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Abstract. In this paper classical solutions of the degenerate fifth Painlevé
equation are classified, which include hierarchies of algebraic solutions and
solutions expressible in terms of Bessel functions. Solutions of the degenerate fifth
Painlevé equation are known to be expressible in terms of solutions of the third
Painlevé equation. The classification and description of the classical solutions of
the degenerate fifth Painlevé equation is done using the Hamiltonian associated
with third Painlevé equation. Two applications of these classical solutions are
discussed, deriving exact solutions of the complex sine-Gordon equation and of
the coefficients in the three-term recurrence relation associated with generalised
Charlier polynomials.
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1. Introduction

In this paper we are concerned with solutions of the equation

d2w

dz2
=

(
1

2w
+

1

w − 1

)(
dw

dz

)2

− 1

z

dw

dz
+

(w − 1)2(αw2 + β)

z2w
+
γw

z
, (1)

with α, β and γ constants. Equation (1) is the special case of the fifth Painlevé
equation (PV)

d2w

dz2
=

(
1

2w
+

1

w − 1

)(
dw

dz

)2

− 1

z

dw

dz
+

(w − 1)2(αw2 + β)

z2w

+
γw

z
+
δw(w + 1)

w − 1
. (2)

with α, β, γ and δ constants, when δ = 0 and is known as the degenerate fifth Painlevé
equation (deg-PV), cf. [39].

The six Painlevé equations (PI–PVI), were discovered by Painlevé, Gambier and
their colleagues whilst studying second order ordinary differential equations of the
form

d2w

dz2
= F

(
z, w,

dw

dz

)
, (3)

where F is rational in dw/dz and w and analytic in z. The Painlevé functions can
be thought of as nonlinear analogues of the classical special functions. The general
solutions of the Painlevé equations are transcendental in the sense that they cannot
be expressed in terms of known elementary functions and so require the introduction
of a new transcendental function to describe their solution. However, it is well known
that PII–PVI possess rational solutions, algebraic solutions and solutions expressed in
terms of the classical special functions — Airy, Bessel, parabolic cylinder, Kummer
and hypergeometric functions, respectively — for special values of the parameters, see,
e.g. [11, 21] and the references therein. These hierarchies are usually generated from
“seed solutions” using the associated Bäcklund transformations and frequently can be
expressed in the form of determinants. These solutions of the Painlevé equations are
often called “classical solutions”, cf. [50, 51].

It is well known that solutions of deg-PV (1) are related to solutions of the third
Painlevé equation

d2q

dx2
=

1

q

(
dq

dx

)2

− 1

x

dq

dx
+
Aq2 +B

x
+ Cq3 +

D

q
, (4)

with A, B, C and D constants, a result originally due to Gromak [20]; see also [21,
§34]. The relationship between solutions of deg-PV and the third Painlevé equation is
given in Lemma 2.1 below. The objective of this paper is to give a classification and
description of the classical solutions of deg-PV (1) using the associated Hamiltonian
formalism, rather than through solutions of the third Painlevé equation (4).

In §2, the relationship between deg-PV (1) and the third Painlevé equation (4) is
discussed using the associated Hamiltonian. In §3, classical solutions of the third
Painlevé equation (4) are reviewed, the rational solutions in §3.1 and the Bessel
function solutions in §3.2. In §4, Bäcklund transformations of deg-PV (1) are given,
which can be used to derive a hierarchy of solutions from a “seed solution”. In §5,
classical solutions of deg-PV (1) are classified, the algebraic solutions in §5.1 and the
Bessel function solutions in §5.2. In §6, two applications of classical solutions of deg-PV
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(1) are given to derive exact solutions of the complex sine-Gordon equation, which is
equivalent to the Pohlmeyer-Lund-Regge model, and to derive explicit representations
of the coefficients in the three-term recurrence relation satisfied by generalised Charlier
polynomials, which are discrete orthogonal polynomials.

2. The relationship between deg-PV and PIII

In the generic case when CD ̸= 0 in the third Painlevé equation (4), we set C = 1
and D = −1, without loss of generality (by rescaling the variables if necessary), and
so consider the equation

d2q

dx2
=

1

q

(
dq

dx

)2

− 1

x

dq

dx
+
Aq2 +B

x
+ q3 − 1

q
. (5)

In the sequel, we shall refer to this equation as PIII since it is the generic case.
Consider the Hamiltonian associated with PIII (5) given by

HIII(q, p, x; a, b, ε) = q2p2 − xq2p− (2a+ 2b+ 1)qp+ εxp+ 2bxq, (6)

with a and b parameters and ε = ±1, see [27, 43]. Then p(x) and q(x) satisfy the
Hamiltonian system

x
dq

dx
=
∂HIII

∂p
= 2q2p− xq2 − (2a+ 2b+ 1)q + εx, (7)

x
dp

dx
= −∂HIII

∂q
= −2qp2 + 2xqp+ (2a+ 2b+ 1)p− 2bx. (8)

Solving (7) for p(x) gives

p(x) =
1

2q2

{
x
dq

dx
+ xq2 + (2a+ 2b+ 1)q − εx

}
,

and then substituting this in (8) gives

d2q

dx2
=

1

q

(
dq

dx

)2

− 1

x

dq

dx
+

2(a− b)q2

x
+

2ε(a+ b+ 1)

x
+ q3 − 1

q
. (9)

which is PIII (5), with parameters

A = 2(a− b), B = 2ε(a+ b+ 1). (10)

Solving (8) for q(x) gives

q(x) =
1

2p(x− p)

{
x
dp

dx
− (2a+ 2b+ 1)p+ 2bx

}
,

and then substituting this in (7) gives

d2p

dx2
=

1

2

(
1

p
+

1

p− x

)(
dp

dx

)2

− p

x(p− x)

dp

dx
+ 2εp− 2b2

p

− 4a2 − 1

2(p− x)
+

1− 4(a2 − b2)− 4εp2

2x
. (11)

Then making the transformation

p(x) =
2
√
z w(z)

w(z)− 1
, x = 2

√
z, (12)
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in (11) gives

d2w

dz2
=

(
1

2w
+

1

w − 1

)(
dw

dz

)2

− 1

z

dw

dz
+

(w − 1)2(a2w2 − b2)

2z2w
+
εw

z
, (13)

which is deg-PV (1) with parameters

α = 1
2a

2, β = − 1
2b

2, γ = ε. (14)

Hence we have the following result; see also [21, Theorem 34.2].

