
Alexiadis, Evangelos (2011) Implementation of a real time Hough transform
using FPGA technology. Doctor of Philosophy (PhD) thesis, University of Kent.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/94165/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.94165

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information
This thesis has been digitised by EThOS, the British Library digitisation service, for purposes of preservation and dissemination. It

was uploaded to KAR on 25 April 2022 in order to hold its content and record within University of Kent systems. It is available Open

Access using a Creative Commons Attribution, Non-commercial, No Derivatives (https://creativecommons.org/licenses/by-nc-nd/4.0/)

licence so that the thesis and its author, can benefit from opportunities for increased readership and citation. This was done in line

with University of Kent policies (https://www.kent.ac.uk/is/strategy/docs/Kent%20Open%20Access%20policy.pdf). If you ...

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/94165/
https://doi.org/10.22024/UniKent/01.02.94165
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

IMPLEMENTATION OF A REAL TIME HOUGH
TRANSFORM USING FPGA TECHNOLOGY

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE SUBJECT OF ELECTRONIC ENGINEERING

By
Evangelos Alexiadis

December 2009

TEMPLEMAN1
LIBRARY

F 2 z i

To my family and friends

Acknowledgments

First and foremost I would like to express my deep and sincere gratitude to my

supervisor, Peter Lee. His wide knowledge and his logical way of thinking have

been of great value for me. His understanding, encouraging and personal

guidance have provided a good basis for the present thesis. I could not have

asked for a better supervisor and without his help I could not have finished my

PhD successfully.

I would like to thank my friends in the Embedded Systems laboratory, both old

and new, who have been able to keep me smiling even during the most difficult

times. Special thanks to my colleague, Dr Michael Wisdom. You have been such

a good laugh and an excellent office-neighbour and thank you for not minding

my endless interruptions on your desk asking for help and advice.

To the people in the Department of Electronics at the University of Kent; and

especially to Dr. Konstantinos Sirlantzis; thank you for the opportunities and the

help you have given me over the years. I am privileged to have studied and

worked with you all. To the IT people and especially to Julian Lucas, as well as

the support staff Helen Winder, Denyse Menne, Ariella Bowman, Catherine

Butler and Nina Lozanska; thank you all for being so amazing and for your help

through out these years.

I would especially like to thank the Mitzalis family, for their support and belief

in me all these years. You treated me as part of your family and I will never

forget this. You are wonderful people and I feel honoured to have meeting you.

God bless you.

A big thank you to all my friends for being there for me through the tough and

the good times; Alexi, Louiza, Vangeli, Alexandre, Giorgo, Dimitra, Stathi,

iii

Dimitri, Sissy, Vicky, Kostantia, Tzeni, Theodore, Frossina and Antoni, and my

wonderful landlords, Mr. Alan & Mrs. Marje; thank you for keeping me strong

and for putting up with me. I am blessed to have you all.

To my dear friends Popara and Antonis; you have been a constant source of

laughter, inspiration and support. I love you, and I will always be there for you.

Finally I wish to express my deepest thanks to the members of my family; each

of you has a special place in my heart. I would like to thank my parents,

Alexandra and Eleni, and my brother Vasili, for their love, understanding,

patience, endless support, and never failing to have faith in me. I love you so

much, and I would not have made it this far without you.

Last but not least, many thanks to my Pinaki mou, for her understanding, endless

patience, help during my writing and encouragement when it was most required.

She made me a happy person and gave me the extra strength, motivation and

love necessary to get things done. I love you more (possible) and thank you for

being part of my life.

Evangelos Alexiadis

Canterbury, December 2009

IV

Abstract

This thesis is concerned with the modelling, design and implementation of

efficient architectures for performing the Hough Transform (HT) on mega-pixel

resolution real-time images using Field Programmable Gate Array (FPGA)

technology. Although the HT has been around for many years and a number of

algorithms have been developed it still remains a significant bottleneck in many

image processing applications.

Even though, the basic idea of the HT is to locate curves in an image that can be

parameterized: e.g. straight lines, polynomials or circles, in a suitable parameter

space, the research presented in this thesis will focus only on location of straight

lines on binary images. The HT algorithm uses an accumulator array

(accumulator bins) to detect the existence of a straight line on an image. As the

image needs to be binarized, a novel generic synchronization circuit for

windowing operations was designed to perform edge detection. An edge

detection method of special interest, the canny method, is used and the design

and implementation of it in hardware is achieved in this thesis.

As each image pixel can be implemented independently, parallel processing can

be performed. However, the main disadvantage of the HT is the large storage and

computational requirements. This thesis presents new and state-of-the-art

hardware implementations for the minimization of the computational cost, using

the Hybrid-Logarithmic Number System (Hybrid-LNS) for calculating the HT

for fixed bit-width architectures. It is shown that using the Hybrid-LNS the

computational cost is minimized, while the precision of the HT algorithm is

maintained.

Advances in FPGA technology now make it possible to implement functions as

the HT in reconfigurable fabrics. Methods for storing large arrays on FPGA’s are

presented, where data from a 1024 x 1024 pixel camera at a rate of up to 25

frames per second are processed.

v

Publications Arising From This Work

1 P. Lee and E. Alexiadis. "An implementation of a multiplierless Hough

transform on an FPGA platform using hybrid-log arithmetic in SPIE

Conference on Real-Time Image Processing 2008, California, USA, 2008

vi

Table of Contents

TABLE OF CONTENTS

1 Introduction.. 1

1.1 Motivation, aim and objectives...1

1.2 Hough Transform..1

1.3 Logarithms and Hough Transform..2

1.4 Edge Detection and Hough Transform.. 3

1.5 FPGA and Hough Transform.. 4

1.6 Thesis Organization.. 6

1.7 Research Contributions... 9

2 Hough Transform Literature Review..........................10

2.1 Introduction..10

2.2 The Hough Transform Method...10

2.3 Implementing the Hough Transform.. 12

2.4 Advantages and Disadvantages of the Hough Transform...................... 14

2.5 Early Development of the Hough Transform...15

2.6 Hough Transform Methods..16

2.6.1 Generalized Hough Transform... 16

2.6.2 Fast Hough Transform..17

2.6.3 Adaptive Hough Transform..19

2.6.4 Fast Adaptive Hough Transform.. 19

2.6.5 The Binary Hough Transform..20

2.6.6 The Dynamic Combinatorial Hough Transform......................... 21

2.6.7 Connective Hough Transform... 21

vii

Table of Contents

2.6.8 The Hierarchical Hough Transform...22

2.6.9 The Probabilistic Hough Transform...23

2.6.10 The Weighted Hough Transform..24

2.6.11 Multiresolution Hough Transform..24

2.6.12 Randomized Hough Transform..25

2.7 Applications of the Hough Transform.. 26

2.8 Parallel Processing Architectures... 33

2.8.1 SIMD Implementation..36

2.8.2 MIMD Implementation...37

2.8.3 Dedicated Systems..38

2.9 Conclusion... 41

3 Edge Detection & Digital Logarithms Literature

Review... 42

3.1 Introduction...42

3.2 Introduction to Edge Detection... 42

3.3 Edge Detection Methods... 45

3.3.1 Sobel Method.. 46

3.3.2 Canny Method... 48

3.3.2.1 Smoothing.. 49

3.3.2.2 Gradient Calculation...50

3.3.2.3 Magnitude and Phase... 51

3.3.2.4 Non-Maximum Suppression.. 51

3.3.2.5 Threshold..51

3.4 Introduction to Digital Logarithms...52

3.4.1 Digital Logarithms Methods...52

viii

Table of Contents

3.5 Conclusion..61

3.6 Hardware Architecture...59

3.7 Results Using the Canny Algorithm.. 59

3.8 A Synchronizing Circuit.. 70

3.9 Conclusion..72

4 Implementation of the Canny Edge Detection

Method... 63

4.1 Introduction.. 63

4.2 Hardware Implementation..63

4.2.1 Moving Window Operator.. 63

4.3 Canny Hardware Implementation.. 66

4.3.1 Image Smoothing... 66

4.3.2 Horizontal and Vertical Gradient Calculation.......................67

4.3.3 Directional Non-Maximum Suppression............................. 68

4.3.4 Threshold and Thinning... 71

4.4 Hardware Architecture... 72

4.5 Results Using the Canny Algorithm...72

4.5.1 Software Version of Canny Algorithm Using Floating Point

Arithmetic...74

4.5.2 Software Version of Canny Algorithm Using Fixed Point

Arithmetic..75

4.5.3 Hardware Version of Canny Algorithm Using floating Point

Arithmetic..77

4.5.4 Hardware Version of Canny Algorithm Using Fixed Point

Arithmetic...79

IX

Table of Contents

4.6 A Synchronizing Circuit..83

4.7 Conclusion..85

5 Overview of FPGA Technology.................................. 86

5.1 Introduction...86

5.1.1 Digital Signal Processors..86

5.1.2 ASICs..88

5.2 Introduction to FPGA's..88

5.3 Summary of Modern FPGAs... 91

5.4 Number Representation on FPGAs... 94

5.5 Xilinx’s Xtreme DSP Block.. 97

5.6 Conclusion... 99

6 Hybrid Logarithmic Number System......................102

6.1 Introduction...102

6.2 Logarithmic Converter Design...106

6.2.1 Design Considerations..106

6.2.2 Logarithmic Converter...107

6.2.3 Logarithmic Multiplication Implementation..............................113

6.3 Conclusion..114

7 Hybrid-LNS & Hough Transform.........................115

7.1 Introduction...115

7.2 The Linear Hough Transform... 115

7.2.1 Proposed Linear Implementation Using MATLAB..................117

7.3 The Logarithmic Hough Transform..124

7.3.1 Proposed Logarithmic Implementation Using MATLAB........126

x

Table of Contents

7.4 Hardware Implementation..132

7.5 Conclusion..133

8 Design of a LUT Based Accumulator Cell..................135

8.1 Introduction..135

8.2 Parametric Description of a Straight Line.. 135

8.3 Accumulator Cell..136

8.4 An Alternative Accumulator Cell...137

8.5 Simulation Results..138

8.6 The Complete System...140

8.7 Conclusion..143

9 Summary & Conclusion...144

9.1 Summary...142

9.2 Future Work..147

R References.. Ri

A Appendix A-Test images and HT parameter space

output... A1

B Appendix B- Series of tests with different fixed
points..Bi

xi

List of Figures

LIST OF FIGURES

Figure 1.5-1 - Block Diagram of the System..5

Figure 2.2-1 - Left Figure: xy Plane, Right Figure: Parameter Space................11

Figure 2.2-2 - Parametric Description of a Straight Line....................................12

Figure 2.3-1 - Subdivision of the mc-Plane Into Cells..13

Figure 2.6-1 - Shapes Detected with the GHT. a) Simple Shape b) Composite

Shape..17

Figure 2.6-2 - Example of a Quadtree Search Used in the FHT.........................18

Figure 2.7-1 - Vehicle License Plate Identification Using the HT..................... 30

Figure 2.7-2 - Experimental results of lane boundary detection. The detected

lane boundaries are overlaid on the input gray scale images..............................31

Figure 2.7-3 - Simple s-topes: a) Monosphere, b) Bisphere, c) Thrisphere, d)

Tetrasphere...33

Figure 2.8-1 - SIMD Architecture Block Diagram... 34

Figure 2.8-2 - MIMD Architecture Block Diagram.. 35

Figure 2.8-3 - A Pipelined Architecture for Real Time Measurements..............39

Figure 2.8-4 - The Elementary CORDIC Arithmetic Unit................................. 41

Figure 3.2-1 - Example of Edge Detection, (a) Image on a Grey Background, (b)

Edge Enhanced Image Showing Only the Outlines of the Objects Using the

Canny Method... 43

Figure 3.2-2 - Step Edges, (a) The Change in Level Occurs Exactly at Pixel 10.

(b) The Same Level Change as Before, but Over 4 Pixels Centred at Pixel 10.

This is a Ramp Edge, (c) Same Level Change but Over 10 Pixels, Centred at 10.

(d) A Smaller Change Over 10 Pixels. The Insert Shows the Way the Image

Would Appear, and the Dotted Line Shows Where the Image was Sliced to Give

the Illustrated Cross-Section.. 45

Figure 3.3-1 - Sobel Output.. 47

Figure 3.3-2 - Schematic of Canny Edge Detection... 49

Figure 3.3-3 - Prewitt Kernels.. 51

Figure 3.4-1 - Mitchell’s Approximation.. 53

Figure 3.4-2 - Two-Part Logarithm Approximation..55

xn

List of Figures

Figure 3.4-3 - A 4-bit Leading One Detector.. 57

Figure 3.4-4 - A 16-bit Leading One Detector.. 57

Figure 3.4-5 - Floating-Point / Logarithm Converter.. 61

Figure 4.2-1- Example of the Window Operator in a 5x5 Image.......................65

Figure 4.2-2 - Architecture of a 3x3 Window..66

Figure 4.3-1 - Filter Coefficients a) 1-D Across Rows b) 1-D Across Columns

c) 2-D Filter..67

Figure 4.3-2 - Gradient Orientation... 69

Figure 4.3-3 - Pixel Interpolation.. 70

Figure 4.4-1 - Canny Algorithm Block Diagram... 73

Figure 4.5-1 - Software Implementation Using Floating Point Arithmetic....74-75

Figure 4.5-2 - Software Implementation Using 8-bits Fixed Point Arithmetic...76

Figure 4.5-3 - Difference Between Floating Point and Fixed Point Arithmetic..77

Figure 4.5-4 - Hardware Implementation Using Floating Point Arithmetic..77-78

Figure 4.5-5 - Difference Between Software Version Using Floating Point and

Hardware... 79

Figure 4.5-6- Hardware Implementation Using 8-bit Fixed Point Arithmetic....80

Figure 4.5-7- Difference Between Hardware Version Using Fixed Point and

Software Version Using Floating Point Arithmetic..81

Figure 4.6-1- The Synchronization Circuit Block Diagram................................84

Figure 5.1-1 - Block Diagram of an ADSP-21xxx Core.................................... 87

Figure 5.2-1- FPGA Architecture... 89

Figure 5.2-2 - FPGA Programmable Logic Cell... 90

Figure 5.3-1 - Altera Logic Element (LE).. 92

Figure 5.3-2 - Xilinx Virtex Slice... 93

Figure 5.3-3 - Altera DSP Block Diagram.. 94

Figure 5.4-1 - Floating-Point Representation.. 95

Figure 5.4-2 - Fixed-Point Representation.. 96

Figure 5.5-1 - A DSP48 Tile Consisting of Two DSP48 Slices......................... 99

Figure 6.1-1 - Graph of Log(X) for 0<X<10..103

Figure 6.1-2 - Non Linear Functions...105

Figure 6.2-1 - Linear to Log Converter Block Diagram.....................................108

Figure 6.2-2 - Log to Linear Converter Block Diagram.....................................110

Figure 6.2-3 - LUT Shapes...112

xiii

List of Figures

Figure 6.2-4 - Logic for Multiplication in the Logarithmic Domain.................113

Figure 7.2-1- Basic HT Calculation Element.. 116

Figure 7.2-2 - Test Image at Rotated Angles of 60 and 45 Degrees.................118
Figure 7.2-3 - Flough Transform Parameter Space Output Graphs on 1024 x 1024

Binarised Images Using Floating Point Arithmetic Precision...........................119

Figure 7.2-4 - Hough Transform Parameter Space Output Graphs on 1024 x 1024

Binarised Images Using Linear 8-bit Arithmetic Precision...............................120

Figure 7.2-5 - Hough Transform Parameter Space Output Graphs on 1024 x 1024

Binarised Images Using Linear 12-bit Arithmetic Precision............................121

Figure 7.2-6 - Hough Transform Parameter Space Difference Graphs on 1024 x

1024 Binarised Images Between Floating Point and Linear 8-bit Arithmetic

Precision...122-123

Figure 7.2-7- Hough Transform Parameter Space Difference Graphs on 1024 x

1024 Binarised Images Between Floating Point and Linear 12-bit Arithmetic

Precision... 123-124

Figure 7.3-1- Hybrid-LNS HT Element..125

Figure 7.3-2 - Hough Transform Parameter Space Output Graphs on 1024 x 1024

Binarised Images Using Floating Point Arithmetic Precision.....................126-127

Figure 7.3-3- Hough Transform Parameter Space Output Graphs on 1024 x 1024

Binarised Images Using Hybrid-Log 8-bit Arithmetic Precision................127-128

Figure 7.3-4: Hough Transform Parameter Space Output graphs on 1024 x 1024

Binarised Images Using Hybrid-Log 12-bit Arithmetic Precision..............128-129

Figure 7.3-5- Hough Transform parameter Space Difference Graphs on 1024 x

1024 Binarised Images Between Floating Point and Hybrid-Log 8-bit Arithmetic

Precision...130

Figure 7.3-6- Hough Transform Parameter Space Difference Graphs on 1024 x

1024 Binarised Images Between Floating Point and Hybrid-Log 12-bit

Arithmetic Precision.. 131

Figure 8.3-1- Basic Accumulator Cell Block Diagram..................................... 137

Figure 8.4-1- Alternative Accumulator Cell Block Diagram............................138

Figure 8.6-1- Stages of the HT Implementation..140

xiv

List of Tables

LIST OF TABLES

Table 1.5-1 - Resolution Vs Frames Per Second..6

Table 2.8-1 - The CORDIC Arithmetic Function... 40

Table 4.5-1- Logic Calculations for the Canny Edge Detector......................... 82

Table 5.2-1- Summary of Four Commercial FPGA.. 90

Table 5.3-1 - Key Features for the Latest FPGAs.. 92

Table 6.1-1- Logarithm Conversion Rules...103

Table 6.2-1 - Example Linear to Logarithm Converter LUT............................108

Table 6.2-2 - Example Logarithm to Linear Converter LUT......................... I l l

Table 6.2-3 - MSE results for conversion to and from log / linear for different

size / shaped LUTs...112

Table 7.2-1- Correlation Between Number of Hough Elements with Operations

per Second.. 117

Table 7.4-1- Implementation Statistics of HT Elements...................................133
Table 8.6-1 - The Complete System...142

xv

List of Abbreviations

LIST OF ABBREVIATIONS

HT Hough Transform
FPGA Field Programmable Gate Array
LNS Logarithmic Number System
Hybrid-LNS Hybrid Logarithmic Number System
GHT General Hough Transform
ASIC Application-Specific Integrated Circuit
SHT Standard Hough Transform
PSF Parameter Space Function
LUT Look Up Table
GHT Generalized Hough Transform
FHT Fast Hough Transform
AHT Adaptive Hough Transform
FAHT Fast Adaptive Hough Transform
BHT Binary Hough Transform
DCHT Dynamic Combinatorial Hough Transform
DGHT Dynamic Generalized Hough Transform
CHT Connective Hough Transform
HHT Hierarchical Hough Transform
PHT Probabilistic Hough Transform
WHT Weighted Hough Transform
MHT Multiresolution Hough Transform
RHT Randomized Hough Transform
VLSI Very Large Scale Integration
BHT Bounded Hough Transform
SIMD Single Instruction Multiple Data
MIMD Multiple Instruction Multiple Data
PE Processing Element
CAM Content Addressable Memory
CORDIC Co-Ordinate Rotation Digital Computer
FIFO First In First Out
VHDL Very high speed integrated circuit Hardware Description

Language
SR Shift Register
CLB Configurable Logic Block
DSP Digital Signal Processors
DCT Discrete Cosine Transform
LZD Leading Zero Detector

XVI

Chapter 1 Introduction

CHAPTER ONE

INTRODUCTION

1.1 Motivations, aims and objectives

The research presented in this thesis focuses on the efficient and fast

implementation of the Hough Transform (HT) [l] on Field Programmable Gate

Array (FPGA) using the logarithmic number system (LNS) and more specifically

using the Hybrid-LNS [2],[3]. The HT has historically been the standard method

used for the detection of straight lines and edges in binary images. Since its

invention by Hough in 1962 [1] the transform has been extended to the General

Hough Transform (GHT) [4] enabling the detection of more generic shapes such

as curves, circles and parabolas and making it an extremely useful tool in many

image processing applications. However, in this thesis only the location of

straight lines on binary images will be examined. The HT is known for its

computational intensive requirements and the implementation of it, even with

today’s FPGA, is problematic due to the limited resources in terms of memory,

computational resources and speed. This is the reason for looking at alternatives

architectures for implementing the HT using multiplierless techniques, such as

the Hybrid-LNS. The aim of this research is to implement the HT with as less as

possible resources in hardware using FPGA's. For achieving this the Hybrid-LNS

will be used, the Canny edge detection method will implemented in hardware

with the use of an synchronization circuit, and a LUT based accumulator cell will

be designed for minimizing the memory requirements of the HT output.

1.2 Hough Transform

The HT uses the concept of point-line duality to locate lines in an image. A point

P in an image can be defined using a pair of coordinate (x, _y) or in terms of a set

1

Chapter 1 Introduction

of lines passing through it. When considering a set of collinear points Pt and

generating a set of possible lines that pass through each point it becomes clear

that there is just one line that is common to all of the sets. It is therefore possible

to find the line containing all the points Pt by removing all lines without multiple

“hits”. Although the transform can be used in higher dimensions the main use is

in two dimensions.

The HT is an important image processing operation, where its methods offer

robustness against noise but there are some problems involved like high

computing cost and extreme memory requirements [5], Also, the transforms can

be influenced by errors of discretization/quantization of continuous space.

Because of these problems the performance of the standard HT needs to be

improved. There are numerous, in-depth, and varying publications on the HT

available in the literature. More precise HT using variable filters and transforms

determining efficient sampling intervals have been used as well, in order to

examine the quantization errors. Even though the HT has been around for many

years and a number of algorithms have been developed it still remains a

significant bottleneck in many image processing applications (see Chapter 2) [6].

1.3 Logarithms and Hough Transform

The main advantage of the LNS is that multiplication and division in the linear

domain is simplified to addition and subtraction in the log domain respectively,

as it can be seen from equations (1.3:1) and (1.3:2).

On the other hand, the LNS is unable to represent all numbers directly and

additional information is required to represent the sign of the number and the

special case of x = 0.

Implementing addition and subtraction in the logarithmic domain [7] is much

more complicated as can be seen from (1.3:3) and (1.3:4).

log/, (A x B) = logé (A) + logé (£)
log0 = logé (A) - logb (5)

(1.3:1)
(1.3:2)

2

Chapter 1 Introduction

log* (A + B) = i + logA (1 + b J~‘)

l°g* (A - B) = i + logA (1 - b J~‘)

(1.3:3)
(1.3 :4)

Where: i = log|/i| and j = log|5|

Those are not straight forward equations, as the non linear functions (1.3:5) and

(1.3:6) must be evaluated, where are normally implemented using a Look Up

Table (LUT).

An alternative solution to this problem is the use of the hybrid-LNS where

multiplication is performed in the log domain and addition performed in linear

domain. This removes the necessity for implementing the non-linear function and

LUT methods are used to translate between the log and linear domains. The size

of the LUT grows exponentially with the number of bits of resolution and

becomes prohibitively large when more than 16 bits of accuracy is required. For

image processing, where the image data is limited to 8-10 bits of resolution the

LUT requirements are acceptable and both LNS and Hybrid-LNS arithmetic are

suitable for processing gray scale images.

The obtained results (see Chapter 7) indicate that implementing the Hough

transform using the Hybrid-LNS, an efficient, low-power and low cost solutions

can be achieved compared to the equivalent linear implementation using custom

ASIC or FPGA technology.

1.4 Edge Detection and Hough Transform

To extract line segments or any geometric structure from a gray scale or colour

image using the HT, the image need to be transformed to a binary one using

thresholding or any other edge detection method. The binarized images are the

edge maps of the original grey level or colour image.

F(r = j - i) = \og„(\ + br)

F(r = j - i) = l°g6(l ~ b r)

(1.3:5)

(1.3:6)

3

Chapter 1 Introduction

Edges can be detected by applying a high pass frequency filter in the Fourier

domain, or by convolving the image with an appropriate kernel in the spatial

domain. In practice, edge detection is performed in the spatial domain, because it

is computationally less expensive and often yields better results. Since edges

correspond to strong illumination gradients, the derivatives of the image are used

for calculating the edges.

Canny edge detection [8] is considered to be the ideal edge detection algorithm

compared with others, (Sobel, Prewitt) because it produces very sharp and thin

edges. As it is a method of special interest, it will extensively be described and

implemented in hardware for the scope of this research.

The Canny edge detection uses a multi-stage algorithm to detect a wide range of

edges in images. It first smoothes the image to eliminate the noise and then finds

the image gradient to highlight regions with high spatial derivatives. The

algorithm then tracks along these regions and suppresses any pixel that is not at

the maximum (nonmaximum suppression). The gradient array is now further

reduced by a process called hysteresis. Hysteresis is used to track along the

remaining pixels that have not been suppressed. It uses two thresholds where if

the magnitude is below the first threshold, it is set to zero (made a nonedge). If

the magnitude is above the high threshold, it is made an edge. Finally, if the

magnitude is between the 2 thresholds, then it is set to zero unless there is a path

from this pixel to a pixel with a gradient above the high threshold.

1.5 FPGA and Hough Transform

In the decade and a half since the introduction of the first commercial FPGA,

these devices have grown in complexity from a few hundred to millions of gates

of programmable logic. Once used primarily as "glue logic," FPGAs today are

key system-level components packed with features such as on-chip memory,

clock management capability and programmable support for high performance

I/O signaling standards. FPGAs allow equipment makers to significantly reduce

their time to market. And because they are manufactured on the most advanced

4

Chapter 1 Introduction

semiconductor process technologies available, FPGAs offer levels of design

flexibility, performance and logic density that make them a viable and cost

effective alternative to traditional fixed-logic ASICs. More important, FPGAs

can be reprogrammed even after an end system has been deployed at a customer's

site. As a result, FPGAs technology is opening up a new area of equipment

design that allows for hardware upgrades over a network. This promises to

reduce equipment maintenance costs, extend the life cycle of products and create

new sources of revenue for manufacturers by allowing them to add new features

and capabilities remotely to installed products [9], Using FPGAs technology fast

re-configurability, either partially or totally, can be achieved and a designer can

meet the required performance with a minimal amount of resources [10] [174],
As mentioned in section 1.1, in order to compute and implement the HT on an

FPGA it is quite complex in terms of memory, computational resources and

speed [5]. Minimization of possible multiplication and look-up table’s utilization

using the LNS is the solution to the problem.

Instead of using a sequential algorithm it will be important to explore methods

and techniques that exploit the inherent parallelism of the logic blocks available

on an FPGA. The research will compare and control existing algorithms and

their performance when implemented on an FPGA and explore new methods for

improving this performance. The aim is to provide full ‘real-time’ operation with

mega-pixel size digital images up to 25 frames per second using Xilinx

Virtex4™ architecture. A block diagram of the system is showing in Figure 1.5-

1.

Figure 1.5-1: Block Diagram of the System

5

Chapter 1 Introduction

The camera being used for capturing the test images is a Pulnix 1 Mpixel camera

operating at 25 frames per second. The interface to the camera is based on the

CameraLink signals where the control signals are PVAL (Pixel Valid), HVAL

(Line Valid) and FVAL (Frame Valid). These signals make it possible to

determine the size of the active image and the valid pixels.

As it can be seen from Table 1.5-1 [11], there is a large range of camera

manufactures, operating at higher resolutions (up to 10 Mpixels). However, this

increase in resolution often results in a reduction of frames per second.

Table 1.5-1: Resolution Vs Frames Per Second [11]

M anufacturer R esolution (M pixels) Fram es per second

Omnivision 9 8.9
44 8 10
44 5 7.5 & 15
44 3 15
44 2 15 & 30
44 1 30

CIS Americas 5 15

Pulnix 2 15

PixelLink 2 20 & 15
44 3 12
44 6.6 5

Kodak 10.3 15
44 4 13

1.6 Thesis Organization

Chapter 2 introduces the HT and provides relevant background information about

it, as well as the reasons why this transform is so widely accepted in the image

processing world. A mathematical approach to the transform is given to

understand its operation, as well as the basic theory and underlying principles are

6

Chapter 1 Introduction

presented. In order to support the research, the deficiencies in other transforms

and representations in this field are outlined. As the HT has been proved a

valuable tool in large range of computer vision problems in fields such as

industrial automation, robotics, biomedicine and satellite observation of Earth,

several applications of the HT are presented. As one of the main characteristics

of the HT is the independent simple calculation of every feature in an image,

parallelism can be successfully achieved. For that reason, the different

configuration types for parallel processing are described in detail, and the

between differences are introduced.

Binarization of the image is required to successfully extract line segments from

an image using the HT, by any edge detection method. There are many ways to

perform edge detection and there are several edge detection methods. The Canny

edge detection algorithm is known to many as the optimal edge detector. In

Chapter 3, an extensive description of the Canny method, as well as, all the

stages for the implementation involved is presented. In the same chapter, an

introduction to digital logarithms and the usefulness in hardware-based

arithmetic, along with the history of the hardware implementation of logarithms

is presented in the form of a literature review, to demonstrate the possibilities and

use of logarithms for this purpose. This also shows the most modern techniques

and implementations in this area.

In Chapter 4, a detailed hardware implementation of the Canny edge detection

method is presented. A software and a hardware version of the method has been

generated, where a comparison between the two versions is presented, using

floating point and fixed point arithmetic. Also, a novel flexible LUT based

synchronizing circuit for 2-D imaging filters of variable dimensions is

introduced.

As hardware implementations are the main focus for this thesis, the FPGA is

introduced and the Xilinx Virtex4™ FPGA is described in Chapter 5. A

comparison of alternative technologies that may also be used to implement the

transform and image compression system is described. Also, the most advanced

arithmetic resources available on the FPGA are detailed.

7

Chapter 1 Introduction

Chapter 6 introduces the Hybrid Logarithmic Number System (Hybrid-LNS) and

the implementations in hardware. Details are given along with a worked

example, for clarification, of the implementation of logarithmic arithmetic

appropriate for the implementation of the HT proposed in the subsequent chapter.

Chapter 7 presents a new investigation into the effect of using logarithmic

arithmetic on the Standard Hough Transform (SHT) algorithm for hardware

implementation using Matlab® simulation. The methods investigated in Chapter

6 will be applied in this chapter. It has been shown that the HT can be

implemented on technology as the FPGA’s [12], [13], with the use of multipliers.

This chapter describes how, by using logarithmic arithmetic, the need for

multipliers is eliminated, while precision of the algorithm is maintained. Finally,

the implementation of the SHT on FPGA using Hybrid-LNS arithmetic is

presented, as well as, a comparison with the linear SHT is made. The relative

simplicity of the structures presented, indicates that it is feasible to implement

multiple elements operating in parallel using just the basic CLB elements

available on a typical FPGA fabric and leaving the DSP slices and Block RAM

free for other functions in the image processing chain. Depending on the overall

throughput, results shows that it is possible to process data from a 1024 x 1024

pixel camera at a rate of up to 25 frames per second.

A LUT based accumulator cell that can be used as part of the HT architecture for

storing the calculated Parameter Space Function (PSF), derived from a binary

image is presented in Chapter 8. The accumulator cell uses the distributed

memory elements available on a Xilinx FPGA fabric to store the intermediate

results prior to passing them on for post processing and feature extraction.

Parallel implementation can be achieved where significantly large images

(megapixel) are being processed. In the same chapter, the complete system is

presented in terms of hardware requirements, and a comparison between the

different stages is taking place.
A review of all the research presented in this thesis, along with a summary of

findings is presented in Chapter 9 as a conclusion. Directions for further

research are also suggested.

