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Abstract

This thesis is concerned with the modelling, design and implementation of 

efficient architectures for performing the Hough Transform (HT) on mega-pixel 

resolution real-time images using Field Programmable Gate Array (FPGA) 

technology. Although the HT has been around for many years and a number of 

algorithms have been developed it still remains a significant bottleneck in many 

image processing applications.

Even though, the basic idea of the HT is to locate curves in an image that can be 

parameterized: e.g. straight lines, polynomials or circles, in a suitable parameter 

space, the research presented in this thesis will focus only on location of straight 

lines on binary images. The HT algorithm uses an accumulator array 

(accumulator bins) to detect the existence of a straight line on an image. As the 

image needs to be binarized, a novel generic synchronization circuit for 

windowing operations was designed to perform edge detection. An edge 

detection method of special interest, the canny method, is used and the design 

and implementation of it in hardware is achieved in this thesis.

As each image pixel can be implemented independently, parallel processing can 

be performed. However, the main disadvantage of the HT is the large storage and 

computational requirements. This thesis presents new and state-of-the-art 

hardware implementations for the minimization of the computational cost, using 

the Hybrid-Logarithmic Number System (Hybrid-LNS) for calculating the HT 

for fixed bit-width architectures. It is shown that using the Hybrid-LNS the 

computational cost is minimized, while the precision of the HT algorithm is 

maintained.

Advances in FPGA technology now make it possible to implement functions as 

the HT in reconfigurable fabrics. Methods for storing large arrays on FPGA’s are 

presented, where data from a 1024 x 1024 pixel camera at a rate of up to 25 

frames per second are processed.

v



Publications Arising From This Work

1 P. Lee and E. Alexiadis. "An implementation of a multiplierless Hough 

transform on an FPGA platform using hybrid-log arithmetic in SPIE 

Conference on Real-Time Image Processing 2008, California, USA, 2008

vi



Table of Contents

TABLE OF CONTENTS

1 Introduction.................................................................... 1

1.1 Motivation, aim and objectives.................................................................1

1.2 Hough Transform......................................................................................1

1.3 Logarithms and Hough Transform............................................................2

1.4 Edge Detection and Hough Transform...................................................... 3

1.5 FPGA and Hough Transform.................................................................... 4

1.6 Thesis Organization.................................................................................. 6

1.7 Research Contributions............................................................................. 9

2  Hough Transform Literature Review..........................10

2.1 Introduction..............................................................................................10

2.2 The Hough Transform Method.................................................................10

2.3 Implementing the Hough Transform...................................................... 12

2.4 Advantages and Disadvantages of the Hough Transform...................... 14

2.5 Early Development of the Hough Transform...........................................15

2.6 Hough Transform Methods......................................................................16

2.6.1 Generalized Hough Transform..................................................... 16

2.6.2 Fast Hough Transform..................................................................17

2.6.3 Adaptive Hough Transform..........................................................19

2.6.4 Fast Adaptive Hough Transform.................................................. 19

2.6.5 The Binary Hough Transform......................................................20

2.6.6 The Dynamic Combinatorial Hough Transform......................... 21

2.6.7 Connective Hough Transform..................................................... 21

vii



Table of Contents

2.6.8 The Hierarchical Hough Transform.............................................22

2.6.9 The Probabilistic Hough Transform.............................................23

2.6.10 The Weighted Hough Transform..................................................24

2.6.11 Multiresolution Hough Transform................................................24

2.6.12 Randomized Hough Transform....................................................25

2.7 Applications of the Hough Transform...................................................... 26

2.8 Parallel Processing Architectures............................................................. 33

2.8.1 SIMD Implementation..................................................................36

2.8.2 MIMD Implementation.................................................................37

2.8.3 Dedicated Systems........................................................................38

2.9 Conclusion............................................................................................... 41

3 Edge Detection & Digital Logarithms Literature

Review..................................................................................................... 42

3.1 Introduction.............................................................................................42

3.2 Introduction to Edge Detection............................................................... 42

3.3 Edge Detection Methods......................................................................... 45

3.3.1 Sobel Method.............................................................................. 46

3.3.2 Canny Method............................................................................. 48

3.3.2.1 Smoothing...................................................................... 49

3.3.2.2 Gradient Calculation.......................................................50

3.3.2.3 Magnitude and Phase..................................................... 51

3.3.2.4 Non-Maximum Suppression.......................................... 51

3.3.2.5 Threshold........................................................................51

3.4 Introduction to Digital Logarithms...........................................................52

3.4.1 Digital Logarithms Methods.........................................................52

viii



Table of Contents

3.5 Conclusion..............................................................................................61

3.6 Hardware Architecture...........................................................................59

3.7 Results Using the Canny Algorithm...................................................... 59

3.8 A Synchronizing Circuit........................................................................ 70

3.9 Conclusion..............................................................................................72

4 Implementation of the Canny Edge Detection

Method................................................................................................... 63

4.1 Introduction........................................................................................ 63

4.2 Hardware Implementation..................................................................63

4.2.1 Moving Window Operator...................................................... 63

4.3 Canny Hardware Implementation...................................................... 66

4.3.1 Image Smoothing................................................................... 66

4.3.2 Horizontal and Vertical Gradient Calculation.......................67

4.3.3 Directional Non-Maximum Suppression............................. 68

4.3.4 Threshold and Thinning....................................................... 71

4.4 Hardware Architecture..................................................................... 72

4.5 Results Using the Canny Algorithm.................................................72

4.5.1 Software Version of Canny Algorithm Using Floating Point

Arithmetic.............................................................................74

4.5.2 Software Version of Canny Algorithm Using Fixed Point

Arithmetic............................................................................75

4.5.3 Hardware Version of Canny Algorithm Using floating Point

Arithmetic............................................................................77

4.5.4 Hardware Version of Canny Algorithm Using Fixed Point

Arithmetic...........................................................................79

IX



Table of Contents

4.6 A Synchronizing Circuit....................................................................83

4.7 Conclusion........................................................................................85

5 Overview of FPGA Technology.................................. 86

5.1 Introduction.............................................................................................86

5.1.1 Digital Signal Processors..............................................................86

5.1.2 ASICs..........................................................................................88

5.2 Introduction to FPGA's............................................................................88

5.3 Summary of Modern FPGAs................................................................... 91

5.4 Number Representation on FPGAs......................................................... 94

5.5 Xilinx’s Xtreme DSP Block.................................................................... 97

5.6 Conclusion.................................................  99

6 Hybrid Logarithmic Number System......................102

6.1 Introduction...........................................................................................102

6.2 Logarithmic Converter Design...............................................................106

6.2.1 Design Considerations................................................................106

6.2.2 Logarithmic Converter...............................................................107

6.2.3 Logarithmic Multiplication Implementation..............................113

6.3 Conclusion..............................................................................................114

7 Hybrid-LNS & Hough Transform.........................115

7.1 Introduction.......................................................................................115

7.2 The Linear Hough Transform........................................................... 115

7.2.1 Proposed Linear Implementation Using MATLAB..................117

7.3 The Logarithmic Hough Transform..................................................124

7.3.1 Proposed Logarithmic Implementation Using MATLAB........126

x



Table of Contents

7.4 Hardware Implementation......................................................................132

7.5 Conclusion..............................................................................................133

8 Design of a LUT Based Accumulator Cell..................135

8.1 Introduction............................................................................................135

8.2 Parametric Description of a Straight Line............................................ 135

8.3 Accumulator Cell....................................................................................136

8.4 An Alternative Accumulator Cell...........................................................137

8.5 Simulation Results..................................................................................138

8.6 The Complete System.............................................................................140

8.7 Conclusion..............................................................................................143

9 Summary & Conclusion.........................................................144

9.1 Summary.................................................................................................142

9.2 Future Work............................................................................................147

R References...................................................................................... Ri

A Appendix A-Test images and HT parameter space

output................................................................................................. A1

B Appendix B- Series of tests with different fixed
points..................................................................................................Bi

xi



List of Figures

LIST OF FIGURES

Figure 1.5-1 -  Block Diagram of the System........................................................5

Figure 2.2-1 -  Left Figure: xy Plane, Right Figure: Parameter Space................11

Figure 2.2-2 -  Parametric Description of a Straight Line....................................12

Figure 2.3-1 -  Subdivision of the mc-Plane Into Cells........................................13

Figure 2.6-1 -  Shapes Detected with the GHT. a) Simple Shape b) Composite

Shape....................................................................................................................17

Figure 2.6-2 -  Example of a Quadtree Search Used in the FHT.........................18

Figure 2.7-1 -  Vehicle License Plate Identification Using the HT..................... 30

Figure 2.7-2 -  Experimental results of lane boundary detection. The detected

lane boundaries are overlaid on the input gray scale images..............................31

Figure 2.7-3 -  Simple s-topes: a) Monosphere, b) Bisphere, c) Thrisphere, d)

Tetrasphere...........................................................................................................33

Figure 2.8-1 -  SIMD Architecture Block Diagram............................................. 34

Figure 2.8-2 -  MIMD Architecture Block Diagram............................................ 35

Figure 2.8-3 -  A Pipelined Architecture for Real Time Measurements..............39

Figure 2.8-4 -  The Elementary CORDIC Arithmetic Unit................................. 41

Figure 3.2-1 -  Example of Edge Detection, (a) Image on a Grey Background, (b) 

Edge Enhanced Image Showing Only the Outlines of the Objects Using the

Canny Method..................................................................................................... 43

Figure 3.2-2 -  Step Edges, (a) The Change in Level Occurs Exactly at Pixel 10. 

(b) The Same Level Change as Before, but Over 4 Pixels Centred at Pixel 10. 

This is a Ramp Edge, (c) Same Level Change but Over 10 Pixels, Centred at 10.

(d) A Smaller Change Over 10 Pixels. The Insert Shows the Way the Image 

Would Appear, and the Dotted Line Shows Where the Image was Sliced to Give

the Illustrated Cross-Section................................................................................ 45

Figure 3.3-1 -  Sobel Output................................................................................ 47

Figure 3.3-2 -  Schematic of Canny Edge Detection........................................... 49

Figure 3.3-3 -  Prewitt Kernels............................................................................ 51

Figure 3.4-1 - Mitchell’s Approximation............................................................ 53

Figure 3.4-2 -  Two-Part Logarithm Approximation............................................55

xn



List of Figures

Figure 3.4-3 -  A 4-bit Leading One Detector...................................................... 57

Figure 3.4-4 -  A 16-bit Leading One Detector.................................................... 57

Figure 3.4-5 - Floating-Point / Logarithm Converter.......................................... 61

Figure 4.2-1- Example of the Window Operator in a 5x5 Image.......................65

Figure 4.2-2 -  Architecture of a 3x3 Window....................................................66

Figure 4.3-1 -  Filter Coefficients a) 1-D Across Rows b) 1-D Across Columns

c) 2-D Filter..........................................................................................................67

Figure 4.3-2 -  Gradient Orientation................................................................... 69

Figure 4.3-3 -  Pixel Interpolation...................................................................... 70

Figure 4.4-1 -  Canny Algorithm Block Diagram............................................... 73

Figure 4.5-1 -  Software Implementation Using Floating Point Arithmetic....74-75 

Figure 4.5-2 -  Software Implementation Using 8-bits Fixed Point Arithmetic...76 

Figure 4.5-3 -  Difference Between Floating Point and Fixed Point Arithmetic..77 

Figure 4.5-4 -  Hardware Implementation Using Floating Point Arithmetic..77-78 

Figure 4.5-5 -  Difference Between Software Version Using Floating Point and

Hardware............................................................................................................. 79

Figure 4.5-6- Hardware Implementation Using 8-bit Fixed Point Arithmetic....80 

Figure 4.5-7- Difference Between Hardware Version Using Fixed Point and

Software Version Using Floating Point Arithmetic............................................81

Figure 4.6-1- The Synchronization Circuit Block Diagram................................84

Figure 5.1-1 -  Block Diagram of an ADSP-21xxx Core.................................... 87

Figure 5.2-1- FPGA Architecture....................................................................... 89

Figure 5.2-2 -  FPGA Programmable Logic Cell................................................. 90

Figure 5.3-1 -  Altera Logic Element (LE).......................................................... 92

Figure 5.3-2 -  Xilinx Virtex Slice....................................................................... 93

Figure 5.3-3 -  Altera DSP Block Diagram.......................................................... 94

Figure 5.4-1 -  Floating-Point Representation...................................................... 95

Figure 5.4-2 -  Fixed-Point Representation.......................................................... 96

Figure 5.5-1 -  A DSP48 Tile Consisting of Two DSP48 Slices......................... 99

Figure 6.1-1 -  Graph of Log(X) for 0<X<10......................................................103

Figure 6.1-2 -  Non Linear Functions.................................................................105

Figure 6.2-1 - Linear to Log Converter Block Diagram.....................................108

Figure 6.2-2 - Log to Linear Converter Block Diagram.....................................110

Figure 6.2-3 - LUT Shapes.................................................................................112

xiii



List of Figures

Figure 6.2-4 - Logic for Multiplication in the Logarithmic Domain.................113

Figure 7.2-1- Basic HT Calculation Element.................................................... 116

Figure 7.2-2 - Test Image at Rotated Angles of 60 and 45 Degrees.................118
Figure 7.2-3 - Flough Transform Parameter Space Output Graphs on 1024 x 1024 

Binarised Images Using Floating Point Arithmetic Precision...........................119

Figure 7.2-4 - Hough Transform Parameter Space Output Graphs on 1024 x 1024 

Binarised Images Using Linear 8-bit Arithmetic Precision...............................120

Figure 7.2-5 - Hough Transform Parameter Space Output Graphs on 1024 x 1024 

Binarised Images Using Linear 12-bit Arithmetic Precision............................121

Figure 7.2-6 - Hough Transform Parameter Space Difference Graphs on 1024 x 

1024 Binarised Images Between Floating Point and Linear 8-bit Arithmetic 

Precision.....................................................................................................122-123

Figure 7.2-7- Hough Transform Parameter Space Difference Graphs on 1024 x 

1024 Binarised Images Between Floating Point and Linear 12-bit Arithmetic 

Precision..................................................................................................... 123-124

Figure 7.3-1- Hybrid-LNS HT Element............................................................125

Figure 7.3-2 - Hough Transform Parameter Space Output Graphs on 1024 x 1024 

Binarised Images Using Floating Point Arithmetic Precision.....................126-127

Figure 7.3-3- Hough Transform Parameter Space Output Graphs on 1024 x 1024 

Binarised Images Using Hybrid-Log 8-bit Arithmetic Precision................127-128

Figure 7.3-4: Hough Transform Parameter Space Output graphs on 1024 x 1024 

Binarised Images Using Hybrid-Log 12-bit Arithmetic Precision..............128-129