Lemma 2.1. If q(x) is a solution of (9) then

w(z) =
xq′(x) + xq2(x) + (2a+ 2b+ 1)q(x)− εx

xq′(x)− xq2(x) + (2a+ 2b+ 1)q(x)− εx
, z = 1

2x
2, (15)

with ′ ≡ d/dx, is a solution of (13), provided that

x
dq

dx
− xq2 + (2a+ 2b+ 1)q − εx ̸= 0.

Conversely, if w(z) is a solution of (13), then

q(x) =
1

2
√
z w

{
z
dw

dz
+ (w − 1)(aw + b)

}
, x =

√
2z, (16)

is a solution of (9).

Proof. Solving (7) for p(x), substituting in (12) and solving for w(z) gives (15). Also
solving (8) for q(x) and substituting (12) into the resulting expression gives (16).

An alternative method of deriving solutions of (13) involves the second-order,
second-degree equation satisfied associated with the Hamiltonian system (7,8), due to
Jimbo and Miwa [27] and Okamoto [43], which is often called the “σ-equation”.

Theorem 2.2. If HIII(q, p, x; a, b, ε) is given by (6), then

σ(x; a, b, ε) = HIII(q, p, x; a, b, ε) + qp− 1
2εx

2 + (a+ b)2, (17)

where q(x) and p(x) satisfy the system (7)-(8), satisfies the second-order, second-degree
equation (SIII) (

x
d2σ

dx2
− dσ

dx

)2

+ 2

{(
dσ

dx

)2

− x2

}(
x
dσ

dx
− 2σ

)
− 8ε(a2 − b2)x

dσ

dx
= 8(a2 + b2)x2. (18)

Conversely, if σ(x; a, b, ε) satisfies (18) then the solution of the Hamiltonian system
(7,8) is given by

q(x) =
εxσ′′(x)− ε(2a+ 2b+ 1)σ′(x)− 2(a− b)x

x2 − [σ′(x)]
2 ,

p(x) = 1
2εσ

′(x) + 1
2x.

Proof. See Jimbo and Miwa [27] and Okamoto [43].

Consequently solutions of deg-PV (13) can be expressed in terms of solutions of
SIII (18).
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Corollary 2.3. If σ(x; a, b, ε) is a solution of SIII (18), then

w(z; a, b, ε) =
σ′(x; a, b, ε) + εx

σ′(x; a, b, ε)− εx
, z = 1

2x
2, (19)

is a solution of (13).

Proof. This immediately follows from (12) and Theorem 2.2.

Remark 2.4. From Lemma 2.1 and Corollary 2.3, it’s clear that it’s simpler to derive
solutions of deg-PV (13) from equation (19) rather than equation (15). Further as
shown in §3, classical solutions of SIII involve one determinant, whereas classical
solutions of PIII involve two determinants.

3. Classical solutions of PIII and SIII

3.1. Rational solutions of PIII and SIII

Rational solutions of PIII (5) are classified in the following theorem.

Theorem 3.1. Equation (5) has a rational solution if and only if

ε1A+ ε2B = 4n, (20)

with n ∈ Z and ε21 = 1, ε22 = 1, independently.

Proof. For details see Lukashevich [30]; see also [36, 37].

Umemura [52]‡ derived special polynomials associated with rational solutions of
PIII (5), which we now define; see also [9, 28, 29].

Definition 3.2. The Umemura polynomial Sn(x;µ) is given by the recursion relation

Sn+1Sn−1 = −x

{
Sn

d2Sn

dx2
−
(
dSn

dx

)2
}

− Sn
dSn

dx
+ (x+ µ)S2

n, (21)

where S−1(x;µ) = S0(x;µ) = 1, with µ an arbitrary parameter.

Remarks 3.3.

(i) The Umemura polynomial Sn(x;µ) has the Wronskian representation

Sn(x;µ) = cn Wr (φ1, φ2, . . . , φ2n−1) , cn =

n∏
k=0

(2k + 1)n−k, (22)

where Wr(φ1, φ3, . . . , φ2n−1) is the Wronskian defined by

Wr(φ1, φ3, . . . , φ2n−1) =

∣∣∣∣∣∣∣∣∣
φ1 φ3 . . . φ2n−1

φ
(1)
1 φ

(1)
3 . . . φ

(1)
2n−1

...
...

. . .
...

φ
(n−1)
1 φ

(n−1)
3 . . . φ

(n−1)
2n−1

∣∣∣∣∣∣∣∣∣ , φ
(k)
j =

dkφj

dxk
,

and

φ2m−1(x;µ) = L(µ−2m+1)
m (−x),

with L
(α)
k (x) the Laguerre polynomial, for details see Kajiwara and Masuda [29];

see also [9, 28].

‡ The original manuscript was written by Umemura in 1996 for the proceedings of the conference
“Theory of nonlinear special functions: the Painlevé transcendents” in Montreal, which were not
published; for further details see [44].
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(ii) Rational solutions of PIII (5) are expressed in terms of Umemura polynomials.
For example,

wn(z;µ) = 1 +
d

dz
ln

{
Sn−1(z;µ− 1)

Sn(z;µ)

}
, (23)

satisfies (5) for the parameters

A = 2n+ 2µ− 1, B = 2n− 2µ+ 1.

To describe rational solutions of deg-PV (1), it is more convenient to use rational
solutions of SIII (18), which involve one Umemura polynomial and are discussed in the
following theorem, whereas rational solutions of PIII (5) which involve two Umemura
polynomials, as shown in (23).

Theorem 3.4. The rational function solution of SIII (18) is given by

σn(x;µ, ε) = 2x
d

dx
{lnSn(x;µ)} − 1

2x
2 − 2µx− 1

4 , n ≥ 0, (24)

with Sn(x;µ) the Umemura polynomial, for the parameters

a = n+ 1
2 , b = µ, ε = 1.

Proof. See Clarkson [9].

3.2. Special function solutions of PIII and SIII

Special function solutions of PIII (5) are expressed in terms of Bessel functions. These
are classified in the following Theorem.