8

Chapter 1 Introduction

1.7 Research Contributions

The five main areas of this research are presented in:

• Chapter 4 for the implementation of the Canny edge detection method
on hardware.

• Chapter 4 for the design of a novel generic synchronization circuit for
windowing operations.

• Chapter 7 for the implementation of the HT using Hybrid-LNS.

• Chapter 8 for presenting methods for storing large arrays on FPGA’s.

• Chapter 8 for the combined edge detection and HT on an FPGA.

Chapter 4 describes the Canny edge detection method and the hardware

implementation of it is presented. As a moving window operator forms the basic

implementation of the Canny algorithm, and a number of pre-calculated steps are

required a novel synchronization circuit architecture was designed. The circuit

uses LUT resources available on FPGA devices as variable length shift registers.

The synchronization circuit architecture is one of the main contributions of this

thesis.

Another contribution can be seen in Chapter 7. Using the most advanced

technology available on the latest FPGA devices, Chapter 7 describes a novel

implementation of the HT where the Hybrid-LNS method is used. The

implementation was presented at the SPIE conference in 2008 [14].The proposed

HT using Hybrid-LNS is designed to use less logic, operate at higher speeds,

while precision of the algorithm is maintained.

As memory requirement is one of the main drawbacks of the HT algorithm,

Chapter 8 presents a novel LUT based accumulator cell architecture for storing

the calculated PSF derived from a binary image. The accumulator cell uses the

distributed memory elements available on a Xilinx FPGA fabric to store the

intermediate results of the HT prior to passing them on for processing and

feature extraction. This is the last, but not least, main contribution gained out of

this thesis.

9

Chapter 2 Hough Transform Literature Review

CHAPTER TWO

HOUGH TRANSFORM LITERATURE
REVIEW

2.1 Introduction

This chapter provides an overview of the literature and relevant background

information about the HT, and the reasons why this transform is so widely accepted

and used, thus, providing the basis for this thesis. However, there are numerous, in-

depth, and varying publications on the HT available in the literature. Therefore, it is

necessary to categorise these publications in an appropriate manner. Hence, a

mathematical approach to the transform will be introduced in this chapter, in order to

aid the understanding of its basic operation. Then, the basic theory and underlying

principles, as well as the deficiencies in other transforms and representations in this

field, will be outlined, in order to support the research introduced and described in

subsequent chapters of this thesis. The research review presented in this chapter will

follow a chronological order.

2.2 The Hough Transform Method

The HT was originally proposed by Hough in 1962 [1] and has become a standard

tool in image analysis that allows recognition of global patterns in an image space,

by recognizing local patterns (ideally a point) in a transformed parameter space. The
basic idea of this technique is to locate curves in an image that can be parameterized:

e.g. straight lines, polynomials or circles, in a suitable parameter space. Its main use

is in two-dimensional spaces to find straight lines, centers of circles with a fixed

radius, or parabolas, although the transform can be used in other dimensions. The

research presented in this chapter will focus only on location of straight lines on

binary images.

10

Chapter 2 Hough Transform Literature Review

Consider the equation of the straight line in slope-intercept form shown in (2.2:1) for

different values of a and b and a point (x„ yi).

y\ = ax\ + b (2.2:1)

Infinitely many lines pass through this point and all satisfy the equations of the

straight line. Solving the straight line equation as (2.2:2) and considering the

parameter space yields the equation of a single line for a fixed pair (x„ y t).

b = -ax i + yi (2.2:2)

A second point (xj, y,) also has a line in parameter space associated with it, and this

line intercepts the line associated with (jc„ y,) at (m c ’), where m’ is the slope and c’

is the intercept of the line containing both (x„ y,) and (xJt yj) in the xy-plane.

Generally, all points on this line have lines in parameter space that intercept at (m

c ') as Figure 2.2-1 shows below [16].

Figure 2.2-1: Left Figure: xy Plane, Right Figure: Parameter Space

A practical difficulty with this approach is that the slope of the meaning line

approaches infinity as the line approaches the vertical direction. One way to

overcome this difficulty was suggested by Duda and Hart [6] where they used the

normal representation of a line which is shown in (2.2:3) where x and y are the co­

ll

Chapter 2 Hough Transform Literature Review

ordinates of a point on the line, p is the perpendicular distance of the line from the

centre of the image and 0 is the angle between the perpendicular to the line and the

x-axis [17]. (Figure 2.2-2) The mapping of (x, y) points into the 2D (p, 0) parameter

space is achieved by sampling the 0 axis and then calculating, using equation (2.2:3),

the corresponding p value. As 0 is varied a sinusoidal curve is generated whose

amplitude and phase are determined by the image points (x, y) [18].

x cos(0) + y sin(0) = p (2.2:3)

Figure 2.2-2: Parametric Description of a Straight Line

2.3 Implementing the Hough Transform

The HT algorithm uses an accumulator array (accumulator bins) to detect the

existence of a line. The dimension of the accumulator is equal to the number of

unknown parameters of the HT problem. For example, the linear HT problem has

two unknown parameters: m and c. The two dimensions of the accumulator array

would correspond to quantized values for m and c. For each pixel and its

neighborhood, the Hough transform algorithm determines if there is enough

evidence of an edge at that pixel. If so, it will calculate the parameters of that line,

and then look for the accumulator's bin that the parameters fall into, and increase the

12

Chapter 2 Hough Transform Literature Review

value of that bin. By finding the bins with the highest values (peaks), typically by

looking for local maxima in the accumulator space, the most likely lines can be

extracted, and their (approximate) geometric definitions to be read. The size of the

high value bins is a function of several factors such as the number of points

composing the line, the number of other points in the image and the choice of

parameter bin size. The size of parameter bins is usually chosen to correspond to the

required precision of parameter space [16].

For the performance of the HT algorithm, the following steps required.

i) Define {mmin, rnmax} and {cmjn,cmax} as the expected ranges of m and c

respectively as it is shown in Figure 2.3-1. The cell at coordinates (i,j),

with accumulator value A(i,j), corresponds to the square associated with

parameter space coordinates (mb Cj) [16].

max
q=j

q=i
c •min

A[i,j]

m p=i • p=i
min mmax

m

Figure 2.3-1: Subdivision of the mc-Plane Into Cells

ii) Set A [/, j] = 0 for all i, j to initialise [16].

iii) For each point (x’, y’) of interest in (x, y) space

Set mp = each subdivision in range { m m jn , mmax} and solve for the

corresponding cq using the equation cq = -x’mp + y’ to get corresponding c-

value. The resulting cq are then rounded off to the nearest allowed value in

the m-axis.

13

Chapter 2 Hough Transform Literature Review

Then A [p, q\ <= A \p, q] + 1

Repeat for all points of interest.

iv) After completion, a value of M in A [/, j] corresponds to M points in the

(x, y) plane lying on the line y = mjX + Cj [16].

The accuracy of collinearity required for the points is established by the number of

subdivisions in the (m, c) plane.

2.4 Advantages and Disadvantages of the Hough

Transform

There are several positive aspects that render the HT an important image processing

tool. First, parallel processing can be achieved as each image pixel can be

implemented independently. More than one processing unit can be used and as a

result the HT algorithm can be useful for real-time applications. Second, pixels lying

on one line need not all be adjacent. This can be very useful when trying to detect

lines with short breaks in them due to quantization noise, or when objects are

partially occluded. Occlusion is a serious problem for most other detection

techniques such as convolution or noise filters, but the HT overcomes this problem

by using the size of a parameter peak, which is directly proportional to the number of

matching boundary and template points. Third, the HT offers robustness against

noise produced by poor image segmentation, or from the boundaries of shapes other

than those searched for in an image. Finally, the HT can process several straight lines

at the same time, in the same image, as each line produces a distinct peak in the

accumulator array [5].

However, the HT can give misleading results when objects happen to be aligned by

chance. This clearly can become a disadvantage, where the detected lines are infinite

lines described by their (m,c) values, rather than finite lines with defined end points.

However, the main disadvantage is the large storage and computational

requirements. The computational attractiveness of the HT arises from subdividing

the parameter space into accumulator cells as it is shown in Figure 2.3-1 [16]. In

order to accurately represent the result into a continuous parameter space, the

number of the accumulator cells, in both dimensions m and c, must be large. This

14

Chapter 2 Hough Transform Literature Review

means that the HT, in terms of computing storage, requires m x c bins. Moreover, a

large 9 means a large number of evaluations of equation (2.2:3) to accumulate the

transform. These two problems have had a combined impact on the production of

more efficient implementations of the basic HT idea.

2.5 Early Development of the Hough Transform

The HT was first introduced by Paul Hough in 1962 [1], as a method and means for

recognizing complex patterns rather than shapes in images, even though Rosenfeld

[17] was the researcher that noted its potential advantages as an image processing

algorithm and made the HT obvious to the image processing world. Hough’s

invention was based on studying complex patterns formed by particle tracks in

pictures through a viewing field. More specifically, studying particle tracks in

pictures taken through a bubble chamber. The slope-intercept parametric

representation of a line was used, but with the main drawback of generating an

unbounded parameter space. To bypass the problem, Duda and Hart [6] suggested

that a straight line can be usefully parameterized by the length, p, and the orientation,

0, of the vector to the line from the image origin. Using the (p, 0) parameters mean,

that image’s points map into sinusoidal curves in a two-parameter space. This

procedure can yield unsatisfactory results when pictures contain random noise that

cannot be removed. Cohen and Toussaint [20] modified the Duda-Hart procedure, by

studding the distribution of background counts for random noise points in finite size

images, and this compensates for noise whether the distribution is known or not.

O’Gorman and Clowes [21], using the gradient direction in the HT, managed to

recover straight lines in digitized pictures containing polyhedral, and Van Veen and

Groen [22] investigated the influence of the discretization effects on the HT, in both

the image and parameter spaces.

In 1981 Deans [23] pointed out that the HT is simply a special case of the Radon

transform, which has been known since 1917, and, therefore, accompanied by a large

amount of theoretical and mathematical literature associated with it. The Radon

transform has been studied in relation to computer-aided tomography and on a two-

Euclidean plane is defined as shown in equation 2.5:1.

15

Chapter 2 Hough Transform Literature Review

R(p,0) = f f f(x ,y)S (p -xcos(0)-ys\n (0))dxdy (2 .5 :1)
J -o o J-oo

where 8 is the Dirac delta function. The delta function term forces integration of/ (x,

y) along the equation of the straight line (2.2:3). For shapes other than straight lines

the 8 function argument can be replaced by a function which forces integration of the

image along contours appropriate to the shape [5].

Subsequently, several methods of HT were introduced in order to improve the

computational efficiency and practicability for use in real time image analysis tasks

as well as speeding up the process as much as possible [170]. Nevertheless those

methods are described below, it is worth mentioning that the purpose of this research

was to prove that fine processing can be achieved all at once, by using different

arithmetic structures rather than multiresolution or coarse to fine techniques.

Nowadays, even though all the calculations required for implementing the different

methods of the HT are possible to achieve with the processing power available, by

using the logarithmic approach (a detailed discussion will be presented later on in

this thesis), power consumption and logic resources can be reduced significantly.

2.6 Hough Transform Methods

2.6.1 Generalized Hough Transform

In 1981, Ballard [4] developed a HT which does not decompose the image into its

component features, for example, straight lines, but rather extract the shape in its

entirety. He called it the Generalized Hough transform (GHT). It could efficiently
find arbitrary shapes for any orientation or any scale, and that was achieved with the

use of directional edge information. Few graphic examples of the information used

by the GHT are shown in Figure 2.6-1. Lines indicates gradient directions Each

boundary point was stored as a vector relative to some reference point; that being the

distance, r, and the direction, 0, of the line connecting the boundary point and the

reference point. Entries in a list are indexed by the local edge direction at the

16

Chapter 2 Hough Transform Literature Review

boundary point. The resulting list is called an R-table. As the image points are only

compared with a subset of the R-table entries, indexing by edge direction decreases

the computational expense of the method. Consequently, complex shapes can be

decomposed into simpler shapes and it is possible to have a shape representation

which can accommodate this type of structural description [5], [24],

Figure 2.6-1: Shapes Detected with the GHT. a) Simple Shape b) Composite Shape. |4|

2.6.2 Fast Hough Transform

Several authors have realized that the memory requirements and computational load

of the HT can be reduced using a intelligent iterative coarse to fine accumulator

technique. Such a technique involves examination of the accumulator array at

various scales and an attempt is made to evaluate it in detail only in those areas

having a high density of counts. The fast Hough transform (FHT) of Li et al. [25]

uses this technique. The FHT uses a multidimensional quadtree which maps the

image points into hyperplanes. It recursively divides the parameter space into a

nested hierarchy of hypercubes from low to high resolution and perform the HT only

on the hypercubes with votes exceeding a selected threshold. Figure 2.6-2 shows an

example of a quadtree where the entire parameter space is considered first, then the

upper right sub-quadrant and so on. Far from growing exponentially, the search

(a 1

17

Chapter 2 Hough Transform Literature Review

converges rapidly on the accumulation point. The decision on whether a hypercube

receives a vote from the hyperplane depends on whether the hyperplane intersects

the hypercube. The advantage of using hyperplanes as opposed to an array of

accumulators is that the intersection between planes and parameter cells can be

efficiently computed using an incremental test, where only additions and shifts are

required to implement the test and as a result the computational cost scales linearly

with the dimensionality of the parameter space. On the other hand, using the

incremental intersection testing method, each quadrant must store the distance of

every image feature from its center. If there are many image features this can

represent a large overhead. In addition, the rigid quadtree decomposition of the

parameter space means that lines generating peaks which cross the boundaries of

quadrants may be missed by the processing [24],[26],

C

Figure 2.6-2: Example of a Quadtree Search Used in the FHT

18

Chapter 2 Hough Transform Literature Review

2.6.3 Adaptive Hough Transform

A more flexible variation of the coarse to fine technique was used by Illingworth and

Kittler [27] in their implementation called the Adaptive Hough Transform (AHT).

The AHT avoids the problems of calculating the HT using a large number of cells,

by implementing a multiresolution peak finding search of the parameter space, using

a small fixed sized accumulator. A 9 x 9 accumulator initially covers the full range

of parameters. After accumulation, candidate peaks are identified by thresholding.

The parameter limits covered by the accumulator array are then adjusted to focus on

the most prominent candidate peaks. Iteration of the cycle of the HT accumulation,

peak analysis and parameter limit redefinition should lead to rapid and accurate

determination of parameter peak locations. The performance of the AHT was tested

using simple images containing digital line and circle segments. However, serious

interpretation problems have been found when the method is applied to complex

images. In particular, the method can not identify lines reliably, unless the number of

lines is small and they are long with respect to the size of the image. Additions to the

basic AHT have been made for successful implementations. Cao et al. [28] have

modified the AHT to include a “labeling” technique and have successfully

implemented the method in parallel. Onda et al. [29] have implemented a modified

AHT algorithm in which the range of parameters calculated is constrained by the

gradient of each pixel, resulting in a sharper local peak. Finally, Berger and Khosla

[30] have implemented a modified AHT in combination with a weighted least

squares algorithm where a weight is computed for each data point based on the

residual error of the previous estimate.

2.6.4 Fast Adaptive Hough Transform

A very similar approach of the AHT was implemented by Haule and Malowany, the

Fast Adaptive Hough Transform (FAHT) [31]. Here again, the parameter space is

investigated at several resolutions, but is only evaluated in fine detail in those

regions where high densities of image points occur. The differentiation from the

AHT is due to the degree of freedom allowed in the redefinition of parameter limits,

i.e. the degree of flexibility in the placement and choice of window shape which

19

Chapter 2 Hough Transform Literature Review

defines the range of parameter under study. In the FAHT, a complex strategy to

analyze the parameter space is employed at each resolution, and this has a result that

more appropriate parameter limits for subsequent processing can be defined. The

range of parameters can increase, decrease, or remain the same and translation of the

parameter limits by non integral multiples of the cell distance is permitted. Changes

in resolution can be made independently in each of the parameter dimensions every

time the parameter limits are redefined. In summary the advantage of the FAHT is

that the size, shape and positioning of the parameter windows is very flexible and is

determined by the data itself rather than being imposed as a result of the choice of

data structure and initial parameter limits [24],

2.6.5 The Binary Hough Transform

The Binary Hough Transform, (BHT) [32], [33] is a technique for straight line

detection in binary images based on a modified slope/intercept parameterization of

the straight line. To implement this method the dimensions of both the image and the

transform space should be integer’s power of two. This implies that the calculations

required for the parameter determination can be executed using only adders and

delay-elements without any multipliers (multiplications are performed by binary

shifts) and the sampled slope and intercept can be represented in full precision for

fixed point arithmetic, where integer arithmetic is used without rounding errors. As

this is the most efficient way for a computer to execute calculations, the BHT gives a

significant saving in computational time and hardware resources. In addition, the

BHT can be effectively implemented in high-throughput systolic array architectures,

as showed by Costa and Sandler [34], and it has been experimentally verified that

better accuracy for determination of parameters and effectiveness than the standard

HT with normal parameterization can be achieved. The main drawback of the
technique is that it requires four two-dimensional accumulator arrays for straight line

detection [24], limiting the hardware resources. Another such algorithm, which

generates the HT by using only the incremental addition operations, and without the

calculations of trigonometric functions and multiplications, was presented by

Koshimizu and Numada [35] and is called the fast incremental Hough transform

(FIHT).

20

Chapter 2 Hough Transform Literature Review

2.6.6 The Dynamic Combinatorial Hough Transform

An interesting variation of the HT, the Dynamic Combinatorial Hough Transform

(DCHT) was proposed by Leavers et al [36], It uses information present in the

location of the feature points in an image and as a result only one dimensional

accumulation of evidence required to determine the parameters associated with a

given shape. The co-ordinates of the edge points in an image are listed in the order of

their appearance. A point of the list which is randomly selected is fixed and paired

with all other points from the list. These points are then accumulated in a 0

histogram. If n of the points in the list are co-linear with the first point, it results in a

peak of value n at the 0 value of this line in the 0 histogram. After the peak detection,

the value of p from equation (2.2:3) may be calculated using the (x, y) coordinates of

the first point. All the n co-linear points are removed from the list, and the process is

repeated. In each of the following passes the first point in the list is combined with

all the other points, and a new 0 histogram is generated. The algorithm continues

until all the edge points contributing to straight line segments have been removed

from the list. The DCHT is a significant improvement of the SHT, as it is

computational less intensive algorithm and much more efficient in memory

utilization. It uses a 1-dimentional accumulator instead of a 2-dimentional

accumulator as in other HT methods [37], Leavers [38] later on generalized the

DCHT to the Dynamic Generalized Hough Transform (DGHT) where only a fraction

of the coordinates of the edge points is accumulated, and these points are chosen

probabilistically. In addition, the DGHT incorporates a mechanism for selecting the

first point. Points around the candidate first points are summed first in a horizontal

and then in a vertical direction. If either sum exceeds a threshold then the point is

accepted.

2.6.7 Connective Hough Transform

A common problem of the HT is that it can give misleading results when objects

happen to be aligned by chance. This is known as the connectivity problem [6]. It

arises because the accumulator counts only the number of points that share the same

21

Chapter 2 Hough Transform Literature Review

parameters. These points may not be connected with each other. Thus the position of

a best-fit line can be distorted by the presence of unrelated figure points in another

part of the image [6], A novel method called the connectivity Hough Transform

(CHT) [37], aims to solve this problem. The implementation uses the dynamic

combinatorial Hough transform (DCHT) method of calculation and accumulation.

Due to the nature of the accumulation, a unique line segment is detected for each

point with no redundancy. Using the CHT, all feature points as they are detected, are

tested for connectivity with respect to neighbouring points. Only two 1 -dimentional

accumulators are used which minimize the memory complexity of the method and

since disconnected points are not accumulated, the method achieves a significant

speed-up compared with the SHT. For a 128 x 128 binary image, it was found that

40 seconds required by using the SHT, where only 16 seconds required using the

CHT [37],

2.6.8 The Hierarchical Hough Transform

Two main constraints have to be taken into consideration in order to obtain a useful

line finding scheme, when complex images or inaccurate feature measurements are

under test, collinearity and proximity. The question is how strong the proximity

constraint should be. In the SHT, the proximity can be chosen arbitrarily in the post

processing step. An alternative method for imposing proximity constraints, which is

based on the use of a hierarchical structure, is the Hierarchical Hough Transform

(HHT) [39]. It is based on applying HT type algorithm at all levels in a pyramid

structure. At the bottom level of the pyramid short line segments are detected by

applying the HT algorithm in small sub-images, i.e. 16x16 pixels. This is a robust

mechanism as the accumulator array requires a small and easily interpreted structure.

The advantage of such a structure is that the range of possible p values is directly

proportional to image size and as a result in a small sub-image the number of p bins

is small. Also, the intrinsic accuracy with which angles can be estimated in a small

sampled image window is poor and therefore it is reasonable to divide the full 0

range into only a few bins. After low level line segments have been found, the

method proceeds bottom up from this description by combining line segments within

local neighborhoods into longer lines. The grouping process of the line segments is

22

Chapter 2 Hough Transform Literature Review

also based on a HT algorithm and involves a relatively sparse accumulator array

which can be represented as a linked list rather than an array data structure. Line

segments which are found to have common pixels with the neighborhood pixels

move up the hierarchy and take part in grouping at higher levels while lines with no

common pixels at a particular level terminate [26], [39],

2.6.9 The Probabilistic Hough Transform

Two are the main stages where the SHT can be implemented. The first is an

incrementation stage, where the accumulators corresponding to cells that the

sinusoid of equation (2.2:3) intercepts are incremented. The computational time of

this stage depends on the number of edge points in an image. The second stage is an

exhaustive search for maxima in the accumulator array, where the computation time

depends on the size of the accumulator array. As the number of cells in the

accumulator array is much smaller compared with the number of edge points in an

image, the incrementation stage usually dominates the execution time of the SHT

algorithm. Kiryati et al. [40] proposed a new algorithm, the Probabilistic Hough

Transform (PHT), in which the image data are randomly sampled and only the

sampled subset of image points is transformed. As the number of edge points in the

incrementation process is much smaller, a significant computational saving is

achieved. The key to successful application of the PHT is the dependence of the

algorithm’s performance on the fraction of the data that is used. The selected subset

of image points is accumulated as in the SHT. Theoretical analysis and experimental

results showed that even in the presence of distracting features, significant noise and

errors in the coordinates of the image points, large computational savings are

succeeded using the PHT. The algorithm deal with binary edge data and do not

depend on computationally expensive global preprocessing of the image. A threshold
effect exists concerning the number of false peaks found as a function of sample

size. As the complexity of the image increases, the sample size also correspondingly

increases [24],

23

Chapter 2 Hough Transform Literature Review

2.6.10 The Weighted Hough Transform

Once the HT has been accumulated the pattern of counts in the accumulator array

has to be analyzed to estimate the presence and location of local peaks. The most

common method is to determine a threshold. Any accumulator cell with more counts

than the threshold indicates a possible image segment. The threshold is chosen

either using prior knowledge or it can be automatically selected by analyzing the

distribution of counts in the array. However, analyzing the accumulator array is not

always easy and may present difficulties. The reason for that relies to the fact that at

any scale of discretization of the accumulator array, a high count in a particular cell

may be generated because of several insignificant peaks rather than a single

significant one, or a true peak may be split between several accumulator cells and

not detected. The weighted Hough transform (WHT) of Ibrahim et al. [41] identifies

peaks by using the image directly without the use of any threshold, and weighting

the contributions to the transform space made by each pixel according to its value in

that image. The greater the weight of a pixel, the stronger it’s effect on line

detection. For example, if the weight of a pixel is zero, it is equivalent that this pixel

does not exist. That means there is no need for calculation of that pixel and this has a

result of minimizing the overall computational cost [42],

2.6.11 Multiresolution Hough Transform

Another efficient implementation of the SHT has been proposed from Atiquzzaman

[43], the Multiresolution Hough transform (MHT), where significant reduction of the

computing time is achieved. Although the MHT is based on a coarse-to-fme iterative

search, it has a few significant differences from the other HT methods. Firstly,

multiresolution images and accumulator arrays are used in the iterations. A set of
reduced-resolution images is generated from the original image. The HT is first

applied to the smallest image using a very small accumulator array. Subsequent

iterations use images and accumulator arrays of increasing sizes. Secondly, a

logarithmic parameter - range reduction method that is suitable for the transform has

been proposed by the author. Using this method a faster convergence and better

stability is achieved. Finally, consideration of the discretization errors when

24

Chapter 2 Hough Transform Literature Review

accumulating the parameter space has led to the use of a simple peak detection

algorithm. Since the MHT uses such an algorithm, the computation time is

significantly lower compared with other algorithms, if the time for peak detection is

also taken into account. The MHT algorithm can not only be used for detection of

straight lines but also can be generalized for patterns with any number of parameters

[43].

2.6.12 Randomized Hough Transform

In 1990, a novel HT- like approach was proposed named the Randomized Hough

Transform, (RHT) from Xu et al [44] for detecting curves from a binary image. The

basic idea of the RHT algorithm lies in the fact that each parameter space point can

be expressed with two points from the original binary image. If those points happen

to be on the same curve, then the corresponding parameter space location is the same

as the location of the maximum corresponding to the curve in the SHT [45]. In the

SHT, a single pixel in the original image is mapped into a curve in the parameter

space, whereas in the RHT, a pair of pixels is mapped to a single cell in the

parameter space. This is the main difference between the SHT and the RHT

algorithms. Assuming P is the set of edge points in an original binary image, (x, y)

be the coordinates in the original image and (a, b) the two parameters of the curves.

In the RHT, point pairs (pi (x, y), (pj (x, y) are picked randomly from the set P and

corresponding accumulator cells are incremented in the (a, b) space. For each chosen

point pair in the original picture, only one parameter cell is accumulated [45]. As P

stores any parameter point mapped from pixels of the image space, the RHT can

implicitly observe the whole extent of an infinite parameter space. In addition, P

stores the real value parameter points without discretization, and this has a result that

RHT has an inherently high resolution. Another advantage of the RHT is that due to
the frequent resetting of set P, the storage of the RHT is always kept quite small.

Finally, in the SHT, as a pixel is transformed into a curve and all the cells lying on

that curve are accumulated, the computing speed is constrained by the size of the

accumulator array. In contrast, for the RHT, at each step, only one parameter point of

P is updated where the computational cost is significantly decreased [24], [44], An

improved performance of the RHT is detailed in [46],

25

Chapter 2 Hough Transform Literature Review

2.7 Applications of the Hough Transform

Computer vision is the branch of artificial intelligence that focuses on providing

systems with the functions typical of human vision. To date, important applications

have been generated by computer vision in fields such as industrial automation,

robotics, biomedicine, and satellite observation of Earth. Today, more and more

manufactures are using computer vision technology to improve their productivity

and reduce costs. It integrates optical components with computerized control systems

to achieve greater productivity from existing automated manufacturing equipment.

The HT has proved a valuable tool in a large range of computer vision problems.

Examples of the use of the straight line HT are numerous. Inigo et al. [47] used the

straight line HT to identify edges of roads and tracks in order to guide mobile robots.

Dyer [48] used the HT to inspect the scaling accuracy of needle-type instruments.

The method does not require the position, orientation, or size of the instrument to be

known a priori and can be implemented in high speed hardware. Huang et al. [49]

used the HT to detect seismic patterns in seismograms. The travel-time curves of the

direct and the refracted waves are straight lines on a seismogram, whereas the travel­

time pattern of the reflected waves is a hyperbola. Because of the cluttered and

fragmented nature of the seismic data, HT is a particularly attractive method to be

used.

Kushnir et al. [50] have suggested a method of the HT for the automated recognition

of Hebrew characters. Almost all of the characters in the Hebrew alphabet consist of

linear strokes. Peaks detected in the (p, 0) parameter space of a HT line detector were

used as features in a pattern recognition system. The method was tested on a sample

set of eighteen print-simulated alphabets and a recognition rate of 99.6% was

achieved. Lin and Dubes [51] experimented with a straight line HT method, for

counting ridges in an automated fingerprint analysis system. In such a system, the

image had to preprocess with a predefined threshold and a small image window in

which ridges appear as straight lines was selected. Each ridge produces a peak in the

(p, 0) parameter space, where the counting of the peaks was relevant to the number

26

Chapter 2 Hough Transform Literature Review

of ridges on the fingerprint. Determination of the threshold was difficult, undesirable

lines due to noise were counted as ridges and the overall computational cost was

high.

The linear HT has been used by Shibata and Frei [52], to detect and recognize targets

in infrared imagery in real time. Edge finding operators were used to find the outline

of the targets and to extract edge gradients and orientations of them, which then were

mapped into a parameter space. The four boundaries of the target produced four

sharp peaks in the parameter space. Cowart et al. [53], used frame-to-frame

difference images in order to reject clutter and enhance the detection of moving

targets. The tracks of those nonmaneuvering (i.e. constant velocity) targets appear as

line segments that can be detected using the HT. Skingley and Rye [54], used the HT

to detect faint lines in synthetic aperture radar (SAR) images. In their work, different

post processing techniques have been applied and various problems have been

addressed such as the detection of peaks and troughs in the transform space, the

detection of line and points and the removal of false alarms.

The probability of detecting a line, in terms of the relative length and intensity has

also been calculated. Shu et al. [55] have used a modified HT to detect edge lines in

scanning electron microscope (SEM) images of VLSI (very large scale integration)

resist patterns. Modifications to the basic line detecting HT were made in order to

preferentially detect connected edge segments. This was achieved by constructing a

bit array for each accumulator cell, where the incrementation of each cell was related

to the status of the bit array. Also, a threshold was used which was adaptive to the

orientation and location of the line segment under consideration.

A new formulation of the HT technique by Nixon, [56] aid to detect linear brightness
variation areas within a picture. Once these areas are defined, they can consequently

be suppressed, thus resulting in image restoration. Another application of the linear

HT was used by Thomson and Sokolowska [57], to analyse cleavage cracks in

minerals. The cracks in a crystal image are isolated and thresholded to create a

binary image. The HT is used to detect the presence of alignments in these data.

27

Chapter 2 Hough Transform Literature Review

The generalized HT has been applied and extended in many practical applications for

the determination of motion parameters from a sequence of images. An approach to

the segmentation of dynamic scenes containing textured objects moving against a

textured background was presented by Jayaramamurthy and Jain [58], Firstly, active

regions in a frame which contain moving objects were found. Then, a HT technique

used to determine the motion parameters associated with each active region.

Experiments illustrated the efficiency of the approach for moving textured objects

even in the presence of occlusion. Another use of the generalized HT for patterns of

motion in a displacement field image produced by the time difference of two images

was given by Adiv [59], One of the major drawbacks in the methodology, the other

being the computational expense, is that small objects will only produce small peaks

in a parameter space. As a solution, Adiv proposed the use of coarse parameter

resolution for the detection of large objects, and partitioning the image into smaller

images, for the detection of smaller objects.

A method proposed by Kalviainen [60] has been introduced to calculate 2-D motion

in a sequence of time-varying images. His method is based on the RHT and called

motion detection using the RHT (MDRHT). The main idea is to randomly select a

point pair of two consecutive images and compute the translation with them taking

advantage the benefits of RHT [61]. Radford [62] used a 3-D parameter space to

map motion parameters for translation and rotation. The (p, 9) parameters used in

straight line detection are the two of those parameters, where the third is a length /,

which measures the motion of an image feature between successive frames. By using

this formulation, the focus of expansion of translational motion, as well as the centre

of rotation for angular motion was achieved. Segmentation of a scene can be

achieved by grouping points with similar motion parameters. Silberberg et al. [63]

also used the GHT for recognizing 3-D objects in an image by matching a structural
model of the object with information extracted from the image. A recognition model

was constructed in such a way that can be identified and distinguished from one

another based on the visibility and ease of detection of images of the model entities.