Figure 7.3-5- Hough Transform parameter Space Difference Graphs on 1024 x 

1024 Binarised Images Between Floating Point and Hybrid-Log 8-bit Arithmetic

Precision.............................................................................................................130

Figure 7.3-6- Hough Transform Parameter Space Difference Graphs on 1024 x 

1024 Binarised Images Between Floating Point and Hybrid-Log 12-bit

Arithmetic Precision.......................................................................................... 131

Figure 8.3-1- Basic Accumulator Cell Block Diagram..................................... 137

Figure 8.4-1- Alternative Accumulator Cell Block Diagram............................138

Figure 8.6-1- Stages of the HT Implementation................................................140

xiv



List of Tables

LIST OF TABLES

Table 1.5-1 -  Resolution Vs Frames Per Second................................................6

Table 2.8-1 -  The CORDIC Arithmetic Function............................................. 40

Table 4.5-1- Logic Calculations for the Canny Edge Detector......................... 82

Table 5.2-1- Summary of Four Commercial FPGA.......................................... 90

Table 5.3-1 - Key Features for the Latest FPGAs.............................................. 92

Table 6.1-1- Logarithm Conversion Rules.........................................................103

Table 6.2-1 -  Example Linear to Logarithm Converter LUT............................108

Table 6.2-2 -  Example Logarithm to Linear Converter LUT......................... I l l

Table 6.2-3 -  MSE results for conversion to and from log / linear for different

size / shaped LUTs.............................................................................................112

Table 7.2-1- Correlation Between Number of Hough Elements with Operations

per Second.......................................................................................................... 117

Table 7.4-1- Implementation Statistics of HT Elements...................................133
Table 8.6-1 - The Complete System...................................................................142

xv



List of Abbreviations

LIST OF ABBREVIATIONS

HT Hough Transform
FPGA Field Programmable Gate Array
LNS Logarithmic Number System
Hybrid-LNS Hybrid Logarithmic Number System
GHT General Hough Transform
ASIC Application-Specific Integrated Circuit
SHT Standard Hough Transform
PSF Parameter Space Function
LUT Look Up Table
GHT Generalized Hough Transform
FHT Fast Hough Transform
AHT Adaptive Hough Transform
FAHT Fast Adaptive Hough Transform
BHT Binary Hough Transform
DCHT Dynamic Combinatorial Hough Transform
DGHT Dynamic Generalized Hough Transform
CHT Connective Hough Transform
HHT Hierarchical Hough Transform
PHT Probabilistic Hough Transform
WHT Weighted Hough Transform
MHT Multiresolution Hough Transform
RHT Randomized Hough Transform
VLSI Very Large Scale Integration
BHT Bounded Hough Transform
SIMD Single Instruction Multiple Data
MIMD Multiple Instruction Multiple Data
PE Processing Element
CAM Content Addressable Memory
CORDIC Co-Ordinate Rotation Digital Computer
FIFO First In First Out
VHDL Very high speed integrated circuit Hardware Description 

Language
SR Shift Register
CLB Configurable Logic Block
DSP Digital Signal Processors
DCT Discrete Cosine Transform
LZD Leading Zero Detector

XVI



Chapter 1 Introduction

CHAPTER ONE

INTRODUCTION

1.1 Motivations, aims and objectives

The research presented in this thesis focuses on the efficient and fast 

implementation of the Hough Transform (HT) [ l ] on Field Programmable Gate 

Array (FPGA) using the logarithmic number system (LNS) and more specifically 

using the Hybrid-LNS [2],[3]. The HT has historically been the standard method 

used for the detection of straight lines and edges in binary images. Since its 

invention by Hough in 1962 [1] the transform has been extended to the General 

Hough Transform (GHT) [4] enabling the detection of more generic shapes such 

as curves, circles and parabolas and making it an extremely useful tool in many 

image processing applications. However, in this thesis only the location of 

straight lines on binary images will be examined. The HT is known for its 

computational intensive requirements and the implementation of it, even with 

today’s FPGA, is problematic due to the limited resources in terms of memory, 

computational resources and speed. This is the reason for looking at alternatives 

architectures for implementing the HT using multiplierless techniques, such as 

the Hybrid-LNS. The aim of this research is to implement the HT with as less as 

possible resources in hardware using FPGA's. For achieving this the Hybrid-LNS 

will be used, the Canny edge detection method will implemented in hardware 

with the use of an synchronization circuit, and a LUT based accumulator cell will 

be designed for minimizing the memory requirements of the HT output.

1.2 Hough Transform

The HT uses the concept of point-line duality to locate lines in an image. A point 

P in an image can be defined using a pair of coordinate (x, _y) or in terms of a set

1



Chapter 1 Introduction

of lines passing through it. When considering a set of collinear points Pt and 

generating a set of possible lines that pass through each point it becomes clear 

that there is just one line that is common to all of the sets. It is therefore possible 

to find the line containing all the points Pt by removing all lines without multiple 

“hits”. Although the transform can be used in higher dimensions the main use is 

in two dimensions.

The HT is an important image processing operation, where its methods offer 

robustness against noise but there are some problems involved like high 

computing cost and extreme memory requirements [5], Also, the transforms can 

be influenced by errors of discretization/quantization of continuous space. 

Because of these problems the performance of the standard HT needs to be 

improved. There are numerous, in-depth, and varying publications on the HT 

available in the literature. More precise HT using variable filters and transforms 

determining efficient sampling intervals have been used as well, in order to 

examine the quantization errors. Even though the HT has been around for many 

years and a number of algorithms have been developed it still remains a 

significant bottleneck in many image processing applications (see Chapter 2) [6].

1.3 Logarithms and Hough Transform

The main advantage of the LNS is that multiplication and division in the linear 

domain is simplified to addition and subtraction in the log domain respectively, 

as it can be seen from equations (1.3:1) and (1.3:2).

On the other hand, the LNS is unable to represent all numbers directly and 

additional information is required to represent the sign of the number and the 

special case of x = 0.

Implementing addition and subtraction in the logarithmic domain [7] is much 

more complicated as can be seen from (1.3:3) and (1.3:4).

log/, ( A x B) = logé (A) + logé (£)
log0 =  logé ( A )  -  logb (5 )

(1.3:1)
(1.3:2)

2
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log* (A +  B) =  i +  logA (1 + b J~‘ ) 

l°g* ( A - B )  = i + logA (1 - b J~‘)

(1.3:3)
(1.3 :4)

Where: i = log|/i| and j  = log|5|

Those are not straight forward equations, as the non linear functions (1.3:5) and 

(1.3:6) must be evaluated, where are normally implemented using a Look Up 

Table (LUT).

An alternative solution to this problem is the use of the hybrid-LNS where 

multiplication is performed in the log domain and addition performed in linear 

domain. This removes the necessity for implementing the non-linear function and 

LUT methods are used to translate between the log and linear domains. The size 

of the LUT grows exponentially with the number of bits of resolution and 

becomes prohibitively large when more than 16 bits of accuracy is required. For 

image processing, where the image data is limited to 8-10 bits of resolution the 

LUT requirements are acceptable and both LNS and Hybrid-LNS arithmetic are 

suitable for processing gray scale images.

The obtained results (see Chapter 7) indicate that implementing the Hough 

transform using the Hybrid-LNS, an efficient, low-power and low cost solutions 

can be achieved compared to the equivalent linear implementation using custom 

ASIC or FPGA technology.

1.4 Edge Detection and Hough Transform

To extract line segments or any geometric structure from a gray scale or colour 

image using the HT, the image need to be transformed to a binary one using 

thresholding or any other edge detection method. The binarized images are the 

edge maps of the original grey level or colour image.

F(r = j - i )  = \og„(\ + br) 

F(r = j  -  i) = l°g6(l ~ b r)

(1.3:5)

(1.3:6)

3
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Edges can be detected by applying a high pass frequency filter in the Fourier 

domain, or by convolving the image with an appropriate kernel in the spatial 

domain. In practice, edge detection is performed in the spatial domain, because it 

is computationally less expensive and often yields better results. Since edges 

correspond to strong illumination gradients, the derivatives of the image are used 

for calculating the edges.

Canny edge detection [8] is considered to be the ideal edge detection algorithm 

compared with others, (Sobel, Prewitt) because it produces very sharp and thin 

edges. As it is a method of special interest, it will extensively be described and 

implemented in hardware for the scope of this research.

The Canny edge detection uses a multi-stage algorithm to detect a wide range of 

edges in images. It first smoothes the image to eliminate the noise and then finds 

the image gradient to highlight regions with high spatial derivatives. The 

algorithm then tracks along these regions and suppresses any pixel that is not at 

the maximum (nonmaximum suppression). The gradient array is now further 

reduced by a process called hysteresis. Hysteresis is used to track along the 

remaining pixels that have not been suppressed. It uses two thresholds where if 

the magnitude is below the first threshold, it is set to zero (made a nonedge). If 

the magnitude is above the high threshold, it is made an edge. Finally, if the 

magnitude is between the 2 thresholds, then it is set to zero unless there is a path 

from this pixel to a pixel with a gradient above the high threshold.

1.5 FPGA and Hough Transform

In the decade and a half since the introduction of the first commercial FPGA, 

these devices have grown in complexity from a few hundred to millions of gates 

of programmable logic. Once used primarily as "glue logic," FPGAs today are 

key system-level components packed with features such as on-chip memory, 

clock management capability and programmable support for high performance 

I/O signaling standards. FPGAs allow equipment makers to significantly reduce 

their time to market. And because they are manufactured on the most advanced
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semiconductor process technologies available, FPGAs offer levels of design 

flexibility, performance and logic density that make them a viable and cost 

effective alternative to traditional fixed-logic ASICs. More important, FPGAs 

can be reprogrammed even after an end system has been deployed at a customer's 

site. As a result, FPGAs technology is opening up a new area of equipment 

design that allows for hardware upgrades over a network. This promises to 

reduce equipment maintenance costs, extend the life cycle of products and create 

new sources of revenue for manufacturers by allowing them to add new features 

and capabilities remotely to installed products [9], Using FPGAs technology fast 

re-configurability, either partially or totally, can be achieved and a designer can 

meet the required performance with a minimal amount of resources [10] [174],
As mentioned in section 1.1, in order to compute and implement the HT on an 

FPGA it is quite complex in terms of memory, computational resources and 

speed [5]. Minimization of possible multiplication and look-up table’s utilization 

using the LNS is the solution to the problem.

Instead of using a sequential algorithm it will be important to explore methods 

and techniques that exploit the inherent parallelism of the logic blocks available 

on an FPGA. The research will compare and control existing algorithms and 

their performance when implemented on an FPGA and explore new methods for 

improving this performance. The aim is to provide full ‘real-time’ operation with 

mega-pixel size digital images up to 25 frames per second using Xilinx 

Virtex4™ architecture. A block diagram of the system is showing in Figure 1.5- 

1.

Figure 1.5-1: Block Diagram of the System

5



Chapter 1 Introduction

The camera being used for capturing the test images is a Pulnix 1 Mpixel camera 

operating at 25 frames per second. The interface to the camera is based on the 

CameraLink signals where the control signals are PVAL (Pixel Valid), HVAL 

(Line Valid) and FVAL (Frame Valid). These signals make it possible to 

determine the size of the active image and the valid pixels.

As it can be seen from Table 1.5-1 [11], there is a large range of camera 

manufactures, operating at higher resolutions (up to 10 Mpixels). However, this 

increase in resolution often results in a reduction of frames per second.

Table 1.5-1: Resolution Vs Frames Per Second [11]

M anufacturer R esolution (M pixels) Fram es per second

Omnivision 9 8.9
44 8 10
44 5 7.5 & 15
44 3 15
44 2 15 & 30
44 1 30

CIS Americas 5 15

Pulnix 2 15

PixelLink 2 20 & 15
44 3 12
44 6.6 5

Kodak 10.3 15
44 4 13

1.6 Thesis Organization

Chapter 2 introduces the HT and provides relevant background information about 

it, as well as the reasons why this transform is so widely accepted in the image 

processing world. A mathematical approach to the transform is given to 

understand its operation, as well as the basic theory and underlying principles are
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presented. In order to support the research, the deficiencies in other transforms 

and representations in this field are outlined. As the HT has been proved a 

valuable tool in large range of computer vision problems in fields such as 

industrial automation, robotics, biomedicine and satellite observation of Earth, 

several applications of the HT are presented. As one of the main characteristics 

of the HT is the independent simple calculation of every feature in an image, 

parallelism can be successfully achieved. For that reason, the different 

configuration types for parallel processing are described in detail, and the 

between differences are introduced.

Binarization of the image is required to successfully extract line segments from 

an image using the HT, by any edge detection method. There are many ways to 

perform edge detection and there are several edge detection methods. The Canny 

edge detection algorithm is known to many as the optimal edge detector. In 

Chapter 3, an extensive description of the Canny method, as well as, all the 

stages for the implementation involved is presented. In the same chapter, an 

introduction to digital logarithms and the usefulness in hardware-based 

arithmetic, along with the history of the hardware implementation of logarithms 

is presented in the form of a literature review, to demonstrate the possibilities and 

use of logarithms for this purpose. This also shows the most modern techniques 

and implementations in this area.

In Chapter 4, a detailed hardware implementation of the Canny edge detection 

method is presented. A software and a hardware version of the method has been 

generated, where a comparison between the two versions is presented, using 

floating point and fixed point arithmetic. Also, a novel flexible LUT based 

synchronizing circuit for 2-D imaging filters of variable dimensions is 

introduced.

As hardware implementations are the main focus for this thesis, the FPGA is 

introduced and the Xilinx Virtex4™ FPGA is described in Chapter 5. A 

comparison of alternative technologies that may also be used to implement the 

transform and image compression system is described. Also, the most advanced 

arithmetic resources available on the FPGA are detailed.
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Chapter 6 introduces the Hybrid Logarithmic Number System (Hybrid-LNS) and 

the implementations in hardware. Details are given along with a worked 

example, for clarification, of the implementation of logarithmic arithmetic 

appropriate for the implementation of the HT proposed in the subsequent chapter.

Chapter 7 presents a new investigation into the effect of using logarithmic 

arithmetic on the Standard Hough Transform (SHT) algorithm for hardware 

implementation using Matlab® simulation. The methods investigated in Chapter 

6 will be applied in this chapter. It has been shown that the HT can be 

implemented on technology as the FPGA’s [12], [13], with the use of multipliers. 

This chapter describes how, by using logarithmic arithmetic, the need for 

multipliers is eliminated, while precision of the algorithm is maintained. Finally, 

the implementation of the SHT on FPGA using Hybrid-LNS arithmetic is 

presented, as well as, a comparison with the linear SHT is made. The relative 

simplicity of the structures presented, indicates that it is feasible to implement 

multiple elements operating in parallel using just the basic CLB elements 

available on a typical FPGA fabric and leaving the DSP slices and Block RAM 

free for other functions in the image processing chain. Depending on the overall 

throughput, results shows that it is possible to process data from a 1024 x 1024 

pixel camera at a rate of up to 25 frames per second.