Theorem 3.5. Equation (5) has solutions expressible in terms of the Riccati equation

x
dq

dx
= ε1xq

2 + (Aε1 − 1)q + ε2x, (25)

if and only if

ε1A+ ε2B = 4n+ 2, (26)

with n ∈ Z and ε21 = 1, ε22 = 1, independently. Further, the Riccati equation (25) has
the solution

q(x) = −ε1
d

dx
lnψν(x), (27)

where ψν(x) satisfies

x
d2ψν

dx2
+ (1− 2ε1ν)

dψν

dx
+ ε1ε2xψν = 0, (28)

which has solution

ψν(x) =


xν {C1Jν(x) + C2Yν(x)} , if ε1 = 1, ε2 = 1,

x−ν {C1Jν(x) + C2Yν(x)} , if ε1 = −1, ε2 = −1,

xν {C1Iν(x) + C2Kν(x)} , if ε1 = 1, ε2 = −1,

x−ν {C1Iν(x) + C2Kν(x)} , if ε1 = −1, ε2 = 1,

(29)

with C1, C2 arbitrary constants, and Jν(x), Yν(x), Iν(x), Kν(x) Bessel functions.

Proof. For details see Okamoto [43]; see also [11, 21, 34, 36, 37].
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Determinantal representations of special function solutions of PIII (5) were given
by Okamoto [43]; see also [18, 35]. As for rational solutions, to describe special function
solutions of deg-PV (1), it is more convenient to use special function solutions of SIII
(18), which are discussed in the following theorem.

Theorem 3.6. Suppose τn(x;µ, ε) is the determinant given by

τn(x;µ, ε) = det

[(
x
d

dx

)j+k

φµ(x; ε)

]n−1

j,k=0

, (30)

where

φµ(x; ε) =

{
c1Jµ(x) + c2Yµ(x), if ε = 1,

c1Iµ(x) + c2Kµ(x), if ε = −1,

with c1, c2 arbitrary constants, and Jµ(z), Yµ(z), Iµ(z), Kµ(z) Bessel functions. The
Bessel function solution of SIII (18) is given by

σn(x;µ, ε) = 2x
d

dx
{ln τn(x;µ, ε)}+ 1

2εx
2 + µ2 − n2 + 2n, (31)

for the parameters

a = n, b = µ. (32)

Lemma 3.7. The determinant τn(x;µ, ε) given by (30) satisfies the equation

x2

{
τn

d2τn

dx2
−
(
dτn
dx

)2
}

+ xτn
dτn
dx

= τn+1τn−1, (33)

or equivalently the Toda equation(
x
d

dx

)2

ln τn =
τn+1τn−1

τ2n
. (34)

Proof. See Okamoto [43, Theorem 2].

4. Bäcklund transformations

A Bäcklund transformation relates the solution of a Painlevé equation either to another
solution of the same equation with different values of the parameters, or to another
Painlevé equation. All Painlevé equations, except the first Painlevé equation, have
Bäcklund transformations. Hierarchies of classical solutions of the Painlevé equations
can be obtained by applying Bäcklund transformations to a “seed solution”.

Let wj(zj ;αj , βj , γj), j = 0, 1, 2, be solutions of deg-PV (1) with

z1 = −z0, (α1, β1, γ1) = (α0, β0,−γ0),
z2 = z0, (α2, β2, γ2) = (−β0,−α0,−γ0).

Then deg-PV (1) has the symmetries

S1 : w1(z1) = w0(−z0), (35)

S2 : w2(z2) = 1/w0(z0). (36)
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Theorem 4.1. Suppose that W0 = w(z;α, β, γ) satisfies deg-PV (1) with parameters

α = 1
2a

2, β = − 1
2b

2, γ = c.

Let Wj = w(z;αj , βj , γj), j = 1, 2, 3, 4, be solutions of (1) with parameters

α1 = 1
2 (a+ 1)2, β1 = − 1

2b
2, γ1 = c,

α2 = 1
2 (a− 1)2, β2 = − 1

2b
2, γ2 = c,

α3 = 1
2a

2, β3 = − 1
2 (b+ 1)2, γ3 = c,

α4 = 1
2a

2, β4 = − 1
2 (b− 1)2, γ4 = c,

respectively. Then these solutions can be obtained from W0 as follows

W1 =
{zW ′

0 + (W0 − 1)(aW0 − b)} {zW ′
0 + (W0 − 1)(aW0 + b)}

z2(W ′
0)

2 + 2azW0(W0 − 1)W ′
0 + 2cz2W0(W0 − 1) + (W0 − 1)2(a2W 2

0 − b2)
,

W2 =
{zW ′

0 − (W0 − 1)(aW0 − b)} {zW ′
0 − (W0 − 1)(aW0 + b)}

z2(W ′
0)

2 − 2azW0(W0 − 1)W ′
0 + 2cz2W0(W0 − 1) + (W0 − 1)2(a2W 2

0 − b2)
,

W3 =
z2(W ′

0)
2 + 2bz(W0 − 1)W ′

0 + 2cz2W 2
0 (W0 − 1)− (W0 − 1)2(a2W 2

0 − b2)

{zW ′
0 − (W0 − 1)(aW0 − b)} {zW ′

0 + (W0 − 1)(aW0 + b)}
,

W4 =
z2(W ′

0)
2 − 2bz(W0 − 1)W ′

0 + 2cz2W 2
0 (W0 − 1)− (W0 − 1)2(a2W 2

0 − b2)

{zW ′
0 − (W0 − 1)(aW0 − b)} {zW ′

0 + (W0 − 1)(aW0 + b)}
.

Proof. See Adler [2]; also Filipuk and Van Assche [17].

5. Classical solutions of deg-PV

To discuss classical solutions of deg-PV (1), it is convenient to make the transformation

w(z) = u(x), z = 1
2x

2, (37)

in (1), which gives

d2u

dx2
=

(
1

2u
+

1

u− 1

)(
du

dx

)2

− 1

x

du

dx
+

4(u− 1)2(αu2 + β)

x2u
+ 2γu. (38)

We could fix the parameter γ in (38), by rescaling x if necessary, but it is more
convenient not to do so. Instead classical solutions will be classified for γ = ±1. From
Corollary 2.3 and (37), we have that if σ(x; a, b, ε) is a solution of SIII (18), then

u(x; a, b, ε) =
σ′(x; a, b, ε) + εx

σ′(x; a, b, ε)− εx
, (39)

is a solution of (38) with γ = ε. As remarked above, it is easier to derive classical
solutions of deg-PV (1) from SIII rather than PIII, compare equations (19) and (15).