Then, this recognition model is used by the GHT procedure in order to identify likely

instances of the object model in an image, which would finally be verified by a top-

down analysis. Henderson and Fai [64] also used the GHT for 3-D object detection

28

Chapter 2 Hough Transform Literature Review

from a laser range-finding system. The success of the application was based on the

correct choice of distinctive feature points.

The difference compared to the Silberberg approach is that Henderson first detects

planar segments in the data and then matches them with the structural model. Kasif

et al. [65] attempted a solution to the subgraph isomorphism problem, which

involves finding if a given graph is an induced subgraph of a larger graph, by using

the GHT. In their work, matching subgraphs derived from geographical maps was

achieved even when map image was incomplete due to occlusion, low boundary

contrast or other factors. Their method is suitable for parallel processing

implementation on a network of simple processing elements.

Mirmehdi et al. [66] addressed the problem of real time label inspection using the

HT in rectangular and oval labels as examples. The HT is applied in different images

of product labels where peaks are detected. After peak detection, a list of all the

straight lines in the image is obtained and is further examined against a known model

label to determine the presence of faulty labels. General faults with labels are

shifting from normal position, sticking at a tilted angle, tearing, folding or

unreadable print. The HT was implemented in parallel where a high speed process

can be achieved.

Kamat and Ganesan [67] used the HT to identify vehicle license plates from image

frames for vehicle tracking purposes (Figure 2.7-1). The test image first passes

through an edge operator stage (a modified Sobel operator). Next, the edge detected

image is thresholded and the implemented look-up table based HT is applied to the

thresholded image. Peaks are detected and are passed through the final stage, the

line position extraction stage, where the detection of the license plate is achieved.

29

Chapter 2 Hough Transform Literature Review

Figure 2.7-1: Vehicle License Plate Identification Using the HT [67)

He et al. [68] also used the HT algorithm to detect a car number plate skew without

any object segmentation process. Leaving the robustness of the skew detection

process unaffected, He proposed and successfully adapted to the HT different speed

up approaches, such as the coarse/fme process, the sparse data process and the partial

edge image process. Results showed that the speed up factor can be increased up to

20 depending on the complexity level of the car image.

The multiresolution HT, MHT, has been applied by Yu and Jain [69], for lane

boundary detection. Lane detection is the problem of locating road lane boundaries

without a priori knowledge of the road geometry. A lane boundary location can be

very helpful in several applications such as intelligent vehicles, highway

maintenance with intelligent cruise control, cambered power steering and automatic

navigation. In order to minimize the computational cost and increase the accuracy of

the lane detection, a MHT was used where the parameter space is separated into
subspaces. The required parameters are estimated separately using a multiresolution

strategy. Experimental results show that the method is very accurate, as it can be

seen from Figure 2.7-2, on lane images in various situations including different lane

marking conditions (single or double, solid or broken) and road environments (paved

or unpaved, shadows or poor illumination).

30

Chapter 2 Hough Transform Literature Review

Figure 2.7-2: Experimental results of lane boundary detection. The detected lane boundaries

are overlaid on the input gray scale images [69].

Muniz et al. [70] have used the HT to decode linear barcodes. Even though linear

barcodes are one of the oldest technologies related to the Automated Identification

and Data Capture (AIDC), they are still made up of bars and spaces. For most

applications a manually operated laser scanner is used, but in many others where the

volume of information is too high, an automated approach has to be implemented.

Muniz applied the HT in sub-images which only contains a barcode, plotted the HT

accumulator matrix generated from each image and finally analyzed it in order to

decode the represented barcode. The method has been tested to read Code 39 and

EAN-13 barcodes and has been compared with a commercial system (21351

barcodes out of 23038 were successfully read compared with a commercial system

which managed to read only 11519). Sun and Willett [58] used the HT to detect long

and weak chirp or linear frequency modulated (LFM) signals. Those kind of signals

are important in many areas, such as radar, sonar and seismic. The chirp signals are

weak (below -20dB), very long in order that they can be detected (e.g. 10 hours

duration) and in addition to Gaussian noise, powerful tones are masking them. Due

to the computational load and the ability to detect the chirp signals, HT is the most

suitable compared with other methods tested by the authors. It showed that the HT

can detect a 10 hour signal below -50dB in real-time provided its overall frequency

change exceeds 1 Hz.

31

Chapter 2 Hough Transform Literature Review

A customized approach, based on the GHT, was achieved by Tezmol et al. [72] for a

robust segmentation technique capable of finding the location and orientation of the

cervical vertebrae in x-ray images. As the GHT can give promising results regardless

of noise and occlusions as well as variations in orientation and scale of the target

image, is the most suitable method for this application. Chang et al. [73] tried to

overcome the problem of tracking moving objects in a video stream by using the

optical flow technique. The optical flow technique finds the velocity vectors at each

pixel in the entire video. It requires complex computations and is sensitive to noise.

For those reason a new method based on the HT and on voting accumulation was

proposed by the authors to improve the accuracy and reducing the computation time

of the technique. Experimental results shows that by using the new method the

accuracy of finding the optical flow vectors has been improved as well as the

computation time required for the extraction of moving objects information (from

843.66ns to 151.52ns for an 256 x 256 image).

Another method for tracking objects in a sequence of sparse range images has been

introduced by Greenspan et al. [74], They used a Bounded HT (BHT), which is a

variation of the general HT. It exploits the coherence across image frames that result

from the relationship between known bounds on the object’s velocity and the sensor

frame rate. The method has been implemented and tested on a variety of objects

using both simulated and real data. Experiment results shows that the BHT can work

with any shape of object and it functions quite well in presence of sparse data. Rosito

and Schramm [75] have used a windowed HT to detect rectangular structures in

images. The image is scanned and a sliding window is used to compute the HT.

Peaks are extracted from the image under test and a rectangular is detected when

four extracted peaks satisfy certain geometric conditions. The method can be used

for both synthetic and natural images.

Rovira-Mas et al. [76] have used the HT in order to detect crop rows from forward-

view images captured from a moving automated tractor. A five step HT approach

was used for increasing the processing speed as well as the quality of the image

analysis. Real-time field navigation of the agricultural machinery following crop

32

Chapter 2 Hough Transform Literature Review

rows at normal operating speed could be achieved. Pre- and pro- processing of the

image of the tractor’s forward view was mandatory for the effectiveness of the

application. Another real-time image processing algorithm based on run length

encoding (RLE) for a vision-based controller of a Humanoid Robot system was

introduced by Messom et al. [77]. The RLE algorithm can not only identify objects

in an image, but it can provide information about their size and position. Using the

HT, recognition of landmarks can be made which helps the robot localization. Other

applications of the HT include an efficient lane-detection algorithm by Tsai et al.

[78] as well as a technique for collision avoidance between two spherically extended

polytopes (s-topes) [68] (Figure 2.7-3), which is a common object model in a robotic

system.

Figure 2.7-3: Simple s-topes: a) Monosphere, b) Bisphere, c) Thrisphere, d) Tetrasphere [68]

2.8 Parallel Processing Architectures of the Hough

Transform

Parallel processing allows the implementation of many independent operations

simultaneously. The number of operations depends on the number of processors in a

given system as well as its architecture. The HT has been implemented almost in

every existing parallel system and several solutions have been fabricated to improve

speed and reduce the computational cost of the algorithm [171]. In this section, a

33

Chapter 2 Hough Transform Literature Review

review of existing research will be presented for different implementations of the HT

in real-time hardware, as well as specialized parallel architectures where the HT has

been applied. As one of the main characteristics of the HT is the independent simple

calculation of every feature in an image, parallelism can be successfully achieved.

There are different configuration types for parallel processing. The single instruction,

multiple data (SIMD) type consists of n processing elements (PE), in which each

simultaneously perform the same operation on n independent pieces of data [24],

Most often each PE has an arithmetic logic unit, several registers and a few kilobits

of RAM. The SIMD block diagram is shown in Figure 2.8-1 [80].

D
a
t
a

P
o
0
1

Instruction Pool

PE

PE

PE

PE

Figure 2.8-1: SIMD Architecture Block Diagram |80|

Another type of parallel processing is the multiple instruction multiple data (MIMD)

in which processors simultaneously perform different sets of instructions on different

data. In comparison to SIMD type, the MIMD consists of a smaller number of faster

processors [24], The MIMD block diagram is shown in Figure 2.8-2 [81].

34

Chapter 2 Hough Transform Literature Review

Instruction Pool

Figure 2.8-2: MIMD Architecture Block Diagram |81|

There are various ways in which the memory can be distributed. One way is for all n

processors to share the same memory, or each processor having a unique memory

address space connected to a network with interprocessor links. In the first case, the

main problem is memory access contention, whereas in the second case, network

congestion can be as bad as or worse than congestion in access to a shared memory

[24]. There is also a combination of the previous architectures; namely the

SIMD/MIMD configuration.

There are two different configuration types of HT implementation; one where the HT

is mapped onto existing general purpose parallel systems, and one where the

construction and design is based on a special-purposes dedicated system. The

implementation on a general parallel system can be analyzed using a parallelization

strategy and the embedding of the phases of the algorithm on the hardware available.

The implementation of a dedicated system, on the other hand, is based on the short
execution time and low cost [82]. Different SIMD and MIMD implementations

which have been developed as well as some dedicated systems will be presented in

the following section.

35

Chapter 2 Hough Transform Literature Review

2.8.1 SIMD Implementation

As we have seen in the previous section, the HT requires a number of tasks, each

consisting of a number of operations applied on a number of data. For the above

reasons, there is a need for systems that can efficiently support the parallel modality

proposed by the SIMD architectures. SIMD architectures can be categorized

according to the way the processing elements are configured. There are several

possible topologies, such as linear array, mesh (fixed topology, augmented,

reconfigurable), tree, pyramid and hypercube. In general, many simple PEs can be

used [82],

A linear array will have n PEs with a linear interconnecting path, in which each

processor can communicate with its neighbours to the right and to the left. A

controller sends instructions to each PE. Fisher and Highnam [83] have implemented

the HT in a scan line array processor (SLAP), where Li et al. [84] developed two HT

algorithms for straight line detection on SIMD architecture. In the first one, the

image features are assigned to each PE, where the coordinates of the parameter cell

are addressed simultaneously to every PE by a central controller. If the hypersurface

generated by the image feature intercepts the cell, the PE sends a vote back to the

controller. All the votes on the PEs can be summed by the central controller and

stored for later analysis. In the second algorithm, each PE is assigned to a volume of

the parameter space and broadcasts the image features. The method selection relies

on three factors; the number of available PEs in the system, the number of image

features, and the number of parameter cells. Another parallel architecture was

developed by Alnuweiri and Kumar [85], which is a combination of an orthogonally

accessed memory and a linear array structure [24].

Mesh-connected arrays of processors were first proposed nearly 30 years ago for

parallel image processing. In a mesh-connected SIMD configuration, each processor

is connected to its nearest neighbour, both up and down, as well as left and right. In

such as system the processors are arranged in a square lattice, where each PE is

labelled according to its position in the lattice, and can communicate with its four

neighbours [24], The regular structure and the simple interconnection topology make

36

Chapter 2 Hough Transform Literature Review

the mesh well suited for VLSI implementation. However, mesh-connected arrays

tend to be quite slow when transferring data operation required over long distances.

As a solution to this problem, a variety of bus systems has been proposed. The static

nature of these systems does not allow for modification of the processors’

communications patterns while the algorithm is executed. Rosenfeld et al. [86] as

well as Kannari and Chuang [87] have studied various mappings of the HT onto such

arrays.

In order to overcome the problem caused by the static nature of the bus systems

mentioned above, researchers have developed alternative bus systems, whose

configuration can change under program control to suit communication needs

(reconfigurable). Reconfigurable mesh parallel processing systems can be found on

[88], [89], [90], [91], [92], [93], [94] and [95]. Other topologies where the HT has

been implemented are the tree [96], the pyramid [97], [98], [99], [100], and the

hypercube [101], [102], [103] [172] [176].

2.8.2 MIMD Implementation

Parallel implementation of the HT on MIMD systems can be categorized according

to the memory organization, which means the way that the image and the transform

spaces are distributed among the PEs. There are three possible configurations [104]:

a) The global image memory and distributed transform memory: all PEs

have access to all feature points in the image and each PE computes the

HT in different segments of the transform space.

b) The distributed image memory and global transform memory: each PE

has access to a different segment of feature points in the image, and

computes the HT for the entire transform space.

c) The distributed image memory and distributed transform memory: each

PE has access to a different segment of feature points in the image, and

computes the HT for a different segment of the transform space.

37

Chapter 2 Hough Transform Literature Review

The first configuration causes a serious memory contention. This is caused during

the accumulation stage of the HT, where the shared parameter space undergoes an

updating process. In order to avoid that, all the PEs must have access to the same

entry in image memory simultaneously. In the second configuration, memory

contention is still present but allows more alternatives of access to image memory

space. Finally, the third configuration involves quite a large overhead in global

shifting and summation of data from all parts of the mesh, and as a result, extensive

data transmission among the processors. The problem can be eliminated using a

MIMD parallel processor to enable the PEs to access different image memory

segments concurrently. Memory contention can still occur, though is less likely than

in the other two configurations.

2.8.3 Dedicated Systems

In this section several dedicated systems which target real-time execution of the HT

will be presented. The implementation for a dedicated system is based on the short

execution time and low cost. Such systems can be categorized in the following way;

1) systolic structure systems, 2) pipeline systems, and 3) other systems.

HT systems with a systolic architecture usually rely on image preprocessing to

obtain a stream of incoming feature points. The first systolic structures for straight

line detection based on the HT were introduced by Chuang and Li [105] and Kung

and Webb [106] in 1985. Later on, more systolic implementations were designed

[32], [107], and [108],

Another real-time architecture where the HT has been implemented by several

authors is the pipeline architecture. The implementations grouped in this family

differ from the systolic ones in the set-up of the PEs. Figure 2.8-3 shows a pipelined
architecture example. Such systems can be found on [109], [110], and [111]. Other

pipeline systems are developed to fit in Application Specific Integrated Circuit

(ASIC) [112] and FPGA implementations. FPGAs have become a competitive

alternative for high performance digital signal processing applications. Using

FPGAs, faster and lower cost-designs can be achieved. The HT has been

implemented in FPGAs by Tagzout et ol. [12] and Cucchiara et al. [13]. As the HT

38

Chapter 2 Hough Transform Literature Review

implementation in this thesis is based on FPGAs, a more detailed description about

FPGAs will follow in consequent chapters.

Figure 2.8-3: A Pipelined Architecture for Real Time Measurements |109|

Other specific HT implementations use approaches that can not be classified in any

specific way. Such an approach is the Content Addressable Memory (CAM) - based

HT for straight line detection [113]. The voting process and the peak extraction,

which compose the HT, are directly executed by CAM. The CAM has sufficient

parallelism for practical applications and has a double role. It acts as a SIMD type

PE array that performs highly parallel processing, and also as a memory for a two-

dimensional HT. Voting is executed in every scanning line, and not in every pixel, as

other methods have utilized. The CAM based HT implementation can not only

achieve straight line extractions, but more complex curves and their end-points as

well [114], [115].

Another system for implementing the HT uses the Co-Ordinate Rotation Digital

Computer (CORDIC) unit as a basic PE. The CORDIC was developed by Voider

[116] to solve trigonometric problems that arise in navigation applications. It was

unified by Walther [117] and it is an iterative procedure to compute magnitude and

phase or the rotation of a vector in circular, linear and hyperbolic co-ordinate

systems, described by the parameter m shown in Table 2.8-1.

39

Chapter 2 Hough Transform Literature Review

Table 2.8-1: The CORDIC Arithmetic Function

m = 1 m = 0 111 = -1

R o ta tio n x = x cos z + y sm z = X x = x cos hz - y sin hz

z — 0 y = - x sin z + y cos z y = y - zx y = - x sin hz - v cos hz

V e c to rin g x = \ (x ' X = X X = V(x~ - y 2)

v —> 0 >

7^C31NIIN z = z—(v x) N II IN 1

Since the CORDIC algorithms require only primitive operations, such as shifts and

additions, it can be readily used to evaluate trigonometric functions. Figure 2.8-4

shows the CORDIC arithmetic unit. CORDIC is generally faster than other

approaches when a hardware multiplier is unavailable, or when the number of gates

required to implement the functions it supports should be minimized [175], On the

other hand, when a hardware multiplier is available, lookup-table methods are

generally faster than CORDIC. Majumdar [118] and Maharatha et al. [117], have

implemented the HT using the CORDIC unit and they concluded that it can be a

good candidate for low-power, high performance real-time HT computation.

Rhodes et al. [119] have used the technique of Restructurable VLSI (RVLSI) to

implement a HT processor. It is based on a wafer-scale integration technology

containing many add-and-multiply cells. A large area of wafers is filled with

standard logic cells and the wafers are tested after fabrication to determine which

cells are functional. All the working cells are connected by fusing or breaking links

of a metal matrix. The RVLSI approach to wafer-scale integration utilizes a laser to

“restructure” the silicon circuitry after processing is complete. Using this technique

manages to implement the HT at frame rates. There are several other dedicated

systems where the HT is implemented and can be found on [120], [121], [122],

[123], [124], and [125] [173],

40

Chapter 2 Hough Transform Literature Review

^ x = x cosa, + y sina,

^ y = —x since. + y ca&Oj

Figure 2.8-4: The Elementary CORD1C Arithmetic Unit [117|

2.9 Conclusion

A detailed presentation of the HT has been discussed in this chapter, as well as,

several different methods, applications and architectures were presented. The

common factor of all those methods is the calculation of the accumulator bins, which

is the key factor of the HT algorithm. It is worth mentioning that the conclusions and

solutions which were obtained in this research can be successfully applied to every

single method and architecture presented above. Detailed application to each method

will not take place in this thesis, but the basic processing step which is the

calculation of the SHT, as well as, an efficient implementation of the HT on FPGA’s
by using logarithmic arithmetic will be presented and discussed in subsequently

chapters.

41

Chapter 3 Edge Detection & Digital Logarithms Literature Review

CHAPTER THREE

EDGE DETECTION & DIGITAL
LOGARITHMS LITERATURE

REVIEW

3.1 Introduction

This chapter provides an overview of the edge detection, as well as the digital

logarithms. In the next sections a brief description of some traditional edge

detection methods will be presented and compared, where a method of special

interest, the Canny method, will be extensively described and all the different

stages of the Canny edge detection method will be outlined. An introduction to

digital logarithms will follow. Over the past forty years, several digital

logarithmic conversion methods and their applications on hardware have been

examined in the literature and they will be presented in detailed in section 3.4. As

it can be seen, many improvements have been attempted since the earliest digital

logarithmic conversion algorithm, where some of the methods are not as

applicable to hardware implementation as others.

3.2 Introduction to Edge Detection

Edge detection is one of the most commonly used operations in image analysis,

and there are probably more algorithms in the literature for enhancing and

detecting edges than any other single subject. The reasons for this are that edges

are places in the image with strong intensity contrast, and form the outline of an

object. An edge is the boundary between an object and the background, and

indicates the boundary between overlapping objects. Edge detection is extremely

42

Chapter 3 Edge Detection & Digital Logarithms Literature Review

useful in image segmentation, when division of the image into areas

corresponding to different objects is required. If the edges in an image can be

identified accurately, all of the objects can be located and basic properties such

as area, perimeter, and shape can be measured. Representation of an image by its

edges has a further advantage that the amount of data needed to store the image

is reduced significantly, while the most of the image information is retained.

Since computer vision involves the identification and classification of objects in

an image, edge detection is an essential tool. [16]

A straightforward example of edge detection is illustrated in Figure 3.2-1 [126].

The edge enhanced version of the same image (b) has lines outlining the objects.

Note that there is no way to tell which parts of the image are background and

which are object; only the boundaries between the regions are identified.

(a) (b)
Figure 3.2-1: Example of Edge Detection, (a) Image on a Grey Background, (b)

Edge Enhanced Image Showing Only the Outlines of the Objects Using the Canny
Method.

Edge detection is part of a process called segmentation - the identification of

regions within an image. The regions that may be objects in Figure 3.2-1 have

been isolated, and further processing may determine what kind of object each

region represents. While in this example edge detection is merely a step in the

segmentation process, it is sometimes all that is needed, especially when the

objects in an image are lines.

43

Chapter 3 Edge Detection & Digital Logarithms Literature Review

There are a number of possible definitions of an edge, each being applicable in

various specific circumstances. One of the most common and most general

definitions is the ideal step edge, illustrated in Figure 3.2-2a. In this one­

dimensional example, the edge is simply a change in grey level occurring at one

specific location. The greater the change in level the easier is to detect the edge,

but in the ideal case any level change can be seen quite easily. The first

complication occurs because of digitization. It is unlikely that the image will be

sampled in such a way that all of the edges happen to correspond exactly with a

pixel boundary. Indeed, the change in level may extend across some number of

pixels (Figure 3.2-2b-d). The actual position of the edge is considered to be the

centre of the ramp connecting the low grey level to the high one.

The second complication is the ubiquitous problem of noise. Due to a great many

factors such as light intensity, type of camera and lens, motion, temperature,

atmospheric effects, dust, and others, it is very unlikely that two pixels that

correspond to precisely the same grey level in the scene will have the same level

in the image. Noise is a random effect, and it can be characterized only

statistically. The result of noise on the image is to produce a random variation in

level from pixel to pixel, and so the smooth lines and ramps of the ideal edges

are never encountered in real images [16].

44

Chapter 3 Edge Detection & Digital Logarithms Literature Review

(a) (b)

10
Grey
Level

0

0

Edge Position

— r e — r e ---------- I Ï Ï

Position

10

0

G rev
Level tcl?e P°sltlon

T>--------- -----------re--------re---------7U
Position

(c) (cl>

Figure 3.2-2: Step edges, (a) The Change in Level Occurs Exactly at Pixel 10. (b) The Same
Level Change as Before, but Over 4 Pixels Centred at Pixel 10. This is a Ram p Edge, (c)
Same Level Change but Over 10 Pixels, Centred at 10. (d) A Smaller Change Over 10
Pixels. The Insert Shows the Way the Image Would Appear, and the Dotted Line Shows
Where the Image was Sliced to Give the Illustrated Cross-Section [130].

3.3 Edge Detection Methods

Edges can be detected by applying a high pass frequency filter in the Fourier

domain, or by convolving the image with an appropriate kernel in the spatial

domain. In practice, edge detection is performed in the spatial domain, because it

is computationally less expensive and often yields better results. Since edges

correspond to strong illumination gradients, the derivatives of the image are used

for calculating the edges [130]. In the next section, the Sobel method will be

outlined as performs a 2-D spatial gradient measurement on images, uses a pair

of 3 x 3 convolution masks and is incredibly sensitive to noise in pictures.

45

Chapter 3 Edge Detection & Digital Logarithms Literature Review

3.3.1 Sobel Method

Edges are detected in a discrete two-dimensional image through first and second

order derivatives, or gradient. The gradient is determined through a monadic

process - each pixel (cell) within an image (vector) is examined with a local

mask (kernel), that permits the application of a function with that pixel and its

NxN neighbours, dependent on the mask size. Typical edge detection operations

can apply two of these masks on the local 3x3 neighbourhood, which are in turn

used for convolution operations. In the case of the Sobel operation [16], [127],

two masks are used for each pixel considering x and y coordinates:

■+1 0 - f
+ 2 0 - 2 *A (3.3:1)
+ 1 0 -1

'+1 + 2 + f
0 0 0 *A (3.3:2)

-1 - 2 -1

where A is the source image. Similar techniques such as the Prewitt [128] or the

Robert [128] edge detector use the same approach below but with different

masks. The objective here is to use the values of Gx and Gy to produce a gradient

magnitude, which can be provided by:

| G |= -JGx 2 + Gy2 (3-3:3>

Giving G as the gradient. For faster computation, the following is also
acceptable:

\G\=\Gx\ + \Gy\ (3.3:4)

The angle of orientation of the edge (relative to the pixel grid) giving rise to the

spatial gradient is given by:

0 = arctan(Gy / Gx) (3.3:5)

Chapter 3 Edge Detection & Digital Logarithms Literature Review

The values of Gx and Gy are derived from the two masks applied to the image,

using (3.3:1) for x and (3.3:2) for y. The two components of the gradient are

conveniently computed and added in a single pass over the input image using the

pseudo-convolution operator shown below:

Using this kernel, the approximate magnitude is given by equation (3.2:6).

K^i +2 P2 + P3)- (P 7 +2P8 + P9) |‘
| G \= + (3.3:6)

||(/>J +2P<, + P!)-(ii+ 2 /> 4+/>7) |!

This gives the gradient for horizontal and vertical texture, combined, giving the

complete texture for an image. Members of G can also be vetted by a threshold

in order to look for edges of specific intensity. This coupled with the 3x3

neighbourhood of the Sobel operation makes it very sensitive to single points in

the image, and noise. Figure 3.3-1 shows the output of image under test, when

the Sobel edge detection method applied to it.

Figure 3.3-1: Sobel Output

47

Chapter 3 Edge Detection & Digital Logarithms Literature Review

3.3.2 Canny Method

The Canny edge detection algorithm [8] is used by many researchers, because it

produces sharp and thin edges. It extends the Sobel method by incorporating

additional steps before and after the derivation of gradient from the masks. It

works in a multi-stage process. Canny edge detection uses linear filtering with a

Gaussian kernel [129] to smooth noise and then computes the edge strength and

direction for each pixel in the smoothed image. This is achieved by

differentiating the image into two orthogonal directions and computing the

gradient magnitude as the root sum of the squares of the derivatives. The gradient

direction is computed using the arctangent of the ratio of the derivatives.

Candidate edge pixels are identified as the pixels that survive a thinning process,

called non-maximal suppression. In this process, the edge strength of each

candidate edge pixel is set to zero if its edge strength is not larger than the edge

strength of the two adjacent pixels in the gradient direction. Thresholding is then

taking place on the thinned edge magnitude image using hysteresis. In hysteresis,

two edge strength thresholds are used. All candidate edge pixels values below the

lower threshold are labelled as non-edges and the pixels values above the high

threshold are considered as definite edges. All pixels above the low threshold

that can be connected to any pixel above the high threshold through a chain are

labelled as edge pixels. The schematic of the Canny edge detection is shown in

Figure 3.3-2 [130], [131], and [132],

48

Chapter 3 Edge Detection & Digital Logarithms Literature Review

input

Smoothing

Horizontal (dx)
&

Vertical (dy)
Gradient

1f

Magnitude
&

Phase

1y

Non-maximum
Suppression

▼
Threshold

output

Directional Non-Maximum

Figure 3.3-2: Schematic of Canny Edge Detection

3.3.2.1 Smoothing

The Gaussian distribution in 1-D has the form:

1 zfl
G{x) = - = - e 2^

where a is the standard deviation of the distribution.

In 2-D, a circularly symmetric Gaussian has the form:

49

/

Chapter 3 Edge Detection & Digital Logarithms Literature Review

G(x,y)
2n<j'

-(P+L)
2 er1

The idea of Gaussian convolution is to use this 2-D distribution as a point spread

function, and this is achieved by convolution, since the image is stored as a

collection of discrete pixels. A discrete approximation to the Gaussian function is

required to perform the convolution. In theory, the Gaussian distribution is non­

zero everywhere, which would require an infinitely large convolution kernel, but

in practice it is affectively zero more than about three standard deviations from

the mean, and so the convolution kernel is truncated. The convolution kernels

which have been used for smoothing in this thesis are shown in section 3.5-1

later on in this chapter. The effect of Gaussian convolution is to blur the image,

where the degree of smoothing is determined by the standard deviation of the

Gaussian.

3.3.2.2 Gradient Calculation

The next step after smoothing the image and eliminating the noise is to find the

edge strength by taking the gradient of the image. Most of the edge detection

methods assume that an edge occurs where there is discontinuity in the intensity

function or a steep intensity gradient in the image as shown in Figure 3.2-2.

Most edge-detecting operators can be thought as gradient-calculators. As the

gradient is a continuous-function concept and images are discrete functions,

approximation of the gradient is required. Since derivatives are linear and shift-

invariant, gradient calculation is most often done using convolution. Several

kernels have been proposed for finding edges such as: Robert kernel, Prewitt

kernel and Sobel kernel [131].

Due to the Prewitt kernels (Figure 3.3-3) usage of the central difference between

rows for horizontal gradient and central difference between columns for vertical

gradient, they were chosen as the appropriate kernels in this thesis for calculating

the horizontal and vertical gradients.

50

Chapter 3 Edge Detection & Digital Logarithms Literature Review

Horizontal Convolution Vertical Convolution

' 0 0 0 “ "0 - 1 0 “

- 1 0 1 0 0 0

0 0 0 0 1 0

Figure 3.3-3: Prewitt Kernels [131]

3.3.2.3 Magnitude and Phase

Convolution of the image with horizontal and vertical gradients produces

horizontal gradient (dx) and vertical gradient (dy) respectively. As shown

previously, in equation 3.2:3, the absolute gradient magnitude |G| is calculated by

the mean square root of the horizontal (dx) and vertical (dy) gradients. In order to

reduce the computational cost of magnitude, it is often approximated with the

absolute sum of the horizontal and vertical gradients (equation 3.2:4). The

direction of the gradient is calculated by arctangent of the vertical gradient to the

horizontal (equation 3.3:5).

3.3.2.4 Non-Maximum Suppression

As the magnitude and the direction have been obtained from the previous stage, a

threshold operation can be applied in the gradient-based method, in a result of

finding the ridges of edge pixels. Then, the edge strength of each candidate edge

pixel is set to zero if its edge strength is not larger than the edge strength of the

two adjacent pixels in the gradient direction. This operation is called thinning.

3.3.2.5 Threshold

The final step of the Canny process is the thresholding by hysteresis. With

thresholding, a further elimination of broken edge contours, or single edge points

which contribute to noise can be achieved. Such contours or pixels can be

contained in the output image of the non-maximum suppression. Two thresholds

51

Chapter 3 Edge Detection & Digital Logarithms Literature Review

are required for hysteresis, one high threshold and one low. If the gradient of the

edge pixel is above the high threshold (Th), it is considered as an edge pixel. If

the gradient of the edge pixel is below the low threshold (Tl), then it is set to

zero. If the gradient is between these two, then is set to zero unless there is a path

from this pixel to a pixel with a gradient above Th. Pixels with gradients of at

least Tl are a prerequisite for that path.

3.4 Introduction to Digital Logarithms

The use of logarithms for arithmetic, and their applications in hardware, has been

extensively examined in the academic literature over the past forty years. The

methods proposed in the early papers of this research were limited by the

technology. The pioneer of the logarithmic multiplication and division use in

hardware was Mitchell in 1962 [147], Even though technology has developed

drastically throughout this period, even the more recent publications described

here refer back to Mitchell’s [147] influential paper. As technology progresses,

more advanced solutions based on the principles of Mitchell [147] and other

more recent publications, have become possible. The following sections will

outline, and critically evaluate key published work from the decades leading up

to the present methods. The development of the techniques used for hardware

implementations of logarithms throughout the decades will also be reviewed.

3.4.1 Digital Logarithms Methods

Previously to Mitchell's paper [147], on-chip memory resources restricted the

implementations on hardware, and did not allow for logarithms to be stored in

Look-Up-Tables (LUTs). Mitchell, effectively recognised the task of performing

multiplication and division, where shift and add functions were utilized.