A LUT based accumulator cell that can be used as part of the HT architecture for 

storing the calculated Parameter Space Function (PSF), derived from a binary 

image is presented in Chapter 8. The accumulator cell uses the distributed 

memory elements available on a Xilinx FPGA fabric to store the intermediate 

results prior to passing them on for post processing and feature extraction. 

Parallel implementation can be achieved where significantly large images 

(megapixel) are being processed. In the same chapter, the complete system is 

presented in terms of hardware requirements, and a comparison between the 

different stages is taking place.
A review of all the research presented in this thesis, along with a summary of 

findings is presented in Chapter 9 as a conclusion. Directions for further 

research are also suggested.
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1.7 Research Contributions

The five main areas of this research are presented in:

• Chapter 4 for the implementation of the Canny edge detection method 
on hardware.

• Chapter 4 for the design of a novel generic synchronization circuit for 
windowing operations.

• Chapter 7 for the implementation of the HT using Hybrid-LNS.

• Chapter 8 for presenting methods for storing large arrays on FPGA’s.

• Chapter 8 for the combined edge detection and HT on an FPGA.

Chapter 4 describes the Canny edge detection method and the hardware 

implementation of it is presented. As a moving window operator forms the basic 

implementation of the Canny algorithm, and a number of pre-calculated steps are 

required a novel synchronization circuit architecture was designed. The circuit 

uses LUT resources available on FPGA devices as variable length shift registers. 

The synchronization circuit architecture is one of the main contributions of this 

thesis.

Another contribution can be seen in Chapter 7. Using the most advanced 

technology available on the latest FPGA devices, Chapter 7 describes a novel 

implementation of the HT where the Hybrid-LNS method is used. The 

implementation was presented at the SPIE conference in 2008 [14].The proposed 

HT using Hybrid-LNS is designed to use less logic, operate at higher speeds, 

while precision of the algorithm is maintained.

As memory requirement is one of the main drawbacks of the HT algorithm, 

Chapter 8 presents a novel LUT based accumulator cell architecture for storing 

the calculated PSF derived from a binary image. The accumulator cell uses the 

distributed memory elements available on a Xilinx FPGA fabric to store the 

intermediate results of the HT prior to passing them on for processing and 

feature extraction. This is the last, but not least, main contribution gained out of 

this thesis.
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CHAPTER TWO

HOUGH TRANSFORM LITERATURE
REVIEW

2.1 Introduction

This chapter provides an overview of the literature and relevant background 

information about the HT, and the reasons why this transform is so widely accepted 

and used, thus, providing the basis for this thesis. However, there are numerous, in- 

depth, and varying publications on the HT available in the literature. Therefore, it is 

necessary to categorise these publications in an appropriate manner. Hence, a 

mathematical approach to the transform will be introduced in this chapter, in order to 

aid the understanding of its basic operation. Then, the basic theory and underlying 

principles, as well as the deficiencies in other transforms and representations in this 

field, will be outlined, in order to support the research introduced and described in 

subsequent chapters of this thesis. The research review presented in this chapter will 

follow a chronological order.

2.2 The Hough Transform Method

The HT was originally proposed by Hough in 1962 [1] and has become a standard 

tool in image analysis that allows recognition of global patterns in an image space, 

by recognizing local patterns (ideally a point) in a transformed parameter space. The 
basic idea of this technique is to locate curves in an image that can be parameterized: 

e.g. straight lines, polynomials or circles, in a suitable parameter space. Its main use 

is in two-dimensional spaces to find straight lines, centers of circles with a fixed 

radius, or parabolas, although the transform can be used in other dimensions. The 

research presented in this chapter will focus only on location of straight lines on 

binary images.
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Consider the equation of the straight line in slope-intercept form shown in (2.2:1) for 

different values of a and b and a point (x„ yi).

y\ = ax\ + b (2.2:1)

Infinitely many lines pass through this point and all satisfy the equations of the 

straight line. Solving the straight line equation as (2.2:2) and considering the 

parameter space yields the equation of a single line for a fixed pair (x„ y t).

b = -ax i + yi (2.2:2)

A second point (xj, y,) also has a line in parameter space associated with it, and this 

line intercepts the line associated with (jc„ y,) at (m c ’), where m’ is the slope and c’ 

is the intercept of the line containing both (x„ y,) and (xJt yj) in the xy-plane. 

Generally, all points on this line have lines in parameter space that intercept at (m 

c ') as Figure 2.2-1 shows below [16].

Figure 2.2-1: Left Figure: xy Plane, Right Figure: Parameter Space

A practical difficulty with this approach is that the slope of the meaning line 

approaches infinity as the line approaches the vertical direction. One way to 

overcome this difficulty was suggested by Duda and Hart [6] where they used the 

normal representation of a line which is shown in (2.2:3) where x and y are the co­
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ordinates of a point on the line, p is the perpendicular distance of the line from the 

centre of the image and 0 is the angle between the perpendicular to the line and the 

x-axis [17]. (Figure 2.2-2) The mapping of (x, y) points into the 2D (p, 0) parameter 

space is achieved by sampling the 0 axis and then calculating, using equation (2.2:3), 

the corresponding p value. As 0 is varied a sinusoidal curve is generated whose 

amplitude and phase are determined by the image points (x, y ) [18].

x cos(0) + y sin(0) = p (2.2:3)

Figure 2.2-2: Parametric Description of a Straight Line

2.3 Implementing the Hough Transform

The HT algorithm uses an accumulator array (accumulator bins) to detect the 

existence of a line. The dimension of the accumulator is equal to the number of 

unknown parameters of the HT problem. For example, the linear HT problem has 

two unknown parameters: m and c. The two dimensions of the accumulator array 

would correspond to quantized values for m and c. For each pixel and its 

neighborhood, the Hough transform algorithm determines if there is enough 

evidence of an edge at that pixel. If so, it will calculate the parameters of that line, 

and then look for the accumulator's bin that the parameters fall into, and increase the
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value of that bin. By finding the bins with the highest values (peaks), typically by 

looking for local maxima in the accumulator space, the most likely lines can be 

extracted, and their (approximate) geometric definitions to be read. The size of the 

high value bins is a function of several factors such as the number of points 

composing the line, the number of other points in the image and the choice of 

parameter bin size. The size of parameter bins is usually chosen to correspond to the 

required precision of parameter space [16].

For the performance of the HT algorithm, the following steps required.

i) Define {mmin, rnmax} and {cmjn,cmax} as the expected ranges of m and c

respectively as it is shown in Figure 2.3-1. The cell at coordinates (i,j), 

with accumulator value A(i,j), corresponds to the square associated with 

parameter space coordinates (mb Cj) [ 16].

max
q=j

q=i
c  •min

A[i,j]

m p=i • p=i
min mmax

m

Figure 2.3-1: Subdivision of the mc-Plane Into Cells

ii) Set A [/, j] = 0 for all i, j  to initialise [16].

iii) For each point (x’, y’) of interest in (x, y) space

Set mp = each subdivision in range { m m jn , mmax} and solve for the 

corresponding cq using the equation cq = -x’mp + y’ to get corresponding c- 

value. The resulting cq are then rounded off to the nearest allowed value in 

the m-axis.
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Then A [p, q\ <= A \p, q] + 1 

Repeat for all points of interest.

iv) After completion, a value of M in A [/, j] corresponds to M points in the 

(x, y) plane lying on the line y = mjX + Cj [16].

The accuracy of collinearity required for the points is established by the number of 

subdivisions in the (m, c) plane.

2.4 Advantages and Disadvantages of the Hough 

Transform

There are several positive aspects that render the HT an important image processing 

tool. First, parallel processing can be achieved as each image pixel can be 

implemented independently. More than one processing unit can be used and as a 

result the HT algorithm can be useful for real-time applications. Second, pixels lying 

on one line need not all be adjacent. This can be very useful when trying to detect 

lines with short breaks in them due to quantization noise, or when objects are 

partially occluded. Occlusion is a serious problem for most other detection 

techniques such as convolution or noise filters, but the HT overcomes this problem 

by using the size of a parameter peak, which is directly proportional to the number of 

matching boundary and template points. Third, the HT offers robustness against 

noise produced by poor image segmentation, or from the boundaries of shapes other 

than those searched for in an image. Finally, the HT can process several straight lines 

at the same time, in the same image, as each line produces a distinct peak in the 

accumulator array [5].

However, the HT can give misleading results when objects happen to be aligned by 

chance. This clearly can become a disadvantage, where the detected lines are infinite 

lines described by their (m,c) values, rather than finite lines with defined end points. 

However, the main disadvantage is the large storage and computational 

requirements. The computational attractiveness of the HT arises from subdividing 

the parameter space into accumulator cells as it is shown in Figure 2.3-1 [16]. In 

order to accurately represent the result into a continuous parameter space, the 

number of the accumulator cells, in both dimensions m and c, must be large. This
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means that the HT, in terms of computing storage, requires m x c bins. Moreover, a 

large 9 means a large number of evaluations of equation (2.2:3) to accumulate the 

transform. These two problems have had a combined impact on the production of 

more efficient implementations of the basic HT idea.

2.5 Early Development of the Hough Transform

The HT was first introduced by Paul Hough in 1962 [1], as a method and means for 

recognizing complex patterns rather than shapes in images, even though Rosenfeld 

[17] was the researcher that noted its potential advantages as an image processing 

algorithm and made the HT obvious to the image processing world. Hough’s 

invention was based on studying complex patterns formed by particle tracks in 

pictures through a viewing field. More specifically, studying particle tracks in 

pictures taken through a bubble chamber. The slope-intercept parametric 

representation of a line was used, but with the main drawback of generating an 

unbounded parameter space. To bypass the problem, Duda and Hart [6] suggested 

that a straight line can be usefully parameterized by the length, p, and the orientation, 

0, of the vector to the line from the image origin. Using the (p, 0) parameters mean, 

that image’s points map into sinusoidal curves in a two-parameter space. This 

procedure can yield unsatisfactory results when pictures contain random noise that 

cannot be removed. Cohen and Toussaint [20] modified the Duda-Hart procedure, by 

studding the distribution of background counts for random noise points in finite size 

images, and this compensates for noise whether the distribution is known or not. 

O’Gorman and Clowes [21], using the gradient direction in the HT, managed to 

recover straight lines in digitized pictures containing polyhedral, and Van Veen and 

Groen [22] investigated the influence of the discretization effects on the HT, in both 

the image and parameter spaces.

In 1981 Deans [23] pointed out that the HT is simply a special case of the Radon 

transform, which has been known since 1917, and, therefore, accompanied by a large 

amount of theoretical and mathematical literature associated with it. The Radon 

transform has been studied in relation to computer-aided tomography and on a two- 

Euclidean plane is defined as shown in equation 2.5:1.
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R(p,0) = f  f  f(x ,y )S (p -xcos(0 )-ys\n (0 ))dxdy  (2 .5 :1 )
J -o o  J-oo

where 8 is the Dirac delta function. The delta function term forces integration of/  (x, 

y) along the equation of the straight line (2.2:3). For shapes other than straight lines 

the 8 function argument can be replaced by a function which forces integration of the 

image along contours appropriate to the shape [5].

Subsequently, several methods of HT were introduced in order to improve the 

computational efficiency and practicability for use in real time image analysis tasks 

as well as speeding up the process as much as possible [170]. Nevertheless those 

methods are described below, it is worth mentioning that the purpose of this research 

was to prove that fine processing can be achieved all at once, by using different 

arithmetic structures rather than multiresolution or coarse to fine techniques. 

Nowadays, even though all the calculations required for implementing the different 

methods of the HT are possible to achieve with the processing power available, by 

using the logarithmic approach (a detailed discussion will be presented later on in 

this thesis), power consumption and logic resources can be reduced significantly.

2.6 Hough Transform Methods

2.6.1 Generalized Hough Transform

In 1981, Ballard [4] developed a HT which does not decompose the image into its 

component features, for example, straight lines, but rather extract the shape in its 

entirety. He called it the Generalized Hough transform (GHT). It could efficiently 
find arbitrary shapes for any orientation or any scale, and that was achieved with the 

use of directional edge information. Few graphic examples of the information used 

by the GHT are shown in Figure 2.6-1. Lines indicates gradient directions Each 

boundary point was stored as a vector relative to some reference point; that being the 

distance, r, and the direction, 0, of the line connecting the boundary point and the 

reference point. Entries in a list are indexed by the local edge direction at the
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boundary point. The resulting list is called an R-table. As the image points are only 

compared with a subset of the R-table entries, indexing by edge direction decreases 

the computational expense of the method. Consequently, complex shapes can be 

decomposed into simpler shapes and it is possible to have a shape representation 

which can accommodate this type of structural description [5], [24],

Figure 2.6-1: Shapes Detected with the GHT. a) Simple Shape b) Composite Shape. |4|

2.6.2 Fast Hough Transform

Several authors have realized that the memory requirements and computational load 

of the HT can be reduced using a intelligent iterative coarse to fine accumulator 

technique. Such a technique involves examination of the accumulator array at 

various scales and an attempt is made to evaluate it in detail only in those areas 

having a high density of counts. The fast Hough transform (FHT) of Li et al. [25] 

uses this technique. The FHT uses a multidimensional quadtree which maps the 

image points into hyperplanes. It recursively divides the parameter space into a 

nested hierarchy of hypercubes from low to high resolution and perform the HT only 

on the hypercubes with votes exceeding a selected threshold. Figure 2.6-2 shows an 

example of a quadtree where the entire parameter space is considered first, then the 

upper right sub-quadrant and so on. Far from growing exponentially, the search

( a 1
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converges rapidly on the accumulation point. The decision on whether a hypercube 

receives a vote from the hyperplane depends on whether the hyperplane intersects 

the hypercube. The advantage of using hyperplanes as opposed to an array of 

accumulators is that the intersection between planes and parameter cells can be 

efficiently computed using an incremental test, where only additions and shifts are 

required to implement the test and as a result the computational cost scales linearly 

with the dimensionality of the parameter space. On the other hand, using the 

incremental intersection testing method, each quadrant must store the distance of 

every image feature from its center. If there are many image features this can 

represent a large overhead. In addition, the rigid quadtree decomposition of the 

parameter space means that lines generating peaks which cross the boundaries of 

quadrants may be missed by the processing [24],[26],

C

Figure 2.6-2: Example of a Quadtree Search Used in the FHT
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2.6.3 Adaptive Hough Transform

A more flexible variation of the coarse to fine technique was used by Illingworth and 

Kittler [27] in their implementation called the Adaptive Hough Transform (AHT). 