Theorem 5.1. Supppose that u0 = u(x;α, β, γ) satisfies (38) with parameters

α = 1
2a

2, β = − 1
2b

2, γ = c.

Let uj = u(x;αj , βj , γj), j = 1.2.3, 4 be solutions of (38) with parameters

α1 = 1
2 (a+ 1)2, β1 = − 1

2b
2, γ1 = c,

α2 = 1
2 (a− 1)2, β2 = − 1

2b
2, γ2 = c,

α3 = 1
2a

2, β3 = − 1
2 (b+ 1)2, γ3 = c,

α4 = 1
2a

2, β4 = − 1
2 (b− 1)2, γ4 = c,
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respectively. Then these solutions can be obtained from u0 as follows

u1 =
{xu′ + 2(u− 1)(au− b)} {xu′ + 2(u− 1)(au+ b)}

x2(u′)2 + 4axu(u− 1)u′ + 4cu(u− 1)x2 + 4(u− 1)2(a2u2 − b2)
,

u2 =
{xu′ − 2(u− 1)(au− b)} {xu′ − 2(u− 1)(au+ b)}

x2(u′)2 − 4axu(u− 1)u′ + 4cu(u− 1)x2 + 4(u− 1)2(a2u2 − b2)
,

u3 =
x2(u′)2 + 4bx(u− 1)u′ + 4cx2u2(u− 1)− 4(u− 1)2(a2u2 − b2)

{xu′ − 2(u− 1)(au− b)} {xu′ + 2(u− 1)(au+ b)}
,

u4 =
x2(u′)2 − 4bx(u− 1)u′ + 4cx2u2(u− 1)− 4(u− 1)2(a2u2 − b2)

{xu′ − 2(u− 1)(au− b)} {xu′ + 2(u− 1)(au+ b)}
.

Proof. This is easily proved by applying (37) to the Bäcklund transformations in
Theorem 4.1.

5.1. Algebraic solutions

Since deg-PV (1) and equation (38) are related by the transformation (37) then
algebraic solutions of deg-PV (1), which are rational functions of

√
z, are equivalent

to rational solutions of (38), which are rational functions of x. Therefore we discuss
rational solutions of (38), which are classified in the following Theorem.

Theorem 5.2. Necessary and sufficient conditions for the existence of rational
solutions of (38) are either

(α, β, γ) =
(
1
2 (n+ 1

2 ),−
1
2µ

2, 1
)
, (40)

or

(α, β, γ) =
(
1
2µ

2,− 1
2 (n+ 1

2 ),−1
)
, (41)

where n ∈ Z and µ is an arbitrary constant.

Proof. For details see Gromak, Laine and Shimomura [21, §38]; see also [36, 37].

We remark that the solutions of (38) satisfying (40) are related to those satisfying
(41) through the analog of the symmetry (36). Consequently we shall be concerned
only with rational solutions of (38) for the parameters given by (40).

Theorem 5.3. The rational solution of (38) for the parameters (40) is given by

un(x;µ) = 1− xS2
n(x;µ)

Sn+1(x;µ)Sn−1(x;µ)
, n ≥ 0, (42)

where Sn(x;µ) is the Umemura polynomial (22).

Proof. Substituting the rational solution of SIII (18) given by (24) into (39) and then
using the reccurence relation (21) gives the result.

Remark 5.4. The Umemura polynomial Sn(x;µ) satisfies the difference equation

Sn+1(x;µ)Sn−1(x;µ) = xS2
n(x;µ) + µSn(x;µ+ 1)Sn(x;µ− 1). (43)

Hence from (42) there are two alternative representations of the rational solution

un(x;µ) =
µSn(x;µ+ 1)Sn(x;µ− 1)

µSn(x;µ+ 1)Sn(x;µ− 1) + xS2
n(x;µ)

,

un(x;µ) =
µSn(x;µ+ 1)Sn(x;µ− 1)

Sn+1(x;µ)Sn−1(x;µ)
.
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5.2. Bessel function solutions

Theorem 5.5. Necessary and sufficient conditions for the existence of Bessel function
solutions of (38) are either

(α, β, γ) =
(
1
2n

2,− 1
2µ

2, ε
)
, (44)

or

(α, β, γ) =
(
1
2µ

2,− 1
2n

2,−ε
)
, (45)

with ε = ±1, and where n ∈ Z+ and µ is an arbitrary constant.

Proof. From (10) and (14), the parameters in PIII (5) and deg-PV (38) are given by

(A,B) =
(
2(a− b), 2ε(a+ b+ 1)

)
, (α, β, γ) = (12a

2,− 1
2b

2, ε),

respectively, for parameters a, b and ε. The result then follows from Theorem 3.5.

Theorem 5.6. The Bessel function solution of (38) for the parameters

(α, β, γ) =
(
1
2n

2,− 1
2µ

2, ε
)
,

is given by

un(x;µ, ε) = 1 +
εx2τ2n(x;µ, ε)

τn+1(x;µ, ε) τn−1(x;µ, ε)
, n ≥ 1, (46)

where

τn(x;µ, ε) = det

[(
x
d

dx

)j+k

φµ(x; ε)

]n−1

j,k=0

, (47)

and τ0(x;µ, ε) = 1, with

φµ(x; ε) =

{
c1Jµ(x) + c2Yµ(x), if ε = 1,

c1Iµ(x) + c2Kµ(x), if ε = −1,
(48)

c1 and c2 arbitrary constants, and Jµ(x), Yµ(x), Iµ(x) and Kµ(x) Bessel functions.

Proof. Substituting the Bessel function solution of SIII (18) given by (31) into (39)
and then using (33) gives the result.

