.  

Fig. 8. The different scores (Precision, Recall, F1-score), as a function of 
different thresholds. 

Fig. 9. Confusion matrix for offline chew classification (Threshold-based 
predictions). 

Table 5 
The average performance of the real-time chew classification model based on the 
Linear SVM algorithm. (Using leave-one-participant-out).  

Class Precision Recall F1-score 

N/A 0.91 0.94 0.92 
Chew 0.94 0.91 0.90  

Fig. 10. Normalised Confusion Matrices (real time chewing classifier).  
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The results showed that on average, the lowest observed chewing 
rate was found in the Feedback condition, (Mean = 0.92, SD = 0.35) 
which was significantly lower than the No-Feedback condition (M =
1.18, SD = 0.34) and the control condition (Mean = 1.6, SD = 0.32). 
Participants in the Feedback condition showed on average, the longest 
chewing duration when consuming their food in the Feedback condition 
(Mean = 7.64, SD = 2.16), which was significantly longer than the No- 
Feedback condition (Mean = 5.48, SD = 1.31) and the control condition 
(Mean = 4.84, SD = 0.92). On average, participants spent significantly 
more time chewing in the Feedback condition (Mean = 0.53, SD = 0.15) 
than the control condition (Mean = 0.42, SD = 0.07). However, there 
was not a significant difference in the average chewing event duration 
between the Feedback and No-Feedback condition and the No-feedback 
and control condition. 

Participants in the haptic Feedback condition spent on average 
significantly more time between each chewing event (Mean = 0.86, SD 
= 0.45) than No-Feedback (Mean = 0.59, SD = 0.23) and control con-
dition (Mean = 0.34, SD = 0.16). Similarly, on average participants 
spent significantly more time between each chewing sequence when 
provided in the Feedback condition (Mean = 2.72, SD = 1.31) than the 
No-Feedback condition (Mean = 1.86, SD = 0.60) and the control con-
dition (Mean = 1.56, SD = 0.65). Finally, whilst participants in the 
control condition showed on average, a significantly higher number of 
chewing events per each chewing sequence (Mean = 6.5, SD = 0.77) 
than the No-Feedback condition (Mean = 5.39, SD = 0.85), there was 

not a significant difference in the number of chewing events per 
sequence in the Feedback and Non-Feedback and the Feedback and 
control conditions. 

For the measures related to self-awareness, all factors were found to 
have a normal distribution. Post-hoc pairwise comparison indicated that 
there was a significant difference between the control condition and 
haptic Feedback condition in the participants’ awareness in their envi-
ronment (p = .034). For the factor of awareness with regards to their 
eating activity, the score of participants during the Feedback condition 
was found to be significantly higher than the control condition (p =
.008). Finally, participants reported significantly higher awareness of 
their eating speed during both the Feedback condition and the No- 
Feedback condition than during the control period (p < .001). Fig. 11 
shows a summary of the average score and standard deviation for each 
of the self-awareness factors measured in this study. 

5. Discussion 

The paper reported two studies; study 1 focused on the development 
of an algorithm to detect eating behaviour, whilst study 2 presented an 
experimental study looking into the use of haptic feedback to facilitate 
mindful eating. The results from study 1 showed that by using EMG 
signals of the masseter and submental muscles, our classifier algorithms 
based on a linear SVM, was capable of swallow detection with a F1-score 
of 87% and chew detection with a F1-score of 95%. In addition, the al-
gorithm was shown to be robust and able to generalize well in a leave- 
one-participant-out evaluation scheme. This was achieved through the 
use of data from 16 participants over a wide range of BMI values, and 
including natural behaviour aspects such as head motion, reading aloud, 
etc. In the second study, we showed through an experiment with 20 
participants that haptic feedback triggered by automatic eating behav-
iour detection, had a significant effect in supporting voluntary eating 
rate reduction; resulting in a significant difference in eating rate be-
tween treatment groups, with an average rate during feedback based 
moderation 46.9% slower than the no-feedback moderation. These 
studies demonstrated the use of eating driven real-time feedback for the 
purpose of behaviour change intervention through providing ongoing 
reminders of chewing moderation goals. 

The first goal of this study was to develop automatic classification 
tools aimed towards automated chewing and swallowing detection 
based on EMG signals. Overall, we found that the models were robust, 
generalising well across different BMI and age range (see Tables 2–3). 
Compared to previous studies, the results of the study reported here 
were accurate in the presence of unrelated activities (e.g. reading, head 

Table 6 
A summary of the differences between the measures used to examine chewing 
behavior.  