The AHT avoids the problems of calculating the HT using a large number of cells, 

by implementing a multiresolution peak finding search of the parameter space, using 

a small fixed sized accumulator. A 9 x 9 accumulator initially covers the full range 

of parameters. After accumulation, candidate peaks are identified by thresholding. 

The parameter limits covered by the accumulator array are then adjusted to focus on 

the most prominent candidate peaks. Iteration of the cycle of the HT accumulation, 

peak analysis and parameter limit redefinition should lead to rapid and accurate 

determination of parameter peak locations. The performance of the AHT was tested 

using simple images containing digital line and circle segments. However, serious 

interpretation problems have been found when the method is applied to complex 

images. In particular, the method can not identify lines reliably, unless the number of 

lines is small and they are long with respect to the size of the image. Additions to the 

basic AHT have been made for successful implementations. Cao et al. [28] have 

modified the AHT to include a “labeling” technique and have successfully 

implemented the method in parallel. Onda et al. [29] have implemented a modified 

AHT algorithm in which the range of parameters calculated is constrained by the 

gradient of each pixel, resulting in a sharper local peak. Finally, Berger and Khosla 

[30] have implemented a modified AHT in combination with a weighted least 

squares algorithm where a weight is computed for each data point based on the 

residual error of the previous estimate.

2.6.4 Fast Adaptive Hough Transform

A very similar approach of the AHT was implemented by Haule and Malowany, the 

Fast Adaptive Hough Transform (FAHT) [31]. Here again, the parameter space is 

investigated at several resolutions, but is only evaluated in fine detail in those 

regions where high densities of image points occur. The differentiation from the 

AHT is due to the degree of freedom allowed in the redefinition of parameter limits, 

i.e. the degree of flexibility in the placement and choice of window shape which
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defines the range of parameter under study. In the FAHT, a complex strategy to 

analyze the parameter space is employed at each resolution, and this has a result that 

more appropriate parameter limits for subsequent processing can be defined. The 

range of parameters can increase, decrease, or remain the same and translation of the 

parameter limits by non integral multiples of the cell distance is permitted. Changes 

in resolution can be made independently in each of the parameter dimensions every 

time the parameter limits are redefined. In summary the advantage of the FAHT is 

that the size, shape and positioning of the parameter windows is very flexible and is 

determined by the data itself rather than being imposed as a result of the choice of 

data structure and initial parameter limits [24],

2.6.5 The Binary Hough Transform

The Binary Hough Transform, (BHT) [32], [33] is a technique for straight line 

detection in binary images based on a modified slope/intercept parameterization of 

the straight line. To implement this method the dimensions of both the image and the 

transform space should be integer’s power of two. This implies that the calculations 

required for the parameter determination can be executed using only adders and 

delay-elements without any multipliers (multiplications are performed by binary 

shifts) and the sampled slope and intercept can be represented in full precision for 

fixed point arithmetic, where integer arithmetic is used without rounding errors. As 

this is the most efficient way for a computer to execute calculations, the BHT gives a 

significant saving in computational time and hardware resources. In addition, the 

BHT can be effectively implemented in high-throughput systolic array architectures, 

as showed by Costa and Sandler [34], and it has been experimentally verified that 

better accuracy for determination of parameters and effectiveness than the standard 

HT with normal parameterization can be achieved. The main drawback of the 
technique is that it requires four two-dimensional accumulator arrays for straight line 

detection [24], limiting the hardware resources. Another such algorithm, which 

generates the HT by using only the incremental addition operations, and without the 

calculations of trigonometric functions and multiplications, was presented by 

Koshimizu and Numada [35] and is called the fast incremental Hough transform 

(FIHT).
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2.6.6 The Dynamic Combinatorial Hough Transform

An interesting variation of the HT, the Dynamic Combinatorial Hough Transform 

(DCHT) was proposed by Leavers et al [36], It uses information present in the 

location of the feature points in an image and as a result only one dimensional 

accumulation of evidence required to determine the parameters associated with a 

given shape. The co-ordinates of the edge points in an image are listed in the order of 

their appearance. A point of the list which is randomly selected is fixed and paired 

with all other points from the list. These points are then accumulated in a 0 

histogram. If n of the points in the list are co-linear with the first point, it results in a 

peak of value n at the 0 value of this line in the 0 histogram. After the peak detection, 

the value of p from equation (2.2:3) may be calculated using the (x, y) coordinates of 

the first point. All the n co-linear points are removed from the list, and the process is 

repeated. In each of the following passes the first point in the list is combined with 

all the other points, and a new 0 histogram is generated. The algorithm continues 

until all the edge points contributing to straight line segments have been removed 

from the list. The DCHT is a significant improvement of the SHT, as it is 

computational less intensive algorithm and much more efficient in memory 

utilization. It uses a 1-dimentional accumulator instead of a 2-dimentional 

accumulator as in other HT methods [37], Leavers [38] later on generalized the 

DCHT to the Dynamic Generalized Hough Transform (DGHT) where only a fraction 

of the coordinates of the edge points is accumulated, and these points are chosen 

probabilistically. In addition, the DGHT incorporates a mechanism for selecting the 

first point. Points around the candidate first points are summed first in a horizontal 

and then in a vertical direction. If either sum exceeds a threshold then the point is 

accepted.

2.6.7 Connective Hough Transform

A common problem of the HT is that it can give misleading results when objects 

happen to be aligned by chance. This is known as the connectivity problem [6]. It 

arises because the accumulator counts only the number of points that share the same
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parameters. These points may not be connected with each other. Thus the position of 

a best-fit line can be distorted by the presence of unrelated figure points in another 

part of the image [6], A novel method called the connectivity Hough Transform 

(CHT) [37], aims to solve this problem. The implementation uses the dynamic 

combinatorial Hough transform (DCHT) method of calculation and accumulation. 

Due to the nature of the accumulation, a unique line segment is detected for each 

point with no redundancy. Using the CHT, all feature points as they are detected, are 

tested for connectivity with respect to neighbouring points. Only two 1 -dimentional 

accumulators are used which minimize the memory complexity of the method and 

since disconnected points are not accumulated, the method achieves a significant 

speed-up compared with the SHT. For a 128 x 128 binary image, it was found that 

40 seconds required by using the SHT, where only 16 seconds required using the 

CHT [37],

2.6.8 The Hierarchical Hough Transform

Two main constraints have to be taken into consideration in order to obtain a useful 

line finding scheme, when complex images or inaccurate feature measurements are 

under test, collinearity and proximity. The question is how strong the proximity 

constraint should be. In the SHT, the proximity can be chosen arbitrarily in the post 

processing step. An alternative method for imposing proximity constraints, which is 

based on the use of a hierarchical structure, is the Hierarchical Hough Transform 

(HHT) [39]. It is based on applying HT type algorithm at all levels in a pyramid 

structure. At the bottom level of the pyramid short line segments are detected by 

applying the HT algorithm in small sub-images, i.e. 16x16 pixels. This is a robust 

mechanism as the accumulator array requires a small and easily interpreted structure. 

The advantage of such a structure is that the range of possible p values is directly 

proportional to image size and as a result in a small sub-image the number of p bins 

is small. Also, the intrinsic accuracy with which angles can be estimated in a small 

sampled image window is poor and therefore it is reasonable to divide the full 0 

range into only a few bins. After low level line segments have been found, the 

method proceeds bottom up from this description by combining line segments within 

local neighborhoods into longer lines. The grouping process of the line segments is
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also based on a HT algorithm and involves a relatively sparse accumulator array 

which can be represented as a linked list rather than an array data structure. Line 

segments which are found to have common pixels with the neighborhood pixels 

move up the hierarchy and take part in grouping at higher levels while lines with no 

common pixels at a particular level terminate [26], [39],

2.6.9 The Probabilistic Hough Transform

Two are the main stages where the SHT can be implemented. The first is an 

incrementation stage, where the accumulators corresponding to cells that the 

sinusoid of equation (2.2:3) intercepts are incremented. The computational time of 

this stage depends on the number of edge points in an image. The second stage is an 

exhaustive search for maxima in the accumulator array, where the computation time 

depends on the size of the accumulator array. As the number of cells in the 

accumulator array is much smaller compared with the number of edge points in an 

image, the incrementation stage usually dominates the execution time of the SHT 

algorithm. Kiryati et al. [40] proposed a new algorithm, the Probabilistic Hough 

Transform (PHT), in which the image data are randomly sampled and only the 

sampled subset of image points is transformed. As the number of edge points in the 

incrementation process is much smaller, a significant computational saving is 

achieved. The key to successful application of the PHT is the dependence of the 

algorithm’s performance on the fraction of the data that is used. The selected subset 

of image points is accumulated as in the SHT. Theoretical analysis and experimental 

results showed that even in the presence of distracting features, significant noise and 

errors in the coordinates of the image points, large computational savings are 

succeeded using the PHT. The algorithm deal with binary edge data and do not 

depend on computationally expensive global preprocessing of the image. A threshold 
effect exists concerning the number of false peaks found as a function of sample 

size. As the complexity of the image increases, the sample size also correspondingly 

increases [24],
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2.6.10 The Weighted Hough Transform

Once the HT has been accumulated the pattern of counts in the accumulator array 

has to be analyzed to estimate the presence and location of local peaks. The most 

common method is to determine a threshold. Any accumulator cell with more counts 

than the threshold indicates a possible image segment. The threshold is chosen 

either using prior knowledge or it can be automatically selected by analyzing the 

distribution of counts in the array. However, analyzing the accumulator array is not 

always easy and may present difficulties. The reason for that relies to the fact that at 

any scale of discretization of the accumulator array, a high count in a particular cell 

may be generated because of several insignificant peaks rather than a single 

significant one, or a true peak may be split between several accumulator cells and 

not detected. The weighted Hough transform (WHT) of Ibrahim et al. [41] identifies 

peaks by using the image directly without the use of any threshold, and weighting 

the contributions to the transform space made by each pixel according to its value in 

that image. The greater the weight of a pixel, the stronger it’s effect on line 

detection. For example, if the weight of a pixel is zero, it is equivalent that this pixel 

does not exist. That means there is no need for calculation of that pixel and this has a 

result of minimizing the overall computational cost [42],

2.6.11 Multiresolution Hough Transform

Another efficient implementation of the SHT has been proposed from Atiquzzaman 

[43], the Multiresolution Hough transform (MHT), where significant reduction of the 

computing time is achieved. Although the MHT is based on a coarse-to-fme iterative 

search, it has a few significant differences from the other HT methods. Firstly, 

multiresolution images and accumulator arrays are used in the iterations. A set of 
reduced-resolution images is generated from the original image. The HT is first 

applied to the smallest image using a very small accumulator array. Subsequent 

iterations use images and accumulator arrays of increasing sizes. Secondly, a 

logarithmic parameter - range reduction method that is suitable for the transform has 

been proposed by the author. Using this method a faster convergence and better 

stability is achieved. Finally, consideration of the discretization errors when
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accumulating the parameter space has led to the use of a simple peak detection 

algorithm. Since the MHT uses such an algorithm, the computation time is 

significantly lower compared with other algorithms, if the time for peak detection is 

also taken into account. The MHT algorithm can not only be used for detection of 

straight lines but also can be generalized for patterns with any number of parameters 

[43].

2.6.12 Randomized Hough Transform

In 1990, a novel HT- like approach was proposed named the Randomized Hough 

Transform, (RHT) from Xu et al [44] for detecting curves from a binary image. The 

basic idea of the RHT algorithm lies in the fact that each parameter space point can 

be expressed with two points from the original binary image. If those points happen 

to be on the same curve, then the corresponding parameter space location is the same 

as the location of the maximum corresponding to the curve in the SHT [45]. In the 

SHT, a single pixel in the original image is mapped into a curve in the parameter 

space, whereas in the RHT, a pair of pixels is mapped to a single cell in the 

parameter space. This is the main difference between the SHT and the RHT 

algorithms. Assuming P is the set of edge points in an original binary image, (x, y) 

be the coordinates in the original image and (a, b) the two parameters of the curves. 

In the RHT, point pairs (pi (x, y), (pj (x, y) are picked randomly from the set P and 

corresponding accumulator cells are incremented in the (a, b) space. For each chosen 

point pair in the original picture, only one parameter cell is accumulated [45]. As P 

stores any parameter point mapped from pixels of the image space, the RHT can 

implicitly observe the whole extent of an infinite parameter space. In addition, P 

stores the real value parameter points without discretization, and this has a result that 

RHT has an inherently high resolution. Another advantage of the RHT is that due to 
the frequent resetting of set P, the storage of the RHT is always kept quite small. 

Finally, in the SHT, as a pixel is transformed into a curve and all the cells lying on 

that curve are accumulated, the computing speed is constrained by the size of the 

accumulator array. In contrast, for the RHT, at each step, only one parameter point of 

P is updated where the computational cost is significantly decreased [24], [44], An 

improved performance of the RHT is detailed in [46],
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2.7 Applications of the Hough Transform

Computer vision is the branch of artificial intelligence that focuses on providing 

systems with the functions typical of human vision. To date, important applications 

have been generated by computer vision in fields such as industrial automation, 

robotics, biomedicine, and satellite observation of Earth. Today, more and more 

manufactures are using computer vision technology to improve their productivity 

and reduce costs. It integrates optical components with computerized control systems 

to achieve greater productivity from existing automated manufacturing equipment. 

The HT has proved a valuable tool in a large range of computer vision problems.

Examples of the use of the straight line HT are numerous. Inigo et al. [47] used the 

straight line HT to identify edges of roads and tracks in order to guide mobile robots. 

Dyer [48] used the HT to inspect the scaling accuracy of needle-type instruments. 

The method does not require the position, orientation, or size of the instrument to be 

known a priori and can be implemented in high speed hardware. Huang et al. [49] 

used the HT to detect seismic patterns in seismograms. The travel-time curves of the 

direct and the refracted waves are straight lines on a seismogram, whereas the travel­

time pattern of the reflected waves is a hyperbola. Because of the cluttered and 

fragmented nature of the seismic data, HT is a particularly attractive method to be 

used.

Kushnir et al. [50] have suggested a method of the HT for the automated recognition 

of Hebrew characters. Almost all of the characters in the Hebrew alphabet consist of 

linear strokes. Peaks detected in the (p, 0) parameter space of a HT line detector were 

used as features in a pattern recognition system. The method was tested on a sample 

set of eighteen print-simulated alphabets and a recognition rate of 99.6% was 

achieved. Lin and Dubes [51] experimented with a straight line HT method, for 

counting ridges in an automated fingerprint analysis system. In such a system, the 

image had to preprocess with a predefined threshold and a small image window in 

which ridges appear as straight lines was selected. Each ridge produces a peak in the 

(p, 0) parameter space, where the counting of the peaks was relevant to the number
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of ridges on the fingerprint. Determination of the threshold was difficult, undesirable 

lines due to noise were counted as ridges and the overall computational cost was 

high.

