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Abstract

This paper derives reliability indices of a linear consecutive-k-out-of-n: F system with retrial

under Poisson shocks. The system fails if and only if at least k consecutive components from

n components fail and is maintained by one repairman. When a component fails during the

repairman’s unavailability, it will be waiting until the repairmen becomes available. The failure

of a component may be caused by its intrinsic characteristics such as ageing and deterioration or

extrinsic factors such as shocks. It is assumed that a component will fail once the magnitude of a

shock is greater than a threshold. At any time, a component is at one of the three states: working,

waiting for repair, and under repair. For some systems, we need to obtain reliability indices for

practical use. Hence, this paper uses the Markov chain to model the transition between states and

obtains several reliability indices. The parameter sensitivity of the system reliability indices is

analysed with numerical experiments.
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1. Introduction

A k-out-of-n system is composed of n components, and it fails only if the amount of failed

components is k or more. It is a fairly commonly used redundant system and was analysed by many

authors, see [1–3] for examples. The consecutive-k-out-of-n system as a particular k-out-of-n

system, which fails only if there are k or more consecutive components fails [4–6]. In the real

life, there are many examples that are consecutive-k-out-of-n: F systems. For example, if there

are 3 or more failed street lights which are consecutive, the street light system needs repair. It is

therefore of great significance to study the reliability of such a system to ensure system availability.
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In the following, we use C(k, n: F) to represent this type of system, which can be abbreviated as

C(k, n) systems. The C(k, n: F) system was first proposed by Kontoleon [7]. Zhang and Wang

[8] studied the reliability of a linear C(2, n: F) system and obtained the transition probability for

consecutive systems. Cheng and Zhang [9] derived the transition probabilities between C(k, n)

system states under the assumption that key components are preferentially repaired. Yuan and Cui

[10] proposed the C(k, n: F) system where multiple repairmen take multiple vacations and provided

the analytical solution of several reliability indices. On the basis of Birnbaum importance, Si et

al. [11] generalized many importance measures for binary, multistate, and consecutive systems.

Wang et al. [12] analyzed the optimization problem of linear C(k, n: F) systems using a genetic

algorithm. For other related work on the reliability of C(k, n) systems, refer to [13–15].

In reliability analysis, a central problem is dealing with situations of the availability of repairmen.

If we assume that there is only one repairman available, then a failed component will be repaired

directly if the repairman is available, or it will be waiting in the cache for the time when the

repairman is available. In this paper, we refer to the cache as a retrial. Retrial is a term that was

first introduced and then widely used in queuing theory. Retrial queues are characterized by the

feature that a customer who finds the server busy upon his arrival is obliged to leave the service

area and repeats his demand after some time called “retrial time” [16].

Some authors apply the concept of retrial to research on system reliability and maintenance.

Krishnamoorthy and Ushakumari [17] established a reliability model of a retrial system in view

of failed units having no waiting room (as all positions are occupied). Kuo et al. [18] analyzed

the cost-benefit ratios of a k-out-of-n: G repairable system with retrial feature and mixed standby

components. Wang et al. [19] introduced a cost model to determine the optimal values of some

parameters in a retrial system. Chen [20] extended the work of Wang et al. [19] to a scenario where

the server is assumed able to provide partial service after a breakdown. Subsequently, Yang and

Tsao [21] derived certain reliability indices of a repairable k-out-of-n: G system with retrial feature

and working vacations on the basic of the matrix-analytic method. Recently, Wang et al. [22]

compared four unreliable systems with retrial feature and preventive maintenance, and performed

cost-benefit analysis.

In practice, the failure of a system can be affected by intrinsic factors (ageing or deterioration

of a component) as well as extrinsic factors (shocks). Barlow and Proschan [23] elaborated on the

life distribution problem of a single-component system under Poisson shocks. Zhang et al. [24]

studied the reliability and maintenance costs of a deteriorating system which may fail due to its

degradation or random shocks. Janani [25] analyzed a queueing system with a server and two types

of failure. Wu and Wu [26] studied a two-component system under Poisson shocks, where the
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repair time of the failed components and the repairman’s vacation time are assumed to obey the

general distributions. Segovia and Labeau [27] studied a multi-state system under shocks by using

the matrix-analytic method. Zhao et al. [28] proposed a general multi-state balanced system under

shocks, and obtained several reliability indices through finite Markov chain imbedding technique.

Some technical systems are repairable linear C(k, n: F) retrial systems and they are subject

to shocks of various types in the real world. The system presented in this study can be used for

modeling the telecommunication system, which is widely used in earthquakes, forestry, meteorology,

transportation and other departments as an important emergency communication system. On the

basis of the development trend of intelligent automation of products in the future, we can develop

an intelligent automatic telecommunication system. The system composes of n relay stations, each

of which can transmit signals to at least k consecutive relay stations. This system fails if and only

if k or more of n relay stations in succession fail. Failure of a relay station can be caused by its

ageing or external electromagnetic interference. The repair requests of failed relay stations can be

sent to the repair station by the intelligent patrol robot with on-line monitoring function. The failed

relay station will be performed maintenance directly if the state of the intelligent repair equipment

is idle. Otherwise, the repair requests are saved in the information storage generator installed in

the intelligent patrol robot and then look for the opportunity for repair after a period of time. This

paper aims to serve this need.

The main contribution of this study is reflected in the following three aspects:

• The paper performs reliability assessment for C(k, n: F) systems with retrial under Poisson

shocks.