Measurement (Mean Value) Condition 

Control No Feedback Haptic 
Feedback 

Total Chewing ratea 1.6 (SD =
0.32) 

1.18 (SD =
0.34) 

0.92 (SD =
0.35) 

Chewing sequence durationa 4.84 (SD =
0.92) 

5.48 (SD =
1.31) 

7.64 (SD =
2.16) 

Chewing event durationa 0.42 (SD =
0.07) 

0.48 (SD =
0.11) 

0.53 (SD =
0.15) 

Time between Chewing eventa 0.34 (SD =
0.16) 

0.59 (SD =
0.23) 

0.86 (SD =
0.45) 

Time between Chewing 
sequencea 

1.56 (SD =
0.65) 

1.86 (SD =
0.60) 

2.72 (SD =
1.31) 

Number of chewing events per 
sequencea 

6.50 (SD =
0.77) 

5.39 (SD =
0.85) 

6.03 (SD =
1.12)  

a Indicates a statistically significant difference (p < .001). 

Fig. 11. The means score of each of the measures for self-awareness factors examined in this study.  
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motions, etc.). For instance, ‘smart-glasses’ based studies showed com-
parable performance for chewing detection using threshold-based al-
gorithms [47,48]. Huang et al. [47] reported an accuracy of 96%, 
however they indicated a high degree of false positives associated with 
unexpected activity. Similarly, Zhang and Amft [48] reported chewing 
detection accuracy of approximately 94% for their algorithm in lab 
conditions, but only 80% accuracy in practical “free-living” settings (not 
under carefully controlled lab conditions). Our swallowing detection 
classifier resulted in an accuracy of 87% (F1-score = 0.87), which was 
lower than the accuracy of 93% reported by Nahrstaedt et al. [49] using a 
combined bioimpedance and EMG based algorithm. However, the 
higher performance in Nahrstaedt et al. [49] might be attributable to a 
number of factors, such as a limited subject pool, consisting of 9 subjects, 
two of whom were female (mean age 28.5), and seven male (mean age 
27.4), with unspecified BMI differences. The study also involved 
experimentally controlled bolus size swallowed, and different sensor 
placement, across the sternohyoid muscle rather than submental mus-
cles. Furthermore, the inclusion of both bioimpedance and EMG may 
add additional processing costs to the detection of swallowing activity, 
while the approach proposed in this study relies solely upon analysis of a 
single EMG channel. 

Eating speed and chewing thoroughness have been suggested as 
factors impacting various aspects of physical health such as increasing 
the possibility of a high BMI or increasing the risk of developing eating 
disorders [50]. From the experiment, we found that participants 
exhibited a lower rate of chewing during self-moderation of eating than 
during the normal eating condition and were found to further reduce 
chewing rate through the use of haptic feedback. Overall, we found a 
significant increase in the period between chews in the feedback con-
dition compared with the control, which was again larger in the haptic 
feedback condition. Interestingly, no statistically significant difference 
(p = .39) was found in the duration of chewing events between the no 
feedback and haptic feedback conditions. This suggests that although 
participants spent longer chewing each mouthful during moderation, 
particularly when supported by haptic feedback, the duration of indi-
vidual chews remained relatively constant. The average number of 
chewing events occurring during each chewing sequence could be 
considered as an indication of chewing thoroughness. Like the chewing 
event duration, for this measure there were no significant differences. 
The average number of chews per chewing sequence remained relatively 
constant. Furthermore, the lack of change in the number of chews or 
duration of chewing events implies that the increase in average duration 
of chewing sequences, and chewing rate in general, may primarily be a 
function of the time between individual chews rather than other factors. 
However, we acknowledge that as one can imagine, in the haptic feed-
back mode, could have been as a result of reminding the participants to 
perform a mindful eating behaviour, which have also been happened by 
random feedback. Given that the answer of this question remined un-
known in this study, we call the future studies to explore the effective-
ness of a haptic feedback via a precise chewing detection mechanism 
versus a randomized or periodic haptic feedback. 

In the experiment, participants’ self-awareness was estimated from 
Likert scale type responses to a number of statements to estimate overall 
levels of mindfulness related to eating. Mindful eating has been sug-
gested as a component of eating behaviour change [1,43,44] and it was 
hypothesised here that self-moderation and feedback would have an 
impact upon participants’ self-awareness regarding eating. Our results 
only partially supported this hypothesis. No statistically significant 
difference was identified between the conditions for participant 
awareness scores focusing upon food (p = .71), or for total awareness (p 
= .78). It is interesting to note that the difference in the awareness was 
marginal between no feedback and haptic feedback group, while the 
eating speed between two groups differed significantly. This shows the 
utility of the haptic system in slowing down eating speed even when 
participants were not more ‘mindful’. However, statistically significant 
differences were found for participant’s self-awareness in relation to 

their environment, eating behaviour, and in regard to their focus upon 
eating speed (p < .01). Participants appeared to be more aware of their 
eating environment during the control condition. Whilst counter-
balancing was applied between the No-Feedback and Feedback condi-
tions to moderate any temporal effects, the control condition was always 
carried out prior to these. This was done to enable calibration of the 
system and for baseline measurement. As such, there is a potential that 
differences between control and treatment periods was the result of 
participants becoming familiar with the setting, and less self-aware 
regarding their environment. This may also explain the effect upon 
eating awareness and participant’s awareness on their speed of eating. 
The scores for eating speed awareness were higher during the 
non-feedback and haptic feedback than the control, but did not differ 
significantly between one another. 