The linear HT has been used by Shibata and Frei [52], to detect and recognize targets 

in infrared imagery in real time. Edge finding operators were used to find the outline 

of the targets and to extract edge gradients and orientations of them, which then were 

mapped into a parameter space. The four boundaries of the target produced four 

sharp peaks in the parameter space. Cowart et al. [53], used frame-to-frame 

difference images in order to reject clutter and enhance the detection of moving 

targets. The tracks of those nonmaneuvering (i.e. constant velocity) targets appear as 

line segments that can be detected using the HT. Skingley and Rye [54], used the HT 

to detect faint lines in synthetic aperture radar (SAR) images. In their work, different 

post processing techniques have been applied and various problems have been 

addressed such as the detection of peaks and troughs in the transform space, the 

detection of line and points and the removal of false alarms.

The probability of detecting a line, in terms of the relative length and intensity has 

also been calculated. Shu et al. [55] have used a modified HT to detect edge lines in 

scanning electron microscope (SEM) images of VLSI (very large scale integration) 

resist patterns. Modifications to the basic line detecting HT were made in order to 

preferentially detect connected edge segments. This was achieved by constructing a 

bit array for each accumulator cell, where the incrementation of each cell was related 

to the status of the bit array. Also, a threshold was used which was adaptive to the 

orientation and location of the line segment under consideration.

A new formulation of the HT technique by Nixon, [56] aid to detect linear brightness 
variation areas within a picture. Once these areas are defined, they can consequently 

be suppressed, thus resulting in image restoration. Another application of the linear 

HT was used by Thomson and Sokolowska [57], to analyse cleavage cracks in 

minerals. The cracks in a crystal image are isolated and thresholded to create a 

binary image. The HT is used to detect the presence of alignments in these data.
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The generalized HT has been applied and extended in many practical applications for 

the determination of motion parameters from a sequence of images. An approach to 

the segmentation of dynamic scenes containing textured objects moving against a 

textured background was presented by Jayaramamurthy and Jain [58], Firstly, active 

regions in a frame which contain moving objects were found. Then, a HT technique 

used to determine the motion parameters associated with each active region. 

Experiments illustrated the efficiency of the approach for moving textured objects 

even in the presence of occlusion. Another use of the generalized HT for patterns of 

motion in a displacement field image produced by the time difference of two images 

was given by Adiv [59], One of the major drawbacks in the methodology, the other 

being the computational expense, is that small objects will only produce small peaks 

in a parameter space. As a solution, Adiv proposed the use of coarse parameter 

resolution for the detection of large objects, and partitioning the image into smaller 

images, for the detection of smaller objects.

A method proposed by Kalviainen [60] has been introduced to calculate 2-D motion 

in a sequence of time-varying images. His method is based on the RHT and called 

motion detection using the RHT (MDRHT). The main idea is to randomly select a 

point pair of two consecutive images and compute the translation with them taking 

advantage the benefits of RHT [61]. Radford [62] used a 3-D parameter space to 

map motion parameters for translation and rotation. The (p, 9) parameters used in 

straight line detection are the two of those parameters, where the third is a length /, 

which measures the motion of an image feature between successive frames. By using 

this formulation, the focus of expansion of translational motion, as well as the centre 

of rotation for angular motion was achieved. Segmentation of a scene can be 

achieved by grouping points with similar motion parameters. Silberberg et al. [63] 

also used the GHT for recognizing 3-D objects in an image by matching a structural 
model of the object with information extracted from the image. A recognition model 

was constructed in such a way that can be identified and distinguished from one 

another based on the visibility and ease of detection of images of the model entities. 

Then, this recognition model is used by the GHT procedure in order to identify likely 

instances of the object model in an image, which would finally be verified by a top- 

down analysis. Henderson and Fai [64] also used the GHT for 3-D object detection
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from a laser range-finding system. The success of the application was based on the 

correct choice of distinctive feature points.

The difference compared to the Silberberg approach is that Henderson first detects 

planar segments in the data and then matches them with the structural model. Kasif 

et al. [65] attempted a solution to the subgraph isomorphism problem, which 

involves finding if a given graph is an induced subgraph of a larger graph, by using 

the GHT. In their work, matching subgraphs derived from geographical maps was 

achieved even when map image was incomplete due to occlusion, low boundary 

contrast or other factors. Their method is suitable for parallel processing 

implementation on a network of simple processing elements.

Mirmehdi et al. [66] addressed the problem of real time label inspection using the 

HT in rectangular and oval labels as examples. The HT is applied in different images 

of product labels where peaks are detected. After peak detection, a list of all the 

straight lines in the image is obtained and is further examined against a known model 

label to determine the presence of faulty labels. General faults with labels are 

shifting from normal position, sticking at a tilted angle, tearing, folding or 

unreadable print. The HT was implemented in parallel where a high speed process 

can be achieved.

Kamat and Ganesan [67] used the HT to identify vehicle license plates from image 

frames for vehicle tracking purposes (Figure 2.7-1). The test image first passes 

through an edge operator stage (a modified Sobel operator). Next, the edge detected 

image is thresholded and the implemented look-up table based HT is applied to the 

thresholded image. Peaks are detected and are passed through the final stage, the 

line position extraction stage, where the detection of the license plate is achieved.
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Figure 2.7-1: Vehicle License Plate Identification Using the HT [67)

He et al. [68] also used the HT algorithm to detect a car number plate skew without 

any object segmentation process. Leaving the robustness of the skew detection 

process unaffected, He proposed and successfully adapted to the HT different speed 

up approaches, such as the coarse/fme process, the sparse data process and the partial 

edge image process. Results showed that the speed up factor can be increased up to 

20 depending on the complexity level of the car image.

The multiresolution HT, MHT, has been applied by Yu and Jain [69], for lane 

boundary detection. Lane detection is the problem of locating road lane boundaries 

without a priori knowledge of the road geometry. A lane boundary location can be 

very helpful in several applications such as intelligent vehicles, highway 

maintenance with intelligent cruise control, cambered power steering and automatic 

navigation. In order to minimize the computational cost and increase the accuracy of 

the lane detection, a MHT was used where the parameter space is separated into 
subspaces. The required parameters are estimated separately using a multiresolution 

strategy. Experimental results show that the method is very accurate, as it can be 

seen from Figure 2.7-2, on lane images in various situations including different lane 

marking conditions (single or double, solid or broken) and road environments (paved 

or unpaved, shadows or poor illumination).
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Figure 2.7-2: Experimental results of lane boundary detection. The detected lane boundaries 

are overlaid on the input gray scale images [69].

Muniz et al. [70] have used the HT to decode linear barcodes. Even though linear 

barcodes are one of the oldest technologies related to the Automated Identification 

and Data Capture (AIDC), they are still made up of bars and spaces. For most 

applications a manually operated laser scanner is used, but in many others where the 

volume of information is too high, an automated approach has to be implemented. 

Muniz applied the HT in sub-images which only contains a barcode, plotted the HT 

accumulator matrix generated from each image and finally analyzed it in order to 

decode the represented barcode. The method has been tested to read Code 39 and 

EAN-13 barcodes and has been compared with a commercial system (21351 

barcodes out of 23038 were successfully read compared with a commercial system 

which managed to read only 11519). Sun and Willett [58] used the HT to detect long 

and weak chirp or linear frequency modulated (LFM) signals. Those kind of signals 

are important in many areas, such as radar, sonar and seismic. The chirp signals are 

weak (below -20dB), very long in order that they can be detected (e.g. 10 hours 

duration) and in addition to Gaussian noise, powerful tones are masking them. Due 

to the computational load and the ability to detect the chirp signals, HT is the most 

suitable compared with other methods tested by the authors. It showed that the HT 

can detect a 10 hour signal below -50dB in real-time provided its overall frequency 

change exceeds 1 Hz.
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A customized approach, based on the GHT, was achieved by Tezmol et al. [72] for a 

robust segmentation technique capable of finding the location and orientation of the 

cervical vertebrae in x-ray images. As the GHT can give promising results regardless 

of noise and occlusions as well as variations in orientation and scale of the target 

image, is the most suitable method for this application. Chang et al. [73] tried to 

overcome the problem of tracking moving objects in a video stream by using the 

optical flow technique. The optical flow technique finds the velocity vectors at each 

pixel in the entire video. It requires complex computations and is sensitive to noise. 

For those reason a new method based on the HT and on voting accumulation was 

proposed by the authors to improve the accuracy and reducing the computation time 

of the technique. Experimental results shows that by using the new method the 

accuracy of finding the optical flow vectors has been improved as well as the 

computation time required for the extraction of moving objects information (from 

843.66ns to 151.52ns for an 256 x 256 image).

Another method for tracking objects in a sequence of sparse range images has been 

introduced by Greenspan et al. [74], They used a Bounded HT (BHT), which is a 

variation of the general HT. It exploits the coherence across image frames that result 

from the relationship between known bounds on the object’s velocity and the sensor 

frame rate. The method has been implemented and tested on a variety of objects 

using both simulated and real data. Experiment results shows that the BHT can work 

with any shape of object and it functions quite well in presence of sparse data. Rosito 

and Schramm [75] have used a windowed HT to detect rectangular structures in 

images. The image is scanned and a sliding window is used to compute the HT. 

Peaks are extracted from the image under test and a rectangular is detected when 

four extracted peaks satisfy certain geometric conditions. The method can be used 

for both synthetic and natural images.

Rovira-Mas et al. [76] have used the HT in order to detect crop rows from forward- 

view images captured from a moving automated tractor. A five step HT approach 

was used for increasing the processing speed as well as the quality of the image 

analysis. Real-time field navigation of the agricultural machinery following crop
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rows at normal operating speed could be achieved. Pre- and pro- processing of the 

image of the tractor’s forward view was mandatory for the effectiveness of the 

application. Another real-time image processing algorithm based on run length 

encoding (RLE) for a vision-based controller of a Humanoid Robot system was 

introduced by Messom et al. [77]. The RLE algorithm can not only identify objects 

in an image, but it can provide information about their size and position. Using the 

HT, recognition of landmarks can be made which helps the robot localization. Other 

applications of the HT include an efficient lane-detection algorithm by Tsai et al. 

[78] as well as a technique for collision avoidance between two spherically extended 

polytopes (s-topes) [68] (Figure 2.7-3), which is a common object model in a robotic 

system.

Figure 2.7-3: Simple s-topes: a) Monosphere, b) Bisphere, c) Thrisphere, d) Tetrasphere [68]

2.8 Parallel Processing Architectures of the Hough 

Transform

Parallel processing allows the implementation of many independent operations 

simultaneously. The number of operations depends on the number of processors in a 

given system as well as its architecture. The HT has been implemented almost in 

every existing parallel system and several solutions have been fabricated to improve 

speed and reduce the computational cost of the algorithm [171]. In this section, a
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review of existing research will be presented for different implementations of the HT 

in real-time hardware, as well as specialized parallel architectures where the HT has 

been applied. As one of the main characteristics of the HT is the independent simple 

calculation of every feature in an image, parallelism can be successfully achieved.

There are different configuration types for parallel processing. The single instruction, 

multiple data (SIMD) type consists of n processing elements (PE), in which each 

simultaneously perform the same operation on n independent pieces of data [24], 

Most often each PE has an arithmetic logic unit, several registers and a few kilobits 

of RAM. The SIMD block diagram is shown in Figure 2.8-1 [80].
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Figure 2.8-1: SIMD Architecture Block Diagram |80|

Another type of parallel processing is the multiple instruction multiple data (MIMD) 

in which processors simultaneously perform different sets of instructions on different 

data. In comparison to SIMD type, the MIMD consists of a smaller number of faster 

processors [24], The MIMD block diagram is shown in Figure 2.8-2 [81].
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Instruction Pool

Figure 2.8-2: MIMD Architecture Block Diagram |81|

There are various ways in which the memory can be distributed. One way is for all n 

processors to share the same memory, or each processor having a unique memory 

address space connected to a network with interprocessor links. In the first case, the 

main problem is memory access contention, whereas in the second case, network 

congestion can be as bad as or worse than congestion in access to a shared memory

[24]. There is also a combination of the previous architectures; namely the 

SIMD/MIMD configuration.

There are two different configuration types of HT implementation; one where the HT 

is mapped onto existing general purpose parallel systems, and one where the 

construction and design is based on a special-purposes dedicated system. The 

implementation on a general parallel system can be analyzed using a parallelization 

strategy and the embedding of the phases of the algorithm on the hardware available. 

The implementation of a dedicated system, on the other hand, is based on the short 
execution time and low cost [82]. Different SIMD and MIMD implementations 

which have been developed as well as some dedicated systems will be presented in 

the following section.
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2.8.1 SIMD Implementation

As we have seen in the previous section, the HT requires a number of tasks, each 

consisting of a number of operations applied on a number of data. For the above 

reasons, there is a need for systems that can efficiently support the parallel modality 

proposed by the SIMD architectures. SIMD architectures can be categorized 

according to the way the processing elements are configured. There are several 

possible topologies, such as linear array, mesh (fixed topology, augmented, 

reconfigurable), tree, pyramid and hypercube. In general, many simple PEs can be 

used [82],

A linear array will have n PEs with a linear interconnecting path, in which each 

processor can communicate with its neighbours to the right and to the left. A 

controller sends instructions to each PE. Fisher and Highnam [83] have implemented 

the HT in a scan line array processor (SLAP), where Li et al. [84] developed two HT 

algorithms for straight line detection on SIMD architecture. In the first one, the 

image features are assigned to each PE, where the coordinates of the parameter cell 

are addressed simultaneously to every PE by a central controller. If the hypersurface 

generated by the image feature intercepts the cell, the PE sends a vote back to the 

controller. All the votes on the PEs can be summed by the central controller and 

stored for later analysis. In the second algorithm, each PE is assigned to a volume of 

the parameter space and broadcasts the image features. The method selection relies 

on three factors; the number of available PEs in the system, the number of image 

features, and the number of parameter cells. Another parallel architecture was 

developed by Alnuweiri and Kumar [85], which is a combination of an orthogonally 

accessed memory and a linear array structure [24].

Mesh-connected arrays of processors were first proposed nearly 30 years ago for 

parallel image processing. In a mesh-connected SIMD configuration, each processor 

is connected to its nearest neighbour, both up and down, as well as left and right. In 

such as system the processors are arranged in a square lattice, where each PE is 

labelled according to its position in the lattice, and can communicate with its four 

neighbours [24], The regular structure and the simple interconnection topology make
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the mesh well suited for VLSI implementation. However, mesh-connected arrays 

tend to be quite slow when transferring data operation required over long distances. 