Corollary 5.7. The Bessel function solution of (38) for the parameters

(α, β, γ) =
(
1
2n

2,− 1
2µ

2, 2ε
)
,

is given by

wn(z;µ, ε) = 1 +
εzT 2

n (z;µ, ε)

Tn+1(z;µ, ε) Tn−1(z;µ, ε)
, n ≥ 1, (49)

where

Tn(z;µ, ε) = det

[(
z
d

dz

)j+k

ψµ(z; ε)

]n−1

j,k=0

, (50)

and T0(z;µ, ε) = 1, with

φµ(z; ε) =

{
c1Jµ(2

√
z) + c2Yµ(2

√
z), if ε = 1,

c1Iµ(2
√
z) + c2Kµ(2

√
z), if ε = −1,

(51)

c1 and c2 arbitrary constants, and Jµ(x), Yµ(x), Iµ(x) and Kµ(x) Bessel functions.
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In the next Lemma, it is shown that the first solution u1(x;µ, ε), the “seed
solution”, satisfies a first-order, second-degree equation.

Lemma 5.8. The solution of (38) for the parameters

(α, β, γ) =
(
1
2 ,−

1
2µ

2, ε
)
,

is

u1(x;µ, ε) =
φµ+1(x; ε) [xφµ+1(x; ε)− 2εµφµ(x; ε)]

xφ2
µ+1(x; ε)− 2εµφµ+1(x; ε)φµ(x; ε) + εxφ2

µ(x; ε)
, (52)

where

φµ(x; ε) =

{
c1Jµ(x) + c2Yµ(x), if ε = 1,

c1Iµ(x) + c2Kµ(x), if ε = −1,

with c1 and c2 constants, satisfies the first-order, second-degree equation

x2
(
du

dx

)2

− 4xu(u− 1)
du

dx
+ 4εx2u(u− 1) + 4(u− 1)2(u2 − µ2) = 0. (53)

Proof. Define

Φµ(x; ε) =
φµ+1(x; ε)

φµ(x; ε)
,

then from (52)

u1(x;µ, ε) = 1− x

εxΦ2
µ − 2µΦµ + x

, (54)

and Φµ(x; ε) satisfies the Riccati equation

x
dΦµ

dx
= εxΦ2

µ − (2µ+ 1)Φµ + x. (55)

Next we assume that u1(x;µ, ε) satisfies a first-order, second-degree equation of the
form

x2
(
du

dx

)2

+ x
[
f2(x, µ, ε)u

2 + f1(x, µ, ε)u+ f0(x, µ, ε)
] du
dx

+

4∑
j=0

gj(x, µ, ε)u
j = 0, (56)

where {fj(x, µ, ε)}2j=0 and {gj(x, µ, ε)}4j=0 are to be determined. Then substituting

(54) into (56), using the fact that Φµ(x; ε) satisfies (55) and equating coefficients of
powers of Φµ yields

f2 = −4, f1 = 4, f0 = 0,
g4 = 4, g3 = −8, g2 = 4εx2 − 4µ2 + 4, g1 = −4εx2 + 8µ2, g0 = −4µ2.

Hence we obtain equation (53), as required.

This demonstrates that special function solutions of (38), and hence also deg-PV

(1), are different from special function solutions of PII–PVI where the “seed solution”
satisfies a Riccati equation, a first-order, first-degree equation.

Remark 5.9. Gromak, Laine and Shimomura [21, equation (38.7)] give, without
proof, a first-order, second-degree equation associated with Bessel function solutions
of deg-PV (1); see also Filipuk and Van Assche [17, §2.3].
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6. Applications

6.1. Complex sine-Gordon equation

Consider the two-dimensional complex sine-Gordon equation

∇2ψ +
(∇ψ)2ψ
1− |ψ|2

+ ψ
(
1− |ψ|2

)
= 0, (57)

where ∇ψ = (ψx, ψy). Making the transformation

ψ(x, y) = cos(φ(x, y)) exp{iη(x, y)}, ψ(x, y) = cos(φ(x, y)) exp{−iη(x, y)},

in the complex sine-Gordon equation (57) yields

∇2φ+
cosφ

sin3 φ
(∇η)2 − 1

2 sin(2φ) = 0,

sin(2φ)∇2η = 4(φxηx + φyηy),

which is the Pohlmeyer-Lund-Regge model [31, 32, 47].
The complex sine-Gordon equation (57) has a separable solution in polar

coordinates given by ψ(r, θ) = Rn(r) e
inθ, where Rn(r) satisfies

d2Rn

dr2
+

1

r

dRn

dr
+

Rn

1−R2
n

{(
dRn

dr

)2

− n2

r2

}
+Rn

(
1−R2

n

)
= 0, (58)

We remark that this equation also arises in extended quantum systems [4, 5, 6], in
relativity [19] and in coefficients in the three-term recurrence relation for orthogonal
polynomials with respect to the weight w(θ) = et cos θ on the unit circle, see [53,
equation (3.13)]. The orthogonal polynomials for this weight on the unit circle are
related to unitary random matrices [46].

Equation (58) can be shown to possess the Painlevé property, though it is not in
the list of 50 equations given in [24, Chapter 14]. Equation (58) can be transformed
to the fifth Painlevé equation (2) in two different ways.

(i) If Rn(r) satisfies (58) then making the transformation

Rn(r) =
1 + un(z)

1− un(z)
, r = 1

2z, (59)

yields

d2un

dz2
=

(
1

2un
+

1

un − 1

)(
dun
dz

)2

− 1

z

dun
dz

+
n2(un − 1)2(u2n − 1)

8z2un
− un(un + 1)

2(un − 1)
, (60)

which is PV (2) with α = 1
8n

2, β = − 1
8n

2, γ = 0 and δ = − 1
2 .

(ii) If Rn(r) satisfies (58) then making the transformation

Rn(r) =
1√

1− vn(x)
, r =

√
x, (61)

yields

d2vn

dx2
=

(
1

2vn
+

1

vn − 1

)(
dvn
dx

)2

− 1

x

dvn
dx

− n2(vn − 1)2

2x2vn
+
vn
2x
, (62)

which is deg-PV (1) with α = 0, β = − 1
2n

2 and γ = 1
2 so is equivalent to PIII (5),

as mentioned above.
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This shows that solutions of equations (60) and (62) are related by

vn(x) =
4un(z)

1 + u2n(z)
, x = 1

4z
2.