• This paper derives several propositions and obtains the state transition rate matrix.

• The paper obtains three main reliability indices of the system: availability, reliability and

mean time to first failure, the effect of several parameters on system reliability indices is

analyzed, and cost/benefit analysis are performed.

As aforementioned, some linear C(k, n: F) retrial systems are subject to shocks of various types

in the real world. Hence, reliability analysis of such systems provides engineers with methods to

aid in their decision making. As such, this paper has managerial implications.

The rest of the paper is arranged as follows. Section 2 makes assumptions for a repairable linear

C(k, n: F) retrial system under Poisson shocks, and obtains the transition rates between states of

the system. Section 3 derives system reliability indices. Section 4 provides numerical experiments

to illustrate the effect of various parameters on several system reliability indices, and analyzes the

cost/benefit of the system. Finally, Section 5 wraps up the work of this text and suggests future
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research.

2. Model development

In this section, we first propose the system model to be studied. Then the transition rates

between system states are given in the second subsection based on several assumptions in the first

subsection.

The system model we consider here consists of one repairman and n components sorted in

linear order, and it fails if and only if the amount of failed components which are consecutive is

not less than k, namely linear C(k, n: F) repairable system. The failure of the system component

may be caused by its intrinsic characteristics or extrinsic shocks. The failed component will enter a

retrial space when the repairman is busy. The model is analyzed based on some assumptions as

follows.

2.1. Model assumptions

A1 The failure of a component may be caused by an intrinsic factor or an extrinsic factor.

Each component has two possible states, working or failed. The working time X of each

component obeys the exponential distribution with rate λa. The arrival of the shocks as a

homogeneous Poisson process with intensity λb, and the magnitude Ŷ of each shock that the

system suffers obeys a distribution function Φ. The repair time of a failed component in the

system obeys the exponential distribution with rate µ.

A2 All components in the system are affected by shocks. The threshold of magnitude of a

shock that causes a component to fail is a random variable υ with the cumulative distribution

function H , and the component fails once the magnitude Ŷ of a shock is greater than υ.

A3 If the system state restored to a working state after the repairman has repaired a component,

it should be referred to as a critical component. Otherwise, if repairing a component does

not make the system state change from failure to working, then the component should be

referred to as a non-critical component.

A4 Failed components can be changed into new components after repair. When the state of the

system is in failure, it is possible that components that have not yet failed enter the failure

state.

A5 When a component is in a failure state, if the repairman’s state is idle, the component will

be repaired directly. Otherwise, the failed component goes into the retrial space to wait for

4



repair and looks for the opportunity for repair after a period of time. The retrial time of

component in the retrial space obeys an exponential distribution with rate γ.

A6 Critical components should be repaired first when the system fails. A critical component will

be repaired directly if the component fails when the repairman is on idle. The repairman

must immediately stop repairing the non-critical component and start repairing the critical

component if a critical one fails while the repairman is repairing a non-critical one. A newly

arrived component in the system will enter the retrial space while the repairman is working

on a critical component. The retrial rule for components in the retrial space is FIFO (first in

first out).

A7 At time t = 0, the state of the repairman is idle and all components are new. The random

variables in this model are all independent of each other.

A8 A shock may cause any number of components to fail simultaneously.

According to these assumptions, the system states are defined in the next subsection. The

general form of the transition rates between states of the system are expressed based on the derived

propositions.

2.2. System state analysis

Let U(t) denote the repairman is idle or busy at time t, and let Z(t) denote the amount of

components in the orbit when the system is in working or failure state at time t, as defined below.

U(t) =


0, if the repairman is idle at time t,

1, if the repairman is busy at time t.

Z(t) =



z−, if there are − z− failed components in the retrial orbit and the system

is in working state at time t, z− = 0,−1, · · · ,−k, · · · ,−η,

z+, if there are z+ failed components in the retrial orbit and the system is

in failure state at time t, z+ = k − 1, k, · · · , n− 1,

where η = n − ⌊n/k⌋. The symbol ⌊ ⌋ means round down; that is, ⌊n/k⌋ is the largest of the

integers less than or equal to n/k.

According to the assumptions of the model, {U(t), Z(t), t ≥ 0} is a continuous-time Markov

process. The state space can be represented as Ψ = {(u, z), u = 0, 1, z = 0,−1, · · · ,−(η− 1)} ∪

{(0,−η)} ∪ {(1, z), z = k − 1, k, · · · , n− 1} ∪ {(0, z), z = 2k − 1, 2k, · · · , n− 1, 2k ≤ n}.

The system working state set and the failure state set are B = {(u, z), u = 0, 1, z = 0,−1, · · · ,

−(η − 1)} ∪ {(0,−η)} and E = {(0, z), z = 2k − 1, 2k, · · · , n − 1, 2k ≤ n} ∪ {(1, z), z =
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k − 1, k, · · · , n− 1}, respectively. The system state probabilities at time t are defined as follows:

P0,z(t) = P{U(t) = 0, Z(t) = z}, z = 0,−1,−2, · · · ,−η, 2k − 1, · · · , n− 1, and

P1,z(t) = P{U(t) = 1, Z(t) = z}, z = 0,−1, · · · ,−(η − 1), k − 1, k, · · · , n− 1,

respectively. Then the Laplace transform of state probability Pu,z(t) is P ∗
u,z(s) =

∫∞
0 e−stPu,z(t)

dt. Based on Assumption A2, the probability of a single component failure is Pŷ = P (υ ≤ ŷ) =

H(ŷ) when the magnitude of the shock is ŷ. Therefore, the probability of a single component

failure caused by the shock with magnitude Ŷ is H(Ŷ ). Let Y = H(Ŷ ), then

P (Y ≤ y) = P
(
H(Ŷ ) ≤ y

)
= P

(
Ŷ ≤ H−1(y)

)
= Φ

(
H−1(y)

)
= ΦH−1(y).