As a solution to this problem, a variety of bus systems has been proposed. The static 

nature of these systems does not allow for modification of the processors’ 

communications patterns while the algorithm is executed. Rosenfeld et al. [86] as 

well as Kannari and Chuang [87] have studied various mappings of the HT onto such 

arrays.

In order to overcome the problem caused by the static nature of the bus systems 

mentioned above, researchers have developed alternative bus systems, whose 

configuration can change under program control to suit communication needs 

(reconfigurable). Reconfigurable mesh parallel processing systems can be found on 

[88], [89], [90], [91], [92], [93], [94] and [95]. Other topologies where the HT has 

been implemented are the tree [96], the pyramid [97], [98], [99], [100], and the 

hypercube [101], [102], [103] [172] [176].

2.8.2 MIMD Implementation

Parallel implementation of the HT on MIMD systems can be categorized according 

to the memory organization, which means the way that the image and the transform 

spaces are distributed among the PEs. There are three possible configurations [104]:

a) The global image memory and distributed transform memory: all PEs 

have access to all feature points in the image and each PE computes the 

HT in different segments of the transform space.

b) The distributed image memory and global transform memory: each PE 

has access to a different segment of feature points in the image, and 

computes the HT for the entire transform space.

c) The distributed image memory and distributed transform memory: each 

PE has access to a different segment of feature points in the image, and 

computes the HT for a different segment of the transform space.
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The first configuration causes a serious memory contention. This is caused during 

the accumulation stage of the HT, where the shared parameter space undergoes an 

updating process. In order to avoid that, all the PEs must have access to the same 

entry in image memory simultaneously. In the second configuration, memory 

contention is still present but allows more alternatives of access to image memory 

space. Finally, the third configuration involves quite a large overhead in global 

shifting and summation of data from all parts of the mesh, and as a result, extensive 

data transmission among the processors. The problem can be eliminated using a 

MIMD parallel processor to enable the PEs to access different image memory 

segments concurrently. Memory contention can still occur, though is less likely than 

in the other two configurations.

2.8.3 Dedicated Systems

In this section several dedicated systems which target real-time execution of the HT 

will be presented. The implementation for a dedicated system is based on the short 

execution time and low cost. Such systems can be categorized in the following way; 

1) systolic structure systems, 2) pipeline systems, and 3) other systems.

HT systems with a systolic architecture usually rely on image preprocessing to 

obtain a stream of incoming feature points. The first systolic structures for straight 

line detection based on the HT were introduced by Chuang and Li [105] and Kung 

and Webb [106] in 1985. Later on, more systolic implementations were designed 

[32], [107], and [108],

Another real-time architecture where the HT has been implemented by several 

authors is the pipeline architecture. The implementations grouped in this family 

differ from the systolic ones in the set-up of the PEs. Figure 2.8-3 shows a pipelined 
architecture example. Such systems can be found on [109], [110], and [111]. Other 

pipeline systems are developed to fit in Application Specific Integrated Circuit 

(ASIC) [112] and FPGA implementations. FPGAs have become a competitive 

alternative for high performance digital signal processing applications. Using 

FPGAs, faster and lower cost-designs can be achieved. The HT has been 

implemented in FPGAs by Tagzout et ol. [12] and Cucchiara et al. [13]. As the HT
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implementation in this thesis is based on FPGAs, a more detailed description about 

FPGAs will follow in consequent chapters.

Figure 2.8-3: A Pipelined Architecture for Real Time Measurements |109|

Other specific HT implementations use approaches that can not be classified in any 

specific way. Such an approach is the Content Addressable Memory (CAM) -  based 

HT for straight line detection [113]. The voting process and the peak extraction, 

which compose the HT, are directly executed by CAM. The CAM has sufficient 

parallelism for practical applications and has a double role. It acts as a SIMD type 

PE array that performs highly parallel processing, and also as a memory for a two- 

dimensional HT. Voting is executed in every scanning line, and not in every pixel, as 

other methods have utilized. The CAM based HT implementation can not only 

achieve straight line extractions, but more complex curves and their end-points as 

well [114], [115].

Another system for implementing the HT uses the Co-Ordinate Rotation Digital 

Computer (CORDIC) unit as a basic PE. The CORDIC was developed by Voider 

[116] to solve trigonometric problems that arise in navigation applications. It was 

unified by Walther [117] and it is an iterative procedure to compute magnitude and 

phase or the rotation of a vector in circular, linear and hyperbolic co-ordinate 

systems, described by the parameter m shown in Table 2.8-1.
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Table 2.8-1: The CORDIC Arithmetic Function

m  =  1 m  =  0 111 =  -1

R o ta tio n x  =  x  cos z +  y  sm z =  X x  =  x  cos hz -  y  sin hz

z —  0 y  =  - x  sin z +  y  cos z y  =  y  -  zx y  =  - x  sin hz -  v  cos hz

V e c to rin g x  =  \ ( x ' X =  X X  =  V(x~ -  y 2)

v  —> 0 >

7^C31NIIN z =  z—(v  x ) N II IN 1

Since the CORDIC algorithms require only primitive operations, such as shifts and 

additions, it can be readily used to evaluate trigonometric functions. Figure 2.8-4 

shows the CORDIC arithmetic unit. CORDIC is generally faster than other 

approaches when a hardware multiplier is unavailable, or when the number of gates 

required to implement the functions it supports should be minimized [175], On the 

other hand, when a hardware multiplier is available, lookup-table methods are 

generally faster than CORDIC. Majumdar [118] and Maharatha et al. [117], have 

implemented the HT using the CORDIC unit and they concluded that it can be a 

good candidate for low-power, high performance real-time HT computation.

Rhodes et al. [119] have used the technique of Restructurable VLSI (RVLSI) to 

implement a HT processor. It is based on a wafer-scale integration technology 

containing many add-and-multiply cells. A large area of wafers is filled with 

standard logic cells and the wafers are tested after fabrication to determine which 

cells are functional. All the working cells are connected by fusing or breaking links 

of a metal matrix. The RVLSI approach to wafer-scale integration utilizes a laser to 

“restructure” the silicon circuitry after processing is complete. Using this technique 

manages to implement the HT at frame rates. There are several other dedicated 

systems where the HT is implemented and can be found on [120], [121], [122], 

[123], [124], and [125] [173],
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^  x = x cosa, + y sina,

^  y  = —x since. + y ca&Oj 

Figure 2.8-4: The Elementary CORD1C Arithmetic Unit [ 117|

2.9 Conclusion

A detailed presentation of the HT has been discussed in this chapter, as well as, 

several different methods, applications and architectures were presented. The 

common factor of all those methods is the calculation of the accumulator bins, which 

is the key factor of the HT algorithm. It is worth mentioning that the conclusions and 

solutions which were obtained in this research can be successfully applied to every 

single method and architecture presented above. Detailed application to each method 

will not take place in this thesis, but the basic processing step which is the 

calculation of the SHT, as well as, an efficient implementation of the HT on FPGA’s 
by using logarithmic arithmetic will be presented and discussed in subsequently 

chapters.
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CHAPTER THREE

EDGE DETECTION & DIGITAL 
LOGARITHMS LITERATURE

REVIEW

3.1 Introduction

This chapter provides an overview of the edge detection, as well as the digital 

logarithms. In the next sections a brief description of some traditional edge 

detection methods will be presented and compared, where a method of special 

interest, the Canny method, will be extensively described and all the different 

stages of the Canny edge detection method will be outlined. An introduction to 

digital logarithms will follow. Over the past forty years, several digital 

logarithmic conversion methods and their applications on hardware have been 

examined in the literature and they will be presented in detailed in section 3.4. As 

it can be seen, many improvements have been attempted since the earliest digital 

logarithmic conversion algorithm, where some of the methods are not as 

applicable to hardware implementation as others.

3.2 Introduction to Edge Detection

Edge detection is one of the most commonly used operations in image analysis, 

and there are probably more algorithms in the literature for enhancing and 

detecting edges than any other single subject. The reasons for this are that edges 

are places in the image with strong intensity contrast, and form the outline of an 

object. An edge is the boundary between an object and the background, and 

indicates the boundary between overlapping objects. Edge detection is extremely
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useful in image segmentation, when division of the image into areas 

corresponding to different objects is required. If the edges in an image can be 

identified accurately, all of the objects can be located and basic properties such 

as area, perimeter, and shape can be measured. Representation of an image by its 

edges has a further advantage that the amount of data needed to store the image 

is reduced significantly, while the most of the image information is retained. 

Since computer vision involves the identification and classification of objects in 

an image, edge detection is an essential tool. [16]

A straightforward example of edge detection is illustrated in Figure 3.2-1 [126]. 

The edge enhanced version of the same image (b) has lines outlining the objects. 

Note that there is no way to tell which parts of the image are background and 

which are object; only the boundaries between the regions are identified.

(a) (b)
Figure 3.2-1: Example of Edge Detection, (a) Image on a Grey Background, (b) 

Edge Enhanced Image Showing Only the Outlines of the Objects Using the Canny
Method.

Edge detection is part of a process called segmentation - the identification of 

regions within an image. The regions that may be objects in Figure 3.2-1 have 

been isolated, and further processing may determine what kind of object each 

region represents. While in this example edge detection is merely a step in the 

segmentation process, it is sometimes all that is needed, especially when the 

objects in an image are lines.
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There are a number of possible definitions of an edge, each being applicable in 

various specific circumstances. One of the most common and most general 

definitions is the ideal step edge, illustrated in Figure 3.2-2a. In this one­

dimensional example, the edge is simply a change in grey level occurring at one 

specific location. The greater the change in level the easier is to detect the edge, 

but in the ideal case any level change can be seen quite easily. The first 

complication occurs because of digitization. It is unlikely that the image will be 

sampled in such a way that all of the edges happen to correspond exactly with a 

pixel boundary. Indeed, the change in level may extend across some number of 

pixels (Figure 3.2-2b-d). The actual position of the edge is considered to be the 

centre of the ramp connecting the low grey level to the high one.

The second complication is the ubiquitous problem of noise. Due to a great many 

factors such as light intensity, type of camera and lens, motion, temperature, 

atmospheric effects, dust, and others, it is very unlikely that two pixels that 

correspond to precisely the same grey level in the scene will have the same level 

in the image. Noise is a random effect, and it can be characterized only 

statistically. The result of noise on the image is to produce a random variation in 

level from pixel to pixel, and so the smooth lines and ramps of the ideal edges 

are never encountered in real images [16].

44



Chapter 3 Edge Detection & Digital Logarithms Literature Review
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Figure 3.2-2: Step edges, (a) The Change in Level Occurs Exactly at Pixel 10. (b) The Same 
Level Change as Before, but Over 4 Pixels Centred at Pixel 10. This is a Ram p  Edge, (c) 
Same Level Change but Over 10 Pixels, Centred at 10. (d) A Smaller Change Over 10 
Pixels. The Insert Shows the Way the Image Would Appear, and the Dotted Line Shows 
Where the Image was Sliced to Give the Illustrated Cross-Section [130].

3.3 Edge Detection Methods

Edges can be detected by applying a high pass frequency filter in the Fourier 

domain, or by convolving the image with an appropriate kernel in the spatial 

domain. In practice, edge detection is performed in the spatial domain, because it 

is computationally less expensive and often yields better results. Since edges 

correspond to strong illumination gradients, the derivatives of the image are used 

for calculating the edges [130]. In the next section, the Sobel method will be 

outlined as performs a 2-D spatial gradient measurement on images, uses a pair 

of 3 x 3 convolution masks and is incredibly sensitive to noise in pictures.
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3.3.1 Sobel Method

Edges are detected in a discrete two-dimensional image through first and second 

order derivatives, or gradient. The gradient is determined through a monadic 

process -  each pixel (cell) within an image (vector) is examined with a local 

mask (kernel), that permits the application of a function with that pixel and its 

NxN neighbours, dependent on the mask size. Typical edge detection operations 

can apply two of these masks on the local 3x3 neighbourhood, which are in turn 

used for convolution operations. In the case of the Sobel operation [16], [127], 

two masks are used for each pixel considering x and y coordinates:

■+1 0 - f
+ 2 0 - 2 *A (3.3:1)
+ 1 0 -1

'+1 + 2 + f
0 0 0 *A (3.3:2)

-1 - 2 -1

where A is the source image. Similar techniques such as the Prewitt [128] or the 

Robert [128] edge detector use the same approach below but with different 

masks. The objective here is to use the values of Gx and Gy to produce a gradient 

magnitude, which can be provided by:

| G |= -JGx 2 + Gy2 (3-3:3>

Giving G as the gradient. For faster computation, the following is also 
acceptable:

\G\=\Gx\ + \Gy\ (3.3:4)

The angle of orientation of the edge (relative to the pixel grid) giving rise to the 

spatial gradient is given by:

0 = arctan( Gy / Gx) (3.3:5)
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The values of Gx and Gy are derived from the two masks applied to the image, 

using (3.3:1) for x and (3.3:2) for y. The two components of the gradient are 

conveniently computed and added in a single pass over the input image using the 

pseudo-convolution operator shown below:

Using this kernel, the approximate magnitude is given by equation (3.2:6).

K^i +2 P2 + P3)- (P 7 +2P8 + P9) |‘
| G \= + (3.3:6)

||(/>J +2P<, + P! )-(ii+ 2 /> 4+/>7) |!

This gives the gradient for horizontal and vertical texture, combined, giving the 

complete texture for an image. Members of G can also be vetted by a threshold 

in order to look for edges of specific intensity. This coupled with the 3x3 

neighbourhood of the Sobel operation makes it very sensitive to single points in 

the image, and noise. Figure 3.3-1 shows the output of image under test, when 

the Sobel edge detection method applied to it.

Figure 3.3-1: Sobel Output
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3.3.2 Canny Method

The Canny edge detection algorithm [8] is used by many researchers, because it 

produces sharp and thin edges. It extends the Sobel method by incorporating 

additional steps before and after the derivation of gradient from the masks. It 

works in a multi-stage process. Canny edge detection uses linear filtering with a 

Gaussian kernel [ 129] to smooth noise and then computes the edge strength and 

direction for each pixel in the smoothed image. This is achieved by 

differentiating the image into two orthogonal directions and computing the 

gradient magnitude as the root sum of the squares of the derivatives. The gradient 

direction is computed using the arctangent of the ratio of the derivatives. 

Candidate edge pixels are identified as the pixels that survive a thinning process, 

called non-maximal suppression. In this process, the edge strength of each 

candidate edge pixel is set to zero if its edge strength is not larger than the edge 

strength of the two adjacent pixels in the gradient direction. Thresholding is then 

taking place on the thinned edge magnitude image using hysteresis. In hysteresis, 

two edge strength thresholds are used. All candidate edge pixels values below the 

lower threshold are labelled as non-edges and the pixels values above the high 

threshold are considered as definite edges. All pixels above the low threshold 

that can be connected to any pixel above the high threshold through a chain are 

labelled as edge pixels. The schematic of the Canny edge detection is shown in 

Figure 3.3-2 [130], [131], and [132],
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Figure 3.3-2: Schematic of Canny Edge Detection

3.3.2.1 Smoothing

The Gaussian distribution in 1-D has the form:

1 zfl
G{x) = - = - e  2^

where a is the standard deviation of the distribution. 