Therefore, logarithms were utilized to simplify these functions to faster and

smaller add and subtract ones, as described in the previous section. It was,

nevertheless, also recognised that the calculation of logarithms may require more

time and resources (to reduce errors) than multiplication and division. For this

reason, his paper proposed a method of approximating logarithms, where the

52

Chapter 3 Edge Detection & Digital Logarithms Literature Review

advantages of its simplicity would counteract the disadvantages of the errors. In

addition, a method for reducing errors caused by approximation was also

proposed.

The method of approximation proposed takes n-1 as the characteristic of the

logarithm where there are n bits in the integral part of the linear number X, and

the mantissa is approximated to 5-1, where 5 is obtained by shifting the binary

value X so that it lies between 1 and 2. As shown Figure 3.4-1, this is a straight

line approximation of the log2(5). Therefore, due to the limited size of memory

resources available, the lack of LUTs made the aforementioned method an

attractive solution.

Figure 3.4-1: Mitchell’s Approximation [147]

The errors were analysed for multiplication and division, as well as for the

logarithms. For the error in the logarithm, the absolute maximum digital error

was 0.08639, or 13.67%. The maximum possible error in multiplication was -

11.1%. and the maximum possible error with division was 12.5%.

A method for reducing the multiply error was, therefore, proposed. By adding

error correction operations, the multiply error can be reduced to a maximum of

2.8%. This can be further reduced by adding more operations. However, the

53

Chapter 3 Edge Detection & Digital Logarithms Literature Review

author notes that the additional complexity may make the logarithmic

multiplication impractical compared to the shift-and-add method.

A similar solution for division, however, was not found, although one alternative

possible solution was suggested; the use of an LUT to store correction factors for

various intervals of S, but the comparison and memory look-up may render this

solution slower than the conventional shift-and-add division.

Looking at other, more current papers, it becomes obvious that Mitchell paved a

very influential way for further development of logarithm conversions and

arithmetic on hardware. The solutions proposed were very practical at the time

due to the high speed and low resource requirements. Nevertheless, there was

still much room for improvement with regard to the accuracy and use of

technology, as it became more readily available.

Combet et al, [148] based on Mitchell [147], proposes a method of trading an

increase in hardware and decrease in speed for higher accuracy, improving on

Mitchell’s error by a factor of 6. Their proposed solution segments the Mitchell

approximation to numerous straight lines (R ') in order to reduce the error. The

segments intersect the curve at various points, interpolated with straight lines

between them. The authors further suggested that, by adding more segments, the

accuracy will increase, but at the cost of hardware and speed performance.

The following expressions were suggested from trial and error, as a four point

approximation of the logarithmic curve. Again, the integer is found in the same

manner as previously described for Mitchell’s algorithm.

R'(1 + S) = S + — S For 0 < S < —
4

R'(\ + S) = S + — S
64

For - < S < -
4 2

R'(l + S) = S + - S + —
8 128

For - < 5 < -
2 4

4
For - < S < 1

4

54

Chapter 3 Edge Detection & Digital Logarithms Literature Review

By using rational denominators, these approximations allow for efficient

hardware implementation, although at the expense of accuracy. Their system

uses counting and shifting as before, but also binary decision-making to add to

the complexity. The hardware implementation was also detailed in their paper.

This was improved and expanded by [149], [150],

Dean, [151] proposed a solution similar to that of the aforementioned authors, the

plot of which is show in Figure 3.4-2. In this case, two lines are used to

approximate the logarithmic curve, and they are intersecting at S = 1.5 and y =

log2(S) = 0.625. This consequently reduces the error compared with [148] by

using closer approximations. The equations for the lines are given by

5 5 3 1y = —S — and v = — S — . Again these are all based on rational numbers, and
7 4 4 4 2

can, therefore, easily be implemented on binary logic-based hardware.

To further reduce the error, a three line approximation is also proposed with

intersections at S= 1.25 and S= 1.75, or S = 1.3125 and S= 0.875 to simplify the

logic. This reduces the error to less than 1%.

Figure 3.4-2: Two-Part Logarithm Approximation [151]

55

Chapter 3 Edge Detection & Digital Logarithms Literature Review

A new method, not based on Mitchell’s algorithm, was proposed for evaluating

the logarithm (base 2) of a binary number by Philo [152], This method utilizes

an iterative algorithm, where the number is squared and divided by two, as

shown in (3.4:1).

f S? if S f < 2 (b, =0) (3'4:1)
i+1 jo.5S} if S f > 2 (b, = b

Where log2 X l = 0.b{b2b3... = \og2(2^2) + b2 log2(2^) + b3 log2(2/^) + ...

The number to be converted is shifted to give the integer of the logarithm.

Therefore, the resulting fraction S where 1 <S<2, is converted.

This procedure generates results with about 17 bits of accuracy. Nevertheless,

the successive evaluation of the square of the number negates any possible

benefits of using this method for multiplication or squaring, as this is involved in

the method itself. The same solution was also proposed at the same time by K. J.

Dean [153], [154], Other notable papers using logarithmic arithmetic are [155],

[156],

Abed and Siferd, [157] presented two implementations for logarithm

conversions. Both implementations are based on Mitchell’s algorithms [147],

but instead use only combinational logic and can produce the results in a single

clock cycle. Although initially implemented for CMOS VLSI, the structures and

Leading One Detector (LOD) are of interest to this thesis.

Previously suggested LODs [147], [148], [158]], although unable to be

implemented at high speed, do provide reasonable results for word lengths above

eight bits. The purpose of the LOD suggested in their paper [157] was to

overcome this caveat, and be able to handle both small and large word sizes with

speed and efficiency. Previous implementations used either shifting and

counting, or bit-by-bit serial evaluation. Therefore, Abed and Siferd (2000)

suggested a cross between previously unexplored parallel evaluation, and serial

evaluation. The small LOD as shown in 3.4-3 is used as a building block for

larger LODs as shown in 3.4-4.

56

Chapter 3 Edge Detection & Digital Logarithms Literature Review

dß d2 dì do

Figure 3.4-3: A 4-bit Leading One Detector |157|

dis d u d13 d i2 du dio dg ds d7 dß dß d4 d3 d2 di do

O15 O14 O ì3 O12 On O10 Og Os ZefO 07 Oß 05 O4 03 O2 O1 Oq

input
flag

Figure 3.4-4: A 16-bit Leading One Detector [157]

The LOD uses simple logic in a repetitive and modular structure, thus making the

LOD particularly suitable for VLSI implementation. The large LOD may be

preceded or followed by D Flip-Flops. The output will be the same length as the

original input, but only the most significant bit will be displayed on the output.

An n by log2 (n) ROM look-up-table can be, then, used to convert the output to a

binary number representing the position of the most significant one.

In concurrence with Mitchell’s algorithm, the characteristic of the logarithm will

consist of the result of the ROM, while the mantissa will consist of the shifted

original binary value. Although the errors were not analysed in this case, by

implementing Mitchell’s algorithm, the authors suggested that this will only be

57

Chapter 3 Edge Detection & Digital Logarithms Literature Review

appropriate where errors are acceptable. Nevertheless, the positive aspect of the

LOD is that it requires small hardware and makes the conversion fast and

efficient.

As on-chip hardware resources have become larger, faster and more copious in

recent FPGA devices, this paper presents a new, efficient and rational conversion

method. Although Lee [3] shows an implementation of the Discrete Cosine

Transform (DCT) and its inverse (IDCT), his Hybrid-Logarithm method clearly

indicates how such transforms can be made with efficient hardware and

conversion techniques.

In this proposed solution, an LUT is used for the conversion of the fractional

parts of the fixed-point and logarithmic binary numbers for conversion. An LUT

for linear to logarithm conversion, combined with barrel shifters and simple

logic, can make full logarithmic conversion a possibility. Due to most images

being encoded with few bits (8 or 10) the LUT is able maintain its small size. As

stated in [159], the use of binary logarithm or hybrid-logarithm arithmetic at this

level of precision can be an effective alternative to normal binary arithmetic, thus

requiring less hardware and less power. The technique of logarithmic conversion

used in Lee (2005) will be described and presented in detail in Chapter 6 of this

thesis.

By applying hybrid-logarithms to the DCT and IDCT, results indicate that the

reduction in resulting image quality compared to the fixed-point implementation

was minimal, despite the simplified hardware. To illustrate the differences in

images produced, Lee (2005) multiplied the difference in pixel values by a factor

of 10 for 4-bit fractional implementation, and by 20 for the 6-bit implementation.

As the author notes, there was no qualitative difference in the resultant images

for 8 bits.

Lee's paper, clearly demonstrates the state-of-art implementation of logarithmic

conversion and filtering for low bit-width, in image processing systems using

available FPGA technology. For the 8-bit implementation, 2K bits were required

for the LUT which can easily be implemented on block RAM on FPGAs, and

58

Chapter 3 Edge Detection & Digital Logarithms Literature Review

128 bits for the 4-bit version requiring a modicum of distributed RAM resources

[10].

The above algorithms may be classified by their relative simplicity of

implementation and the limited accuracy they achieve (up to 12 bits). However,

the achievable accuracy is sufficient for a number of important applications,

including the implementation of the HT using LSN. For that reason the examples

which are presented in Chapter 6, section 6.3.2 are based in such algorithms. In

addition, there are algorithms that achieve a significant improvement in accuracy

(>12 bits), but require significantly more memory to store the approximation

coefficients and, in most cases, also a multiplier. A method for implementing this

linear interpolation is introduced by Fang-Shi et al [2], There are also more

accurate methods available, such as the polynomial approximations where three

multipliers are required, however, these methods far exceed the needs for the

implementation of the HT and will not be the focus of this thesis.

Fang-Shi et al. outlined the design and hardware implementation of a hybrid-

logarithmic number system (LNS) arithmetic processor. This processor can

perform multiplication, division, square and square roots. All input and output

values, as well as addition and multiplication arithmetic are performed in the

standard 32-bit IEEE floating-point number system. As demonstrated in

previous sections of this chapter, [5.1] the said arithmetic operations are simple

to implement with the LNS. Addition and subtraction, however, are far more

complicated.

Interesting new architectures were devised and described in order to assist with a

need for large word length linear and logarithmic conversions. It has been noted
in the literature that converters purely based on ROM look-up-tables (LUTs) for

conversion [138, 139] have limited word-length due to restricted silicon area.

Furthermore, shift-and-add-based conversion algorithms [148] result in large

errors. For these reasons, these algorithms are incompatible with the standard

32-bit floating-point format.

59

Chapter 3 Edge Detection & Digital Logarithms Literature Review

The floating point representation is x = (- l) '(l + 0.M)2/: B . Based on this

equation, the logarithm of a floating point number can be represented by (3.4:2),

where again M is the mantissa, E is the exponent, B is the bias (-127 for single

precision). The sign bit is not taken into account, as only the magnitude is

converted.

x'= £,- 5 + log2(l + y) (3.4:2)

For simplicity of notation, y = O.M It can be seen from (3.4:2) that the biased

exponent does not change. As log2 (1 +y) can be approximated to y, the mantissa

can also does not change. This approximation will be exact only when y = 0 or

1; anywhere between, and there will be errors that can cause a significant impact

in arithmetic operations. Hence, an error correction value (Ey) is added to y to

improve the accuracy. These error correction values are stored in 2048 locations

in an LUT. This LUT is addressed from the most significant 11 bits of y (y,), and

returns the correction value to be added. The correction gives an accurate

approximation of log2 (1+y) at these 2048 points, but between them, significant

errors still occur.

The approximation can be further enhanced by linearly interpolating the 2048

values. The LUT also gives the correction value difference (AEy), which is

multiplied by the least significant 12 bits of y (y2), to implement this

interpolation. This together gives an accurate conversion according to the

equation shown in (3.4:3). The architecture is shown in Figure 3.4-5(a) for the

floating-point to LNS converter.

log2(l + y) « y + Ey ± AEy x y 2 (3.4:3)

Chapter 3 Edge Detection & Digital Logarithms Literature Review

(a) (b)

Figure 3.4-5: Floating-Point / Logarithm Converter [2]

As seen in 3.4-5(b), the LNS to floating-point converter is implemented the same

way. This generates a simple and accurate conversion between floating-point

and logarithms. The arithmetic processor described above, gave performance

ratios of 6.4:1 for division, 8:1 for square root, and 2:1 for the FFT calculation

over floating point equivalents. This is useful for arithmetic using wide bit-

widths (number of bits used to represent a value), but it would be ineffective to

use this for multiplication (addition in the logarithmic domain) for bit-widths of

less than 12 bits, as a 12x12 bit multiplier is used in each conversion. The

aforementioned shows interesting error correction and logarithmic conversion

techniques, particularly useful to floating point. It may be possible for aspects of

the error correction to be applied to fixed-point binary representation if need be.

With fixed-point binary, a conversion of the integer to the characteristic and

normalisation (S) will still be necessary [10].

3.5 Conclusion

In this chapter, an introduction to edge detection and a comparison between

traditional edge detection methods was presented. The Canny edge detection

method was extensively outlined. Canny extends the Sobel method by

incorporating additional steps before and after the derivation of gradient from the

masks. As it works in a multi-stage process, all the different stages which are

involved for the implementation of it were presented.

This chapter has also outlined influential past literature on logarithmic arithmetic

hardware implementation. Many improvements have been attempted since the

61

Chapter 3 Edge Detection & Digital Logarithms Literature Review

earliest breakthrough algorithm, as well as entirely new methods of logarithmic

arithmetic and hardware implementation. Some of these methods, although

interesting and informative, are not as applicable to hardware implementation as

others. The Hybrid-LNS method by Lee [3] is the state-of-art implementation of

logarithmic conversion, and it is the method that it will be used for implementing

the HT on FPGA's. Even that Hybrid-LNS has a limited accuracy (up to 12 bits),

it is sufficient enough for a number of applications, including the implementation

of the HT.

62

Chapter 4 Implementation of the Canny Edge Detection Method

CHAPTER FOUR

IMPLEMENTATION OF THE
CANNY EDGE DETECTION

METHOD

4.1 Introduction

This chapter provides a detailed hardware implementation of the Canny edge

detection, and a novel moving window operator, which forms the basic

implementation of the Canny algorithm. A comparison between software and a

hardware version of the Canny method, using either floating point arithmetic or

fixed point arithmetic will take place. The results will be presented in sections

4.5 and a description of the synchronization circuit in section 4.6. A summary

and conclusion is presented in section 4.7.

4.2 Hardware Implementation

Each stage of the Canny algorithm will be examined separately, and the overall

performance of the algorithm will be discussed. The total amount of the

hardware recourses occupied will be shown, as well as, a flexible LUT based

synchronising circuit for 2-D imaging filters of variable dimensions.

4.2.1 Moving Window Operator

The moving window operator usually processes one pixel of the image at a time,

changing its value by some function of a local region of pixels (covered by the

window). The operator moves over the image to process all the pixels in the

63

Chapter 4 Implementation of the Canny Edge Detection Method

image. A 3x3 moving window is used for the Gaussian smoothing filter

operation and an example of the window operator is shown in Figure 4.2-1 for a

5x5 image. For the pipelined implementation of image processing algorithms all

the pixels in the moving window operator must be accessed at the same time for

every clock. In order to access all the pixels in a moving window system, a

design was devised that took advantage of certain features of FPGAs. The First

In First Out (FIFO) buffers are used to create the effect of moving an entire

window of pixels through the memory for every clock cycle. A FIFO consists of

a block of memory and shift registers that manages the traffic of data to and from

the FIFO. The data are sent through the camera straight away, where this allows

a throughput of one pixel per clock cycle.

For a 3x3 moving window two FIFO buffers are used. The size of the FIFO

buffer is given as W-3, where W is the width of the image. To access all the

values of the window for every clock cycle the two FIFO buffers must be full.

Figure 4.2-2 shows the architecture of the 3x3 moving window. For every clock

cycle, a pixel is read from the camera and placed into the bottom left comer

location of the window.

64

Chapter 4 Implementation of the Canny Edge Detection Method

Case 1 Case 2 Case 3

W oo W „ , w „2

Poo P o , P 02 W ,0 w „ W 12

P io p „ P ,2 W 20 W 21 W 22

P 20 P 21 P 22 P 23 P 24

P 30 P o , P 32 P 33 P 34

P 40 P 41 P 42 P 43 P 44

W oo W „ , W „2

W ,0 w „ W ,2 P 03 P 04

W 20 w 2 , W 22 p ,3 P 14

P 20 P 2, P 22 P 23 P 24

P 30 P 3, P 32 P 33 P 34

P 40 P 41 P 42 P 43 P 44

W „o W „ , W o2

W l0 W „ W ,2 P 02 P o3 P 04

W 2o W 21 W 22 P 12 P ,3 P 14

P 20 P 2 , P 22 P 23 P 24

P 30 P 31 P 32 P 33 P 34

P 40 P 4, P 42 P 43 P 44

Case 4 Case 5 Case 6

Poo P o , P 02 W „o W o , W 02

P 10 p „ P 12 W ,0 w „ W ,2

P 20 p 2 , P 22 W 20 w 2, W 22

P 30 P 3, P 32 P 33 P 34

P 40 P 4, P 42 P 43 P 44

W oo W o , W „2 P 03 P 04

w , „ w „ W ,2 P ,3 P ,4

w 20 w 2, W 22 P 23 P 24

P 30 P 3, P 32 P 33 P 34

P 40 P 41 P 42 P 43 P 44

W „„ W o , W 02 P 02 P 03 P 04

W ,0 W „ W ,2 P 12 P 13 P 14

W 20 W 2, W 22 P 22 P 23 P 24

P 30 P 3, P 32 P 33 P 34

P 40 P 4, P 42 P 43 P 44

Case 7 Case 8 Case 9

Figure 4.2-1: Example of the Window Operator in a 5x5 Image

65

Chapter 4 Implementation of the Canny Edge Detection Method

Figure 4.2-2: Architecture of a 3x3 Window [130]

The contents of the window are shifted to the right, with the rightmost member

being added to the tail of the FIFO. The top right pixel is displayed after the

computation on the pixels is completed, since it is not used in future

computation.

4.3 Canny Hardware Implementation

The Canny edge detection operation consists of four main stages, as it can be

seen in Figure 3.3-2 in Chapter 3 Section 3.3.2. First is the image smoothing,

followed by the horizontal and vertical gradient calculation stage. Then, the

directional non-maximum suppression stage occurs, where the threshold and

thinning stage completes the operation.

4.3.1 Image Smoothing

The Canny edge detector first requires convolution with 2-D Gaussian, and then

with the derivative of a Gaussian. Since Gaussian filter is separable, for

smoothing, we can use two 1-D convolutions in order to achieve the effect of

convolving with 2-D Gaussian. In addition, saving a number of multipliers is

achieved. The convolution is operating along rows and then columns.

The one of the two 1-D filters consists of a 3x1 kernel, where the second consists

of a 1x3 kernel respectively. The 2-D filter required for the derivative of the

66

Chapter 4 Implementation of the Canny Edge Detection Method

Gaussian consists of a 3x3 kernel. The coefficient values of the filters are shown

in Figure 4.3-1 and are defined using an 8-bit fixed point resolution.

22 163 22

a

22

163

22

b

6 0 -6

44 0 -44

6 0 -6

c
Figure 4.3-1 : Filter Coefficients a) 1-D Across Rows b) 1-D Across Columns c) 2-D Filter

As a 3x3 moving window operator is used, two FIFO buffers are employed to

access all the pixels in the 3x3 window at the same time. Since the design is

pipelined, the Gaussian smoothing starts once the two FIFO’s buffers are full.

That is, the output is produced after a latency of twice the width of the image

plus two (2*width +2) cycles. The output of this stage is given as input to the

horizontal and vertical gradient calculation stage.

4.3.2 Horizontal and Vertical Gradient Calculation

This stage calculates the vertical and horizontal gradients using the 3x3 Prewitt

convolution kernels shown in Figure 3.3-3 in Chapter 3 Section 3.3.2.2. An 8-bit

pixel in row order of the image produced during every clock cycle in the image

smoothing stage is used as the input in this stage. Since 3x3 convolution kernels

are used to calculate the gradients, neighboring eight pixels are required to

calculate the gradient of the center pixel and the output pixel produced in

previous stage is a pixel in row order. In order to access eight neighboring pixels

in a single clock cycle, two FIFO buffers are employed to store the output pixels

of the previous stage. The gradient calculation introduces negative numbers. In

hardware programming languages, negative numbers can be handled easily by

using signed data types. Signed data means that a negative number is interpreted

as the 2’s complement of number. In this design, an extra bit is used for signed

numbers as compared to unsigned 8 bit numbers i.e. 9 bits are used to represent a

gradient output instead of 8. Two gradient values are calculated for each pixel,

one for vertical and other for horizontal. The 9 bits of vertical gradient and the 9

67

Chapter 4 Implementation of the Canny Edge Detection Method

bits of the horizontal gradient are concatenated to produce 18 bits. Since the

whole design is pipelined, an 18 bit number is generated during every clock

cycle, which forms the input to the next stage (see Figure 4.4-1 on page 73).

4.3.3 Directional Non-Maximum Suppression

The aim of maximum suppression is to determine the position of local maxima in

the image as a first step in finding edges in the image. The local maxima is found

by measuring changes in the gradient at each pixel in the image or region of

interest.

The values of each component of the gradient obtained from the previous stage

are used to get the magnitude and direction. The direction of the gradient is

calculated mathematically as the arctangent of the vertical gradient component

over the horizontal gradient component [130].

direction = arctan(—)
dx

(4 .3 :1)

Since arctangent is a very complex function and also requires floating point

numbers, it is inefficient to implement such functions on FPGA. Instead, the

value and sign of the components of the gradient is analyzed to calculate the

direction of the gradient. If the current pixel is Vxy and the values of the

derivatives at that pixel are dx and dy, the direction of the gradient at P can be

approximated to one of the sectors shown in the Figure 4.3-2.

Once the direction of the gradient is known, the values of the pixels found in the

neighborhood of the pixel under analysis are interpolated. The pixel that has no

local maximum gradient magnitude is eliminated. The comparison is made

between the actual pixel and its neighbors, along the direction of the gradient,

and for that reason a moving 3x3 window is used across the image.

68

Chapter 4 Implementation of the Canny Edge Detection Method

90°

180° 0°

Figure 4.3-2: Gradient Orientation

To remove the possibility of spurious edges being detected the border pixels in

the image are not included in the calculation. The purpose of this stage of the

edge detection algorithm is to determine pixels that represent the maximum

gradient in a localised part of the image. The calculation is based on the work

described in [155]. This uses a method to determine the gradient in a 3x3 image

window as shown in Figure 4.3-3.

The Matlab® implementation for the magnitude of each pixel in this calculation

is defined by

This is a complex function to evaluate in hardware, requiring both a squaring and

a square-root circuit. Instead a low complexity alternative is used.

(4 .3 :2)

(4 .3 :3)

69

Chapter 4 Implementation of the Canny Edge Detection Method

So, if the gradient of the image passing through the regions Pa and Ph, the

gradient at Pxy is compared with the magnitude of the gradient at adjacent points

where Pxy = \dxx y\ + \dyx y\.

p*-i,y-i

Px-l,y

P x-l,y*l

Figure 4.3-3: Pixel Interpolation

The values of the gradient at the point Pa and Pb are defined as follows:

p + p
P ^ r ± ---- where

2
Px+\.y-x = |£* W i | + | 4 > W i | =\dxx+ly\ + \dyx+ly\

P + P=W . + 'V-u where
* 2

Px-yy+x = K - i ,y+i| + K - i .^ i | and Px_Xy = \dxjly\ + \dyx̂ y\

The algorithm defines an edge when both Px y > Pa and Px y > Ph are satisfied.

Otherwise the pixel is eliminated (set to zero) before it is passed on to the next

stage of the algorithm.

The output produced in the previous stage is an 18 bit number, first nine bits are

horizontal gradient and other nine bits are vertical gradient. In order to access all

the pixels in the 3x3 window at the same time two eighteen bit FIFO buffers of

width of the image minus three array size are employed. To calculate the phase

and magnitude at every pixel the horizontal and vertical gradient values derived

70

Chapter 4 Implementation of the Canny Edge Detection Method

from the eighteen bit number are used. The output produced in this stage is given

as input to the threshold stage.

4.3.4 Threshold and Thinning

The output image of the non-maximum suppression stage may consist of broken

edge contours or single edge points which contribute to noise. This can be

eliminated by thresholding. In this algorithm the thresholds are calculated in the

previous frame using a histogram or by an external register.To get thin edges two

thresholds are used, Threshold» and Threshold^

The thresholding algorithm [130] is used to separate the pixels in the image into

3 regions before being passed to a simple thinning algorithm. The first region is

the Off or zero pixels (encoded as 00) and that occur when the gradient of the

pixel is less than ThresholdL The second region is the On or one pixels (encoded

11) and occur when the gradient of the pixel is greater than Threshold». Finally

the third region is the weak pixels (encoded 01) and it is occur when ThresholdL

< |Px,y| < Threshold». In this case it is set to zero unless there is a path from this

pixel to a pixel with a gradient above Threshold» The path must be entirely

through pixels with gradients of at least ThresholdL.

To get the connected path from the weak edge pixel, a 3x3 window operator is

used. If the center pixel is a weak pixel and any of the neighbors is an On or one

pixel, then the weak pixel is considered as On or one pixel.

After the completion of the thresholding process a thinning algorithm [130] is

used, which is based on a simple morphological algorithm. It is aims at turning

the 2-bit image into a simple 1-bit (binary) image which is then used as the input

into the Hough transform itself.

71

Chapter 4 Implementation of the Canny Edge Detection Method

4.4 Hardware Architecture

After the description of the individual stages of the Canny algorithm, the

connection of each of the Canny elements in hardware was implemented. Figure

4.4-1 shows the pre-processing chain used for performing edge detection using

the Canny algorithm. The performance of the algorithm is strongly dependent on

the complexity with which these pre-processing elements are implemented and

the size of the windows used.

4.5 Results Using the Canny Algorithm

Simulation of the results for the proposed implementation had been made on

Matlab®. Four different implementations were designed for software and

hardware routines. Floating point arithmetic, as well as fixed point arithmetic

using 8-bits of precision was used and comparisons between the implementations

were made. Each original image is 1024 x 1024 pixels, 8 bits per pixel and

greyscale. The following section shows the results obtained, after implementing

the canny algorithm in software, as well as in hardware.

72

Chapter 4 Implementation of the Canny Edge Detection Method

Figure 4.4-1: Canny Algorithm Block Diagram

73

Chapter 4 Implementation of the Canny Edge Detection Method

4.5.1 Software Version of Canny Algorithm Using Floating
Point Arithmetic

The first set of results can be seen in Figure 4.5-1, and were obtained using

Matlab® with floating point arithmetic. Each image shows the output obtained

from the different stages numbered 1 to 5 in the block diagram in Figure 4.4-1.

Figure 4.5-1: Software Implementation Using Floating Point Arithmetic

74

Chapter 4 Implementation of the Canny Edge Detection Method

5

Figure 4.5-1: Software Implementation Using Floating Point Arithmetic

As it can be seen, the binarized output image (Figure4.4-1:5) shows the sharp

and thin edges produced by using the canny edge detection algorithm, and also

verify why the canny edge detection algorithm is quite successful among others.

4.5.2 Software Version of Canny Algorithm Using Fixed Point
Arithmetic
Figure 4.5-2 shows the results obtained using Matlab® with 8-bits fixed point

arithmetic. Once again, each image shows the output obtained from the different

stages numbered 1 to 5 in the block diagram in Figure 4.4-1.

1 2
Figure 4.5-2: Software Implementation Using 8-bits Fixed Point Arithmetic

75

Chapter 4 Implementation of the Canny Edge Detection Method

5

Figure 4.5-2: Software Implementation Using 8-bits Fixed Point Arithmetic

Even with fixed point arithmetic, it can be seen that the output of the image

under test is very similar to the one using floating point. The difference between

floating point and fixed point arithmetic was also investigated and the result is

shown in Figure 4.5-3. In terms of pixel difference it was found that the two

versions differ by 53152 pixels (=5.1%), out of 1048576 total pixels (1024 x

1024).

76

Chapter 4 Implementation of the Canny Edge Detection Method

4.5.3 Hardware Version of Canny Algorithm Using Floating
Point Arithmetic

A hardware version of the Canny edge detection was designed and tested, using

floating point arithmetic and the results are shown in Figure 4.5-4. The

magnitude calculation, as well as, the implementation of the directional non­

maximum suppression is the main differences between the software versions.

Each image shows the output obtained from the different stages numbered 1 to 5

in the block diagram in Figure 4.4-1.

1 2
Figure 4.5-4: Hardware Implementation Using Floating Point Arithmetic

77

Chapter 4 Implementation of the Canny Edge Detection Method

3 4

5

Figure 4.5-4: Hardware Implementation Using Floating Point Arithmetic

A sharp and thin edge output was produced (Figure 4.5-4:5) using the hardware

version proving the success of the edge detection design. An investigation was

made between the software version using floating point and the hardware, and

the results are shown in Figure 4.5-5.

78

Chapter 4 Implementation of the Canny Edge Detection Method

Figure 4.5-5: Difference Between Software Version Using Floating Point and Hardware.

In terms of pixel difference it was found that the two versions differ by 23856

pixels (~2.28%), out of 1048576 total pixels (1024 x 1024).

4.5.4 Hardware Version of Canny Algorithm Using Fixed Point
Arithmetic

The final set of results was obtained using the hardware version of the canny

algorithm using 8-bits fixed point arithmetic and can be seen in Figure 4.5-6.

Each image shows the output obtained from the different stages numbered 1 to 5

in the block diagram in Figure 4.5-1.

1 2
Figure 4.5-6: Hardware Implementation Using 8-bit Fixed Point Arithmetic

79

Chapter 4 Implementation of the Canny Edge Detection Method

5

Figure 4.5-6: Hardware Implementation Using 8-bit Fixed Point Arithmetic

Even with fixed point arithmetic, it can be seen that a satisfactory output was

obtained. The difference between the hardware fixed point and the software

floating point arithmetic was also investigated and the result is shown in Figure

4.5-7. In terms of pixel difference it was found that the two versions differ by

24742 pixels (~2.36%), out of 1048576 total pixels (1024 x 1024).

80

Chapter 4 Implementation of the Canny Edge Detection Method

Figure 4.5-7: Difference Between Hardware Version Using Fixed Point and Software

Version Using Floating Point Arithmetic.

After the simulation of the hardware version using Modelsim, where 8-bit fixed

point arithmetic was used, for the Canny edge detection algorithm, the number of

logic requirements was calculated and the results are shown in Table 4.5-1.

As the table shows, for a 1024 x 1024 image, 1204 CLB’s and 30 18x18

multipliers required. Assuming that the implementation is on a Virtex-4 series

FPGA, where the maximum number of slices is 89088 (Chapter 5), the

implementation of the canny edge detection occupies only ~ 5.41%.

Chapter 4 Implementation of the Canny Edge Detection Method

Table 4.5-1: Logic Calculations for the Canny Edge Detector

G auss
X

G auss
Y

DG auss
X D G aussY

M ax
Suppression

Threshold Thin T otal

Row
Memory 0

1024
x 2 x

8

1024 x
2 x 8 N/A 1024x 3 x8 N/A

1024
x 3 x

2

1024
X

62/16

3968
Slices

Multipliers 3 9 9 9 N/A N/A N/A

30
18 x
18

Mults

Adders 2 X
17

4x 17
+

2x 18
+

1 x 19

4x 17 +
2x 18 +
1 x 19

4x 17 +
2x 18 +
2x 18 +

1 x 19

8 N/A N/A
447

= 447
Slices

Comparators 0 0 0 0 8 x 8 2 x 8 1x8
88

= 88
Slices

Logic slices 10 15 12 12 N/A 4 2 55
Slices

Sync
Circuits 0 1 1 N/A 1 0 1

4x 12
= 48
Slices

FF’s 2 x 8
2 x 1

2x 18
2 x 1
2 x 1
8 x 2

9 x 8
2 x 8
4x1

9 x 8
2 x 8
4x1

9 x 8
8 x 8

8
2 x 2 9 x 2 424

= 212
Slices

Total Logic

4818
Slices/
1204

CLB’s

82

Chapter 4 Implementation of the Canny Edge Detection Method

4.6 A Synchronizing Circuit [133]

Extraction of edges in an image using the canny algorithm prior to the HT

require a number of pre-processing steps to remove noise from the captured

image or to accentuate features in the image prior to the image extraction,

measurement or object recognition algorithms.