Let G = ΦH−1, then the distribution function of Y is G(y). Y = H(Ŷ ) is a function that increases

as Ŷ increases, representing the probability that a single component fails due to a shock.

Let Ail be the event that a shock causes l− i components to fail, and there are n− l components

that are still working in the system. It is noted that i and l(l ≥ i) represent the numbers of failed

components before and after shock, respectively. Let ωil be the probability of occurrence of Ail,

then

ωil =

∫ 1

0
P (Ail |Y = y )dG(y) =

∫ 1

0
(1− y)n−lyl−idG(y).

In order to obtain the transition rates between the states of the system, we give the following

propositions.

Proposition 1. Let M−(u−z) denote the amount of likely situations that a repairable linear C(k, n:

F) system with retrial feature is in state (u, z), where 1 ≤ u− z ≤ η, we have

M−(u−z) =
α∑

σ=0

(−1)σ

 n+ z − u+ 1

σ

 n− kσ

u− z − kσ

 , (1)

where α = min(n + z − u + 1, ⌊(u− z)/k⌋), and
κ∑

r=τ
Λ(r) ≡ 0, κ < τ . M−(u−z) = 1 when

(u, z) = (0, 0).

Proof. The state (u, z) represents that the system is in the working state and u− z components fail

when 1 ≤ u− z ≤ η. According to Theorem 1 in literature [9], we can obtain the formula for the

calculation of M−(u−z).

Proposition 2. Let M−
j be the number of likely situations of state (1, j−1) which can be transferred

to state (0,−(j − 1)), where 2k ≤ j ≤ η + 1, then

M−
j =(n− j + 1)×N(j − k, n− j + 1)

=(n− j + 1)×
β∑

σ=0

(−1)σ

 n− j + 1

σ

 n− k − kσ

j − k − kσ

 , (2)
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where β = min(n− j + 1, ⌊(j − k)/k⌋), and
κ∑

r=τ
Λ(r) ≡ 0, κ < τ .

Proof. When j components fail in the system, n− j components in the working state. The n− j

working components divide j failed components into n− j + 1 sections in the linear consecutive

system. The number of consecutive failed components must be at least k since state (1, j − 1) is a

failed state. Furthermore, the amount of failed components which are consecutive is not more than

k − 1 except the k failed components since the state of the system changes to (0,−(j − 1)) after

the repairman has repaired a component. Therefore, the number of different situations that the state

of the system changes from failed state (1, j− 1) to working state (0,−(j− 1)) is equivalent to the

number of situations where j − k identical balls are placed in n− j + 1 different urns where the

maximum amount of balls is k−1. In addition, the k consecutive balls can be deposited in any one

of n− j+1 urns. Thus the number of different situations M−
j is (n− j+1)×N(j−k, n− j+1),

where the calculation of N(j − k, n− j + 1) can be obtained according to Lemma 1 in literature

[9] .

According to Proposition 2, the probabilities of the state of the system changes from failed

state (1, j−1) to state (0,−(j−1)) and state (0, j−1) are M−
j

/(
Cj
n−M−j

)
and

(
Cj
n −M−j−

M−
j

)/(
Cj
n −M−j

)
after the repairman has repaired a component, respectively, where 2k ≤ j ≤

η + 1.

Proposition 3. Let λ denote the component’s failure rate caused by intrinsic factors or extrinsic

shocks. The probability of each situation of working state (u, z1) is the same, that is p(u,z1)h(u,z1)
=

1
/
M−(u−z1). Then the transition rates from state (u, z1) to state (1,−z2) and state (1, z2) are

Cu−z1
1+z2

λM−(1+z2)

/
M−(u−z1) and

[
C

1+z2−(u−z1)
n−(u−z1)

− Cu−z1
1+z2

M−(1+z2)

/
M−(u−z1)

]
λ, respectively,

where 1 + z2 > u− z1, z2 = k − 1, k, · · · , η − 1.

Proof. There are M−(1+z2) different situations of state (1,−z2) based on Proposition 1. In addition,

there are Cu−z1
1+z2

possible ways of the system state changes from state (u, z1) to any case of state

(1,−z2). Therefore, the amount of likely situations in which the system state changes from state

(u, z1) to state (1,−z2) is equal to M−(1+z2)C
u−z1
1+z2

. According to the transition probability for
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consecutive systems proposed in literature [29], we have

p(u,z1),(1,−z2)(∆t) =

M(u,z1)∑
h(u,z1)

=1

p(u,z1),h(u,z1)
ph(u,z1)

(1,−z2)(∆t)

=
{Total number of ways of transferring from (u, z1) to (1,−z2)}

M−(u−z1)
λ∆t

+ o(∆t)

=
Cu−z1
1+z2

M−(1+z2)

M−(u−z1)
λ∆t+ o(∆t),

Furthermore, there are C
1+z2−(u−z1)
n−(u−z1)

likely situations where the number of failed components

increases from u − z1 to 1 + z2. Then the transition rate from state (u, z1) to state (1, z2) is[
C

1+z2−(u−z1)
n−(u−z1)

− Cu−z1
1+z2

M−(1+z2)

/
M−(u−z1)

]
λ.