The detection of various eating related features may be useful for 
providing valuable health-related feedback. In addition to visual eval-
uation of health (for instance through EMG for swallowing function 
monitoring), feedback regarding physiological processes and physical 
activity has been used for the treatment of certain health conditions. For 
example, biofeedback has been used to help an individual gain voluntary 
control of physiological processes to help treat conditions, as part of 
rehabilitation following a stroke [51], or for helping practice swallow-
ing rehabilitation exercises in the treatment of swallowing disorders 
[52]. The technological approach we developed has the potential for 
other applications, for example, providing daily feedback regarding di-
etary intake goals based on automated detection of intake technique 
which has been used in conjunction with mobile based self-report of diet 
for weight change goals [53]. 

Previous studies had highlighted that the mobility and popularity of 
mobile devices, along with potential for personalised feedback and goal 
management, may facilitate tracking of dietary intake, exercise or 
weight management, and eating related interventions [22,53]. In 
particular, mobile phones could be particularly useful in automated 
systems for dietary tracking, eating monitoring, or for goal-based 
intervention or therapy, as a way to provide feedback, permit goal 
setting, and review of progress. Thus, the technology developed in this 
study could be particularly useful in weight change interventions: for 
providing feedback, encouraging the adoption of eating patterns and 
styles which have been associated with increased satiation and reduced 
intake [8], or for detecting adherence to a diet plan, using a model 
trained to detect specific foods. Such a system might help support clin-
ical diet change for the treatment of obesity, or monitoring adherence to 
set diets prior to some surgeries or other treatment, sharing data 
regarding intake directly with medical staff. In regard to weight man-
agement, there are also implications of the system developed in this 
paper for the screening and monitoring of eating disorders during 
treatment. Traditionally, screening of eating disorders is carried out 
subjectively through clinical interviews and questionnaires. The classi-
fication models developed here, in conjunction with intake volume 
estimation and data sharing can be of considerable benefit to eating 
disorder treatment. Eating activity might be evaluated to identify pat-
terns which are characteristic of eating disorders, such as periods of 
fasting, binging [54], or event related to eating speed [55]. Potentially, 
compensatory activities might also be detected, such as purging, based 
on facial muscle activity, or excessive exercise through the use of 
additional sensors (such as exercise tracking bands). 

Finally, we have explored different classifiers to determine the best 
performing statistical model for the particular applications investigated 
herein. Due to space restrictions, we have only presented findings using 
the best performing classifier (linear SVM), which was consistently 
outperforming the competing classification approaches. We remark that 
although theoretical work in machine learning has demonstrated that 
more advanced SVM approaches (e.g., radial basis function SVM) often 
outperform standard SVM [56], they require a sufficiently large number 
of samples in order to robustly estimate the best performing 
hyper-parameters (SVM are known to be very sensitive in the choice of 
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hyper-parameters). Therefore, because of the limited number of samples 
available to this study we had elected to only explore linear SVM. In 
addition, the sensors used in the current study are relatively intrusive as 
they are adhered to a person’s face. This raises a question on the 
real-world application of the proposed technology to improve people’s 
eating behaviour. However, there have been some significant advances 
in the development of flexible skin-like sensors, which are ultra-thin and 
non-invasive. Various studies have demonstrated the ability of such 
skin-like sensors in capturing high quality EMG signals [57–59]. These 
sensors are highly light-weighted and can be connected wireless to 
smartphones via standard Bluetooth technology, enabling the real-life 
monitoring of eating behaviour non-invasively. 

6. Conclusion 

We presented a system for automatically detecting eating behaviour 
in real time using EMG sensing. We demonstrated the use of a wearable 
haptic feedback device to help facilitate mindful eating. Overall, the 
work carried out in this study has major implications particularly for 
studying eating habits and improving our understanding of eating 
behaviour and the various influences upon eating choices such as food 
selection, intake volume, and intake speed. Automated eating detection 

systems may instead permit accurate collection of information with 
comparatively minimal processing. The methodology developed for the 
detection of eating speed could be extended to other forms of feedback 
regarding the users’ eating rate (audio, visual, and haptic). The impact 
of different distraction types (television, music, or other stimuli), social 
meals, and portion sizes upon eating speed, or the effect of feedback or 
different stress conditions, might all be investigated using the system 
developed in this paper, with appropriate adaptation. Finally, eating 
speed might be investigated across demographic groups, to determine 
any particular associations between individuals with differing BMI, 
obesity, diabetes, or different eating disorders. 
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Appendix 

This section presented the 18 extracted features from the EMG signals for both studies.  