In 2-D, a circularly symmetric Gaussian has the form:
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G(x,y)
2n<j'

-(P+L)
2 er1

The idea of Gaussian convolution is to use this 2-D distribution as a point spread 

function, and this is achieved by convolution, since the image is stored as a 

collection of discrete pixels. A discrete approximation to the Gaussian function is 

required to perform the convolution. In theory, the Gaussian distribution is non­

zero everywhere, which would require an infinitely large convolution kernel, but 

in practice it is affectively zero more than about three standard deviations from 

the mean, and so the convolution kernel is truncated. The convolution kernels 

which have been used for smoothing in this thesis are shown in section 3.5-1 

later on in this chapter. The effect of Gaussian convolution is to blur the image, 

where the degree of smoothing is determined by the standard deviation of the 

Gaussian.

3.3.2.2 Gradient Calculation

The next step after smoothing the image and eliminating the noise is to find the 

edge strength by taking the gradient of the image. Most of the edge detection 

methods assume that an edge occurs where there is discontinuity in the intensity 

function or a steep intensity gradient in the image as shown in Figure 3.2-2.

Most edge-detecting operators can be thought as gradient-calculators. As the 

gradient is a continuous-function concept and images are discrete functions, 

approximation of the gradient is required. Since derivatives are linear and shift- 

invariant, gradient calculation is most often done using convolution. Several 

kernels have been proposed for finding edges such as: Robert kernel, Prewitt 

kernel and Sobel kernel [131].

Due to the Prewitt kernels (Figure 3.3-3) usage of the central difference between 

rows for horizontal gradient and central difference between columns for vertical 

gradient, they were chosen as the appropriate kernels in this thesis for calculating 

the horizontal and vertical gradients.
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Figure 3.3-3: Prewitt Kernels [ 131 ]

3.3.2.3 Magnitude and Phase

Convolution of the image with horizontal and vertical gradients produces 

horizontal gradient (dx) and vertical gradient (dy) respectively. As shown 

previously, in equation 3.2:3, the absolute gradient magnitude |G| is calculated by 

the mean square root of the horizontal (dx) and vertical (dy) gradients. In order to 

reduce the computational cost of magnitude, it is often approximated with the 

absolute sum of the horizontal and vertical gradients (equation 3.2:4). The 

direction of the gradient is calculated by arctangent of the vertical gradient to the 

horizontal (equation 3.3:5).

3.3.2.4 Non-Maximum Suppression

As the magnitude and the direction have been obtained from the previous stage, a 

threshold operation can be applied in the gradient-based method, in a result of 

finding the ridges of edge pixels. Then, the edge strength of each candidate edge 

pixel is set to zero if its edge strength is not larger than the edge strength of the 

two adjacent pixels in the gradient direction. This operation is called thinning.

3.3.2.5 Threshold

The final step of the Canny process is the thresholding by hysteresis. With 

thresholding, a further elimination of broken edge contours, or single edge points 

which contribute to noise can be achieved. Such contours or pixels can be 

contained in the output image of the non-maximum suppression. Two thresholds
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are required for hysteresis, one high threshold and one low. If the gradient of the 

edge pixel is above the high threshold (Th), it is considered as an edge pixel. If 

the gradient of the edge pixel is below the low threshold (Tl), then it is set to 

zero. If the gradient is between these two, then is set to zero unless there is a path 

from this pixel to a pixel with a gradient above Th. Pixels with gradients of at 

least Tl are a prerequisite for that path.

3.4 Introduction to Digital Logarithms

The use of logarithms for arithmetic, and their applications in hardware, has been 

extensively examined in the academic literature over the past forty years. The 

methods proposed in the early papers of this research were limited by the 

technology. The pioneer of the logarithmic multiplication and division use in 

hardware was Mitchell in 1962 [147], Even though technology has developed 

drastically throughout this period, even the more recent publications described 

here refer back to Mitchell’s [147] influential paper. As technology progresses, 

more advanced solutions based on the principles of Mitchell [147] and other 

more recent publications, have become possible. The following sections will 

outline, and critically evaluate key published work from the decades leading up 

to the present methods. The development of the techniques used for hardware 

implementations of logarithms throughout the decades will also be reviewed.

3.4.1 Digital Logarithms Methods

Previously to Mitchell's paper [147], on-chip memory resources restricted the 

implementations on hardware, and did not allow for logarithms to be stored in 

Look-Up-Tables (LUTs). Mitchell, effectively recognised the task of performing 

multiplication and division, where shift and add functions were utilized. 

Therefore, logarithms were utilized to simplify these functions to faster and 

smaller add and subtract ones, as described in the previous section. It was, 

nevertheless, also recognised that the calculation of logarithms may require more 

time and resources (to reduce errors) than multiplication and division. For this 

reason, his paper proposed a method of approximating logarithms, where the
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advantages of its simplicity would counteract the disadvantages of the errors. In 

addition, a method for reducing errors caused by approximation was also 

proposed.

The method of approximation proposed takes n-1 as the characteristic of the 

logarithm where there are n bits in the integral part of the linear number X, and 

the mantissa is approximated to 5-1, where 5 is obtained by shifting the binary 

value X so that it lies between 1 and 2. As shown Figure 3.4-1, this is a straight 

line approximation of the log2(5). Therefore, due to the limited size of memory 

resources available, the lack of LUTs made the aforementioned method an 

attractive solution.

Figure 3.4-1: Mitchell’s Approximation [ 147]

The errors were analysed for multiplication and division, as well as for the 

logarithms. For the error in the logarithm, the absolute maximum digital error 

was 0.08639, or 13.67%. The maximum possible error in multiplication was - 

11.1%. and the maximum possible error with division was 12.5%.

A method for reducing the multiply error was, therefore, proposed. By adding 

error correction operations, the multiply error can be reduced to a maximum of 

2.8%. This can be further reduced by adding more operations. However, the
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author notes that the additional complexity may make the logarithmic 

multiplication impractical compared to the shift-and-add method.

A similar solution for division, however, was not found, although one alternative 

possible solution was suggested; the use of an LUT to store correction factors for 

various intervals of S, but the comparison and memory look-up may render this 

solution slower than the conventional shift-and-add division.

Looking at other, more current papers, it becomes obvious that Mitchell paved a 

very influential way for further development of logarithm conversions and 

arithmetic on hardware. The solutions proposed were very practical at the time 

due to the high speed and low resource requirements. Nevertheless, there was 

still much room for improvement with regard to the accuracy and use of 

technology, as it became more readily available.

Combet et al, [148] based on Mitchell [147], proposes a method of trading an 

increase in hardware and decrease in speed for higher accuracy, improving on 

Mitchell’s error by a factor of 6. Their proposed solution segments the Mitchell 

approximation to numerous straight lines (R ') in order to reduce the error. The 

segments intersect the curve at various points, interpolated with straight lines 

between them. The authors further suggested that, by adding more segments, the 

accuracy will increase, but at the cost of hardware and speed performance.

The following expressions were suggested from trial and error, as a four point 

approximation of the logarithmic curve. Again, the integer is found in the same 

manner as previously described for Mitchell’s algorithm.

R'(1 + S) = S + —  S For 0 < S < — 
4

R'(\ + S) = S + —  S 
64

For -  < S < -  
4 2

R'(l + S) = S + - S  + —  
8 128

For -  < 5 < -  
2 4

4
For -  < S < 1 

4
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By using rational denominators, these approximations allow for efficient 

hardware implementation, although at the expense of accuracy. Their system 

uses counting and shifting as before, but also binary decision-making to add to 

the complexity. The hardware implementation was also detailed in their paper. 

This was improved and expanded by [149], [150],

Dean, [151] proposed a solution similar to that of the aforementioned authors, the 

plot of which is show in Figure 3.4-2. In this case, two lines are used to 

approximate the logarithmic curve, and they are intersecting at S = 1.5 and y  = 

log2(S) = 0.625. This consequently reduces the error compared with [148] by 

using closer approximations. The equations for the lines are given by 

5 5 3 1y = —S —  and v = — S — . Again these are all based on rational numbers, and
7 4 4 4 2

can, therefore, easily be implemented on binary logic-based hardware.

To further reduce the error, a three line approximation is also proposed with 

intersections at S=  1.25 and S=  1.75, or S = 1.3125 and S=  0.875 to simplify the 

logic. This reduces the error to less than 1%.

Figure 3.4-2: Two-Part Logarithm Approximation [151]
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A new method, not based on Mitchell’s algorithm, was proposed for evaluating 

the logarithm (base 2) of a binary number by Philo [152], This method utilizes 

an iterative algorithm, where the number is squared and divided by two, as 

shown in (3.4:1).

f S? if  S f  < 2 (b, =0) (3'4:1)
i+1 jo.5S} if  S f  > 2  (b, = b

Where log2 X l = 0.b{b2b3... = \og2(2^2) + b2 log2(2^) + b3 log2(2/^) + ...

The number to be converted is shifted to give the integer of the logarithm. 

Therefore, the resulting fraction S where 1 <S<2, is converted.

This procedure generates results with about 17 bits of accuracy. Nevertheless, 

the successive evaluation of the square of the number negates any possible 

benefits of using this method for multiplication or squaring, as this is involved in 

the method itself. The same solution was also proposed at the same time by K. J. 

Dean [153], [154], Other notable papers using logarithmic arithmetic are [155], 

[156],

Abed and Siferd, [157] presented two implementations for logarithm 

conversions. Both implementations are based on Mitchell’s algorithms [147], 

but instead use only combinational logic and can produce the results in a single 

clock cycle. Although initially implemented for CMOS VLSI, the structures and 

Leading One Detector (LOD) are of interest to this thesis.

Previously suggested LODs [147], [148], [158]], although unable to be 

implemented at high speed, do provide reasonable results for word lengths above 

eight bits. The purpose of the LOD suggested in their paper [157] was to 

overcome this caveat, and be able to handle both small and large word sizes with 

speed and efficiency. Previous implementations used either shifting and 

counting, or bit-by-bit serial evaluation. Therefore, Abed and Siferd (2000) 

suggested a cross between previously unexplored parallel evaluation, and serial 

evaluation. The small LOD as shown in 3.4-3 is used as a building block for 

larger LODs as shown in 3.4-4.
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Figure 3.4-3: A 4-bit Leading One Detector |157|
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Figure 3.4-4: A 16-bit Leading One Detector [ 157]

The LOD uses simple logic in a repetitive and modular structure, thus making the 

LOD particularly suitable for VLSI implementation. The large LOD may be 

preceded or followed by D Flip-Flops. The output will be the same length as the 

original input, but only the most significant bit will be displayed on the output. 

An n by log2 (n) ROM look-up-table can be, then, used to convert the output to a 

binary number representing the position of the most significant one.

In concurrence with Mitchell’s algorithm, the characteristic of the logarithm will 

consist of the result of the ROM, while the mantissa will consist of the shifted 

original binary value. Although the errors were not analysed in this case, by 

implementing Mitchell’s algorithm, the authors suggested that this will only be
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appropriate where errors are acceptable. Nevertheless, the positive aspect of the 

LOD is that it requires small hardware and makes the conversion fast and 

efficient.

As on-chip hardware resources have become larger, faster and more copious in 

recent FPGA devices, this paper presents a new, efficient and rational conversion 

method. Although Lee [3] shows an implementation of the Discrete Cosine 

Transform (DCT) and its inverse (IDCT), his Hybrid-Logarithm method clearly 

indicates how such transforms can be made with efficient hardware and 

conversion techniques.

In this proposed solution, an LUT is used for the conversion of the fractional 

parts of the fixed-point and logarithmic binary numbers for conversion. An LUT 

for linear to logarithm conversion, combined with barrel shifters and simple 

logic, can make full logarithmic conversion a possibility. Due to most images 

being encoded with few bits (8 or 10) the LUT is able maintain its small size. As 

stated in [159], the use of binary logarithm or hybrid-logarithm arithmetic at this 

level of precision can be an effective alternative to normal binary arithmetic, thus 

requiring less hardware and less power. The technique of logarithmic conversion 

used in Lee (2005) will be described and presented in detail in Chapter 6 of this 

thesis.

By applying hybrid-logarithms to the DCT and IDCT, results indicate that the 

reduction in resulting image quality compared to the fixed-point implementation 

was minimal, despite the simplified hardware. To illustrate the differences in 

images produced, Lee (2005) multiplied the difference in pixel values by a factor 

of 10 for 4-bit fractional implementation, and by 20 for the 6-bit implementation. 

As the author notes, there was no qualitative difference in the resultant images 

for 8 bits.

Lee's paper, clearly demonstrates the state-of-art implementation of logarithmic 

conversion and filtering for low bit-width, in image processing systems using 

available FPGA technology. For the 8-bit implementation, 2K bits were required 

for the LUT which can easily be implemented on block RAM on FPGAs, and
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128 bits for the 4-bit version requiring a modicum of distributed RAM resources

[ 10].

The above algorithms may be classified by their relative simplicity of 

implementation and the limited accuracy they achieve (up to 12 bits). However, 

the achievable accuracy is sufficient for a number of important applications, 

including the implementation of the HT using LSN. For that reason the examples 

which are presented in Chapter 6, section 6.3.2 are based in such algorithms. In 

addition, there are algorithms that achieve a significant improvement in accuracy 

(>12 bits), but require significantly more memory to store the approximation 

coefficients and, in most cases, also a multiplier. A method for implementing this 

linear interpolation is introduced by Fang-Shi et al [2], There are also more 

accurate methods available, such as the polynomial approximations where three 

multipliers are required, however, these methods far exceed the needs for the 

implementation of the HT and will not be the focus of this thesis.

Fang-Shi et al. outlined the design and hardware implementation of a hybrid- 

logarithmic number system (LNS) arithmetic processor. This processor can 

perform multiplication, division, square and square roots. All input and output 

values, as well as addition and multiplication arithmetic are performed in the 

standard 32-bit IEEE floating-point number system. As demonstrated in 

previous sections of this chapter, [5.1] the said arithmetic operations are simple 

to implement with the LNS. Addition and subtraction, however, are far more 

complicated.

Interesting new architectures were devised and described in order to assist with a 

need for large word length linear and logarithmic conversions. It has been noted 
in the literature that converters purely based on ROM look-up-tables (LUTs) for 

conversion [138, 139] have limited word-length due to restricted silicon area. 