Based on Assumptions A1, A4, A5 and A8 and the above analyses, the transition rates between

states of the system can be obtained as follows:

• (0, z − 1) → (1, z), (1, z) ∈ B |(0, z) → (1, z − 1), (0, z) ∈ E : The transition rate is the

retrial rate γ if a failed component in the retrial orbit will begin to be repaired.

• (1, z) → (0, z), (1, z) ∈ B ∪ {(1, z), z = η + 1, · · · , n− 1, 2k ≤ n} |(1, z) → (0, −z),

z = k − 1, k, · · · ,min(2k − 2, η) : The transition rate is µ when the state of the system

does not change after repairing a failed component. Based on Assumptions A3 and A6, the

transition rate is also µ when the state of the system changes from failure to working after

repairing a failed component.

• (1, z) → (0,−z) |(0, z) z = 2k − 1, 2k, · · · , η, 2k − 1 ≤ η : If the system state is fail-

ure, it may be restored to a working state or remain in the failed state after the repair-

man has repaired a component. According to Proposition 2, the two transition rates are[
M−

z+1

/(
Cz+1
n −M−(z+1)

)]
µ and

[
1−M−

z+1

/(
Cz+1
n −M−(z+1)

)]
µ, respectively.

• (0, z) |(1, z + 1) → (1, z), z = −(η − 1),−(η − 2), · · · ,−(k − 1), k ≤ η : The transition

occurs if the system state remains in working after a component fails. Then the transition

rate is (1− z) (λa + ω−z,1−zλb) Mz−1/Mz according to Proposition 3.

• (0, z) |(1, z + 1) → (1,−z), z = −(η−1),−(η−2), · · · ,−(k−1), k ≤ η : The transition

occurs if the state of the system changes from working to failure after a component fails. Then

the transition rate is [n+ z − (1− z)Mz−1/Mz] (λa + ω−z,1−zλb) according to Proposition

3.
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• (1,−(z − 1)) → (1,−z), z = 1, 2, · · · , k−2, k ≥ 3 |(0,−z) → (1,−z), z = 0, 1, · · · , k−

2, k ≥ 2 : The transition occurs if the system state remains in working after a component

fails. The transition rate of this process is (n− z) (λa + ωz,z+1λb).

• (1,−(η − 1)) |(0,−η) → (1, η) : The transition occurs if the state of the system changes

from working to failure after a component fails. The transition rate of this process is

(n− η) (λa + ωη,η+1λb).

• (1, z − 1) → (1, z), z = k, k + 1, · · · , n − 1, k ≤ n − 1 |(0, z) → (1, z), z = 2k − 1, 2k,

· · · , n − 1, 2k ≤ n : The transition occurs if the system state remains in failure after a

component fails. The transition rate of this process is (n− z) (λa + ωz,z+1λb).

• (u, z1) → (1,−z2) |(1, z2), u − z2 < z1 ≤ 0, z2 = k − 1, k, · · · , η − 1, k ≤ η : The

system may remain in a working state or transfer from a working state to a failed state

after two or more components fail due to shock. The two transition rates are Cu−z1
1+z2

ωu−z1,1+z2 λbM−(1+z2)

/
M−(u−z1) and

[
C

1+z2−(u−z1)
n−(u−z1)

− M−(1+z2)C
u−z1
1+z2

/
M−(u−z1)

]
ωu−z1,1+z2λb according to Proposition 3.

• (u, z1) → (1,−z2), u− z2 < z1 ≤ 0, z2 = 1, 2, · · · , k − 2, k ≥ 3 : The transition occurs if

the system remains in a working state after two or more components fail. The transition rate

of this process is C1+z2−(u−z1)
n−(u−z1)

ωu−z1,1+z2λb.

• (u, z1) → (1, z2), u− z2 < z1 ≤ 0, z2 = η, η + 1, · · · , n− 1 : The transition occurs if the

state of the system changes from working to failure after two or more components fail. The

transition rate of this process is C1+z2−(u−z1)
n−(u−z1)

ωu−z1,1+z2λb.

• (1, z1) → (1, z2), k− 1 ≤ z1 < z2 − 1, z2 = k+ 1, k+ 2, · · · , n− 1, k+ 1 ≤ n− 1 : The

transition occurs if the system remains in a failed state after two or more components fail.

The transition rate of this process is Cz2−z1
n−(1+z1)

ω1+z1,1+z2λb when the repairman is busy.

• (0, z1) → (1, z2), 2k − 1 ≤ z1 < z2, z2 = 2k, 2k + 1, · · · , n − 1, 2k ≤ n − 1 : The

transition occurs if the system remains in a failed state after two or more components fail.

The transition rate of this process is C1+z2−z1
n−z1 ωz1,1+z2λb when the repairman is idle.

3. Reliability indices analysis

In this section, we analyze some reliability indices of the proposed system model. The transition

rate matrix of the system is expressed by the state transition rate obtained in Section 2. Then, the

calculation steps of system availability, reliability function and mean time to first failure are given.
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In the following analysis, let λ(u1,z1),(u2,z2) and µ(u1,z1),(u2,z2) denote the transition rates of the

system state from (u1, z1) to (u2, z2) due to component failure and repair, respectively. In order to

derive the reliability indices, let the vector P(t) of the transient-state probabilities be

P(t) =
(
P00(t), P0,−1(t), · · · , P0,−η(t), P10(t), · · · , P1,−(η−1)(t), P0,2k−1(t), · · · ,

P0,n−1(t), P1,k−1(t), · · · , P1,n−1(t)) .