Table 8 
18 Features extracted from EMG Signals  

Feature name Description Method Complementary 

Mean Absolute 
Value (MAV) 

Average of the absolute EMG signal across a signal segment. 
μ =

1
N

∑N

i=1
|xi|

xi = The EMG signal sampled at time i 
N = The number of samples 

Integrated EMG 
(IEMG) 

Related to EMG signal firing point. Defined as the summation 
of the absolute EMG signal across an EMG segment IEMG =

∑N

i=1
|xi|

xi = The EMG signal sampled at time i 
N = The number of samples 

Variance (VAR) Variance of EMG signal across a segment 
VAR =

1
N − 1

∑N

i=1
(x2

i − x)
x = The mean of the segment 
xi = The EMG signal sampled at time i 
N = The number of samples 

Root Mean Square 
(RMS) 

Square root of the average square of EMG amplitude across a 
segment RMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
x2

i

√
√
√
√

xi = The EMG signal sampled at time i 
N = The number of samples  

Standard 
Deviation (SD) 

Standard deviation () of the EMG signal across a given segment 
of EMG signal σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1
(xi − x)2

√
√
√
√

x = The mean of the segment 
xi = The EMG signal sampled at time i 
N = The number of samples 

Waveform Length 
(WL) 

Cumulative length of EMG waveform over a signal segment 
WL =

∑N− 1

i=1
|xi+1 − xi|

xi = The EMG signal sampled at time i 
N = The number of samples 

Peak Amplitude The peak amplitude across a given segment of the EMG signal – – 
Myopulse 

Percentage Rate 
Average Number of times that the absolute of the EMG signal 
exceeds thr. MYOP =

1
N

∑N

i=1
[f(|xi|)], f(x) =

{
1, x ≥ thr
0, x < thr 

xi = The EMG signal sampled at time i 
N = The number of samples 

Willison Amplitude 
(WAMP) 

Sum of times the absolute EMG exceeds a given threshold thr 
WAMP =

1
N − 1

∑N

i=1
[f(|xi − xi+1 |)],

f(x) =

{
1, x ≥ thr
0, x < thr 

xi = The EMG signal sampled at time i 
N = The number of samples 

Zero crossing (ZC) Number of times EMG amplitude crosses zero amplitude 
ZC =

1
N − 1

∑N

i=1
[sgn((xi ×

xi+1) ∩ |xi − xi+1 |) ≥ thr]

sgn =

{
1, x ≥ thr
0, x < thr 

xi = The EMG signal sampled at time i 
N = The number of samples 
Thr = Predefined crossing threshold 

Slope Sign Change 
(SSC) 

Count of the number of times the EMG signal slope changes 
across a signal segment 

1
N − 1

∑N

i=1
[f((xi − xi− 1) × (xi −

xi+1))]

f(x) =

{
1, x ≥ thr
0, x < thr 

xi = The EMG signal sampled at time i 
N = The number of samples 

Mean Frequency 
(MNF) 

Average frequency 
MNF =

∑M
j=1fjPj

∑M
j=1Pj 

fj = the frequency of the power spectrum at 
frequency j 
Pj = is the EMG power spectrum at frequency bin j 
M = The length of the frequency bin 

(continued on next page) 
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Table 8 (continued ) 

Feature name Description Method Complementary 

Mean Power 
Spectrum (MNP) 

Average power spectrum of the EMG signal sample  
MNP =

1
M

∑M

j=1
Pj 

Pj = is the EMG power spectrum at frequency bin j 
M = The length of the frequency bin 

Median Frequency 
(MDF) 

Frequency at which the spectrum is divided into two regions of 
equal amplitude 

∑MDF

j=1
Pj =

∑M

j=MDF
Pj =

1
2
∑M

j=1
Pj 

Pj = is the EMG power spectrum at frequency bin j 
M = The length of the whole frequency bin 

Median Power 
Frequency (MPF) 

Band power of the median frequency calculated using Fast 
Fourier Transform 

– – 

Tp values Defined as the normalised time point across a chewing cycle at 
which point P percent of the total cumulative EMG has 
occurred. 

– Calculated using the following steps.  
1. Calculate cumulative sum across sample 

window  
2. Normalised duration of sample  
3. Tp is the normalised time at which P percent of 

the cumulative sum of the signal has occurred 
Cycle Duration Duration of a chew or swallow EMG activity cycle from onset 

to termination   
Cycles per sequence Count of the number of chewing cycles within a given chewing 

sequence. 
– –  
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