For many real-time applications this pre-processing is performed by convolving

the image with simple 2D windowing functions having dimensions of 3x3, 5x5,

7x7 or even 9x9 pixels. This type of processing requires row memories to store

the data prior to processing it with the windowing function. As a consequence

there is a latency (usually of a number of rows) before the output of the

windowing function is ready to be used as the input to the next windowing

function which, in turn, has its own latency. The increasing processing power

and memory available on modern FPGAs is now making it possible to use larger

windows and this leads to an increase in the latency between each stage of the

pre-processing cascade. The filtering operations being performed by the

windowing function itself also incur an additional latency. This is strongly

dependent on the filter architecture chosen and the implementation technology

used. This combined latency of the windowing function and the signal processing

time itself (also called the pipeline) will vary depending on the requirements of

the application and the length of the cascade being implemented.

Although it is a simple problem to calculate the delay through each part of the

cascade it can be time consuming at the design stage to test and verify that the
correct delays have been added to the logic controlling the timing of each

element in the cascade. One solution is to use a global timing controller with

decoders used for each stage of the processing chain. Although simple in

principle, this approach becomes increasingly complex with the length and

number of pre-processing elements. It also results in a significant routing

overhead as the number of control signals required increase. An alternative,

proposed here, is to build a matching Shift Register (SR) for each control signal

83

Chapter 4 Implementation of the Canny Edge Detection Method

which compensates for the delay in each processing element. The use of simple

and efficient SR elements implemented using the RAM based LUTs in FPGA

fabrics to build these delays, were designed for the canny edge detection.

The circuit in Figure 4.6-1 shows the basic architecture of the synchronising

element used for each circuit in the cascade shown in Figure 3.6-1. A separate

variable length SR is used to delay the controlling signal by the required number

of lines and pixels dependent upon the size of the window and the number of

clocks required to perform the filtering operation on one pixel element. The SRs

are built using a simple SRL16 structure [134] which configures the Look-up

Table (LUT) elements available in a logic slice to be configured as a variable

length shift register. For Xilinx devices this usually incurs a minimum delay of 2

clock cycles. (Smaller delays will require a simple FF to replace LUT based SR).

Once the delay through each processing element has been determined the address

bits for the pixel delays (AP) and for the line delays (AL) can be hardwired to

constant logical values.

F V A L _ O U T

-t>

H V A L J D U T

-D

Figure 4.6-1: The Synchronization Circuit Block Diagram

The synchronisation cell described was modelled using Modelsim PE 6.4

implemented on a Virtex-4 architecture using Xilinx ISE 9.2. Synthesis results

show that each synchronising element requires just 3 CLBs. This represents a

small fraction of the array logic available on most FPGA fabrics. For the Canny

Edge Detection algorithm the synchronising circuit used just 12 CLBs out of a

total of 22272 available.

84

Chapter 4 Implementation of the Canny Edge Detection Method

4.7 Conclusion

In this chapter, a hardware implementation of the Canny edge detection method

was successfully presented, using the latest FPGA technology. A synchronization

circuit for windowing operations was implemented, as a number of pre­

processing steps are required prior to the image extraction. With the use of the

synchronization circuit the Canny edge detection method was implemented in

software and hardware using both 8-bit fixed point arithmetic and floating point

arithmetic.

For the software version, the difference between floating point and fixed point

arithmetic was also investigated, and in terms of pixel difference it was found

that they differ by 53152 pixels (-5.1%), out of 1048576 total pixels (1024 x

1024).

For the hardware version, the difference between floating point and fixed point

arithmetic was investigated as well, and in terms f pixel difference is was found

that they differ by 24742 pixels (-2.36%), out of 1048576 total pixels (1024 x

1024).

Simulations results show that only a small fraction (~ 5.23 %.) of the total

available hardware resources in a Virtex-4 device required for the Canny edge

detection implementation.

85

Chapter 5 Overview of FGPA Technology

CHAPTER FIVE

OVERVIEW OF FPGA
TECHNOLOGY

5.1 Introduction

The aim of this chapter is to provide background information on digital

implementation technologies, in order to aid understanding of the

implementations proposed in later chapters of this thesis. There are many types

of technology available today to enable the implementation of logic-based

systems. The following section presents basic background information on some

of the most common devices such as the digital signal processors (DSP) and

ASICs for comparison with the FPGAs, for understanding the reasons using the

FPGA in subsequent chapters. In section 3, the alternatives in modem FPGAs

will be presented. Section 4 describes common value representation formats

implemented on FPGA technology, and section 5 provides a description of the

dedicated arithmetic function blocks available in the modern Xilinx FPGAs.

Finally, section 6 provides a summary of the current chapter.

5.1.1 Digital Signal Processors

Digital Signal Processor (DSP) ICs combine high speed and computationally

intensive applications on a single device. They are a class of hardware devices

that fall somewhere between an ASIC (discussed later in this chapter) and a PC

in terms of their performance and the design complexity. They are not used for

control logic as much as they are used for digital signal processing. However,

they are an important device for comparison with the FPGA for the purposes of

the research presented in this thesis.

86

Chapter 5 Overview of FGPA Technology

A DSP device is capable of operating at high frequencies (1.2G Hz) and

performing a vast number of instructions (e.g. 9600 per second). However, such

high-performance devices can be costly. There are, nevertheless, more modest

devices that can operate at lower frequencies and cost much less. C-

programming language as well as Matlab, has become the main design tools for

DSPs, where the main manufactures are Texas Instruments and Analog Devices.

The architecture of an ADSP-21xxx core can be seen in Figure 5.1-1, where it

contains three independent computational units: the ALU, the

multiplier/accumulator (MAC), and the shifter.

fr
INTERNAL MEMORY -

-ADSP-219X DSP CORE-

FOUR INDEPENDENT BLOCKS

DATA

DAGt DAG2
4 X 4 X 1 6 4 X 4 X 16

C A C H E
S4 X 24-BiT

TE

ADDRESS24 BIT ftl

SEQUENCER

, , PM ADDRESS BUSI
S

DM ADDRESS BUS 24

< = > PX $

1

: L :

DMA CONNECT

32Z
f t PM DATA BUS 24 '

ADDRESS 16 BIT f t DATA

“ft

i>lADDRESS16BIT

mUi f t
f t DATA

I

r s\m
I TEST ANO < / >
I EMULATION V J

*
—k— s - EXTERNAL PORT

.ll/O ADDRESS 18,
JCZ

DMA ADDRESS 24

DMA DATA 24

DATA
R E G IS T E R

FIL E

MULT

ft..s

JU
DM DATA BUS 16'

I/O DATA 16

INPUT
REGISTERS

RESULT
REGISTERS
16 x 16-BiT

TT37T
BARREL
SHIFTER ALU

1: It
I II

II r

Jil

ADOR BUS
MUX

D A T A B U S
M U X

16

-I/O PROCESSOR-

I/O REGISTERS EMBEDDED
(MEMORY-MAPPED) CONTROL

PERIPHERALS
CONTROL V V AND <4
STATUS COMMUNICATIONS

BUFFERS PORTS

DMA CONTROLLER

SYSTEM INTERRUPT
CONTROLLER

PROGRAMMABLE
FLAGS (16)

TIMERS(3Ì 3

Figure 5.1-1: Block Diagram of an ADSP-21xxx Core.

DSP’s are available as both floating point and fixed point architectures.

However, there is a significant speed, as well as, price difference between them

and for that reason fixed-point representation mostly used. These sequentially

executed instructions are compiled from a high level language, and are stored in

an internal program memory. This allows for in-circuit reprogramming. General

input / output pins are often available.

87

Chapter 5 Overview of FGPA Technology

5.1.2 ASICs

Application Specific Integrated Circuits (ASICs) are custom-built chips designed

to perform a specific task. An important feature of these chips is that once the

application has been designed, and the IC built, the functionality cannot be

changed without redesigning and remanufacturing the chip. The ASIC is not

general purpose, and the logic cells are not configurable. Low level logic is used

for the design of the device, which will therefore be directly translated on to the

device substrate. Embedded processor cores are used for the design of some

ASICs.

The custom-built design of the ASICs enables its optimisation for high speed and

low power, far more than could be achieved with general purpose programmable

logic devices like DSPs, microcontrollers and FPGA’s. The design of the ASICs

dictates the exact speed and power required [10].

Nevertheless, ASICs have very expensive fabrication process, and, as a result,

FPGAs are often used for prototyping before a final chip is designed and

manufactured. This allows for removing of errors and mistakes, without re­

fabrication costs. Like FPGAs, the hardware can be configured allowing for

parallel concurrent logic operations, rather than instructions sequentially

executed. Therefore, the devices can operate in the same way, using compatible

designs. FPGAs are generally more appropriate than ASICs for implementing a

system where reconfiguration is necessary or proprietary systems where low

volumes are manufactured.

5.2 Introduction to FPGA's

The FPGA, since its invention in 1984 by Xilinx’s Ross Freeman, has become

the optimal hardware for the implementation of large and complicated logic

systems. An FPGA, as name suggests, is a programmable device in which the

final logic structure can be directly configured by the end user for a variety of

applications. Figure 5.2-1 shows the architecture of a conceptual FPGA.

88

Chapter 5 Overview of FGPA Technology

Interconnection
Resources

□l"[a s] w □
c [#]] m □
L [3fP ae] w □
L [m] HB □
□ [■* w O0 □
LI T BB HH □
L [30 a a B0 □r

a [m m □
I 0 Cell

□ □ □ □ □ □ □ □

Figure 5.2-1: FPGA Architecture [130]

Logic Block

The most important components in an FPGA are the configurable logic blocks

(CLB’s), input-output blocks and programmable switches. The architecture is

built from a 2-D array of CLB’s that are connected by general interconnection

resources. These CLB’s can be as simple as 2-input NAND gates or it can have a

complex structure such as multiplexers or look-up tables (LUT’s). Most logic

blocks also contain some type of flip-flop, to enable the implementation of

sequential circuits.

Figure 5.2-2 demonstrates a simplified representation of a typical FPGA logic
cell. Previous configurable technology such as PLAs or PLDs, utilised sum-of-

product based logic implementation; whereas FPGA implements a RAM-based

LUT, configured during power-up to give a logic output based on the four inputs

which make up the LUT address.

89

Chapter 5 Overview of FGPA Technology

Output

Figure 5.2-2: FPGA Programmable Logic Cell

The FPGA’s principle relies on programmable interconnections between the

logic cells. The FPGA achieves enormous flexibility in its design due to the

programmable routing channels between the logic cells. The use of separate logic

cells enables the hardware to perform different tasks at the same time, allowing

logic decisions to be made simultaneously, resulting in fast implementations with

predictable timing.

Commercially FPGA’s have been classified into four-major categories based on

their interconnection. The interconnection can be symmetrical array, row-based

or hierarchical. Table 5.2-1 shows the commercially available FPGA’s.

Table 5.2-1: Summary of Four Commercial FPGA.

Company Architecture Logic Block Type Programming Technology

Actel Row-Based Multiplexer-Based Anti- fuse

Altera Hierarchical-PLD PLD Block EPROM

QuickLogic Symmetrical Array Mutltiplexer-Based .Anti-fise

Xilinx Symmetrical Array Look-up Table Static RAM

Modern FPGA’s can contain millions of logic gates, as well as, hardware blocks

dedicated to specific high-speed functions. These include high performance

input and output technology, system clock managers, dedicated blocks of

memory, Ethernet MAC hardware and special arithmetic units (which will be

discussed in more detail later in this chapter), and even microprocessors [9],

Each of the aforementioned functions can be configured to fit particular

requirements. For instance, the blocks of RAM can be configured as FIFOs,

90

Chapter 5 Overview of FGPA Technology

CAMs and ROMs with single or true dual port connectivity, with a number of

possible output registers, aspect ratios and other settings to choose from.

Certain functions are readily available on dedicated hardware, but there are also

functions that have been developed by second or third parties that can be bought

separately. These include high speed LAN (Local Area Network), Camera Link

interfaces, and many signal processing functions. These Intellectual Properties

(IPs), once bought, can be implemented as sub-modules within the VHDL

design.

This range of functions and versatility makes FPGA, not only useful for complex

sub-systems, but also applicable for the implementation of complete systems.

The technology on FPGAs has expanded so rapidly, that , now, whole computer

control systems can be implemented on a single FPGA, such as the Commodore

Amiga 500 in a project called MiniMig [161] (now commercially available), or a

fully functional PC running Linux [135], [136], It must be mentioned, however,

that some additional devices will still be required for power, analogue sub­

systems, configuration devices etc. Nevertheless, with the several hundred pins

available on-chip, all logic, networking and digital input / output functions can be

implemented on the single FPGA.

5.3 Summary of Modern FPGAs

Hardware implementation of complex digital systems finds a flexible medium in

the form of FPGAs. The two main market-leading manufactures of FPGAs are

Xilinx and Altera, providing many families available on the market, offering

different levels of complexity, both in size and on-chip resources.

Table 5.3-1 lists the two main manufacturers’ latest FPGAs key features [141],

[168], and [169], These devices represent the high-end (and high-cost) FPGA

families with many additional high-performance dedicated hardware built in. It

must be noted that both manufacturers offer less-costly FPGAs, without the

additional features, such as high-speed dedicated resources (Spartan from Xilinx

91

Chapter 5 Overview of FGPA Technology

and Cyclone from Altera). During the period of writing up this thesis, Xilinx

have introduced the Virtex-6 FPGA, and Altera has announced the Stratix III

FPGA family.

Table 5.3-1 - Key Features for the Latest FPGAs
Manufacturer Series Logic Gates RAM Blocks DSP Blocks

Virtex-6 11,640- 118,560 9504Kb - 38,304Kb 288-2,016
Xilinx Virtex-5 4,800-51840 936Kb- 18,576Kb 24 - 1,056

Virtex-4 5,472 -89,088 648Kb - 9,936Kb 32-512
Altera Stratix II 15,600- 179,400 419Kb-9,383Kb 12-96

Stratix 1 10,570-41,250 920Kb - 3,424Kb 6 - 1 4

It should be noted here, that Altera’s logic is implemented in logic elements

(LEs) (Figure 5.3-1), whereas Xilinx’s logic is implemented in slices (Figure 5.3-

2). Although no direct comparison is possible, it can be said, as a rough

estimation, that there are two Altera LEs to one Xilinx slice [10].

Figure 5.3-1: Altera Logic Element (LE) [10]

92

Chapter 5 Overview of FGPA Technology

MUXFX

1

MUXF5

1

Arithmetic
and carry

logic

XMUX

D

CE
CLK

SR
IT

Figure 5.3-2: Xilinx Virtex Slice. |10|

The DSP-dedicated hardware implemented in the Virtex 4 devices (as described

in section 5.5) contains an 18 x 18-bit multiplier and a 48-bit adder, whereas the

Virtex 5 devices [142], contains a 25 x 18-bit multiplier and a 48-bit adder. The

operating mode can be set dynamically, with no configuration necessary and set

during design. The DSP hardware on Altera’s Stratix devices [137] contains four

18-bit multipliers, followed by three adders / accumulators (Figure 5.3-3),

although for the Stratix I FPGAs, various parts of the DSP hardware cannot be

individually or dynamically configured.

93

Chapter 5 Overview of FGPA Technology

O ptim i ßmai S ffll ffegim r
snpüis k m Fwicvs

Figure 5.3-3: Altera DSP Block Diagram |137|

5.4 Number Representation on FPGAs

Traditionally, arithmetic calculations have been the most inefficient tasks to be

implemented on FPGA designs. These will need to be carefully designed at a
low level for optimisation. Subsequent chapters will present the many

techniques developed to simplify arithmetic calculations.

The arithmetic implemented in hardware uses two main formats of binary

numbers. The first format is floating-point, where the value is represented by a

mantissa (fraction) and exponent as shown in Figure 5.4-1. The IEEE-754-1985

standard [138] defines two types of floating-point representation; these are single

94

Chapter 5 Overview of FGPA Technology

precision, which uses 32 bits, and double precision, which uses 64 bits, as

illustrated in the figure below.

Single Precision
MSB Sign (1) Exponent(8) Mantissa (23)

Double Precision
MSB Sign (1) Exponent(11) Mantissa (52)

LSB

LSB

Figure 5.4-1: Floating-Point Representation

The order shown above ranges from the most significant bit (MSB) on the left, to

the least significant bit (LSB) on the right. To allow for positive and negative

values, the sign bit (S) is required. However, the exponent (E) can separately be

positive or negative. To allow for this, the exponent is biased by -127 for single

precision, and -1023 for double precision (B). This represents the number as

shown in (5.4:1), where Mis the mantissa.

x = (- l) s (1 + O.M)2e~b <5-4:1)

This enables the representation of very large ranges of values with very good

precision, particularly fractions, as these are explicitly represented. However,

common arithmetic is difficult to implement due to the possibility of differing

exponents. For FPGAs, this representation would be difficult to implement due

to the requirement of 32 or 64 bits to represent values, and because of the non­

trivial arithmetic [139], [140], In most real-world applications, this range of

representation is not commonly required.

More rational representations include unsigned binary, two’s complement and

sign-magnitude. Since these do not include any information on an exponent, in

their current form, they can only represent integers. However, the least

significant bit (LSB) need not represent 2°. As long as the weights of the

corresponding bits are the same and constant, the result will always be valid,

although scaled by a power of two that is dependent on the scales of the input

values and the arithmetic operation.

95

Chapter 5 Overview of FGPA Technology

To represent fractions, the LSB represents a power of two that is less than zero.

This will, however, decrease the range of values that can be represented. This is

the principle of representing fractions in fixed-point binary. As long as the

position of the virtual binary point is known and kept consistent for each node,

all arithmetic will be valid.

2 $ 2 ^ 21 2 ° 2"1 2"2 2‘3 2" ^

1 0 1 0 1 0 0 1

Integer Fraction

Figure 5.4-2: Fixed-Point Representation

In the example shown in Figure 5.4-2, the unsigned integer value represented if

the LSB was weighted 2° would be 169. However, with the weighting shown,

the value 10.5625 is represented. Although the scale is not shown, as long as all

values in this node are known to be scaled down by 24, values from 0 to 15.9375

with steps of 0.0625 can be represented. This example shows the fixed-point

representation with a format of (8,-4) which represents the total number of bits

and the power of two weighting of the least significant bit respectively. The

same principle holds for fixed-point variations of two’s complement and sign-

magnitude representations.

Instead of 255 being the highest number, the weight of most significant bit is also

scaled down by a factor of 24 in this example. Therefore, when deciding the

fixed-point format, the highest possible value must be able to be represented. All

other bits left over may be used to represent fractions where a set number of bits

are defined. Therefore the format is arbitrary and can be set depending on the

maximum value and precision required. With a fixed format, arithmetic is easily

implemented. For example, division by a power of two only requires a virtual

shift of the binary point, and the binary value need not be changed (or rounded).

For this reason, it is the preferred format for high-speed, low-level logic-based

implementations including implementations on the FPGA.

So far the two main formats of binary numbers have been discussed. There is

also a third format of binary numbers. This is the logarithmic number system [3]

96

Chapter 5 Overview of FGPA Technology

which relies somewhere between the floating point and the fixed-point

arithmetic. Logarithmic arithmetic will be used in this thesis for implementing

the HT on an FPGA, and a more detailed description of it will follow in a

subsequent chapter.

There are two main arguments why the logarithmic arithmetic is going to be

used. Floating point arithmetic has a huge dynamic range and is relatively

complex to implement on FPGA. Both the implementation of multipliers and

adders in hardware are complex and require complicated logic structures. As it

has been proved in Chapter 7, floating point arithmetic is far more accurate than

is it actually needed for implemented the HT and such a large dynamic range is

not required.

On the other hand, the fixed point arithmetic can be used to implement the HT,

where the dynamic range can be controlled by the user, but a number of

multipliers are required for equation 2.2:3 in Chapter 2, Section 2.2. One of the

fundamental properties of logarithms is that multiplication in linear domain can

be replaced by addition in the logarithmic domain (equation 1.3:1 in Chapter 1

Section 1.3). Therefore, by using logarithmic arithmetic, multipliers became

adders. Even though there are lots of multipliers on FPGA’s, there are still a

limited number of them. Also, another reason for not using multipliers is that the

size of them is significantly larger than it is actually needed. Logarithmic

arithmetic may be is not that accurate, but it is relatively close to the fixed point

arithmetic, and the conversion algorithms from logarithm to linear domain and

visa versa are quite simple, allowing an efficient hardware implementation as

shown in Chapter 6.

5.5 Xilinx’s Xtreme DSP Blocks

In the past years, the techniques that Xilinx have been using to implement

multipliers on FPGAs were the distributed arithmetic, and the constant

coefficient multiplier, which was built in the LUTs. Following those methods,

the 18 x 18 bits multiplier was developed (Spartan III), where the latest families

from Xilinx (Virtex 4, Virtex 5 and Virtex 6) include high-speed dedicated

97

Chapter 5 Overview of FGPA Technology

arithmetic blocks called DSP48s. Virtex 4 devices contain typically between 32

and 192 of these dedicated slices, although the highest specification Virtex 4,

designed towards high-speed DSP (Digital Signal Processing) functions, contains

512 [10].

By appropriately configuring each DSP48 block, several operating modes,

including multiply, add, multiply add and multiply accumulate, can be achieved.

As these modes suggest, each DSP block contains a high-speed multiplier

followed by a high-speed adder. The multiplier is 2’s complement 18x18 bit,

and allows a 36-bit result to be passed to the 48-bit 3-input adder. Figure 5.5-1

presents a detailed diagram of the DSP48 tile, consisting of two DSP48 slices,

with full details available in the Xilinx Virtex 4 Xtreme DSP user guide [141],

The DSP48 blocks used in the Virtex 4 FPGA exist as pairs, and share the 48-bit

adder input, as seen on the above diagram. Furthermore, between one of the 18-

bit multiplier inputs, and the output which feeds to the next adder, there are high­

speed dedicated interlinks, resulting in linked DSP48 blocks that form a high­

speed DSP chain.

These DSP blocks can perform operations at up to 500 MHz by using the Digital

Clock Manager (DCM) blocks, which are embedded to the FPGA. As DSP

blocks use dedicated high-speed logic, generic programmable logic could be

utilised for implementing a design. Nevertheless, the aforementioned are still

there, whether used or not. However, depending on the requirements of the

application, they can be connected to and used by the programmable logic. This

allows for the implementation of high-speed arithmetic, without the use of

programmable logic, and can therefore save many logic slices.

98

Chapter 5 Overview of FGPA Technology

As has been shown in Chapter 7, Section 7.2.1, no more than 12 bits are required

to perform the HT. The size of the DSP48 slices is 18 x 18 bits, which is far more

accurate than is actually needed. As a result, the DSP48 slices are not going to be

used for calculating the HT, and a number of them will be saved for other DSP

requirements in the processing chain such as edge detection.

5.6 Conclusion

The FPGA, as demonstrated in this chapter, is a very versatile and powerful

piece of hardware, capable of implementing large and complex logic-based

designs. The FPGA is capable of implementing tens of thousands - up to

millions - of logic elements on a single IC. In addition to this, many commonly

used functions are still available, both as dedicated hardware within the IC, or as

99

Chapter 5 Overview of FGPA Technology

subsystems that can be bought and combined with the existing design. This

enables several components such as logic, memory, communication, clock

management, standard interfaces and mathematical function, to be implemented

as a “black box”, to name but a few.

By describing the logic function, rather than giving a sequence of instructions,

high-speed, concurrent operations can take place with predictable and

optimisable timing and resource requirements. The optimisation component is

what makes the FPGA different to other types of hardware that may also be used.

Many alternative technologies that are able to implement similar applications

execute a sequence of instructions, allowing for ease of development, at the

expense of the ability to optimise. Each system or device described is useful for

particular applications or circumstances.

Digital signal processor ICs are fit for use in high-speed, small-size and low-cost

implementations of digital signal processing and arithmetic-based systems.

These are not as applicable to logic-based systems, but the technology may be

implemented within any other appropriate technology type.

ASICs are useful as a high-speed, low-power final product, but can become an

expensive technology for development and prototyping as they are custom-built

and not reconfigurable. It is common practice to design and develop an

application on an FPGA, then port it to an ASIC once finalised and tested

rigorously, in order to control for errors and mistakes.

Modem FPGAs now contain very fast and efficient dedicated DSP slices,

capable of performing calculations without utilising logic cells that could,
instead, be put to other uses. These DSP48 blocks are capable of operating at up

to 500 MHz in ideal circumstances, and are often available, irrespective of

whether used or not. Nevertheless, it has been shown that these units are

designed to be configured for generic and common DSP architectures, and not

the latest architectures developed for specific DSP functions

100

Chapter 5 Overview of FGPA Technology

An FPGA platform is being used for testing all the different algorithms

developed and described in this thesis. By using FPGA technology it can be

shown that these algorithms are working in such a system and a future design (if

required) of an ASIC it may be possible to implement.

The purpose of this chapter was to provide an overview of FPGA technology, its

principles, and the reasons behind its usage. Since all hardware implementations

proposed in chapters to follow are designed for the latest FPGA technology, the

capabilities and mathematical implementations were therefore introduced in this

chapter.

101

Chapter 6 Hybrid Logarithmic Number System

CHAPTER SIX

HYBRID LOGARITHMIC NUMBER
SYSTEM

6.1 Introduction

John Napier [143] first introduced the logarithm in 1614 in theoretical

mathematical fields of study, and its use has since then become increasingly

widespread in many areas of research. For instance, logarithms can be utilized in

many areas of science for the representation of different scales; namely the

Richter scale in seismology, the decibel for acoustic and electric power

measurement, entropy in thermodynamics and the pH in chemistry. Many

responses such as the human interpretation of acoustic amplitude or the cent,

minor second, major second, and octave for the relative pitch of notes in music,

are also logarithmic [10].

In mathematical terms, the logarithm of a given number to a given base is the

power or exponent to which the base must be raised in order to produce the given

number as shown in equation 6.1:1 where b is the logarithm base. As such, the

inverse of the logarithmic transform is the base to the power of the logarithm of

the number. Typical values for the base are e (called the natural log with a value

of 2.718), 10 (or the common log) and 2, which will be represented throughout

this chapter. The logarithmic base must be positive, but not 0 or 1.

x = ¿iogACx) (6.1:1)

As can be seen in Figure 6.1-1, for various logarithmic bases, with X ranging

from 1 to 10, the range of the transformed Log(A) is much smaller than 10.

However, below 1, the transformed range is much greater than 1 and for that

102

Chapter 6 Hybrid Logarithmic Number System

reason care must be taken with output precision when transforming from

logarithmic to linear domain.

0 1 2 3 4 5 6 7 8 9 10
X

Figure 6.1-1 : Graph of Log(A) for 0<Af<10

Table 6.1-1 below shows various values for X, and their logarithmic equivalents.

All of these values are independent of the logarithmic base.

Table 6.1-1- Logarithm Conversion Rules
Logffl

<0 NaN
0 -Inf
<1 Negative
1 0
Inf Inf

The representation of large ranges of values with a smaller range of values is

facilitated by the non-linear nature of logarithms. The logarithmic transform

response will be greater at lower values, where variation is most significant, than

at higher values, presuming that the same amount of change occurred. For
example, working in base 10, the change from 100 to 50 (in linear domain) is 50

(reduction of 50%) and the change from 1000 to 950 is also 50, but this is only a

reduction of 5%. Converting these linear values to logarithms, the change from 2

to 1.69 (in logarithmic domain) is 0.31 and the change from 3 to 2.977 is 0.023.

103

Chapter 6 Hybrid Logarithmic Number System

These fundamental properties may appear over-simplistic at first; however, their

implications will be made clear later in this chapter. Moreover, in this chapter

the main property of logarithms will be outlined, namely, their arithmetic

properties.

It can be seen in the equations 1.3:1 and 1.3:2 in Chapter 1 Section 1.3 (where b

is the logarithm base) that multiplication in the linear domain becomes addition

in the logarithmic domain, and similarly, division becomes subtraction. For a

simple example of multiplying 5 by 6 using 1.3:1, we can see that:

log10(5) + log10 (6) = 0.69897 + 0.77815 = 1.47712

10 1 477,2 = 30

Therefore 5 and 6 have been multiplied without doing any multiplication.

Division is similarly calculated. This relationship can have a large impact on

hardware in terms of calculations. Multiplication in hardware is an important

operation that may require shared logic or resources that can be in much demand,

therefore, rendering it inefficient with respect to speed. Logarithms provide the

solution with regards to the aforementioned problem; multiplication can be

performed on two numbers without actually multiplying or using any hardware

specifically associated with it. Addition can be used instead, where the numbers

are converted to and from the logarithmic domain. The result, if required, can be

transformed back to the linear domain.

This very simple logarithmic method works well for multiplication and division.

Multiplication and addition are both commonly used for Digital Signal

Processing (DSP) algorithm, especially for filter implementations. The method
of implementing addition and subtraction in the logarithmic domain [7] is much

more complicated as can be seen from (6.1:2) and (6.1:3).

\ogh(A + B) = i + \ogh(\ + bJ-‘)
\ogb(A-B) = i + \ogh{\-bJ-')
Where: i = log|T| and j = log|s|

(6.1 :2)
(6.1:3)

Chapter 6 Hybrid Logarithmic Number System

Taking (6.1:2) as an example of adding 600 to 200 in logarithm base 2, we get:

log2 (600 + 200) = 9.2288 + log2 (1 + 2 7 6439' 9 2288) =9.6438

296438 = 8 00

As seen above, this is not a straight forward equation, as the non linear functions

(6.1:4) and (6.1:5) must be evaluated.

F(r = j - i) = logb(\ + br) (6.1:4)

F(r = j - i) = \og„{\-br) (6.1:5)

A graph of these functions in Figure 6.1-2 illustrates the singularity in f s(f) that

makes linear approximation difficult. While f a(r) is well behaved near 0, f s(r) —* -

oo as r —>• 0 [144], [145],

Figure 6.1-2: Non Linear Functions

It is commonly accepted [146] that the use of logarithmic arithmetic for hardware

implementations, of signal processing in particular, is in need of further research

and utilization. To the best of this author’s knowledge at the time this chapter

was written, a study of the impact of performing the HT on FPGA technology,

whilst taking advantage of logarithms has not been reported in the literature. The

105

Chapter 6 Hybrid Logarithmic Number System

only report of the use of logarithms and FPGA technology can be found on [10].

This chapter will be dedicated to the investigation of the aforementioned impact.

The next section will describe how the HT can be optimally implemented on

FPGA technology.

6.2 Logarithmic Converter Design

6.2.1 Design Considerations

In order to design the HT, certain considerations must be taken into account. For

instance, the speed at which the device can operate is important. Such high

speed can be achieved by using dedicated hardware rather than a software

alternative. Hence, the hardware option is chosen for the aforementioned reason

and it should be of high speed. At the same time, hardware space is finite, and

shared resources on FPGAs may be required for other modules on the same

device. As such, the logic resources must be minimised. This minimization will

also result in a reduction of the power consumption of the device. This action

will therefore make the device suitable for battery powered portable applications,

or applications where wider processing is required in the same device.