Based on the transition rates, the Kolmogorov-Feller matrix equation is expressed as follows:

P′(t) = P(t)L1, (3)

where L1 denote the transition rate matrix. According to the repairman’s state and whether the

system is in failure state, L1 is divided into 4×4 block matrix as follows:

L1 =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

 ,

each block of L1 is expressed as follows.

L11 = diag (−W0, − (W1 + γ) , · · · ,− (Wk−1 + γ) ,− (Fk + γ) , · · · , − (Fη + γ)) ,

where L11 is a matrix of order (η + 1)× (η + 1),

Wi =

η−1∑
z1=i

λ(0,−i),(1,−z1) +
n−1∑

z2=k−1

λ(0,−i),(1,z2), i = 0, 1, · · · , k − 1,

Fv =

η−1∑
z1=v

λ(0,−v),(1,−z1) +

n−1∑
z2=v

λ(0,−v),(1,z2), v = k, k + 1, · · · , η − 1,

Fd =

n−1∑
z2=η

λ(0,−η),(1,z2),

L12 =



λ(0,0),(1,0) λ(0,0),(1,−1) · · · λ(0,0),(1,−(η−1))

γ λ(0,−1),(1,−1) · · · λ(0,−1),(1,−(η−1))

0 γ · · · λ(0,−2),(1,−(η−1))

...
...

. . .
...

0 0 · · · γ


(η+1)×η

,

L13 = 0(η+1)×(n−2k+1),
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L14=



λ(0,0),(1,k−1) λ(0,0),(1,k) · · · λ(0,0),(1,η) · · · λ(0,0),(1,n−1)

...
...

. . .
...

. . .
...

λ(0,−(k−1)),(1,k−1)λ(0,−(k−1)),(1,k)· · · λ(0,−(k−1)),(1,η)· · · λ(0,−(k−1)),(1,n−1)

0 λ(0,−k),(1,k) · · · λ(0,−k),(1,η) · · · λ(0,−k),(1,n−1)

...
...

. . .
...

. . .
...

0 0 · · · λ(0,−η),(1,η) · · · λ(0,−η),(1,n−1)


(η+1)×(n−k+1)

,

L21 =


µ

µ

. . .

µ 0


η×(η+1)

,

L22 =



−I1 λ(1,0),(1,−1) · · · λ(1,0),(1,−(k−2)) λ(1,0),(1,−(k−1)) · · ·

0 −I2 · · · λ(1,−1),(1,−(k−2)) λ(1,−1),(1,−(k−1)) · · ·
...

...
. . .

...
...

. . .

0 0 · · · −Ik−1 λ(1,−(k−2)),(1,−(k−1)) · · ·

0 0 · · · 0 −Qk · · ·
...

...
. . .

...
...

. . .

0 0 · · · 0 0 · · ·

0 0 · · · 0 0 · · ·

λ(1,0),(1,−(η−2)) λ(1,0),(1,−(η−1))

λ(1,−1),(1,−(η−2)) λ(1,−1),(1,−(η−1))

...
...

λ(1,−(k−2)),(1,−(η−2)) λ(1,−(k−2)),(1,−(η−1))

λ(1,−(k−1)),(1,−(η−2)) λ(1,−(k−1)),(1,−(η−1))

...
...

−Qη−1 λ(1,−(η−2)),(1,−(η−1))

0 −

(
n−1∑
z2=η

λ(1,−(η−1)),(1,z2) + µ

)


η×η

,
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Ix =

η−1∑
z1=x

λ(0,−x),(1,−z1) +
n−1∑

z2=k−1

λ(0,−x),(1,z2) + µ, x = 1, 2, · · · , k − 1,

Qm =

η−1∑
z1=m

λ(0,−m),(1,−z1) +

n−1∑
z2=m

λ(0,−m),(1,z2) + µ,m = k, k + 1, · · · , η − 1,

L23 = 0η×(n−2k+1),

L24 =



λ(1,0),(1,k−1) λ(1,0),(1,k) · · · λ(1,0),(1,η) · · · λ(1,0),(1,n−1)

...
...

. . .
...

. . .
...

λ(1,−(k−2)),(1,k−1)λ(1,−(k−2)),(1,k) · · · λ(1,−(k−2)),(1,η) · · · λ(1,−(k−2)),(1,n−1)

0 λ(1,−(k−1)),(1,k) · · · λ(1,−(k−1)),(1,η) · · · λ(1,−(k−1)),(1,n−1)

...
...

. . .
...

. . .
...

0 0 · · · λ(1,−(η−1)),(1,η) · · · λ(1,−(η−1)),(1,n−1)


η×(n−k+1)

,

L31 = 0(n−2k+1)×(η+1), L32 = 0(n−2k+1)×η,

L33 = diag

(
−

(
n−1∑

z=2k−1

λ(0,2k−1),(1,z) + γ

)
, −

(
n−1∑
z=2k

λ(0,2k),(1,z) + γ

)
, · · · ,

(
n−1∑
m=2k

1

)
−
(
λ(0,n−1),(1,n−1) + γ

))
,

where L33 is a matrix of order (n− 2k + 1)× (n− 2k + 1),

L34 =
(

0 D34

)
(n−2k+1)×(n−k+1)

,

where D34 =


γ λ(0,2k−1),(1,2k−1) · · · λ(0,2k−1),(1,n−2) λ(0,2k−1),(1,n−1)

0 γ · · · λ(0,2k),(1,n−2) λ(0,2k),(1,n−1)

...
...