The function Rn(r) satisfies the ordinary differential equation (58), the
differential-difference equations

dRn

dr
+
n

r
Rn −

(
1−R2

n

)
Rn−1 = 0, (63)

dRn−1

dr
− n− 1

r
Rn−1 +

(
1−R2

n−1

)
Rn = 0, (64)

since solving (63) for Rn−1(r) and substituting in (64) yields equation (58). Also
eliminating the derivatives in (63)-(64), after letting n → n + 1 in (64), yields the
difference equation

Rn+1 +Rn−1 =
2n

r

Rn

1−R2
n

, (65)

which is known as the discrete Painlevé II equation [38, 46].
If n = 1 then equations (63)-(64) have the solution

R0(r) = 1, R1(r) =
C1I1(r)− C2K1(r)

C1I0(r) + C2K0(r)
,

where I0(r), K0(r), I1(r) and K1(r) are the imaginary Bessel functions and C1 and C2

are arbitrary constants. For solutions which are bounded at r = 0 then necesssarily
C2 = 0 and so

R0(r) = 1, R1(r) =
I1(r)

I0(r)
. (66)

Hence one can use the difference equation (65) to determine Rn(r), for n ≥ 2, which
yields

R2(r) = −rR
2
1(r) + 2R1(r)− r

r [R2
1(r)− 1]

,

R3(r) =
R3

1(r)− rR2
1(r)− 2R1(r) + r

R1(r) [rR2
1(r) +R1(r)− r]

,

R4(r) =
r(r2 + 5)R4

1(r) + 4R3
1(r)− 2r(r2 + 3)R2

1(r) + r3

r [(r2 − 1)R4
1(r) + 4rR3

1(r)− 2(r2 + 2)R2
1(r)− 4rR1(r) + r2]

.

These results suggest that (58) should be solvable in terms of PIII (5), which is
illustrated in the following theorem.

Theorem 6.1. If Rn(r) satisfies (58) then wn(r) = Rn+1(r)/Rn(r) satisfies

d2wn

dr2
=

1

wn

(
dwn

dr

)2

− 1

r

dwn

dr
− 2n

r
w2

n +
2(n+ 1)

r
+ w3

n − 1

wn
, (67)

which is PIII (5) with parameters α = −2n and β = 2(n+ 1).

Proof. See Hisakado [22] and Tracy & Widom [49]; see also [53, §3.1].

We note that since the parameters in (67) satisfy −α+ β = 4n+2, with n ∈ Z+,
then the equation has solutions expressible in terms of the modified Bessel functions
I0(r) and I1(r) (as well as K0(r) and K1(r), but these are not needed here).
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Theorem 6.2. Let τn(r; ν) be the n× n determinant

τn(r; ν) = det

[(
r
d

dr

)j+k

Iν(r)

]n−1

j,k=0

, (68)

with Iν(r) the modified Bessel function, then

wn(r; ν) =
τn+1(r; ν + 1) τn(r; ν)

τn+1(r; ν) τn(r; ν + 1)
≡ d

dz

{
ln

τn+1(z; ν)

τn(z; ν + 1)

}
− n+ ν

z
, (69)

for n ≥ 0, satisfies PIII (5) with α = 2(ν − n) and β = 2(ν + n+ 1).

Proof. See, for example, [18, 35].

Theorem 6.3. Equation (58) has the solution

Rn(r) =
τn(r; 1)

τn(r; 0)
, (70)

where τn(r; ν) is the determinant given by (68).

Proof. The proof is straightforward using induction. From (66) we have

R1(r) =
I1(r)

I0(r)
=
τ1(r; 1)

τ1(r; 0)
,

so (70) is true if n = 1. Assuming (70) holds then from Theorems 6.1 and 6.2

Rn+1(r) = wn(r; 0)Rn(r) =
τn+1(r; 1) τn(r; 0)

τn+1(r; 0) τn(r; 1)
× τn(r; 1)

τn(r; 0)
=
τn+1(r; 1)

τn+1(r; 0)
,

as required, and so the result follows by induction.

Corollary 6.4. Equations (60) and (62) have the Bessel function solutions

un(z) =
τn(

1
2z; 1) + τn(

1
2z; 0)

τn(
1
2z; 1)− τn(

1
2z; 0)

, vn(x) = 1− τ2n(
√
x; 0)

τ2n(
√
x; 1)

,

respectively, with τn(r; ν) the determinant given by (68).

Lemma 6.5. The formal asymptotic behaviour of the vortex solution Rn(r) is given
by

Rn(r) =
rn

2n n!

{
1− r2

4(n+ 1)
+O

(
r4
)}

, as r → 0, (71)

Rn(r) = 1− n

2r
− n2

8r2
− n(n2 + 1)

16r3
+O(r−4), as r → ∞. (72)

Proof. These are determined from (65) and (66).
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6.2. Generalised Charlier polynomials

The Charlier polynomials Cn(k; z) are a family of orthogonal polynomials introduced
in 1905 by Charlier [7] given by

Cn(k; z) = 2F0 (−n,−k; ;−1/z) = (−1)nn!L(−1−k)
n (−1/z) , z > 0, (73)

where 2F0(a, b; ; z) is the hypergeometric function and L
(α)
n (z) is the associated

Laguerre polynomial, see, for example, [45, §18.19]. The Charlier polynomials are
orthogonal on the lattice N with respect to the Poisson distribution

ω(k) =
zk

k!
, z > 0, (74)

and satisfy the orthogonality condition
∞∑
k=0

Cm(k; z)Cn(k; z)
zk

k!
=
n! ez

zn
δm,n.

Smet and Van Assche [48] generalized the Charlier weight (74) with one additional
parameter through the weight function

ω(k; ν) =
Γ(ν + 1) zk

Γ(ν + k + 1)Γ(k + 1)
, z > 0,

with ν a parameter such that ν > −1. This gives the discrete weight

ω(k; ν) =
zk

(ν + 1)k k!
, z > 0, (75)

where (ν + 1)k = Γ(ν + 1+ k)/Γ(ν + 1) is the Pochhammer symbol, on the lattice N.
Discrete orthogonal polynomials are characterized by the discrete Pearson equation

∆
[
σ(k)ω(k)

]
= τ(k)ω(k), (76)

where ∆ is the forward difference operator

∆f(k) = f(k + 1)− f(k).

The weight (75) satisfies the discrete Pearson equation (76) with

σ(k) = k(k + ν), τ(k) = −k2 − νk + z,

and so the generalised Charlier polynomials are semi-classical orthogonal polynomials
since τ(k) is a polynomial with deg(τ) > 1. The special case ν = 0 was first considered
by Hounkonnou, Hounga and Ronveaux [23] and later studied by Van Assche and
Foupouagnigni [54].