For a solution to be a state-of-the-art, the proposed methods of the new solution

must have advantages over current modem ones. For this reason, current and

relevant solutions will be selected, described and compared in the next part of

this thesis. As shown in the preceding literature review, there are many methods

of converting between logarithmic and linear domains. A method that is deemed

appropriate will be selected as an example for this thesis, although the structure

proposed may be implemented using any appropriate conversion method. The
test will take into account practical considerations for hardware implementation

on FPGA technology.

106

Chapter 6 Hybrid Logarithmic Number System

6.2.2 Logarithmic Converter

Full logarithmic arithmetic is used, for all calculations, e.g. addition, subtraction,

multiplication and division being computed with the logarithmic number system

(LNS). However, in one of the previous papers, a more rational approach has

been taken [3]. A system known as the Hybrid-Logarithmic Number System

(Hybrid-LNS) uses very simple arithmetic steps, effectively and efficiently,

using LNS to make multiplications, and linear numbers to make the addition

calculations.

The “Leading Zero Detector” (LZD) [160], [161] produces three values using

simple logic. A single bit flag, indicating the sign of X, is produced. Trivial

logic is required for sign-magnitude numbers to output the sign bit of X.

According to the rules previously outlined in Table 6.1-1, at the beginning of this

chapter, negative numbers cannot be converted to logarithms. Nevertheless,

negative numbers can be multiplied; hence, the converter must be able to convert

them. For negative values of X , the absolute value is converted, and the flag

indicates the occurrence.

Similarly, a zero value of X has no logarithmic equivalent, although

multiplication by zero can be possible. Again, a value of zero in the LZD can be

detected using simple logic. With a zero value of X (or a value too small to be

represented by anything other than zero), no conversion occurs, and this is

indicated by the 1-bit “Zero” flag.

The LZD also produces an integer representing the position of the most

significant ‘ 1 ’ (not including the sign bit) in the binary number X. This value

also represents the integer part of the logarithm of X (for base 2). To simplify the

logic, this value is biased positively so that the “Integer” value is never negative,

as has been implemented in [3],

The “Barrel Shifter” shifts X to the right by the unbiased “Integer” number of

places. Therefore the output of the “Barrel Shifter” (S) will have the equivalent

decimal value 1 <S<2. Because the binary position weighted 2° will always have

107

Chapter 6 Hybrid Logarithmic Number System

the value of ‘1’ (inferred bit), this bit can be ignored and only the bits

representing the fraction of S will be converted in the look-up-table (LUT). The

linear to logarithm converter is depicted in Figure 6.2-1 below.

Log2x

Figure 6.2-1: Linear to Log Converter Block Diagram [3]

The contents of the LUT are the rounded-to-fit, pre-calculated (offline)

logarithmic equivalents to the input S. The proposed solution in this chapter uses

a set relation between the bit-widths of the address and the contents, although

they do not necessarily have to be related to each other. Therefore the address

for the LUT is provided by S, and the fraction part of the logarithm result is

provided by the contents of the LUT. As mentioned before, if the LUT is

unfeasibly large for the hardware, further logic can be used to interpolate

intermediate values in the LUT, something which for small LUTs would be

unnecessary.

Table 6.2-1: Example Linear to Logarithm Converter LUT
Fraction (A) LUT Address Log2(v4+l)

(rounded to 8 bits)
Contents
Log2(A) (28)

0 0 0 0
0.125 1 0.171875 44
0.25 2 0.3203125 82
0.375 3 0.4609375 118
0.5 4 0.5859375 150
0.625 5 0.69921875 179
0.75 6 0.80859375 207
0.875 7 0.90625 232

108

Chapter 6 Hybrid Logarithmic Number System

As an example illustrating this method, is given in Table 6.2-1 utilizing an LUT

with three address bits, and a width of eight bits. The address represents fractions

between 0 and 1 at equal intervals. The more bits in the LUT address and

contents, the more precise and accurate the conversion will be.

To convert the linear value -164 to logarithm (base 2):

-164 = 110100100 in binary (sign magnitude)

This is non-zero, therefore ZERO = ‘O’, and is negative, therefore SIGN= ‘1’

The leading one is in the seventh bit position (not including the sign bit) with

significance 27, therefore:

INTEGER = 7

After scaling down by 27 and the removal of the leading ‘ U, the binary number is

0.0100100, but with the fraction bits rounded to three bits gives 010 taking the

fraction bits in isolation, which becomes the address of the LUT (address 2),

giving the output 82 x 2'8 according to Table 6.2-1.

Therefore, FRACTION = 0.3203125

Theoretically log2 (164) = 7.357552. With this method using an 8 x 8bit LUT

7.3203125 is given.

As only eight fractions are given in this example, the LUT gives a close

approximation. If more fractions were to be stored in the LUT, the result will be

much closer.

The logarithm-to-linear converter is shown in Figure 6.2-2. This is effectively an

inverse transform, a mirror of the linear-to-logarithm converter, and works much

109

Chapter 6 Hybrid Logarithmic Number System

in the same way. Two of the main components are identical, with the “Sign-

Magnitude Converter” (SMC) using simpler logic than the LZD.

Log2x

Figure 6.2-2: Log to Linear Converter Block Diagram |3|

Using the LUT, the logarithm fraction is firstly converted into the linear fraction.

The logarithm-to-linear LUT follows the same rules as the linear-to-logarithm

LUT. The length and width need not match or be related, but the larger these

are, the more precision and accuracy will be achieved in the conversion. The

fraction provides the address for the LUT ROM, while the contents contain the

closest equivalent linear value. The leading ‘ 1 ’ is not necessary to be stored in

the contents of the LUT.

The Barrel Shifter will shift the output of the LUT with the leading ‘ 1 ’ inserted

“Integer” places to the left or right, depending on the biased value. For positive,

non-zero linear values, this will give the correct converted value. However, if

the linear value is zero (from the linear to logarithm converter output flag), the

output X, will be set to zero. The Sign flag will also be added to the sign bit o iX

where sign magnitude representation is used (or used for negative conversion for

2’s complement representation).

Taking the result of the linear-to-logarithm converter as an example for the

logarithm-to-linear converter:

F raction = 0 .3203125

In teger = 7

110

Chapter 6 Hybrid Logarithmic Number System

Zero = 0

Sign - 1

A simple LUT for the logarithm-to-linear converter is shown in Table 6.2-2.

Again this is an 8 x 8-bit LUT. It must be noted that in terms of accuracy and

precision, this will produce large errors. However, it is an example for

illustrational purposes, demonstrating the said operation.

Table 6.2-2: Example Logarithm to Linear Converter LUT
Fraction (A) LUT Address 2M

(rounded to 8 bits)
Contents
2a-1(28)

0 0 0 0
0.125 1 0.08984370 23
0.25 2 0.18750000 48
0.375 3 0.29687500 76
0.5 4 0.41406250 106
0.625 5 0.54296875 139
0.75 6 0.68359375 175
0.875 7 0.83593750 214

The LUT input will be 01010010 (fraction), which rounded to three bits gives

011 and forms the address of 3 on the LUT.

Therefore the LUT output will be 76 scaled up by 28, or 0.296875.

By inserting back the inferred ‘ 1 ’, this becomes 1.296875.

The Barrel Shifter will shift this Integer places to the left (in this case multiplying

by 27), giving 166.

Due to the sign flag, the sign bit becomes significant in the SMC, giving the final

value of:

X ' = -166

X= -164.

I l l

Chapter 6 Hybrid Logarithmic Number System

Linear

Linear to
Log LUT

Figure 6.2-3: LUT Shapes

Log to
Linear LUT

Although this uses converter of an 8 x 8-bit LUT, precision and accuracy will be

affected by the size and aspect ratios of the LUTs. A test, based on the examples

shown, was devised in order to demonstrate the above. Input values X ranging

from 1 to 256, were converted to logarithms and back using LUTs as described

above. Figure 6.2-3 exemplifies how the width of the linear-to-logarithm

converter corresponds to the length of the logarithm-to-linear converter, and

vice-versa. The LUT lengths and widths were varied from 2 to 8 bits, although

the width and length of the linear-to-logarithm LUT kept the same as the

logarithm-to-linear LUT as shown in Figure 6.2-3. The mean square error

(MSE) as shown in (6.2:1) of these results is tabulated in

Table 6.2-3. In this case, n = 256.

M
(6.2:1)

Table 6.2-3 - MSE results for conversion to and from log / linear for different size / shaped
LUTs

Logarithmic bit-width (B)
2 3 4 5 6 7 8

3 2 352.1 200.5 48.9 48.9 48.9 48.9 48.9
¿3 3 391.3 166.6 51.6 12.3 12.3 12.3 12.3
TJ
A

4 541.4 138.4 41.1 18.9 3.2 3.2 3.2
5 490.8 129.0 40.1 12.5 4.9 0.9 0.9

X>i— 6 512.0 131.3 40.0 10.4 3.1 1.6 0.3
CÖ<D 7 480.4 124.4 33.8 8.6 2.1 0.6 0.2
hJ 8 485.2 126.8 34.5 8.4 2.0 0.6 0.1

It is clear to see from Table 6.2-3 that without enough bits to represent the linear

values (linear-to-logarithm LUT length and logarithm-to-linear LUT width, or A

in Figure 6.2-3), the errors can see a limited reduction as the logarithm’s bit-

112

Chapter 6 Hybrid Logarithmic Number System

above four or five. When the logarithmic bit-width (B) is A+2 or above, no

additional advantage is given with respect to the errors.

6.2.3 Logarithmic Multiplication Implementation

Hybrid-LNS implement the equivalent of multiplying by using adders. However,

these adders cannot take into account the Zero and Sign flags unassisted; extra

elementary logic is required as shown in Figure 6.2-4. Multiplying two negative

numbers gives a positive answer, as does multiplying two positive numbers, and

a negative multiplied by a positive gives a negative. Therefore an XOR is used

on the two sign flags for the numbers being multiplied. Similarly, if either value

being multiplied is zero, the result will be zero, and therefore an OR gate will be

used on these flags.

Integer^Fraction)

Integer.Fraction lnteger3.Fraction3

Figure 6.2-4: Logic for Multiplication in the Logarithmic Domain

As an example, in Figure 6.2-4 two linear numbers that are to be multiplied using

Hybrid-LNS are converted using separate linear-to-logarithm converters as

described above. Each gives four signals as shown in Figure 6.2-4. The
subscripts 1 and 2 denote the signals from each linear-to-logarithm converter and

subscript 3 denotes the input to the logarithm-to-linear converter. The integer

and fractions from each linear-to-logarithm converter are combined before being

summed together. The resulting four signals would then be used by the

logarithm-to-linear converter to produce the result of the logarithmic addition.

113

Chapter 6 Hybrid Logarithmic Number System

6.3 Conclusion

The aim of this chapter was to provide background information on the underlying

principles of logarithms for arithmetic, intending towards hardware

implementation. From the basic principles of logarithms, it can be seen that

multiplication, a process often difficult and slow to implement in hardware, can

be effectively replaced with the addition of logarithms. This can also be used in

a similar way for division (although most DSP applications only use

multiplication), although addition and subtraction have been shown to be not so

simplistic in their implementation with logarithms.

This part of this thesis also had a detailed look at the implementation of an

efficient linear / logarithmic converter with the use of an example. Furthermore,

optimisation of the implementation with respect to the look-up-table design was

examined, particularly addressing the effect of different aspect ratios. From the

results shown as part of this research, LUT sizes of address bits = width bits - 2

for the linear-to-logarithmic converter LUT (and opposite for the logarithmic-to-

1 inear converter LUT) have been shown to give optimum results where any more

address bits would give no further advantage in conversion quality. This is

convenient for when the LUT width is said to be equivalent to the width of the

linear representation, then the address bits of the LUT will be the same as the

linear bit-width after removing the sign and inferred bits.

As clearly demonstrated in this chapter, the most suitable arithmetic operation is

multiplication. The implementation of multiplication, using logarithms with

respect to hardware implementation, has also been described. The background

information presented in this chapter sets the foundations for the HT

implementation using the Hybrid-LNS that will be outlined in the next chapter.

114

Chapter 7 Hybrid-LNS & Hough Transform

CHAPTER SEVEN

HYBRID-LNS & HOUGH
TRANSFORM

7.1 Introduction

A detailed introduction to logarithms, as well as, conversion and arithmetic

implementations has been discussed in the previous chapter. Multiplication can

be effectively replaced with the addition of logarithms. Using the Hybrid-LNS,

multiplication is performed in the log domain and addition performed in the

linear domain. This chapter will apply the methods investigated in the previous

chapter to the SHT. The effects that logarithmic arithmetic will have on the

structures and quality of results of the HT have not yet been investigated in

current literature, and it is this that this chapter will contribute.

It has been shown previously [12], [13] how the HT can be implemented on

technology such as the FPGA. These solutions typically use multipliers on the

FPGA fabric to calculate the HT. This chapter will describe how, by using

logarithmic arithmetic, the need for multipliers is eliminated, while precision of

the algorithm is maintained. Also, an implementation of the HT on FPGA using

Hybrid-LNS arithmetic will be described in the following sections and a

comparison with the linear HT will be made. The results will be presented in

sections 6.3 and 6.4, with a summary and conclusion in section 6.5.

7.2 The Linear Hough Transform

The implementation of the HT, as it has been discussed in the Chapter 2, Section

2.2, is based on the equation 2.2:3, where the set of lines passing through each

point in an image is represented by a set of sinusoidal curves in (p, 0) parameter

space. Although, elegant in concept the HT is beset by a number of

computational problems when applied to real-time image processing of large

115

Chapter 7 Hybrid-LNS & Hough Transform

images: the computation of all possible values of p and 6 for each point in the

image and the accumulation of the results for all possible points in (p, 0)

parameter space. Evaluation of equation 2.2:3 for each pixel element in the

image represents the fundamental signal processing operations required for

implementing the HT. A direct form, as shown in Figure 7.2-1, requires the use

of two multipliers and an adder. The contents of the LUT are the pre-calculated

(offline) logarithmic equivalents for sine and cosine respectively, rounded to fit.

e

Figure 7.2-1: Basic HT Calculation Element

However, the choice for implementing the function shown in the above figure is

not ideal, as multiple structures are needed to process image data at mega-pixel

resolution images. Using a Pulnix AccuPIXEL monochrome camera with a

resolution of 1024 x 1024 pixels at 25 frames per second the input frequency is

1024 x 1024 x 25 Hz ~ 26MHz. For each pixel to be calculated for, say 180

angles, requires 1024 x 1024x 25 x 180 ~ 4.7 x 109 operations per second. To be

realistic 32 or 64 Hough elements working in parallel would be required to

achieve these frame rates as it can be seen from Table 7.2-1.

116

Chapter 7 Hybrid-LNS & Hough Transform

Table 7.2-1: Correlation Between Number of Hough Elements with Operations per Second.

H ough elem ents O perations per second
1 4.7 x 10y
2 2.35 x 10y
4 1.175 x 109
32 146.9 x 106
64 73.4 x 106

Furthermore the longest possible line in the image is Vl024x 1024 = 1024 bits.

This requires each accumulator cell in the PSF to be at least 10 bits wide. If 180

angle increments are required, then according to Matlab® software routines there

must be 2896 x 180 = 521280 accumulator bins. If each accumulator need to be

10 bits then this represents 325.8 Kbits of memory (each bin store 16 addresses).

From the above example it can be seen that an alternative architecture, using the

general FPGA fabric (the CLBs or Configurable Logic Blocks), could produce a

more efficient solution. A potential advantage of this approach is that it would

leave the DSP slices and Block RAM free for other functions in the image

processing chain.

7.2 .1 P ro p o sed L in e a r Im p lem en ta tio n U sin g M a tla b ®

Simulation of the results for the proposed implementation will be made on

Matlab® with software routines defined in [162]. Standard test images [163] will

be used to obtain the results, as have been used in other, similar papers, as well

as, captured images using the Pulnix 1280 x 1024 monochrome camera. These

are shown in Figure 7.2-2. Each original image is 1024 x 1024 pixels, 8 bits per

pixel and greyscale. Each image is imported into Matlab® with the imread()

function. A first step is to look the effects of using finite precession arithmetic

for the HT on the test images. For a full set of results for these tests, please refer

to Appendix A. A representative sample of two images is provided in this

chapter for analysis. Figure 7.2-2 shows the test images captured by a Pulnix

camera. It was aligned at different angles to the camera, 60 and 45 degrees

respectively [14].

117

Chapter 7 Hybrid-LNS & Hough Transform

Figure 7.2-2: Test Image at Rotated Angles of 60 and 45 Degrees.

After a series of tests, which can be found in Appendix B, with different fixed

points (4-bit, 8-bit, 10-bit, 12-bits, 16-bit and 20-bit), it was concluded that:

below 8-bits of precision the results were unsatisfactory, as information of the

images was lost and above 12-bits of precision the results were the same as the

floating point ones. For this reason it was decided that for the entirely tests 8-bits

and 12-bits of precision will be used. Also the effect of using the round function

in comparison with the fix function was tested, and is shown that using the round

function the results were closer to the optimum ones. The parameter space was

calculated using Matlab® with floating point precision and again using 8-bit and

12-bit fixed point arithmetic for the values of the sine and cosine stored in the

LUTs. Figures 7.2-3, 7.2-4 and 7.2-5 show the outputs of these calculations for

45° and 60°.

118

Chapter 7 Hybrid-LNS & Hough Transform

Hough Accu Cells Distribution
400 v

350 s

300 v I
N................................ ; .. h i " "

theta

(a) Floating Point calculation at 60°

___ Hough Accu Cells Distribution
3501

300 x i !...

250, icd i:.......................... : —

? 200 J

theta
(b) Floating Point calculation at 45°

Figure 7.2-3: Hough Transform Parameter Space Output Graphs on 1024 x 1024
Binarised Images Using Floating Point Arithmetic Precision.

119

Chapter 7 Hybrid-LNS & Hough Transform

Hough Accu Cells Distribution

(a) Linear calculation 8 bits (rounding) at 60°

Hough Accu Cells Distribution
400,

350,

300,
CD

-1 250,<0 '>
S 200,>...... •••
I 150,3 \O
< 103,

0
2000

0

theta

(b) Linear calculation 8 bits (rounding) at 45°

Figure 7.2-4: Hough Transform Parameter Space Output Graphs on 1024 x 1024
Binarised Images Using Linear 8-bit Arithmetic Precision.

120

Chapter 7 Hybrid-LNS & Hough Transform

Hough Accu Cells Distribution
400,

350 s !

300, :N..... ;.... In'"ni

theta

(a) Linear calculation 12 bits (rounding) at 60°

Hough Accu Cells Distribution
400,

350 v Î...................... :.......................

300 A

theta

(b) Linear calculation 12 bits (rounding) at 45°

Figure 7.2-5: Hough Transform Parameter Space Output Graphs on 1024 x 1024
Binarised Images Using Linear 12-bit Arithmetic Precision.

121

Chapter 7 Hybrid-LNS & Hough Transform

Figures 7.2-3(a), and 7.2-3(b) shows the accumulator distribution of the linear

Hough output when floating point arithmetic was used on the test images. The

high peaks which correspond to the higher value of the accumulator cells can

also be seen. Figures 7.2-4(a), and 7.2-4(b) shows the accumulator distribution

when 8-bits of precision was used. It can be seen that even with such low

precision, the same peaks have been identified with small variation on the peak

values. Finally with the last set of figures, 7.2-5(a), and 7.2-5(b), where 12-bits

of precision are used, the output results are almost identical with the floating

point ones. Another method for supporting the above statements is to take the

difference between the floating point arithmetic and the two fixed point

solutions.

Accu Cell Differences

Figure 7.2-6: Hough Transform Parameter Space Difference Graphs on 1024 x 1024
Binarised Images Between Floating Point and Linear 8-bit Arithmetic Precision.

122

Chapter 7 Hybrid-LNS & Hough Transform

Accu Cell Differences

8 -50 v<
cl -100
15
y -150,

2000

2000 X-------‘
-50 0

theta

100

(b) Linear calculation 8 bits (rounding) at 45°

Figure 7.2-6: Hough Transform Parameter Space Difference Graphs on 1024 x 1024
Binarised Images Between Floating Point and Linear 8-bit Arithmetic Precision.

Accu Cell Differences

theta
(a) Linear calculation 12 bits (rounding) at 60°

Figure 7.2-7: Hough Transform Parameter Space Difference Graphs on 1024 x 1024
Binarised Images Between Floating Point and Linear 12-bit Arithmetic Precision.

123

Chapter 7 Hybrid-LNS & Hough Transform

Accu Cell Differences

theta

(b) Linear calculation 12 bits (rounding) at 45°

Figure 7.2-7: Hough Transform Parameter Space Difference Graphs on 1024 x 1024
Binarised Images Between Floating Point and Linear 12-bit Arithmetic Precision.

Figure 7.2-6(a) and 7.2-6(b) shows the difference maps between the Hough

output where the floating point arithmetic, and the 8-bits of precision was used

for the 60 and 45 degrees test images respectively. For the 60 degree image the

highest peak difference is between ± 280, where for the 45 degrees image is ±

125. Those values as it can be seen from figures 7.2-7(a) and 7.2-7(b) are

dropped significantly to ± 28 and ± 29 respectively, when 12-bits of precision

were used. As previously, the maps show that even at relatively low precision the

peaks are similar to those produced when using floating point arithmetic.

7.3 The Logarithmic Hough Transform

An alternative structure, which may result in a better utilization of FPGA

resources, is based on the use of the log arithmetic instead of normal binary

124

Chapter 7 Hybrid-LNS & Hough Transform

arithmetic. Hybrid-LNS or hybrid-log arithmetic is an alternative solution where

multiplication is performed in the log domain and addition performed in linear

domain. The contents of the LUT are the pre-calculated (offline) logarithmic

equivalents for sine and cosine respectively, rounded to fit. However, in the

logarithmic HT method additional LUTs are used to translate between the log

and linear domains [14].

e

Figure 7.3-1: Hybrid-LNS HT Element

Figure 7.3-1 shows the proposed architecture of the hybrid-log HT calculation

unit. It can be seen that multiplication has been replaced by addition. As with the

original linear solution the sine and cosine components are stored in LUTs. The

difference is that it is the logarithm of the sine and cosine components that are

stored. These have been calculated offline so there is no need for a converter.

The basic architecture of the log-to-linear converter is show in figure 6.2-2 in

Chapter 6 Section 6.2.2. To ensure that the logarithm can represent a number

arbitrarily close to zero the data can be scaled by a multiplication factor of 2"

where n is an integer. The pixel location as defined by x and y needs a Lin2Log

conversion, but this will be common to all HT units and hence has not been

included in this diagram.

125

Chapter 7 Hybrid-LNS & Hough Transform

7.3.1 Proposed Logarithmic Implementation Using Matlab®

Matlab® experiments using hybrid-log architecture for the HT processing unit

have been performed on the test images shown in Figure 7.2-2 with software

routines defined in [162]. The parameter space was calculated using Matlab®

for floating point precision and again using 8-bit and 12-bit fixed point arithmetic

for the values of the sine and cosine stored in the LUTs, as well as, for the values

in the logarithm-to-linear converters. The HT maps for floating point, 8 and 12

bits of fractional precision are shown in Figures 7.3-2, 7.3-3, and 7.3-4.

Hough Accu Cells Distribution

theta

(a) Floating Point calculation at 60°

Figure 7.3-2: Hough Transform Parameter Space Output Graphs on 1024 x 1024
Binarised Images Using Floating Point Arithmetic Precision.

126

Chapter 7 Hybrid-LNS & Hough Transform

Hough Accu Cells Distribution
350,

300,

theta
(b) Floating Point calculation at 45°

Figure 7.3-2: Hough Transform Parameter Space Output Graphs on 1024 x 1024
Binarised Images Using Floating Point Arithmetic Precision.

Hough Accu Cells Distribution
350,

300 ̂

theta

(a) Hybrid-log calculation 8 bits (rounding) at 60°

Figure 7.3-3: Hough Transform Parameter Space Output Graphs on 1024 x 1024
Binarised Images Using Hybrid-Log 8-bit Arithmetic Precision.

127

Chapter 7 Hybrid-LNS & Hough Transform

Hough Accu Cells Distribution
300,

theta

\
100

(b) Hybrid-log calculation 8 bits (rounding) at 45°

Figure 7.3-3: Hough Transform Parameter Space Output Graphs on 1024 x 1024
Binarised Images Using Hybrid-Log 8-bit Arithmetic Precision.

Hough Accu Cells Distribution

(a) Hybrid-log calculation 12 bits (rounding) at 60°
Figure 7.3-4: Hough Transform Parameter Space Output graphs on 1024 x 1024

Binarised Images Using Hybrid-Log 12-bit Arithmetic Precision.

128

Chapter 7 Hybrid-LNS & Hough Transform

Hough Accu Cells Distribution
350.

3oon ;.............. ;............ ■:■•••

250.j.........................i -œ 1...... : :
2 200. j ;............. i—

theta

(b) Hybrid-log, 12 bits (rounding) at 45°

Figure 7.3-4: Hough Transform Parameter Space Output graphs on 1024 x 1024
Binarised Images Using Hybrid-Log 12-bit Arithmetic Precision.

Figure 7.3-2(a), and 7.3-2(b) shows the logarithmic Hough output using floating

point arithmetic for both images. The high peaks which correspond to the higher

value of the accumulator cells can also be seen. By comparing the results from

figure 7.3-2 with the results in figure 7.3-3 it can be seen that, even when 8- bits

of arithmetic precision is used, the same peaks are identified with a small

variation on the accumulator values. More accurate results compared with those

in figure 7.3-2 can be seen in figure 7.3-4, where 12-bits of arithmetic precision

are used. Once more, the difference between the floating point arithmetic and the

two fixed point solutions was taken and the results can be seen in figures 7.3-5

and 7.3-6.

129

Chapter 7 Hybrid-LNS & Hough Transform

Accu Cell Differences

................................

IF '" 1
f 1 1 ' I

!
_i

rho theta

\
100

a) Hybrid-log calculation 8 bits (rounding) at 60°

-100
2000 '

AU
0

-2000
-100

Accu Cell Differences

;....................\
-50 0

theta
100

b) Hybrid-log calculation 8 bits (rounding) at 45°

Figure 7.3-5: Hough Transform parameter Space Difference Graphs on 1024 x 1024
Binarised Images Between Floating Point and Hybrid-Log 8-bit Arithmetic Precision.

130

Chapter 7 Hybrid-LNS & Hough Transform

40 N

30 vj

_ 20n
CO

rN 10 xj
CO_o
3 On
<
n -10

Accu Cell Differences

3 -20-

-30-

-40.

NT

M|.

2000'0 r
rhe

-2MD -50
~~r
50

theta

3OO<
CLU_3UO<

50.

40.

30.

20.

10 .

0.

- 10.

-20 .

-30.

-40.

a) Hybrid-log calculation 12 bits (rounding) at 60°

Accu Cell Differences

-50.
2000 '

0 x
-2000

rho
-100 -50 50

theta

100

......................

...... 1

..
1

100

b) Hybrid-log calculation 12 bits (rounding) at 45°

Figure 7.3-6: Hough Transform Parameter Space Difference Graphs on 1024 x 1024
Binarised Images Between Floating Point and Hybrid-Log 12-bit Arithmetic Precision.

131

Chapter 7 Hybrid-LNS & Hough Transform

Figure 7.3-5(a) and 7.3-5(b) shows the difference maps between the Hough

output where the floating point arithmetic, and the 8-bits of precision was used

for the 60 and 45 degrees test images respectively. For the 60 degree image the

highest peak difference is between ± 80, where for the 45 degrees image is ± 90.

Figures 7.3-6(a), and 7.3-6(b) show that the values has been dropped

significantly to ± 18 and ± 25 respectively, when 12-bits of precision were used

(The error of the log plots at -90 degrees as shown in these plots is spurious).

Comparison between figures 7.2-6, 7.2-7 and 7.3-5, 7.3-6, shows that the hybrid-

log architecture outperforms the linear equivalent at similar levels of fractional

precision, as it generates fewer errors than the equivalent linear one.

7.4 Hardware Implementation

Matlab® results have shown that hybrid-log architecture outperforms the linear

one. The next step was the implementation of both architectures in hardware for

the calculation of the required hardware resources. For the hybrid-log

implementation, apart from the LUTs where the pre-calculated (offline)

logarithmic equivalents for sine and cosine are stored, additional LUTs, required

for the conversion between the logarithmic and the linear domain.

The size of the LUTs needed to convert between the log and linear domains

grow exponentially with the number of bits of resolution and becomes

prohibitively large when more than 16 bits of accuracy are required [164], At 16

bits the overall size of the LUTs has been reduced by using solutions based on

piecewise linear, Taylor or polynomial approximation [165]. This reduces the

size of the LUT at the cost of additional multiplier(s) of small dimension. At

resolutions of 12 bits and below there are a wide range of solutions with reduced

memory requirements which are completely multiplierless [166], [167]. For

image processing, where the image data is limited to 8-10 bits of resolution, the

LUT requirements are acceptable and both LNS and Hybrid-LNS arithmetic have

been shown to be suitable low-complexity and low-power alternatives to fixed-

point processing of gray scale images. In the case of the HT an equal number of

132

Chapter 7 Hybrid-LNS & Hough Transform

additions and multiplications are required so, in principle at least, both LNS and

hybrid log appear possible alternatives to using fixed point arithmetic.

The major elements used in both the linear and hybrid log solutions shown in

Figures 7.2-1 and 7.3-1, were generated using the Xilinx CoreGenerator® toolset

with maximum pipelining. Both solutions have been implemented and

synthesized using Xilinx ISE 9.2 and the results are shown in Table 7.4-1 [14].

Table 7.4-1: Implementation Statistics of HT Elements

Number of CLBs / slices

Implementations
8 addresses

per LUT
23 LUTs in total

16 addresses
per LUT

12 LUTs in total

32 addresses
per LUT

6 LUTs in total

64 addresses
per LUT

3 LUTs in total

Linear 8-bits 257/1028 134/536 67 / 268 34/136

Linear 12-bits 564 / 2256 294/1176 147 / 588 74 / 296

Log 8-bits 315/1260 164/656 82 / 328 41 /164

Log 12-bits 602 / 2408 314/1256 157/628 79/316

The number of CLBs as well as the number of respectively slices (one CLB =

four slices) required for all the above implementations can be seen in Table 7.4-

1, where the memory elements are available in multiples of 8 (3-bits), 16 (4-bits),

32 (5-bits) and 64 (6-bits) respectively. As the performance of the hybrid-log

with 8 bits of fractional precision is equivalent to the linear solution with 12-bit

resolution it can be seen that there is an advantage to be obtained by using the

hybrid-log solution. For real-time implementation with the megapixel camera 64

HT elements running at approximately 74 MHz are necessary to achieve a

performance of 25 frames per second.

7.5 Conclusion

This chapter has shown that it is possible to use multiplierless architectures based

on hybrid-log arithmetic to implement the main processing elements necessary to

perform the HT. It has been found that below 8-bits of precision the results were

133

Chapter 7 Hybrid-LNS & Hough Transform

unsatisfactory, as information of the images was lost and above 12-bits of

precision the results were the same as the floating point ones.