. . .
...

...

0 0 · · · γ λ(0,n−1),(1,n−1)


(n−2k+1)×(n−2k+2)

,

L41 =

 0 D41

0 0


(n−k+1)×(η+1)

,

where D41 = diag
(
µ, · · · , µ, µ(1,2k−1),(0,−(2k−1)), · · · , µ(1,η),(0,−η)

)
is a matrix of order (η − k +

2)× (η − k + 2),
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L42 = 0(n−k+1)×η, L43 =

 0

D43


(n−k+1)×(n−2k+1)

,

where D43 = diag
(
µ(1,2k−1),(0,2k−1), · · · , µ(1,η),(0,η), µ, · · · , µ

)
is a matrix of order (n − 2k +

1)× (n− 2k + 1),

L44=



−
(

n−1∑
z=k

λ(1,k−1),(1,z) + µ

)
λ(1,k−1),(1,k) · · · λ(1,k−1),(1,n−1)

0 −

(
n−1∑

z=k+1

λ(1,k),(1,z) + µ

)
· · · λ(1,k),(1,n−1)

...
...

. . .
...

0 0 · · · −µ


(n−k+1)×(n−k+1)

.

According to the Kolmogorov-Feller matrix equation, the state probabilities of the system can

be solved. The calculation method of system availability is given below.

3.1. Availability of the system

Solve the following equations by using the Laplace transform. And then we can use the inverse

Laplace transform to figure out the state probability.
P′(t) = P(t)L1,

P(0) = (1, 0, · · · , 0).
(4)

The transient-state availability of the system is as follows:

A(t) =

η∑
z1=0

P0,−z1(t) +

η−1∑
z2=0

P1,−z2(t). (5)

Next, the steady-state availability can be calculated by using the final value theorem and the Laplace

transform.

A(∞) = lim
t→∞

A(t) = lim
s→0

sA∗(s) = lim
s→0

[
η∑

z1=0

sP ∗
0,−z1(s) +

η−1∑
z2=0

sP ∗
1,−z2(s)

]
. (6)

Detailed algorithm steps of system availability are shown in Algorithm 1.
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Algorithm 1 Calculate system availability.

Step 1. Define the repairman’s state and the number of components in the retrial orbit as U(t)

and Z(t), respectively.
Step 2. Establish the continuous-time Markov process {U(t), Z(t), t ≥ 0} with state space Ψ.
Step 3. Give the transition rates between the system states (u1, z1) and (u2, z2), (u1, z1), (u2,

z2) ∈ Ψ.
Step 4. Divide the transition rate matrix L1 into 4×4 block matrices.
Step 5. Solve Eq. (4) by using the Laplace transform.
Step 6. Get the state probabilities Pu,z(t), (u, z) ∈ Ψ by using the inverse Laplace transform.
Step 7. Calculate the transient-state availability A(t) based on Eq. (5).
Step 8. Let t → ∞, obtain the steady-state availability A(∞).

The system reliability is the probability that the system will work before time t. Therefore,

the system reliability function can be obtained by changing all the failure states in the system into

absorbing states. Then the mean time to first failure of the system can be obtained.

3.2. Reliability function and mean time to first failure

Make all the failure states into absorbing states to obtain the reliability function R(t), then

another Markov process {Ũ(t), Z̃(t), t ≥ 0} is obtained. Next, we provide the equations about the

working states {P̃u,z(t), (u, z) ∈ B}, according to the Kolmogorov-Feller forward equation.


P̃′
(t) = P̃(t)L2,

P̃(0) = (1, 0, · · · , 0),
(7)

where L2 =

L11 L12

L21 L22

 and P̃(t) =
(
P̃00(t), P̃0,−1(t), · · · , P̃0,−η(t), P̃10(t), · · · , P̃1,−(η−1)(t)

)
.

The reliability function can be calculated through the Laplace transform method as follows.

R(t) = P̃(t)ew, (8)

where ew is a (2η + 1)-order column vector where all the elements are equal to 1.

The mean time to first failure which is represented by MTTFF, is

MTTFF = −P̃(0)L−1
2 ew. (9)

Detailed algorithm steps of system reliability and MTTFF are shown in Algorithm 2.

14



Algorithm 2 Calculate system reliability and MTTFF.

Step 1. Change all failed states to absorbing states in the system to establish a new Markov
process {Ũ(t), Z̃(t), t ≥ 0}.

Step 2. Delete the transition rates related to the failed states in matrix L1 to obtain matrix L2.
Step 3. Solve Eq. (7) by using the Laplace transform.
Step 4. Get the working state probabilities {P̃u,z(t), (u, z) ∈ B} by using the inverse Laplace

transform.
Step 5. Calculate the reliability function R(t) and MTTFF based on Eqs. (8) and (9).