For the generalised Charlier weight (75), the orthonormal polynomials pn(k; z)
satisfy the orthogonality condition

∞∑
k=0

pm(k; z)pn(k; z)
zk

(ν + 1)k k!
= δm,n,

and the three-term recurrence relation

kpn(k; z) = an+1(z)pn+1(k; z) + bn(z)pn(k; z) + an(z)pn−1(k; z), (77)

with p−1(k; z) = 0 and p0(k; z) = 1. Our interest is in the coefficients an(z) and bn(z)
in the recurrence relation (77).

Smet and Van Assche [48, Theorem 2.1] proved the following theorem for
recurrence relation coefficients associated with the generalised Charlier weight (75).
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Theorem 6.6. The recurrence relation coefficients an(z) and bn(z) for orthonormal
polynomials associated with the generalised Charlier weight (75) on the lattice N satisfy
the discrete system

(a2n+1 − z)(a2n − z) = z(bn − n)(bn − n+ ν),

bn + bn−1 − n+ ν + 1 = nz/a2n,
(78)

with initial conditions

a20 = 0, b0 =

√
z Iν+1(2

√
z)

Iν(2
√
z)

= z
d

dz

{
ln Iν(2

√
z)
}
− ν

2
, (79)

with Iν(k) the modified Bessel function.

Remark 6.7. The discrete system such as (78) for the recurrence relation coefficients
is sometimes known as the Laguerre-Freud equations, cf. [3, 23, 33].

The recurrence relation coefficients an(z) and bn(z) also satisfy the Toda lattice,
cf. [53, Theorem 3.8]

z
d

dz
a2n = a2n(bn − bn−1), z

d

dz
bn = a2n+1 − a2n. (80)

Letting a2n(z) = xn(z) and bn(z) = yn(z) in (78) and (80) yields

(xn+1 − z)(xn − z) = t(yn − n)(yn − n+ ν), z
dxn
dt

= xn(yn − yn−1),

yn + yn−1 − n+ ν + 1 =
nz

xn
, z

dyn
dz

= xn+1 − xn.

Eliminating xn+1 and yn−1 in these equations yields the differential system

z
dxn
dz

= xn(2yn + ν − n+ 1)− nz, (81)

z
dyn
dz

= −xn + z +
(yn − n)(yn − n+ ν)z

xn − z
. (82)

Solving (81) for yn gives

yn =
z

2xn

dxn
dz

+
nz

2xn
+
n− ν − 1

2
,

and substituting this into (82) yields

d2xn

dz2
=

1

2

(
1

xn
+

1

xn − z

)
− xn
z(xn − z)

dxn
dz

− 2x2n
z2

+
4xn + n2 − ν2 + 1

2z
− n2

2xn
+

1− ν2

2(xn − z)
. (83)

Making the transformation

xn(z) =
z

1− wn(z)
. (84)

in (83) yields

d2wn

dz2
=

(
1

2wn
+

1

wn − 1

)(
dwn

dz

)2

− 1

z

dwn

dz
+

(wn − 1)2(n2w2
n − ν2)

2wnz2
− 2wn

z
, (85)

which is deg-PV (1) with parameters α = 1
2n

2, β = − 1
2ν

2 and γ = −2.
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Solving (82) for xn gives

xn = − 1
2z

dyn
dz

+ z + 1
2Xn, (86)

where

X2
n = z2

(
dyn
dz

)2
+ 4z(yn − n)(yn − n+ ν). (87)

From (87) we get

dXn

dz
=

z2

Xn

d2yn

dz2
dyn
dz

+
z

Xn

(
dyn
dz

)2
+

2z(2yn − 2n+ ν)

Xn

dyn
dz

+
2(yn − n)(yn − n+ ν)

Xn
(88)

Substituting (86) into (81), then using (88), solving for Xn, and substituting into (87)
yields the second-order, second-degree equation(
2z

d2yn

dz2
+

dyn
dz

+ 8yn − 8n+ 4ν

)2
=

(4yn − 2n+ 2ν + 1)2

z

{
z

(
dyn
dz

)2
+ 4(yn − n)(yn − n+ ν)

}
. (89)

Making the transformation

yn(z) =
1
2vn(x) +

1
2n− 1

2ν −
1
4 , x = 2

√
z,

in (89) yields (
d2vn

dx2
+ 4vn − 4n− 2

)2
=

4v2n
x2

{(
dvn
dx

)2
+ 4v2n − 4(2n+ 1)vn + (2n+ 1)2 − 4ν2

}
. (90)

Equation (A.5) in [14] is(
d2v

dx2
− av − b

)2
=

4v2

x2

{(
dv

dx

)2
− av2 − 2bv − c

}
, (91)

with a, b and c parameters, an equation derived by Chazy [8], and is the primed
version of equation SD-III in [15]. Hence equation (90) is the special case of equation
(91) with

a = −4, b = 4n+ 2, c = 4ν2 − (2n+ 1)2.

Cosgrove [14] showed that equation (91) is solvable in terms of solutions of PIII (5).
Consequently, the solution of (90) is given by

vn(x) =
x

2q

(
dq

dx
+ q2 + 1

)
,

where q(x) satisfies PIII (5) for the parameters A = 2ν − 2n− 2 and B = 2ν + 2n.
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Theorem 6.8. The recurrence relation coefficients an(z) and bn(z) are given by

a2n(z) = xn(z) =
Tn+1(z; ν)Tn−1(z; ν)

T 2
n (z; ν)

, (92)

bn(z) = yn(z) = z
d

dz

{
ln

Tn+1(z; ν)

Tn(z; ν)

}
− ν

2
, (93)

where

Tn(z; ν) = det

[(
z
d

dz

)j+k

Iν
(
2
√
z
)]n−1

j,k=0

,

with T0(z; ν) = 1, and Iν(x) is the modified Bessel function.

Proof. The expression (92) for a2n(z) follows immediately by substituting (49) in (84).
To prove the result (93) for bn(z) we use induction and the fact that from equation
(80), a2n(z) = xn(z) and bn(z) = yn(z) are related by

z
dxn
dt

= xn(yn − yn−1),

and initially

y0(z) = z
d

dz

{
ln T1(z; ν)

)
} − ν

2
.