A linear and a logarithmic implementation using Matlab® with 8-bits, 12-bits

and floating point arithmetic was presented. The high peaks which correspond to

the higher value of the accumulator cells was found and compared. Even with 8-

bits of resolution the same peaks have been identified compared to the floating

ones, with small variation on the peak values. The difference between the

floating point and the two fixed point solutions was taken for the two test images

and it shows for the linear implementation and the 60 degree image that the

highest peak difference is between ± 280, where for the 45 degrees image is ±

125. Those values are dropped significantly to ± 28 and ± 29 respectively, when

12-bits of precision were used. For the logarithmic implementation it can be seen

that for the 60 degree image the highest peak difference is between ± 80, where

for the 45 degrees image is ± 90. Those values have been dropped significantly

to ± 18 and ± 25 respectively, when 12-bits of precision were used.

Matlab® results have shown that hybrid-log architecture outperforms the linear

one. The implementation of both architectures in hardware for the calculation of

the required hardware resources was presented and it shows that the performance

of the hybrid-log with 8 bits of fractional precision is equivalent to the linear

solution with 12-bit resolution. Consequently, there is an advantage to be

obtained by using the hybrid-log solution.

The relative simplicity of these structures means that it is feasible to implement

multiple elements operating in parallel using just the basic CLB elements

available on a typical FPGA fabric and leaving the DSP slices and Block RAM
free for other functions in the image processing chain. Depending on the overall

throughput it is possible to process data from a 1024 x 1024 pixel camera at a

rate of up to 25 frames per second. However, as indicated earlier in the thesis this

is only the first problem associated with implementing the HT on an FPGA

fabric. Another limitation is the size of the memory array needed, which will be

described in the next chapter.

134

J

Chapter 8 Design of a LUT Based Accumulator Cell

CHAPTER EIGHT

DESIGN OF A LUT BASED
ACCUMULATOR CELL

8.1 Introduction

This chapter presents a simple and compact architecture for building the

accumulator cells needed in a HT processor to store “hits” when binarised image

data, defined by their x and y co-ordinates, are translated into a Parameter Space

Function (PSF) prior to extracting geometric primitives from the image. Also, the

complete system is presented in terms of hardware requirements. The

accumulator cells are implemented using Look-Up Table (LUT) resources

available on most modern FPGA fabrics and are configured to allow high-speed

real-time processing of the image. The modular architecture can easily be

expanded to accommodate images with different resolutions. It is particularly

suited to architectures such as the Xilinx Virtex 4 and Virtex 5 which has

increased the capacity of the LUT cells available in the fabric as well as

increasing the number of them that can be found on a single device making this

architecture a suitable candidate for performing the HT in real-time on mega­

pixel images.

8.2 Parametric Description of a Straight Line

As already it has been shown in Chapter 2, Section 2.2, the original method used

to calculate the lines in the HT represented every possible line using the slope-

intercept equation as shown in 2.2: l .

However, this approach is impractical due to the unlimited ranges of a and b

when used to describe vertical or near-vertical lines. This approach has therefore

been replaced by the normal or (p ,6) form as shown in equation 2.2:3 and

135

Chapter 8 Design of a LUT Based Accumulator Cell

Figure 2.2-2 in Chapter 2. Now the set of lines passing through each point Pj in

an image is represented by a set of sine curves in (p ,6) parameter space.

Although elegant in concept the HT is beset by a number of practical problems

when applied to real-time image processing. Two of the main problems are the

computational overhead incurred by the necessity to calculate all possible values

of p and 0 for each non-zero point in a binary image and the memory required

to store the results of accumulating all possible points in (p ,$) parameter space

before post processing them to find the most significant lines in the image.[5]

Both of these problems become increasingly acute when dealing with increasing

image resolutions now available with mega-pixel cameras operating at increasing

frame rates (> 100 frames per second). Although the use of high speed parallel

processing elements has helped with the first problem, the problem of the

parameter space memory remains a significant one, especially when the signal

processing is being performed on an FPGA which even at current levels of

integration is limited for such applications.

8.3 Accumulator Cell

Each processing element (PE) is used to calculate p using a disjoint subset of 6

in parallel. The resulting 2-tuple in parameter space (p-0) represents a unique

address in (p ,0) parameter space. Flence the accumulation process can also

proceed in parallel using a unique accumulation element (AE) associated with

each PE.

In Figure 8.3-1, a basic block diagram of the accumulator cell can be seen. The

size of the accumulator is determined by the maximum length of a line that can

be found in the image of interest. Using the Pulnix AccuPixel camera the

resolution is 1024 x 1024 pixels and the longest line in the image is

Vl0242 x 10242 = 1448pixels (8.3:1)

136

Chapter 8 Design of a LUT Based Accumulator Cell

For such an image an accumulator cell would require 11 bits of precision to

ensure that overflow cannot occur during accumulation.

Figure 8.3-1: Basic Accumulator Cell Block Diagram

Each accumulator block is a subset of 0 and p and it is addressed using n bits

whereby k bits are used to decode the accumulator block and / bits are used to

address the accumulator cell within this block. For a Xilinx Spartan3 or Virtex4

device this / is 4 bits because the size of the LUT in a slice is 16x1 bits. [141] For

Xilinx Virtex5 [142] (and the new Virtex6) devices, the size of the LUT has been

expanded to 64x1, making this architecture more efficient.

Each time a valid address to the accumulator cell is detected the incrementer is

set to +1 and the accumulator addressed is incremented by one bit. Once the

entire image has been scanned the data in the accumulator cells need to be passed

on to a post processor which is used to extract any geometric features present in

the original image. Because of the architecture in the FPGA there are several

different methods for doing this, such as reading the data one block at a time

through a decoder. Each method has an impact on the amount of time available

before the next frame of the image can be processed.

8.4 An Alternative Accumulator Cell

A disadvantage of the cell shown in Figure 8.3-1 is that the contents of all the

accumulators need to be read before the next frame of calculations can begin. If

this is done sequentially this takes a significant amount of time which impacts on

137

Chapter 8 Design of a LUT Based Accumulator Cell

the overall throughput of the algorithm. The cell shown in Figure 8.4-1 shows an

alternative architecture which exploits the architectural attributes of the LUT

structures implemented on Xilinx devices which can also be configured as

variable length shift-registers. Each cell is read sequentially and stored in a

separate SR. This is done in each block, in parallel. Once the data is stored in the

SR is can be downloaded and processed while the next frame is being calculated.

Figure 8.4-1: Alternative Accumulator Cell Block Diagram

8.5 Simulation Results

The accumulator cells described above was modelled using Modelsim

implemented on a Xilinx Virtex 4 architecture using Xilinx ISE 9.2. For the

simulation the address space was 16 bits. The simple architecture shown in

Figure 8.3-1 used 16 slices or 4 CLBs and synthesis results indicate that it can

operate at a maximum frequency of 77 MHz. The architecture in Figure 8.4-1

used 25 slices or 7 CLBs and operated at a maximum clock frequency of 77 MHz

as well.

138

Chapter 8 Design of a LUT Based Accumulator Cell

For the architecture in Figure 8.4-1 and according to Matlab® software routines

defined in [148], the following number for the accumulator cells required for 180

degrees with a step of one degree per pixel (drho) in a 1024x1024 image:

For rho axis:

the maximum length of the image is: D = Vl0242 + 10242 =1448

, . . D 1448the quantization steps are : Q = ------= -------= 1448
drho 1

therefore, the number of steps where the rho axis will be divided is:

nrho = 2 * Q = 2896

For theta axis:

With the assumption of one degree per pixel, the theta axis will be divided in 180

steps.

This has a result of a total
2896*180 = 521280 cells

As each accumulator cell requires to be at least 11 bits wide and the depth of

each cell is 16 bits, in terms of memory usage the amount of memory required is:

c o 1980
*H = 358.38 Kbits or 44.77 Kbytes

16

In terms of number of CLBs required, if each accumulator cell requires 25 slices

and stores 16 addresses then:

C O 1 O O A

— —̂— * 25 = 814500 slices or 203625 CLBs
16

The above calculations were made with the assumptions that a Virtex-4 FPGA

slice is used, which is based on 4-input LUT’s (16 bits). The Virtex-5 and

Virtex-6 FPGA slices are based on a 6-input LUT’s (64 bits), where less memory

(81.45 Kbits or 10.18 Kbytes) and hardware resources are required (203625

slices or 50907 CLBs).

139

Chapter 8 Design of a LUT Based Accumulator Cell

8.6 The Complete System

After presenting the LUT based accumulator cell, which is the last individual

stage of the overall system in this thesis, it is worth looking at all the stages

described so far in terms of occupancy of hardware resources in an FPGA device,

and more specifically in a Virtex-4 FPGA.

As it can be seen from Figure 8.6-1, the overall process of the HT

implementation with the hardware requirements necessity can be categorized in

three stages.

Canny edge
Implementation
of the HT using

Storing the HT
output using

Total amount
of hardware

detection. + the Hybrid-LNS
method.

+ the LUT based
accumulator

cells.

resources
required.

Figure 8.6-1: Stages of the HT Implementation

A summary of all the stages and the number of hardware requirements is shown

in Table 8.6-1. When implementing the Canny edge detection on a Virtex-4

device, only 5.23% of the device is used. Similarly, the implementation of the

HT using the Hybrid-LNS method can require from 0.18% (using 3 LUT with 8-

bits of precision) up to 2.7% (using 23 LUT with 12-bits of precision) of the

device. Finally, as it can be seen from the calculations above, implementing the

accumulator cells is impossible in a Virtex-4 device, Virtex-5 devise or even in a

Virtex-6 using only the distributed RAM. The required slices for the accumulator

cell implementation are 814500 for a Virtex-4 and 203625 for a Virtex-5 device

and Virtex-6 devise, where the maximum number of slices in a Virtex-4, Virtex-

5 and Virtex6 are 89088, 51840 and 118560 respectively [141], [168], [169],

The absolute worse case scenario is considered for the above calculations, as a

full frame is processed and there are accumulator cells for every pixel in that

frame. If a full frame is required, then the internal Block RAM needs to be

considered. The maximum block RAM in a Virtex-4 device is approximately

lOMbytes, where for a Virtex-5 device is approximately 18Mbytes and for a

Virtex-6 devise is approximately 38Mbytes. [168] Otherwise, coarse to fine

140

Chapter 8 Design of a LUT Based Accumulator Cell

techniques or time multiplexing techniques for reducing the number of

accumulator cells are necessary. Such techniques, involve examination of the

accumulator array at various scales and an attempt is made to evaluate it in detail

only in those areas having a high density of counts. Some of such techniques

have been described in literature review chapter (Chapter 2) and can be

combined with the described implementation, as all of them are applicable, in

order for the combined system to be implemented faster and with less

computational cost.

141

C L B s S lices M u ti p liers

C anny e d g e detection 1 2 0 4 / 4 8 1 8
3 0

1 8 x 1 3
HT w ith H u b f ld lN S 8 bits 1 2 b its 8 b its 1 2 b i t s 8 b its 1 2 b its 8 b its 1 2 b its

8 a d d re s s e s p e r L U T
2 3 L U T s in to ta l

3 1 5 / 1 2 6 0 6 0 2 / 2 4 0 8 0

1 6 a d d re s s e s p e r L U T

1 2 L U T s in to ta l

1 6 4 / 6 5 6 3 1 4 / 1 2 5 6 0

3 2 a d d re s s e s p e r L U T

6 L U T s in to ta l

82 / 3 2 8 1 5 7 / 6 2 8 0

6 4 a d d re s s e s p e r L U T

3 L U T s in to ta l

4 1 / 1 6 4 7 9 / 3 1 6 0

A c cu m u la to r ce lls 2 0 3 6 2 5 / 8 1 4 5 0 0 0

T o ta l L o g ic 2 0 5 1 4 4
i

2 0 5 4 3 1
Ì

2 0 4 9 9 3 2 0 5 1 4 3
i

2 0 4 9 1 1
I

2 0 4 9 8 6
I

2 0 4 8 / 0
7

2 0 4 9 0 8
7

3 0

C L B s / S l ic e s 8 2 0 6 2 3 8 2 1 7 7 1

i

8 2 0 0 1 9

i

8 2 0 6 1 9 8 1 9 6 9 1 8 1 9 9 9 1 8 1 9 5 2 ?

i

8 1 9 6 7 9 1 3 x 1 8

n5T
•Ö
f—t-CD
oo

c/}
CDO-
>ooc
3c
gfo>-t
n
CD

Table 8.6-1: The C
om

plete System

Chapter 8 Design of a LUT Based Accumulator Cell

8.7 Conclusion

This chapter has presented a new LUT based accumulator cell that can be used as

part of the HT architecture, for storing the calculated Parameter Space Function

(PSF) derived from a binary image. The accumulator cell uses the distributed

memory elements available on a Xilinx FPGA fabric to store the intermediate

results prior to passing them on for post-processing and feature extraction. This

architecture enables a parallel implementation of the HT and PSF accumulators

to be implemented, thereby speeding up the processing of the image or enabling

significantly larger (megapixel) images to be processed in real-time. Additional

local LUT resources can also be easily configured as temporary local memory,

which can be used to reduce the inter-frame latency of the system.

Also, the complete system, which consists of three stages, was presented in terms

of hardware requirements and a comparison between the stages was also detailed.

The results show that the implementation of the Canny edge detection, as well as

the HT using the Hybrid-LNS system, uses only a small percentage

(approximately 8%) of a Virtex-4 FPGA device, in comparison to the

implementation of the accumulator cells, where different techniques need to be

considered. If a full frame requires processing, the internal Block RAM can be

used for implementing the required accumulator cells.

143

Chapter 9 Summary & Conclusion

CHAPTER NINE

SUMMARY & CONCLUSION

9.1 Summary

This thesis has presented techniques using Hybrid-LNS arithmetic for building

the HT algorithm on FPGA technology. This work included the analysis of the

HT using Hybrid-logarithmic arithmetic, the implementation of the Canny edge

detection method for the binarization of the image, as well as the design of a

compact architecture for building the accumulator cells, when binarized image

data are translated into a Parameter Space Function (PSF), prior to extracting

geometric primitives from the image.

Chapter 1 introduced, the general concept of the HT algorithm, the necessity of

the edge detection prior to the HT, and the implementation of the HT using the

Hybrid-LNS arithmetic. As stated in this chapter, the HT focuses on image

processing applications, with goals set in the areas of speed, size (in terms of

logic) and accuracy.

The HT was described in detailed terms in Chapter 2, starting from the basic

principles of the algorithm, along with how it works, the advantages and

disadvantages of it, as well as, the different applications and methods. The

process of calculating the HT was also shown, along with the possible parallel

processing architectures for implementing it on the target technology.

Edge detection of an image is necessary prior to the HT algorithm calculation.

The comparison between edge detection methods, as well as, the detailed

description of the Canny method was presented in Chapter 3. A literature review

of the digital logarithms is also presented in this chapter, and it was shown,

through a review of the relevant literature, how the implementation of logarithms

144

Chapter 9 Summary & Conclusion

and logarithmic arithmetic has developed over the past fifty years into a method

appropriate for the implementation of DSP functions.

As a number of pre-processing steps are required for removing noise or to

accentuate features in the image prior to the image extraction, a novel generic,

synchronizing circuit architecture for windowing operations was implemented in

Chapter 4. The Canny edge detection method was implemented in hardware

using the latest FPGA technology, where fixed point arithmetic it was compared

with solutions built using floating point arithmetic. The synchronizing circuit

architecture with the implementation of the Canny edge detection method formed

the two of the contributions of the thesis. Simulation results showed that a small

fraction of the array logic available on most FPGA fabrics is used for the

implementation of the Canny edge detection on FPGA, allowing other functions

in the image processing chain to be processed.

All designs proposed in this thesis are aimed towards implementation on FPGA

technology, as they are very versatile and powerful piece of hardware, capable of

implementing large and complex logic-based designs and in a very high speed. A

more detailed description of the FPGAs is outlined in Chapter 5. Also, the most

common devices such as the digital signal processors (DSP) and the ASICs are

compared with the FPGAs, and the most advanced arithmetic technology for

FPGAs were described in detail.

An alternative method of implementing arithmetic on hardware using logarithms

was described in Chapter 6. The most appropriate number system for arithmetic

implementation on hardware was analysed and fully described, and was found to

be a cross between logarithmic and linear arithmetic. A description was given of
how multiplication is most efficiently implemented with logarithms, and addition

with the linear number system. This is known as hybrid-logarithms number

system.

Chapter 7, therefore, proposed the implementation of the system already

described in Chapter 6, specifically applied to the HT algorithm. The chapter

showed the benefits that implementing arithmetic on hardware can bring to the

145

Chapter 9 Summary & Conclusion

transform. Such a method has not been investigated in any published literature

and it forms the main novel investigation presented in this thesis. How this can

be implemented in the HT algorithm, was demonstrated in Chapter 7, along with

the potential advantages it has to offer over purely linear-based arithmetic

implementations. Due to the relative simplicity of the structure described in

Chapter 6, it is feasible to implement multiple such elements operating in

parallel. It was shown that, by using logarithmic arithmetic, the need of

multipliers is eliminated, while precision of the HT is maintained. Depending on

the overall throughput it is possible to process data from a 1024 x 1024 pixel

camera at a rate of up to 25 frames per second.

Computational cost is a main drawback of the HT algorithm, but is not the sole

concern. The size of the memory array needed to store the results of

accumulating all possible points in the PSF, before post processing them to find

the most significant lines in the image, is another main problem of the HT

algorithm. Chapter 8 presented a novel LUT based accumulator cell that can be

used as part of the HT architecture for storing the calculated PSF. The

aforementioned PSF is derived from a binary image. Assuming the worst

absolute scenario, where there is an accumulator cell for every pixel in the

image, it was shown that it is not possible to implement the accumulator cells in

one of the latest FPGAs devices.

In the same chapter, a comparison between the implementation of the Canny

edge detection, in conjunction with the HT main processing block using

logarithmic arithmetic and the LUT based accumulator cell was made. It was

found that, the hardware implementation on an FPGA of the Canny method with

the HT main processing block, require only a small percentage of the overall
hardware recourses. However, when implementing the accumulator cells for a

1024 x 1024 image, different techniques need to be considered.

Overall, this thesis has made several contributions to the state of the art that can

be summarized as follows:

• An investigation into the effects and possible benefits that the use of

Hybrid-Logarithmic arithmetic has on the HT algorithm. This showed

146

Chapter 9 Summary & Conclusion

how the need for multipliers could be eliminated, while the precision of

the algorithm is maintained.

• An optimal implementation of the HT proposed using the most advanced

arithmetic hardware available on modern FPGAs. Despite not

implementing multipliers, the algorithm performance was found to be

almost identical to the software implementation.

• A flexible design of a generic synchronization circuit proposed for

windowing operations in 2D imaging filters of variable dimensions,

enabling parallel processing implementation on FPGA fabrics.

• A successful implementation of the Canny edge detection method on

hardware, by the use of a novel synchronization circuit for the windowing

operations, using fixed point arithmetic.

• A design of a LUT based accumulator cell for high speed HT algorithms

on FPGA fabrics for storing the PSF.

• A combined implementation between the Canny edge detection, the main

HT processing block and the LUT based accumulator cell on FPGA

fabrics.

9.2 Future Work

This thesis has provided evidence of a comprehensive investigation into the

implementation of the HT algorithm on FPGA technology. A novel technique for

efficient implementation of the algorithm using Hybrid-LNS has been shown,

along with the implementation of the algorithm on the latest FPGA technology.

No doubt, as FPGA technology incorporates faster, more accurate, and more

versatile integrated arithmetic components, new possibilities and techniques will

become possible.

The effects of using hybrid-logarithmic-based arithmetic on the HT algorithm

were investigated, in addition to a successful hardware implementation of the

Canny edge detection method. Although the design of a LUT based accumulator

cell for storing the calculated PSF was made, further investigation is required for

reducing the number of the accumulator cells, such as splitting the image in

147

Chapter 9 Summary & Conclusion

smaller sections rather than processing the full frame. Another solution could be

the use of coarse to fine or time multiplexing techniques described in the

literature review chapter (Chapter 2), as all of the aforementioned methods are

applicable to the proposed HT implementation. In the case that a full frame is

required to be processed, the Block RAM available in the FPGA devices needs to

be considered for the implementation of the accumulator cells.

Another possible line of future research that can potentially offer further valuable

information, but was out of the scope of this thesis, is the implementation of the

HT using hybrid-logarithmic arithmetic in more generic shapes rather that

straight lines. These shapes could be curves, circles or parabolas.

As camera technology is incorporated faster and operates at higher resolutions

(up to 10 Mpixels), this research can be scaled to work with those higher

resolutions. Although more computations, as well as memory will be required,

the principles used will be the same as the ones proposed in this thesis.

148

References

REFERENCES

[1] P.V.C Hough, “Method and Means for Recognizing Complex Patterns”, U.S
Patent 3069654, Dec. 18, 1962.

[2] F.-s. Lai and C.-F.E. Wu, "A Hybrid Number System Processor with
Geometric and Complex Arithmetic Capabilities". IEEE Transactions on
Com puters 1991,40(8): pp. 952-962.

[3] P. Lee. "An Evaluation of a Hybrid Logarithmic Number System DCT /
IDCT Algorithm", in Proceedings o f the IEEE ISCAS. 2005. Kobe, Japan.

[4] D. H. Balard, “Generalizing the Hough transform to detect arbitrary shapes”,
Pattern Recognition. 13(2), 1981, pp.l 11-122.

[5] J.Illingworth and J. Kittler, “A survey of the Hough transform”, Computer
Vision Graphics Image processing, 44, 1988, pp.87-111.

[6] R.O.Duda and P.E.Hart, “Use of the Hough transform to detect lines and
curves in pictures”, Comm. Assoc. Comput. Mach. 15(1), 1972, pp.l 1-15.

[7] N.G. Kingsbury and P.J.W. Rayner, "Digital Filtering Using Logarithmic
Arithmetic". Electronics Letters, 1971. 7(2): pp. 56-58.

[8] Canny, J., A, “Computational Approach to Edge Detection”, IEEE
Transactions on Pattern Analysis and M achine Intelligence, Vol. 8, No.
6, November, 1986. pp. 679-698.

[9] S. Trimberger. "Redefining the FPGA for the Next Generation", in
International Conference on Field Programmable Logic and Applications,
2007. 2007. Amsterdam, Netherlands, pp. 4.

[10] M. Wisdom, “Optimal wavelet-based image compression on FPGA
technology,” doctoral dissertation, Department of Electronics, University of
Kent, Kent, United Kingdom, 2009.

[11] Camera manufactures [Available from: http://www.aegis-
elec.com/products/gigabit_ethernet_cameras.html].

[12] S. Tagzout, K. Achour, and O. Djekoune, “Hough transform algorithm for
FPGA implementation”, Signal Processing, vol. 81, no. 6, 2001, pp. 1295-
1301.

[13] R. Cucchiara, G. Neri and M. Piccardi, “A real-time implementation of the
Hough transform”, Journal o f System Architectures, vol. 45, 1998, pp. 31-
45.

[14] P. Lee, E. Alexiadis, “An implementation of a multiplierless Hough
transform on an FPGA platform using hybrid-log arithmetic”, SPIE
Conference on Real-Time Image Processing 2008, California, USA, 2008.

[15] P. Lee, E. Alexiadis, “ A flexible LUT based accumulator cell for high speed
Hough transforms on FPGA fabrics”, to be submitted to IET Letters, January
2010.

[16] Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing, Prentice
Hall, 2nd edition, 2002.

R1

http://www.aegis-

References

[17] Majumdar A. K.” Design of an ASIC for straight line detection in an image”.
13" international conference on VLSI design. January 2000.

[18] Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins. Digital Image
processing using MATLAB, Prentice Hall, 2004.

[19] A.Rosenfeld, “Picture Processing by computer”, ACM Computing
Surveys(CSUR), Vol 1(3), New York, 1969, pp. 147-176.

[20] M. Cohen and G. T. Toussaint, “On the detection of structures in noisy
pictures”, Pattern Recognition 9, 1977, pp.95-98.

[21] F.O’Gorman and M. B. Clowes, “Finding picture edges through collinearity
of feature points”, IEEE T-COMP, 25, 1976, pp.449 - 456.

[22] T. M. Van Veen and F. C. A. Groen, “Discretization errors in the Hough
transform”, Pattern Recognition 14, 1981, pp. 137 — 145.

[23] S.R.Deans, “Hough transform from the radon transform”, IEEE
Trans.Pattern Anal. Mach. Intel., PAMI-3, 1981, pp. 185-188.

[24] V. F. Leavers, “Survey: Which Hough transform?”, CVGIP: Image
understanding.5S(2), 1993, pp.250-264.

[25] H. Li, M. A. Lavin, R. J. Le Master, “Fast Hough transform: A hierarchical
approach”, CVGIP. 36, 1986, pp. 139-161.

[26] J. Princen, H. K. Yuen, J. Illingworth, J. Kittler, “ A comparison of Hough
transform methods”, in Proc. IEEE 3rd Int. Conf. on Image Processing and
its Applications, 1989, pp.73-77.

[27] J.Illingworth and J. Kittler, “The adaptive Hough transform, IEEE Pattern
Anal. Mach. Intel!PAM I-9(5), 1987, pp. 690-698.

[28] X. Cao, M. G. Rodd, F. Deravi, and Q. M. Wu, “Detection of multiple cycles
based on adaptive Hough transform”, Eng, Appl, Artif. Intell. 1(2), 1988, pp.
97-101.

[29] K. Onda, K. Sasao, and Y. Aoki, “A method for detecting skewed symmetry
axis of objects, J.Inst. TV Eng. Japan 43(9), 1989, pp. 982-989.

[30] A. D. Berger and K. Khosla, “Using tactile data for real-time feedback”, Int.
J. Rob. Res. 10 (2), 1991, pp.88-102.

[31] D. D. Haule and A. S. Malowany, “Object recognition using fast adaptive
Hough transform”, IEEE Pasific Rim Conf. on Communications, Computers
and Signal Processing, Cat. No. 89CH 2691-4, 1989, pp.91-94.

[32] L. da F. Costa and M. B. Sandler, “A binary Hough transform and its
efficient implementation in a systolic array architecture”, Pattern
Recognition Letters, vol. 10, no. 5, 1989, pp.329-334.

[33] L. da F. Costa and M. B. Sandler, “A complete and efficient time system for
line segment based on the binary Hough transform”, In Proc. Euromicro ’90
Workshop on Real Time, 1990, pp. 205-213.

[34] L. da F. Costa, P. Tzionas, and M. B. Sandler, “On the VLSI implementation
of the binary Hough transform”, IEE Colloquium Digest 1990/95, 1990.

[35] H. Koshimizu and M. Numada, “FIHT2 Algorithm: A fast incremental
Hough transform”, IEICE Trans., Japan, 74 (10), pp. 3389-3393.

[36] V. F. Leavers, D. Ben-Tzvi, and M. B. Sandler, “A dynamic combinatorial
Hough transform for straight lines and circles”, Proc. 5th Alvey Vision Conf.
London (UK), 1989, pp. 163-168.

R1

References

[37] S. Y. K. Yuen, T. S. L. Lam, and N. K. D. Leung, “Connective Hough
transform”, Image & Vision Computing vol.ll, no.5, June 1993, pp. 295-301.

[38] V. F. Leavers, “Active intelligent vision using the dynamic generalized
Hough transform”, Proc. 1st British Machine Vision Conf., 1990, pp. 49-54.

[39] J. Princen, J. Illingworth, and J. Kittler, “A hierarchical approach to line
extraction based on the Hough transform”, Computer Vision Graphics &
Image Processing. 52, 1990, pp. 57-77.

[40] N. Kiryati, Y. Eldar, and A. M. Bruckstein, “ A probabilistic Hough
transform”, Pattern Recognition, vol. 24 , no. 4, 1991, pp.303-316.

[41] M. K. Ibrahim, E. C. L. Ngau, and M. F. Daemi, “Weighted Hough
transform”, J. Soc. Photo-Opt. Instrum. Eng., 1607 , 1992, pp. 237-241.

[42] K. Sugawara, “Weighted Hough transform on a gridded image plane”,
Proceedings o f the 4th International Conference on Document Analysis and
Recognition, 1997, pp. 701-704.

[43] M. Atiquzzaman, “Multiresolution Hough transform - An efficient method
of detecting patterns in images”, IEEE transactions on pattern analysis and
machine intelligence, vol. 14, no. 11, 1992, pp. 1090-1095.

[44] L. Xu, E.Oja, and P. Kultanen, “A new curve detection method: Randomized
Hough transform (RHT)”, Pattern Recognition Letters, vol. 11, 1990,
pp.331-338.

[45] L. Xu, “Randomized Hough transform (RHT): Basic mechanisms,
algorithms, and computational complexities”, CVGIP: Image understanding,
vol. 57, no.2, 1993, pp.131-154.

[46] A. R. Hare and M. B. Sandler, “Improved performance randomized Hough
transform”, Electronic Letters. 28(18), 1992, 1678-1679.

[47] R. M. Inigo, E. S. McVey, B. J. Berger, and M. J. Wirtz, “ Machine vision
applied to vehicle guidance”, IEEE T-PAMI, vol. 6, 1984, pp.820-826.

[48] C. R. Dyer, “ Gauge inspection using Hough transforms”, IEEE T-PAMI,
vol. 5, no.6, 1983, pp.621-623.

[49] K. Y. Huang, K. S. Fu, T. H. Sheen, and S. W. Cheng, “Image processing of
seismograms: (A) Hough transformation for the detection of seismic
patterns; (B) thinning processing in the seismogram”, Pattern Recognition,
vol. 18, no. 6, 1985, pp. 429-440.

[50] M. Kushnir, K. Abe, and K. Matsumoto, “ An application of the Hough
transform to the recognition of printed Hebrew characters”, Pattern
Recognition, vol. 16, no. 2, 1983, pp.183-191.

[51] W. C. Lin and R. Dubes, “A review of ridge counting in dermatoglyphics”,
Pattern Recognition, vol. 16, no.l, 1983, pp.l -8.

[52] T. Shibata, W. Frei, “Hough transform for target detection in infrared
imagery”, SPIE 2 8 1 , 1981, pp.105-109.

[53] A. E. Cowart, W. E. Snyder, and W. H. Ruedger, “ The detection of
unresolved targets using the Hough transform”, CVGIP 2 1 , 1983, pp.222-
238.

[54] J. Skingley and A. J. Rye, “The Hough transform applied to SAR images for
thin line detection”, Pattern Recognition Letters, vol. 6, 1987, pp.61-67.

R1

References

[55] D. B. Shu, C. C. Li, J. F. Mancuso, and Y. N. Sun, “A line extraction method
for automated SEM inspection of VLSI resist”, IEEE T-PAMI10, no.l, 1988,
pp. 117-120.

[56] M. Nixon, “Application of the Hough transform to correct for linear variation
of background illumination in images”, Pattern Recognition Letters, vol. 3,
1985, pp.191-194.

[57] R. C. Thomson and E. Sokolowska, “Mineral cleavage analysis via the
Hough transform”, in Proceedings, British Pattern Recognition Association
4th International Conf. on Pattern Recognition, 1988, pp.390-398.

[58] S. N. Jayaramamurthy, and R. Jain, “An approach to the segmentation of
textured dynamic scenes”, CVGIP 21, 1983, pp.239-261.

[59] G. Adiv, “Recovering motion parameters in scenes containing multiple
moving objects”, in IEEE CVPR Conf., Washington, 1983, pp.399-400.

[60] H. Kalviainen, “Motion detection using the randomised Hough transform:
exploiting gradient information and detecting multiple moving objects”, IEE
Proceedings o f Vision, Image and Signal Processing, vol. 143, no. 6, 1996,
pp.361-369.

[61] H. Kalviainen, “Applications of the Hough transform for image processing
and analysis”, Pattern Recognition and Image Analysis, vol.13, no. 2, 2003,
pp. 187-190.