4. An application and numerical results

To illustrate the proposed reliability model for a linear C(k, n: F) retrial system under Poisson

shocks, this section uses a case in which intelligent automation is designed in a real communication

system. There are four relay stations in the communication system between two places. Both

stations 2 and 3 can receive signals from station 1, and both stations 3 and 4 can receive signals

from station 2. Therefore, the communication between source and destination will not be affected if

station 2 or 3 fails. But the communication between source and destination will be disconnected if

stations 2 and 3 fail at the same time. This is a typical linear C(2, 4: F) system. Maintenance on the

system is completed by an intelligent patrol robot and an intelligent repair equipment. It is assumed

that the intelligent patrol robot and intelligent repair equipment are completely reliable. The system

will be subjected to external electromagnetic interference under a random uncertainty environment,

and the arrival of electromagnetic interference is a Poisson process. When the relay station fails,

the repair request is sent to the intelligent repair equipment by the intelligent patrol robot. The relay

station will be repaired directly if the state of the intelligent repair equipment is idle. The repair

request will be saved in the information storage generator installed in the intelligent patrol robot

when the intelligent repair equipment is busy, and the repair request will be continuously attempted

after a period of time.

The specific configuration of the system is as follows. The numbers of relay stations, intelligent

patrol robots and intelligent repair equipment are 4, 1 and 1, respectively. Each relay station

can transmit signal to the next two relay stations at most. The distribution Φ of electromagnetic

interference magnitude Ŷ is the same as the distribution H of threshold υ, then the distribution

G = ΦH−1 of Y is a uniform distribution in the interval (0, 1). Based on Eqs. (4)-(9) in Section

3, some system reliability indices can be obtained. Set some parameters as base values: the

relay station failure rate λa due to aging is 0.04, the relay station failure rate λb due to external

electromagnetic interference is 0.04, the repair rate µ of the intelligent repair equipment is 1, and

retrial rate γ of the repair request in the information storage generator is 0.5. Then, we change the
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value of each parameter in turn to perform a numerical analysis on the system reliability indices. In

addition, the cost/benefit of the systems with and without retrial is compared.

4.1. Numerical analysis of reliability indices

We show the effect of several parameters on the system reliability (see Figs. 1-4), instantaneous

availability (see Figs. 5-8), steady-state availability (see Figs. 9-12) and MTTFF (see Tables 1-4).

From these figures and tables, the following conclusions can be drawn.

• The system reliability function R(t) decreases with time t increasing, and shock magnitude

λb has a significant influence on R(t). Moreover, R(t) decreases as λa and λb increase, and

increases as µ and γ increase.

• The system instantaneous availability A(t) tends to be steady when t = 18 at the base case.

The shock magnitude λb has a greater impact on A(t) than relay station failure rate λa.

• The repair rate µ and the retrial rate γ have little influence on system reliability R(t), but

they have an obvious influence on system instantaneous availability A(t). The change is

particularly significant when µ < 1 and γ < 0.3.
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Fig. 1. R(t) under different values of λa.
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Fig. 2. R(t) under different values of λb.
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Fig. 3. R(t) under different values of µ.
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Fig. 4. R(t) under different values of γ.
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Fig. 5. A(t) under different values of λa.
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Fig. 6. A(t) under different values of λb.
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Fig. 7. A(t) under different values of µ.
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Fig. 8. A(t) under different values of γ.
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Fig. 9. A(∞) versus λa for various values of µ.
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Fig. 10. A(∞) versus λb for various values of µ.
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Fig. 11. A(∞) versus λa for various values of γ.
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Fig. 12. A(∞) versus λb for various values of γ.

Table 1. MTTFF for various values of λa and µ.

λa µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 2.5

0.01 45.1663 47.1263 47.8918 48.2994 48.5526

0.02 38.6158 42.7407 44.5840 45.6270 46.2977

0.03 32.1062 37.6242 40.4524 42.1676 43.3180

0.04 26.5892 32.5944 36.0726 38.3330 39.9182

0.05 22.2000 28.0802 31.8519 34.4637 36.3769

0.06 18.7761 24.2205 28.0128 30.7893 32.9063

0.07 16.1042 20.9987 24.6397 27.4347 29.6434

0.08 13.9994 18.3351 21.7337 24.4482 26.6613

0.09 12.3198 16.1363 19.2552 21.8300 23.9862

0.10 10.9608 14.3151 17.1495 19.5545 21.6152
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Table 2. MTTFF for various values of λa and γ.

λa γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9

0.01 46.2041 46.9286 47.1263 47.2186 47.2720

0.02 41.2966 42.4057 42.7407 42.9024 42.9976

0.03 35.8369 37.1785 37.6242 37.8467 37.9802

0.04 30.6756 32.0842 32.5944 32.8578 33.0187

0.05 26.1990 27.5515 28.0802 28.3621 28.5372

0.06 22.4780 23.7069 24.2205 24.5026 24.6808

0.07 19.4392 20.5199 20.9987 21.2689 21.4424

0.08 16.9674 17.9002 18.3351 18.5868 18.7509

0.09 14.9501 15.7475 16.1363 16.3666 16.5188

0.10 13.2920 13.9707 14.3151 14.5234 14.6629

• The system is more prone to failure as relay station failure rate λa and shock magnitude λb

increase, hence the steady-state availability A(∞) gradually decreases. In addition, steady-

state availability A(∞) gradually increases as the repair rate µ and the retrial rate γ increase,

respectively. It can be found that A(∞) is more sensitive to parameters λa and λb when

µ < 1 and γ < 0.3.

• MTTFF decreases with the increase of λa and λb, and increases with the increase of µ and γ.

Furthermore, λa and λb have a more significant impact on MTTFF than µ and γ.

Table 3. MTTFF for various values of λb and µ.