Hence

y1(z) = z
d

dz

{
lnx1(z)

}
+ y0(z)

= z
d

dz

{
ln

T2(z; ν)T0(z; ν)
T 2
1 (z; ν)

}
+ z

d

dz
{ln T1(z; ν)} −

ν

2

= z
d

dz

{
ln

T2(z; ν)
T1(z; ν)

}
− ν

2
,

since T0(z; ν) = 1, so (93) is true for n = 1. Now suppose that (93) is true, then

yn+1(z) = z
d

dz

{
lnxn(z)

}
+ yn(z)

= z
d

dz

{
ln

Tn+2(z; ν)Tn(z; ν)
T 2
n+1(z; ν)

}
+ z

d

dz

{
ln

Tn+1(z; ν)

Tn(z; ν)

}
− ν

2

= z
d

dz

{
ln

Tn+2(z; ν)

Tn+1(z; ν)

}
− ν

2
,

as required, and so the result follows by induction. We remark that equation (80) is
identically satisfied by a2n(z) and bn(z) given by (92) and (93), respectively.

In a recent paper, Fernández-Irisarri and Mañas [16, §2] discuss the generalised
Charlier weight (75), in particular properties of the coefficients in the recurrence
relation. The relationship between the notations in [16] and those here are xn(z) =
γn(η) and yn(z) = βn(η), with z = η. Fernández-Irisarri and Mañas [16] relate xn(z)
and yn(z) to Okamoto’s Hamiltonian for PIII′ [43] and derive two ordinary differential
equations for xn(z).
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(i) Equation (45) in [16, Theorem 4] is the third-order equation

δz

(
xn
z

{
δ2z(lnxn) + 2xn

}
+
n2z

xn

)
= 2xn, δz(f) = z

df

dz
,

i.e.

d3xn

dz3
=

1

zx2n

(
z
dxn
dz

− xn

){
2xn

d2xn

dz2
−
(
dxn
dz

)2

+ n2

}

− 4xn
z2

dxn
dz

+
2xn(xn + z)

z3
, (94)

and the authors state that this equation “should have the Painlevé property”.
Equation (94) can be integrated to give equation (83), with ν2 as the constant of
integration. Since equation (83) is equivalent to deg-PV (38) then equation (94)
does have the Painlevé property.

(ii) Equation (60) in [16, Theorem 5] is the second-order equation(
1− xn

z

){
δz

(
δz(xn) + nz

xn

)
+ 2xn

}
+ 2{xn − z + (n− b)n}

= − 1
2

(
δz(xn) + nz

xn

)2

+ (n+ 1)

(
δz(xn) + nz

xn

)
+ (n− b− 1)(3n− b+ 1),

which is equation (83) with

ν2 = 2(b− n)2 + n2 − 2n− 1.

7. Discussion

In this paper the classical solutions of deg-PV (38) have been classified. Ohyama and
Okumura [40, Theorem 2.1] give a list of classical solutions of PI to PV and state that
“deg-P5 with α = 1

2a
2, β = − 1

8 , γ = −2 has the algebraic solution w(z) = 1+2
√
z/a”§

and “deg-P5 with β = 0 has the Riccati type solutions”. The results in this paper
show that there are more classical solutions of deg-PV (1). The algebraic solution is
equivalent to the “seed solution” obtained by setting n = 0 in (42), i.e.

u0(x;µ) =
µ

x+ µ
,

and there is a more general hierarchy of “Riccati type solutions” which are described
in Theorem 5.6.

All solutions of PII–PVI that are expressible in terms of special functions satisfy
a first-order equation of the form(

du

dx

)n

=

n−1∑
j=0

Fj(u, x)

(
du

dx

)j

, (95)

where Fj(u, x) is polynomial in u with coefficients that are rational functions of x. It
can be shown that the Bessel function solutions of PIII (5) satisfy a first-order equation
of the form (95) for n odd, whereas the Bessel function solutions of deg-PV (38) satisfy
a first-order equation of the form (95) for n even.

§ As noted in [1], there is typo in [40] who say β = −8 rather than β = − 1
8
.
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The relationship between PIII (5) and deg-PV (1) is similar to that between the
second Painlevé equation (PII)

d2q

dx2
= 2q3 + xq, (96)

with α a parameter, and Painlevé XXXIV equation (P34)

d2p

dx2
=

1

2p

(
dp

dx

)2

+ 2p2 − xp−
(α+ 1

2 )
2

2p
, (97)

which is equivalent to equation XXXIV of Chapter 14 in [24], in that both pairs of
equations arise from a Hamiltonian. The Hamiltonian associated with PII (96) and
P34 (97) is

HII(q, p, z;α) =
1
2p

2 − (q2 + 1
2z)p− (α+ 1

2 )q (98)

and so

dq

dz
= p− q2 − 1

2z,
dp

dz
= 2qp+ α+ 1

2 , (99)

see [27, 41]. It is known that PII (96) and P34 (97) have special function solutions
in terms of Airy functions, cf. [13]. It can be shown that the Airy function solutions
of PII (96) satisfy first-order equation of the form (95) for n odd, whereas the Airy
function solutions of P34 (97) satisfy a first-order equation of the form (95) for n even.
Further the function σ(z;α) = HII(q, p, z;α) given by (98), with q and p satisfying
(99), satisfies the second-order, second degree equation (SII)(

d2σ

dz2

)2

+ 4

(
dσ

dz

)3

+ 2
dσ

dz

(
z
dσ

dz
− σ

)
= 1

4 (α+ 1
2 )

2, (100)

see [27, 41]. Conversely, if σ(z;α) is a solution of (100), then

q(z;α) =
4σ′′(z;α) + 2α+ 1

8σ′(z;α)
, p(z;α) = −2σ′(z;α), (101)

with ′ ≡ d/dz, are solutions of (96) and (97), respectively. Consequently it is easier
to express classical solutions of P34 (97) in terms of classical solutions of SII (100),
which involve one determinant, rather than solutions of PII (96), which involve two
determinants.
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40 (2007) 14433–14445.
[36] A.E. Milne, P.A. Clarkson and A.P. Bassom, Bäcklund transformationsand solution hierarchies

for the third Painlevé equation, Stud. Appl. Math., 98 (1997) 139–194.



Classical Solutions of the Degenerate Fifth Painlevé Equation 22
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