[62] C. J. Radford, “Optical flow fields in Hough transform space”, Pattern
Recognition Letters, vol. 4, 1986, pp.293-303.

[63] T. M. Silberberg, L. Davis, D. Harwood, “An iterative Hough procedure for
three-dimensional object recognition”, Pattern Recognition, vol. 17, No. 6,
1984, pp.621-629.

[64] T. C. Henderson, W. S. Fai, “The 3-D Hough shape transform”, Pattern
Recognition Letters, vol. 2, 1984, pp.235-238.

[65] S. Kasif, L. Kitchen, and A. Rosenfeld, “A Hough transform technique for
subgraph isomorphism”, Pattern Recognition Letters, vol. 2, 1983, pp.83-88.

[66] M. Mirmehdi, G. A. W. West, G. R. Dowling, “Label inspection using the
Hough transform on transputer network”, Microprocessors and
Microsystems, 15 (3), 1991, pp. 167-173.

[67] V. Kamat, and S. Ganesan, “An efficient implementation of the Hough
transform for detecting vehicle license plates using DSP’S”, Proceedings of
Real-Time Technology and Applications, 1995, pp.58-59.

[68] M. G. He, A. L. Harvey, and T. Vinay, “Hough transform in car number
plate skew detection”, Symposium on Signal Processing and its Applications,
ISSPA, vol. 2, 1996, pp. 593-596.

[69] B. Yu, and A. K. Jain, “Lane boundary detection using a multiresolution
Hough transform”, International Conference on Image Processing, ICIP,
vol. 2, 1997, pp.748-751.

[70] R. Muniz, L. Junco, and A. Otero, “A robust software barcode reader using
the Hough transform”, Proceedings of Information Intelligence and Systems,
1999, pp.313-319.

R1

References

[71] Y. Sun and P. Willett, “The Hough transform for long chirp detection”,
Proceedings o f Conference on Decision and Control, vol. 1, 2001, pp.958-
963.

[72] A. Tezmol, H. Sari-Sarraf, S. Mitra, R. Long, A. Gururajan, “Customized
Hough transform for robust segmentation of cervical vertebrae from X-ray
images”, Proceedings of Image Analysis and Interpretation, 2002, pp.224-
228.

[73] M. Chang, I. Kim, and J. Park, “Optical flow measurement based on boolean
edge detection and Hough transform”, International Journal o f Control,
Automation, and Systems, vol. 1, no. 1, 2003, pp.l 19-126.

[74] M. Greenspan, L. Shang, and P. Jasiobedzki, “Efficient tracking with the
bounded Hough transform”, CVPR, vol. 1, 2004, pp.520-527.

[75] C. Rosito and R. Schramm, “Rectangle detection based on a windowed
Hough transform”, Proceedings of Computer Graphics and Image
Processing, 2004, pp.l 13-120.

[76] F. Rovira-Mas, Q. Zhang, J. F. Reid, and J. D. Will, ’’Hough-transform-based
vision algorithm for crop row detection of an automated agricultural
vehicle”, Proceedings of the Institution of Mechanical Engineers, Vol. 21 9 ,
Issue 8, 2005, pp.999-1010.

[77] C. H. Messom, G. S. Gupta, and S. N. Demidenko, “Hough transform run
length encoding for real-time image processing”, IEEE transactions on
Instrumentation and Measurement, vol.56, no. 3, 2007, pp.962-967.

[78] Y. Tsai, L. Jian, P. Hsu, and B. Wang, “Implementation of autonomous
vehicles with the Hough transform and fuzzy control”, SICE, 2007, pp.2095-
2101.

[79] E. Bernabeu and J. Tornero, “Hough transform for distance computation and
collision avoidance”, IEEE transactions on Robotics and Automation, vol.18,
no. 3, 2002, pp.393-398.

[80] S1MD block diagram. (2009, Mar) [Available from:
http://en.wikipedia.org/wiki/SlMD1.

[81] MIMD block diagram. (2009, Mar) [Available from:
http://en.wikipedia.org/wiki/MIMD1.

[82] M. Feretti and M. G. Albanesi, “Architectures for the Hough transform: A
survey”, /APR Workshop on Machine Vision Applications, 1996, pp.542-551.

[83] A. L. Fisher and P. T. Highnam, ’’Computing the Hough transform on a scan
line array processor”, IEEE trans. on Pattern Analysis and Machine
Intelligence, vol. 11, no.3, 1989, pp.262-265.

[84] Z. N. Li, F. Tong, and R. G. Laughlin, “Parallel algorithms for line detection
on a 1 xN array processor”, Proceedings of the IEEE Inter. Conf. on Robotics
and Automation, 1991, pp.2312-2318.

[85] H. M. Alnuweiri and V. K. P. Kumar, “Optimal image algorithms on an
orthogonally-connected memory-based architecture”, in 10" Int. Conf on
Pattern Recognition, 1990.

[86] A. Rosenfeld, J. Ornelas. Jr, and Y. Hung, “Hough transform algorithms for
mesh-connected SIMD parallel processors”, Computer Vision, and Image
Processing, 4 1 , 1988, pp.293-305.

R1

http://en.wikipedia.org/wiki/SlMD1
http://en.wikipedia.org/wiki/MIMD1

References

[87] C. S. Kannan and H. Y. H. Chuang, “fast Hough transform on a mesh
connected processor array”, Information Processing Letters, vol.33, 1990,
pp.243-248.

[88] S. Olariu, J. L. Schwing, and J. Zhang, “Computing the Hough transform on
reconfigurable meshes”, Image and Vision Computing, vol. 11, no. 10, 1993,
pp.623-628.

[89] T. W. Kao, S. J. Homg, and Y. L. Wang, “An 0(1) time algorithms for
computing histogram and Hough transform on a cross-bridge reconfigurable
array of processors”, IEEE Transactions on Systems, Man, and Cybernetics,
vol. 2 5 , no. 4, 1995, pp.681-687.

[90] T. W. Kao, S. J. Horng, Y. L. Wang, and K. L. Chung, “A constant time
algorithm for computing Hough transform”, Pattern Recognition, vol. 26 , no.
2, 1993, pp.277-285.

[91] Y. Pan, K. Li, and M. Hamdi, “An improved constant-time algorithm for
computing the Radon and Hough transform on a reconfigurable mesh”, IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 2 9 , no. 4, 1999, pp.417-421.

[92] K. P. Lam, “Implementation of the Hough transform on a fine grained SIMD
distributed array processor”, Int. Symposium on Computer Architecture and
Digital Signal Processing, 1989.

[93] C. Guerra, and S. Hambrush, “Parallel algorithms for line detection on a
mesh “, Journal o f parallel and distributed computing, vol. 6, no. 1, 1989,
pp. 1-19.

[94] K. L. Chung and H. Y. Lin, “Hough transform on reconfigurable meshes”,
Computer Vision and Image Understanding, vol.61, no. 2, 1995, pp.278-284.

[95] S. S. Lee, S. J. Horng, T. W. Kao, and H. R. Tsai, “Optimal computing
Hough transform on a reconfigurable array of processors with wider bus
networks”, Pattern Recognition, vol. 29 , no.4, 1996, pp. 603-613.

[96] H. A. H. Ibrahim, J. R. Render, and D. E. Shaw, “On the application of
massively parallel SIMD tree machines to certain intermediate-level vision
tasks”, Computer Vision, Graphics, and Image Processing, vol. 36 , 1986, pp.
53-75.

[97] M. Atiquzzaman, “Pipelined implementation of the multiresolution Hough
transform in a pyramid multiprocessor”, Pattern Recognition Letters, vol. 15,
1994, pp. 841-851.

[98] Z. N. Li and D. Zhang, “Fast line detection in a hybrid pyramid”, Pattern
Recognition Letters, vol. 14, 1993, pp. 53-63.

[99] J. M. Jolion and A. Rosenfeld, “ An 0(log n)pyramid Hough transform”,
Pattern Recognition Letters, vol. 9, 1989, pp. 343-349.

[100] G. Bongiovanni, C. Guerra, and S. Levialdi, “Computing the Hough
transform on a pyramid architecture”, Machine Vision and Application, vol.
3 , no. 2, 1990, pp. 117-123.

[101] H. Y. H. Chuang and L. Chen, “An efficient Hough transform algorithm on
SIMD hypercube”, Proc. o f the Inter. Conf. on Parallel and Distributed
Systems'", 1994, pp.236-241.

R1

References

[102] J. J. Little, G. E. Blelloch, and T. A. Cass, “Algorithmic techniques for
computer vision on a fine-grained parallel machine”, IEEE Trans, on Pattern
Analysis and Machine Intelligence, vol. 11, no.3, 1989, pp.244-257.

[103] H. Li, “ Fast Hough transform for multidimensional signal processing”,
IEEE Inter. Conf. on Acoustics, Speech and Signal Processing, vol.11, 1986,
pp.2063-2066.

[104] D. B. Tzvi, A. A. Naqvi, and M. Sandler, “Efficient parallel implementation
of the Hough transform on a distributed memory system”, Image and Vision
Computing, vol. 7, no. 3, 1989, pp. 167-172.

[105] H. Y. Chuang and C. C. Li, “A systolic array for straight line detection by
modified Hough transform”, Proc. o f IEEE Workshop on Computer
Architecture for Pattern Analysis and Image Database Management, 1985,
pp.300-304.

[106] H. T. Kung and J. A. Webb, “Global operations on a systolic array machine”,
Proc. IEEE Int. Conf. on Computer Design VLSI in Computers, 1985,
pp.165-171.

[107] H. F. Li, D. Pao, and R. Jayakumar, “Improvements and systolic
implementations of the Hough transformation for straight line detection”,
Pattern Recognition, vol. 22, no. 6, 1989, pp.697-706.

[108] A. Epstein, G. U. Paul, B. Vettermann, C. Boulin, and F. Klefenz, “A
parallel systolic array ASIC for real-time execution of the Hough transform”,
IEEE Trans, on Nuclear Science, vol. 49, no. 2, 2002, pp.339-346.

[109] K. Hanahara, T. Maruyama, and T. Uchiyama, “A real-time processor for the
Hough transform”, IEEE Trans, on Pattern Analysis and Machine
Intelligence, vol. 10, no. 1, 1988, pp.121-125.

[110] S. B. Shukla, V. Ramakrishnan, and D.P. Agrawai, “A pipelined architecture
for on-line low-level vision”, Proceedings on EUROMICRO ‘90 workshop
on Real Time, 1990, pp. 198-204.

[111] J. L. C. Sanz and E. B. Hinkle, “Computing Projections of digital images in
image processing pipeline architectures”, IEEE Trans, on Acoustics, Speech,
and Signal Processing, vol. 35, no. 2, 1987, pp. 198-207.

[112] M. F. X. B. Van Swaaij, F. V. M. Catthoor, and H. J. De Man, “ Deriving
ASIC architectures for the Hough transform”, Parallel Computing, vol. 16,
1990, pp.l 13-121.

[113] M. Nakanishi and T. Ogura, “A real-time CAM-based Hough transform
algorithm and its performance evaluation”, Proceedings of the Inter. Conf.
on Pattern Recognition, vol. 2, 1996, pp. 516-521.

[114] M. Mahmoud, M. Nakanishi and T. Ogura, “Hough transform
Implementation on a reconfigurable highly parallel architecture”,
Proceedings on Computer Architecture for Machine Perception, 1997, pp.
186-194.

[115] M. Nakanishi and T. Ogura, “Real-time extraction using a highly parallel
Hough transform board”, Proceedings on Inter. Conf. on Image Processing,
vol. 2, 1997, pp. 582-585.

[116] J. Voider, “The CORDIC trigonometric computing technique”, IRE
Transactions on Electronic Computers, vol. 8, no.3, 1950, pp.330-334.

R1

References

[117] K. Maharatna and S. Banerjee, “A VLSI array architecture for Hough
transform”, Pattern Recognition, vol. 34, 2001, pp. 1503-1512.

[118] A. K. Majumdar, “Design of an ASIC for straight line detection in an
image”, Inter. Conf. on VLSI Design, 2000, pp. 128- 133.

[119 F. M. Rhodes, J. J. Dituri, G. H. Chapman, B. E. Emerson, A. M. Soares,
and J. I. Raffel, “A monolithic Hough transform processor based on
restructurable VLSI”, IEEE Trans, on Pattern Analysis and Machine
Intelligence, vol. 10, no. 1, 1988, pp.106-110.

[120] K. Mayasandra, S. Salehi, W. Wang, and H. M. Ladak, “A distributed
arithmetic hardware architecture for real-time Hough transform-based
segmentation”, Electrical and Computer Engineering, vol. 40, no. 4, 2005,
pp.1469-1472.

[121] A. Underhill, M. Atiquzzaman, and J. Ophel, “Performance of the Hough
transform on a distributed memory”, Microprocessors and Microsystems,
vol. 22, 1999, pp. 355-362.

[122] M. A. Fischler and O. Firschein, “Parallel guessing: A strategy for high­
speed computation”, Pattern Recognition, vol. 20, no. 2, 1987, pp.257-263.

[123] K. Hanahara, T. Maruyama, and T. Uchiyama, “High-speed Hough
transform processor and its applications to automatic inspection and
measurement”, Proceedings on Inter. Conf. on Robotics and Automation,
vol. 3, 1986, pp. 1954-1959.

[124] N. D. Francis, G. R. Nudd, T. J. Atherton, D. J Kerbyson, R. A. Packwood,
and J. Vaudin, “Performance evaluation of the hierarchical Hough transform
on an associative M-SIMD architecture”, Proceedings on Inter. Conf. on
Pattern Recognition, vol. 2, 1990, pp. 509-511.

[125] D. B. Shu, J. G. Nash, M. M. Eshaghian, and K. Kim, “Straight-line
detection on a gated-connection VLSI network”, Proceedings on Inter. Conf.
on Pattern Recognition, vol. 2, no.2, 1990, pp. 456-461.

[126] Canny output (2009, Mar) [Available from:
http://www.sci.utah.edu/~cscheid/spr05/imageprocessing/proiect4/imgs/cann
y TIP aniso arch.png]

[127] S. Chivapreecha and K. Dejhan, “Hardware implementation of Sobel-edge
detection distributed arithmetic digital filter”, 25th ACRS, 2004, pp.284- 289.

[128] H. S. Neoh and A. Hazanchuk, “Adaptive edge detection for real-time video
processing using FPGAs”, GSPx 2004 conference, Altera, May 2005, No
CF-EDG031505-1.0.

[129] E. Davies, Machine Vision: Theory, Algorithms and Practicalities,
Academic Press, 1990, pp 42 - 44.

[130] M. Venkatesan and D. V. Rao, “Hardware acceleration of edge detection
algorithm on FPGAs”, Celoxica Inc. research papers, 2004.

[131] H. S. Neoh and A. Hazanchuk, “Adaptive edge detection for real-time video
processing using FPGAs”, GSPx 2004 conference, Altera, May 2005, No
CF-EDG031505-1.0.

[132] F. Alzahrani and T. Chen, “A stand-alone ASIC for real-time edge
detection”, Real-time Imaging, vol.3, Issue.5, 1997, pp.363-378.

R1

http://www.sci.utah.edu/~cscheid/spr05/imageprocessing/proiect4/imgs/cann

References

[133] P. Lee, E. Alexiadis, “A flexible LUT based synchronizing circuit for 2D

imaging filters of variable dimensions implemented on FPGA fabrics”, to be
submitted in IETLetters, January 2010.

[134] SRL16 slice (2009, July) [Available from :
http://www.xilinx.com/itp/xilinx5/data/docs/lib/lib0393 377.html]

[135] J. Williams. (2009, Feb) Microblaze uClinux Project. 2005; [Available
from: http://www.itee.uq.edu.au/~iwilliams/mblaze-uclinux/index.html].

[136] B. Nelson. (2009, June) The BYULinux on FPGA Project. 2005; [Available
from: http://splish.ee.bvu.edu/proiects/LinuxFPGA/].

[137] Altera. (2009, June) Stratix GX FPGA Family. 2004; [Available from:
http://www.altera.com/literature/ds/ds sgx.pdfl.

[138] ANSI/LEEE Standard 754-1985, Standard for Binary Floating Point
Arithmetic

[139] N. Shirazi, A.Walters and P. Athanas. "Quantitative Analysis of Floating
Point Arithmetic on FPGA Based Custom Computing Machines", in
Proceedings o f the IEEE Symposium on FPGAs for Custom Computing
Machines. 1995. pp. 155-162.

[140] K.S. Hemmert and K.D. Underwood. "An Analysis of the Double-Precision
Floating-Point FFT on FPGAs". in Proceedings o f the 13th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines. 2005. pp.
171 - 180.

[141] Xilinx. (2009, June) XtreamDSP for Virtex-4 FPGAs User Guide. 2006;
[Available from: www.xilinx.com/bvdocs/userguides/ug073.pdfl.

[142] A. Percey. (2009, June) Advantages of the Virtex-5 FPGA 6-Input LUT
Architecture, 2007; [Available from:
http://www.xilinx.com/support/documentation/white papers/wp284.pdf|

[143] J. Napier, Mirifici Logarithmorum Canonis Descriptio. 1615.
[144] G. B. Balaji, K. Balaji, H. Sundararaman, A. Naveen, and K. R. Santha,

“Memory reduction techniques for logarithmic number system”, in LEEE -
ICSCN2007, 2007, pp.410-413.

[145] L. K. Yu and D. Lewis, “A 30-b integrated logarithmic number system
processor”, IEEE Journal of solid -state circuits, vol.26, no. 10, 1991,
pp.1433-1440.

[146] E.E. Swartzlander, D.V.S. Chandra, FLT. Nagle and S.A. Starks, "Sign
Logarithm Arithmetic for FFT Implementation". IEEE Transactions on
Computers, 1983. 32(6): pp. 526-534.

[147] J.N. Mitchell, "Computer Multiplication and Division Using Binary
Logarithms". IRE Transactions on Electronic Computers, 1962. EC-11: pp.
512-517.

[148] M. Combet, H. Van Zonneveld and L. Verbeek, "Computation of the Base
Two Logarithm of Binary Numbers". IEEE Transactions on Electronic
Computers, 1965. EC-14(6): pp. 863-867.

R1

http://www.xilinx.com/itp/xilinx5/data/docs/lib/lib0393_377.html
http://www.itee.uq.edu.au/~iwilliams/mblaze-uclinux/index.html
http://splish.ee.bvu.edu/proiects/LinuxFPGA/
http://www.altera.com/literature/ds/ds_sgx.pdfl
http://www.xilinx.com/bvdocs/userguides/ug073.pdfl
http://www.xilinx.com/support/documentation/white_papers/wp284.pdf%7c

References

[149] K.H. Abed and R.E. Siferd, "CMOS VLSI Implementation of a Low-Power
Logarithmic Converter". IEEE Transactions on Computers, 2003. 52(11):
pp. 1421-1433.

[150] K.H. Abed and R.E. Siferd, "VLSI Implementation of a Low-Power
Antilogarithmic Converter". IEEE Transactions on Computers, 2003. 52(9):
pp. 1221-1228.

[151] K.J. Dean, "Binary Logarithms". Electronic Engineering, 1968. 40: pp. 560-
562.

[152] P.W. Philo, "An Algorithm to Evaluate the Logarithm of a Number to Base
2". Radio Electronic Engineers, 1969. 38: pp. 49-50.

[153] K.J. Dean, "Cellular Logical Array for Obtaining the Square of a Binary
Number". Electronics Letters, 1969. 5(16): pp. 370-371.

[154] K.J. Dean, "A Fresh Approach to Logarithmic Computation". Electronic
Engineering, 1969. 41: pp. 488-490.

[155] E.E. Swartzlander, D.V.S. Chandra, H.T. Nagle and S.A. Starks, "Sign
Logarithm Arithmetic for FFT Implementation". IEEE Transactions on
Computers, 1983. 32(6): pp. 526-534.

[156] N.G. Kingsbury and P.J.W. Rayner, "Digital Filtering Using Logarithmic
Arithmetic". Electronics Letters, 1971. 7(2): pp. 56-58.

[157] K.H. Abed and R.E. Siferd. "CMOS VLSI Implementation of 16-Bit
Logarithm and Anti-Logarithm Converters", in Proceedings o f the 43rd
IEEE Midwest Symposium on Circuits and Systems. 2000. pp. 776-779.

[158] S.L. SanGregory. "A Fast, Low-Power Logarithm Approximation with
CMOS VLSI Implementation", in IEEE Midwest Symposium on Circuits and
Systems. August 1999.

[159] T. Kurokawa, "Error Analysis of Recursive Digital Filters Implemented with
Logarithmic Number Systems". IEE Trans, on ASSP, 1980. 28(6): pp. 706-
715.

[160] K.H. Abed and R.E. Siferd. "VLSI Implementations of Low-Power Leading-
One Detector Circuits", in IEEESoutheastCon. 2006. pp. 279-284.

[161] V.G. Oklobdzija, "Algorithmic Design of a Hierarchical and Modulator
Leading Zero Detector Circuit". Electronics Letters, 1993. 29(3): pp. 283-
284.

[162] Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, Digital Image
Processing using MATLAB, Prentice Hall, 2004.

[163] U.o.S. California. (2009, Jan) The USC-SIPI Image Database. 2008;
[Available from: http://sipi.usc.edu/database/].

[164] J.N. Coleman, E.I. Chester, C.I. Softley and J. Kadlec,"‘Arithmetic on the
European logarithmic microprocessor,” IEEE Transactions on Computers,
vol 49 (100), pg 1152-1152, 2000.

[165] H. Abed, R. E. Siferd, “CMOS VLSI Implementation of a Low-Power
Antilogarithmic Converter,” IEEE Trans, on Computers, Vol. 52, No. 9,
pp 1221-1228, Sep. 2003.

[166] S. L. SanGregory, R. E. Siferd, C. Brother, D. Gallagher, “A Fast, Low-
Power, Logarithm Approximation with CMOS VLSI Implementation,” Proc.
IEEE Midwest Symposium on Circuits and Systems, Aug 1999.

R1

http://sipi.usc.edu/database/

Appendix A

APPENDIX A:Test images and HT parameter
space outputs

Test image 1024x1024 arch

Hough Accu Cells Distribution

300:....

250 vi...................;....i

§ 200

theta

HT parameter space output using floating point arithmetic precision

A15

Appendix A

Hough Accu Cells Distribution

200 ,

theta

HT parameter space output using linear 8-bit arithmetic precision

Hough Accu Cells Distribution

300 y ■■■•;•............ i

250,. j
CD= 200,(O 1

theta

HT parameter space output using linear 12-bit arithmetic precision

A15

Appendix A

Accu Cell Differences

HT parameter space difference between FP and linear 8-bits arithmetic precision

Accu Cell Differences

theta

HT parameter space difference between FP and linear 12-bits arithmetic precision

A15

Appendix A

Hough Accu Cells Distribution

250 x

200̂
co :15
> 150,:.....

theta

HT parameter space output using Hybrid-log 8-bit arithmetic precision

Hough Accu Cells Distribution

300s.... j j \

250 v ••••;.......... | i

cd :
.3 203, ••••••:•-..... "• : ••cc •> : i. • ■

theta

HT parameter space output using Hybrid-log 12-bit arithmetic precision

A15

I

Appendix A

Accu Cell Differences

HT parameter space difference between FP and Hybrid-log 8-bits arithmetic precision

Accu Cell Differences

HT parameter space difference between FP and Hybrid-log 12-bits arithmetic precision

A15

Appendix A

400x

Test image 1024x1024 Lena

Hough Accu Cells Distribution

2UUU

HT parameter space output using floating point arithmetic precision

300 v•••••••;•
=5CD >

-¿uuu -100
theta

A15

Appendix A

»

A15

Hough Accu Cells Distribution

theta

HT parameter space output using linear 8-bit arithmetic precision

Hough Accu Cells Distribution

HT parameter space output using linear 12-bit arithmetic precision

Appendix A

Accu Cell Differences

HT parameter space difference between FP and linear 8-bits arithmetic precision

Accu Cell Differences

HT parameter space difference between FP and linear 12-bits arithmetic precision

A15

Appendix A

Hough Accu Cells Distribution

theta

HT parameter space output using Hybrid-log 8-bit arithmetic precision

Hough Accu Cells Distribution

theta

HT parameter space output using Hybrid-log 12-bit arithmetic precision

A15

Appendix A

Accu Cell Differences

HT parameter space difference between FP and Hybrid-log 8-bits arithmetic precision

Accu Cell Differences

theta

HT parameter space difference between FP and Hybrid-log 12-bits arithmetic precision

A15

Appendix A

Test image 1024x1024 building

Hough Accu Cells Distribution

theta
-Æ IUU

0
2000

HT parameter space output using floating point arithmetic precision

A15

A
cc

um
ul

at
or

 v
al

ue

Appendix A

Hough Accu Cells Distribution

500 v

400 v

300vj

200 j - Ì -

theta

HT parameter space output using linear 8-bit arithmetic precision

Hough Accu Cells Distribution

400 x

300 vj

theta

HT parameter space output using linear 12-bit arithmetic precision

A15

Appendix A

Accu Cell Differences

HT parameter space difference between FP and linear 8-bits arithmetic precision

Accu Cell Differences

theta

HT parameter space difference between FP and linear 12-bits arithmetic precision

A15

Appendix A

Hough Accu Cells Distribution

500 v

400 ̂•••••••>....... j
CD : :3 ;
> 300 ̂ !.....""

theta

HT parameter space output using Hybrid-log 8-bit arithmetic precision

Hough Accu Cells Distribution

400,

300,:

theta

HT parameter space output using Hybrid-log 12-bit arithmetic precision

A15

Appendix A

Accu Cell Differences

100

HT parameter space difference between FP and Hybrid-log 8-bits arithmetic precision

Accu Cell Differences

100

HT parameter space difference between FP and Hybrid-log 12-bits arithmetic precision

A15

Appendix B

APPENDIX BiSeries of tests with different
fixed points

Matlab
files .mat file names No of

F.B Peaks selected

Hough Gold hough — 284 40 59 53 396 51 68 41
1 Hough linear round

X Hough linear 4 4 284 46 59 62 396 62 68 46
X Hough linear 8 8 284 41 59 52 396 54 68 41

Ok Hough linear 10 10 284 40 59 52 396 51 68 40
Ok Hough linear 12 12 284 41 59 53 396 53 68 40
Ok Hough linear 16 16 284 40 59 53 396 52 68 41
Ok Hough linear 20 20 284 40 59 53 396 51 68 41

Hough linear fix
X Hough linear fix4 4 284 45 59 57 396 64 68 45

Ok Hough linear fix8 8 284 40 59 52 396 52 68 41
Ok Hough linear fix 10 10 284 41 59 53 396 53 68 41
Ok Hough linear fix 12 12 284 41 59 53 396 53 68 40
Ok Hough linear fix 16 16 284 41 59 53 396 52 68 41
Ok Hough_linear_fix20 20 284 40 59 53 396 52 68 41

HoughTest Log2

X log_Sc_th8xyl_FB4 4 1326 208 440 269 136
4 167 163 134

X log_Sc_th8xyl_FB5 5 672 113 220 134 128
1 103 92 79

X log Sc th8xyl FB6 6 375 61 109 69 891 71 68 60
x log Sc th8xyl FB7 7 287 48 56 59 623 62 55 48
X log Sc th8xyl FB8 8 284 47 47 52 521 53 51 42
X log Sc th8xyl FB9 9 284 43 56 54 396 54 56 41
X log Sc th8xyl FB10 10 284 39 59 51 396 53 61 43

Ok log Sc th8xyl FB11 11 284 39 59 50 396 55 62 42
Ok log Sc th8xyl FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xyl FB20 20 284 40 59 53 396 52 68 41
Ok log Sc th8xyl_FB25 25 284 40 59 53 396 51 68 41

X log_Sc_th8xy2JFB4 4 1326 208 440 269 136
4 167 163 134

X log Sc_th8xy4_FB4 4 1326 208 440 369 136
4 167 163 134

X log_Sc_th8xy6_FB4 4 1326 208 440 269 136
4 167 163 134

X log_Sc_th8xy8_FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc_th8xylO_FB4 4 1326 208 440 269 136
4 167 163 134

X log_Sc_thl2xy2_FB4 4 1326 208 440 269 136 167 163 134

B5

f

Appendix B

X logJSc_thl 6xy2_FB4 4 1326 208 440 269

4
136
4 167 163 134

X log_Sc thl2xy4_FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc thl6xy4_FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc thl2xy6 FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc thl6xy6_FB4 4 1326 208 440 269 136
4 167 163 134

X log_Sc_thl2xy8_FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc thl6xy8_FB4 4 1326 208 440 269 136
4 167 163 134

Matlab
files .mat file names No of

F.B Peaks selected

HoughTest_Log2

X log_Sc_thl2xylO_FB4 4 1326 208 440 269 U46 167 163 134

X log Sc thl6xylO_FB4 4 1326 208 440 269 U4 167 163 134

X log_Sc _th8xy2_FB8 8 284 47 47 52 521 53 51 42
X log_Sc_th8xy4 FB8 8 284 47 47 52 521 53 51 42
X log_Sc_th8xy8_FB8 8 284 47 47 52 521 53 51 42
X log Sc th8xyl0_FB8 8 284 47 47 52 521 53 51 42
X log Sc thl2xy2_FB8 8 284 47 47 52 521 53 51 42
X log_Sc_thl6xy2_FB8 8 284 47 47 52 521 53 51 42
X log_Sc_thl 2xv4 FB8 8 284 47 47 52 521 53 51 42
X log_Sc_thl 6xy4_FB8 8 284 47 47 52 521 53 51 42
X log Sc thl2xy6_FB8 8 284 47 47 52 521 53 51 42
X log Sc thl6xy6 FB8 8 284 47 47 52 521 53 51 42
X log_Sc_th8xy2FBl 0 10 284 39 59 51 396 53 61 43
X log Sc_th8xy4_FB10 10 284 39 59 51 396 53 61 43
X log_Sc_th8xy6 FB10 10 284 39 59 51 396 53 61 43
X log Sc th8xy8_FB10 10 284 39 59 51 396 53 61 43
X log Sc th8xyl0_FB10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 2xy2_FB 10 10 284 39 59 51 396 53 61 43
X log Sc thl6xy2 FB10 10 284 39 59 51 396 53 61 43
X log Sc thl2xy4 FB10 10 284 39 59 51 396 53 61 43
X log Sc thl6xy4 FB10 10 284 39 59 51 396 53 61 43
X log_Sc thl2xy6_FB10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 6xy6_FB 10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 2xy8_FB 10 10 284 39 59 51 396 53 61 43
X log Sc thl6xy8 FB10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 2xy 10_FB 10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 6xy 10_FB 10 10 284 39 59 51 396 53 61 43

B5

r

Appendix B

Ok log Sc th8xy2 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xy4 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xy6 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xy8 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xyl0 FB12 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xy2 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xy2 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xy4 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xy4 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xy6 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xy6 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xy8 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xy8 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xyl0 FB12 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xyl0 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xyl_FB16 16 284 40 59 53 396 52 68 41

Matlab .mat file names No of Peaks selected
files F.B

HoughTest_Log2
Ok log Sc thl6xyl FB16 16 284 40 59 53 396 52 68 41
Ok log Sc th20xyl FBI6 16 284 40 59 53 396 52 68 41
Ok log Sc th8xy2 FBI6 16 284 40 59 53 396 52 68 41
Ok log Sc th8xy4 FBI6 16 284 40 59 53 396 52 68 41
Ok log Sc th8xy8 FBI6 16 284 40 59 53 396 52 68 41
Ok log Sc_th8xyl2_FB16 16 284 40 59 53 396 52 68 41