λb µ = 0.5 µ = 1 µ = 1.5 µ = 2 µ = 2.5

0.01 47.4881 69.3029 85.6126 98.2180 108.2424

0.02 37.6265 50.3906 58.7362 64.5965 68.9335

0.03 31.1584 39.5853 44.6979 48.1170 50.5621

0.04 26.5892 32.5944 36.0726 38.3330 39.9182

0.05 23.1896 27.7011 30.2357 31.8530 32.9735

0.06 20.5616 24.0846 26.0232 27.2453 28.0852

0.07 18.4692 21.3029 22.8399 23.8008 24.4577

0.08 16.7637 19.0968 20.3497 21.1286 21.6590

0.09 15.3470 17.3045 18.3485 18.9950 19.4342

0.10 14.1514 15.8195 16.7052 17.2522 17.6232
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Table 4. MTTFF for various values of λb and γ.

λb γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9

0.01 62.2998 67.4907 69.3029 70.2251 70.7838

0.02 46.3443 49.3387 50.3906 50.9273 51.2528

0.03 36.9097 38.8827 39.5853 39.9458 40.1650

0.04 30.6756 32.0842 32.5944 32.8578 33.0187

0.05 26.2487 27.3099 27.7011 27.9047 28.0294

0.06 22.9422 23.7728 24.0846 24.2481 24.3487

0.07 20.3783 21.0472 21.3029 21.4380 21.5214

0.08 18.3317 18.8825 19.0968 19.2109 19.2817

0.09 16.6601 17.1217 17.3045 17.4025 17.4636

0.10 15.2689 15.6614 15.8195 15.9049 15.9584

4.2. Cost/benefit analysis

The cost/benefit of the systems with and without retrial under Poisson shocks is compared

in this section. For the intelligent automatic communication system, the repair request of failed

relay stations can be sent to the intelligent repair equipment by the information storage generator

installed in the intelligent patrol robot. The failed relay station will be performed maintenance

directly if the state of the intelligent repair equipment is idle. Otherwise, the repair requests stored

in the information storage generator will be repeatedly sent to the intelligent repair equipment after

a period of time, so that the failed relay station can be restored to the working state. We assume

that the annual cost of the information storage generator, i.e., the annual amortization and operating

expenses (AE), is $620. The failure information of the relay station will be directly sent to the

intelligent repair equipment by the intelligent patrol robot in the general non-retrial system. If the

intelligent repair equipment is busy, the information of the failed relay station will be stored in the

intelligent repair equipment’s repository and be queued in the repository for repair in the order of

arrival. Therefore, there is a storage fee in this case, that is, the annual occupancy cost (OC) of the

repository. In the following cost/benefit analysis, the costs of the retrial and non-retrial systems

are the AE of the information storage generator and the OC of the repository, respectively, and the

benefits refer to mean time to first failure and steady-state availability. In Figs. 13-16, costs/MTTFF

and costs/A(∞) of the two systems are compared and analyzed.
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Fig. 13. cost/MTTFF varies with occupancy cost.
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Fig. 13 shows the change of cost/MTTFF with OC. We can see that the cost/MTTFF of the

system with retrial feature is smaller than that of the system without retrial feature when OC >

$640.7241. We assume that the annual occupancy cost of the repository is $650 in Fig. 14. We

observe that the cost/MTTFF of the system with retrial feature is smaller than that of the system

without retrial feature when γ > 0.3124. Fig. 15 shows the change of cost/A(∞) with OC. We

can see that the cost/A(∞) of the system with retrial feature is smaller than that of the system

without retrial feature when OC > $638.1563. We still assume that the annual occupancy cost

of the repository is $650 in Fig. 16. It can be seen that the cost/A(∞) of the system with retrial

feature is smaller than that of the system without retrial feature when γ > 0.3071. Based on the

above analysis, we can choose the system with a lower cost/benefit according to the OC and the

retrial rate in practical problems when designing the system.
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5. Conclusions

This text proposed a linear C(k,n: F) system with retrial feature under Poisson shocks. The

system can be used to simulate the telecommunication system in practical engineering. The retrial

feature and Poisson shock make the model more practical. It is assumed that the working time,

repair time and retrial time of the components in the system follow exponential distributions. The

failure of components in the system can be induced by intrinsic factors or extrinsic shocks. Based

on the definitions and assumptions, the availability and reliability indices were given by using

Laplace transform and Markov process theory. In the numerical experiments, the effect of several

parameters on reliability function, instantaneous availability, steady-state availability and MTTFF

were analyzed. In addition, we compared the cost/benefit of the systems with and without retrial,

including cost/MTTFF and cost/A(∞). The system developers and managers can design the system

according to the estimated costs and parameter settings. When the OC of the non-retrial system

exceeds a certain threshold, the retrial system with lower cost/benefit should be considered. In

addition, in the case of the selected retrial system, the retrial rate should exceed a certain threshold

to ensure that the retrial is of value to the system design.

This work merely considered that the cost is constant in the cost-benefit analysis. In the future,

we will extend the cost/benefit to the function of several controllable parameters of the system,

and minimize them by determining the optimal values of controllable parameters. When a large

number of components lead to complex system states, it is difficult to acquire the accurate system

reliability indices according to the current modeling methods and solving algorithms. Therefore, the

state aggregation method and numerical algorithm can be considered for approximate processing.

Moreover, Assumption A4 in Section 2.1 in this paper assumes that a component may fail while

the system is being repaired and the paper did not distinguish the difference between the failure

rates of the component during its operating state and during its idle state (i.e., at the state while the

system is being repaired). The loading intensity on the component during the two states may differ,

and this assumption may therefore be too restrictive. Our future work will also aim to relax this

assumption to distinguish the difference.
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