Furthermore, shift-and-add-based conversion algorithms [148] result in large 

errors. For these reasons, these algorithms are incompatible with the standard 

32-bit floating-point format.
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The floating point representation is x = ( - l ) '( l  + 0.M)2/: B . Based on this 

equation, the logarithm of a floating point number can be represented by (3.4:2), 

where again M  is the mantissa, E is the exponent, B is the bias (-127 for single 

precision). The sign bit is not taken into account, as only the magnitude is 

converted.

x'= £,- 5  + log2(l + y) (3.4:2)

For simplicity of notation, y  = O.M It can be seen from (3.4:2) that the biased 

exponent does not change. As log2 (1 +y) can be approximated to y, the mantissa 

can also does not change. This approximation will be exact only when y = 0 or 

1; anywhere between, and there will be errors that can cause a significant impact 

in arithmetic operations. Hence, an error correction value (Ey) is added to y  to 

improve the accuracy. These error correction values are stored in 2048 locations 

in an LUT. This LUT is addressed from the most significant 11 bits of y  (y,), and 

returns the correction value to be added. The correction gives an accurate 

approximation of log2 (1+y) at these 2048 points, but between them, significant 

errors still occur.

The approximation can be further enhanced by linearly interpolating the 2048 

values. The LUT also gives the correction value difference (AEy), which is 

multiplied by the least significant 12 bits of y (y2), to implement this 

interpolation. This together gives an accurate conversion according to the 

equation shown in (3.4:3). The architecture is shown in Figure 3.4-5(a) for the 

floating-point to LNS converter.

log2(l + y) « y  + Ey ± AEy x y 2 (3.4:3)
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(a) (b)

Figure 3.4-5: Floating-Point / Logarithm Converter [2]

As seen in 3.4-5(b), the LNS to floating-point converter is implemented the same 

way. This generates a simple and accurate conversion between floating-point 

and logarithms. The arithmetic processor described above, gave performance 

ratios of 6.4:1 for division, 8:1 for square root, and 2:1 for the FFT calculation 

over floating point equivalents. This is useful for arithmetic using wide bit- 

widths (number of bits used to represent a value), but it would be ineffective to 

use this for multiplication (addition in the logarithmic domain) for bit-widths of 

less than 12 bits, as a 12x12 bit multiplier is used in each conversion. The 

aforementioned shows interesting error correction and logarithmic conversion 

techniques, particularly useful to floating point. It may be possible for aspects of 

the error correction to be applied to fixed-point binary representation if need be. 

With fixed-point binary, a conversion of the integer to the characteristic and 

normalisation (S) will still be necessary [10].

3.5 Conclusion

In this chapter, an introduction to edge detection and a comparison between 

traditional edge detection methods was presented. The Canny edge detection 

method was extensively outlined. Canny extends the Sobel method by 

incorporating additional steps before and after the derivation of gradient from the 

masks. As it works in a multi-stage process, all the different stages which are 

involved for the implementation of it were presented.

This chapter has also outlined influential past literature on logarithmic arithmetic 

hardware implementation. Many improvements have been attempted since the
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earliest breakthrough algorithm, as well as entirely new methods of logarithmic 

arithmetic and hardware implementation. Some of these methods, although 

interesting and informative, are not as applicable to hardware implementation as 

others. The Hybrid-LNS method by Lee [3] is the state-of-art implementation of 

logarithmic conversion, and it is the method that it will be used for implementing 

the HT on FPGA's. Even that Hybrid-LNS has a limited accuracy (up to 12 bits), 

it is sufficient enough for a number of applications, including the implementation 

of the HT.
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CHAPTER FOUR

IMPLEMENTATION OF THE 
CANNY EDGE DETECTION 

METHOD

4.1 Introduction

This chapter provides a detailed hardware implementation of the Canny edge 

detection, and a novel moving window operator, which forms the basic 

implementation of the Canny algorithm. A comparison between software and a 

hardware version of the Canny method, using either floating point arithmetic or 

fixed point arithmetic will take place. The results will be presented in sections 

4.5 and a description of the synchronization circuit in section 4.6. A summary 

and conclusion is presented in section 4.7.

4.2 Hardware Implementation

Each stage of the Canny algorithm will be examined separately, and the overall 

performance of the algorithm will be discussed. The total amount of the 

hardware recourses occupied will be shown, as well as, a flexible LUT based 

synchronising circuit for 2-D imaging filters of variable dimensions.

4.2.1 Moving Window Operator

The moving window operator usually processes one pixel of the image at a time, 

changing its value by some function of a local region of pixels (covered by the 

window). The operator moves over the image to process all the pixels in the
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image. A 3x3 moving window is used for the Gaussian smoothing filter 

operation and an example of the window operator is shown in Figure 4.2-1 for a 

5x5 image. For the pipelined implementation of image processing algorithms all 

the pixels in the moving window operator must be accessed at the same time for 

every clock. In order to access all the pixels in a moving window system, a 

design was devised that took advantage of certain features of FPGAs. The First 

In First Out (FIFO) buffers are used to create the effect of moving an entire 

window of pixels through the memory for every clock cycle. A FIFO consists of 

a block of memory and shift registers that manages the traffic of data to and from 

the FIFO. The data are sent through the camera straight away, where this allows 

a throughput of one pixel per clock cycle.

For a 3x3 moving window two FIFO buffers are used. The size of the FIFO 

buffer is given as W-3, where W is the width of the image. To access all the 

values of the window for every clock cycle the two FIFO buffers must be full. 

Figure 4.2-2 shows the architecture of the 3x3 moving window. For every clock 

cycle, a pixel is read from the camera and placed into the bottom left comer 

location of the window.
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Case 1 Case 2 Case 3
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W oo W „ , W „2
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W 20 w 2 , W 22 p  ,3 P 14
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P 40 P 41 P 42 P 43 P 44
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W 2o W 21 W 22 P 12 P ,3 P 14

P 20 P 2 , P 22 P 23 P 24

P 30 P 31 P 32 P 33 P 34
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Case 4 Case 5 Case 6
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P 40 P 41 P 42 P 43 P 44
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W 20 W 2, W 22 P 22 P 23 P 24
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Case 7 Case 8 Case 9

Figure 4.2-1: Example of the Window Operator in a 5x5 Image
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Figure 4.2-2: Architecture of a 3x3 Window [ 130]

The contents of the window are shifted to the right, with the rightmost member 

being added to the tail of the FIFO. The top right pixel is displayed after the 

computation on the pixels is completed, since it is not used in future 

computation.

4.3 Canny Hardware Implementation

The Canny edge detection operation consists of four main stages, as it can be 

seen in Figure 3.3-2 in Chapter 3 Section 3.3.2. First is the image smoothing, 

followed by the horizontal and vertical gradient calculation stage. Then, the 

directional non-maximum suppression stage occurs, where the threshold and 

thinning stage completes the operation.

4.3.1 Image Smoothing

The Canny edge detector first requires convolution with 2-D Gaussian, and then 

with the derivative of a Gaussian. Since Gaussian filter is separable, for 

smoothing, we can use two 1-D convolutions in order to achieve the effect of 

convolving with 2-D Gaussian. In addition, saving a number of multipliers is 

achieved. The convolution is operating along rows and then columns.

The one of the two 1-D filters consists of a 3x1 kernel, where the second consists 

of a 1x3 kernel respectively. The 2-D filter required for the derivative of the
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Gaussian consists of a 3x3 kernel. The coefficient values of the filters are shown 

in Figure 4.3-1 and are defined using an 8-bit fixed point resolution.

22 163 22

a

22

163

22

b

6 0 -6

44 0 -44

6 0 -6

c
Figure 4.3-1 : Filter Coefficients a) 1-D Across Rows b) 1-D Across Columns c) 2-D Filter

As a 3x3 moving window operator is used, two FIFO buffers are employed to 

access all the pixels in the 3x3 window at the same time. Since the design is 

pipelined, the Gaussian smoothing starts once the two FIFO’s buffers are full. 

That is, the output is produced after a latency of twice the width of the image 

plus two (2*width +2) cycles. The output of this stage is given as input to the 

horizontal and vertical gradient calculation stage.

4.3.2 Horizontal and Vertical Gradient Calculation

This stage calculates the vertical and horizontal gradients using the 3x3 Prewitt 

convolution kernels shown in Figure 3.3-3 in Chapter 3 Section 3.3.2.2. An 8-bit 

pixel in row order of the image produced during every clock cycle in the image 

smoothing stage is used as the input in this stage. Since 3x3 convolution kernels 

are used to calculate the gradients, neighboring eight pixels are required to 

calculate the gradient of the center pixel and the output pixel produced in 

previous stage is a pixel in row order. In order to access eight neighboring pixels 

in a single clock cycle, two FIFO buffers are employed to store the output pixels 

of the previous stage. The gradient calculation introduces negative numbers. In 

hardware programming languages, negative numbers can be handled easily by 

using signed data types. Signed data means that a negative number is interpreted 

as the 2’s complement of number. In this design, an extra bit is used for signed 

numbers as compared to unsigned 8 bit numbers i.e. 9 bits are used to represent a 

gradient output instead of 8. Two gradient values are calculated for each pixel, 

one for vertical and other for horizontal. The 9 bits of vertical gradient and the 9
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bits of the horizontal gradient are concatenated to produce 18 bits. Since the 

whole design is pipelined, an 18 bit number is generated during every clock 

cycle, which forms the input to the next stage (see Figure 4.4-1 on page 73).

4.3.3 Directional Non-Maximum Suppression

The aim of maximum suppression is to determine the position of local maxima in 

the image as a first step in finding edges in the image. The local maxima is found 

by measuring changes in the gradient at each pixel in the image or region of 

interest.

The values of each component of the gradient obtained from the previous stage 

are used to get the magnitude and direction. The direction of the gradient is 

calculated mathematically as the arctangent of the vertical gradient component 

over the horizontal gradient component [130].

direction = arctan( — )
dx

(4 .3 :1 )

Since arctangent is a very complex function and also requires floating point 

numbers, it is inefficient to implement such functions on FPGA. Instead, the 

value and sign of the components of the gradient is analyzed to calculate the 

direction of the gradient. If the current pixel is Vxy and the values of the 

derivatives at that pixel are dx and dy, the direction of the gradient at P can be 

approximated to one of the sectors shown in the Figure 4.3-2.

Once the direction of the gradient is known, the values of the pixels found in the 

neighborhood of the pixel under analysis are interpolated. The pixel that has no 

local maximum gradient magnitude is eliminated. The comparison is made 

between the actual pixel and its neighbors, along the direction of the gradient, 

and for that reason a moving 3x3 window is used across the image.
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90°

180° 0°

Figure 4.3-2: Gradient Orientation

To remove the possibility of spurious edges being detected the border pixels in 

the image are not included in the calculation. The purpose of this stage of the 

edge detection algorithm is to determine pixels that represent the maximum 

gradient in a localised part of the image. The calculation is based on the work 

described in [155]. This uses a method to determine the gradient in a 3x3 image 

window as shown in Figure 4.3-3.

The Matlab® implementation for the magnitude of each pixel in this calculation 

is defined by

This is a complex function to evaluate in hardware, requiring both a squaring and 

a square-root circuit. Instead a low complexity alternative is used.

(4 .3 :2 )

(4 .3 :3 )
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So, if the gradient of the image passing through the regions Pa and Ph, the 

gradient at Pxy is compared with the magnitude of the gradient at adjacent points 

where Pxy = \dxx y\ + \dyx y\.

p*-i,y-i

Px-l,y

P x-l,y*l

Figure 4.3-3: Pixel Interpolation

The values of the gradient at the point Pa and Pb are defined as follows: 

p  + p
P ^ r ± ---- where

2
Px+\.y-x =  |£* W i | +  | 4 > W i | =\dxx+ly\ + \dyx+ly\

P + P=W .  + 'V-u where 
* 2

Px-yy+x = K - i ,y+i| + K - i .^ i | and Px_Xy = \dxjly\ + \dyx̂ y\

The algorithm defines an edge when both Px y > Pa and Px y > Ph are satisfied.

Otherwise the pixel is eliminated (set to zero) before it is passed on to the next 

stage of the algorithm.

The output produced in the previous stage is an 18 bit number, first nine bits are 

horizontal gradient and other nine bits are vertical gradient. In order to access all 

the pixels in the 3x3 window at the same time two eighteen bit FIFO buffers of 

width of the image minus three array size are employed. To calculate the phase 

and magnitude at every pixel the horizontal and vertical gradient values derived
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from the eighteen bit number are used. The output produced in this stage is given 

as input to the threshold stage.

4.3.4 Threshold and Thinning

The output image of the non-maximum suppression stage may consist of broken 

edge contours or single edge points which contribute to noise. This can be 

eliminated by thresholding. In this algorithm the thresholds are calculated in the 

previous frame using a histogram or by an external register.To get thin edges two 

thresholds are used, Threshold» and Threshold^

The thresholding algorithm [130] is used to separate the pixels in the image into 

3 regions before being passed to a simple thinning algorithm. The first region is 

the Off or zero pixels (encoded as 00) and that occur when the gradient of the 

pixel is less than ThresholdL The second region is the On or one pixels (encoded 

11) and occur when the gradient of the pixel is greater than Threshold». Finally 

the third region is the weak pixels (encoded 01) and it is occur when ThresholdL 

< |Px,y| < Threshold». In this case it is set to zero unless there is a path from this 

pixel to a pixel with a gradient above Threshold» The path must be entirely 

through pixels with gradients of at least ThresholdL.

To get the connected path from the weak edge pixel, a 3x3 window operator is 

used. If the center pixel is a weak pixel and any of the neighbors is an On or one 

pixel, then the weak pixel is considered as On or one pixel.

After the completion of the thresholding process a thinning algorithm [130] is 

used, which is based on a simple morphological algorithm. It is aims at turning 

the 2-bit image into a simple 1-bit (binary) image which is then used as the input 

into the Hough transform itself.

71



Chapter 4 Implementation of the Canny Edge Detection Method

4.4 Hardware Architecture

After the description of the individual stages of the Canny algorithm, the 

connection of each of the Canny elements in hardware was implemented. Figure 

4.4-1 shows the pre-processing chain used for performing edge detection using 

the Canny algorithm. The performance of the algorithm is strongly dependent on 

the complexity with which these pre-processing elements are implemented and 

the size of the windows used.

4.5 Results Using the Canny Algorithm

Simulation of the results for the proposed implementation had been made on 

Matlab®. Four different implementations were designed for software and 

hardware routines. Floating point arithmetic, as well as fixed point arithmetic 

using 8-bits of precision was used and comparisons between the implementations 

were made. Each original image is 1024 x 1024 pixels, 8 bits per pixel and 

greyscale. The following section shows the results obtained, after implementing 

the canny algorithm in software, as well as in hardware.
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Figure 4.4-1: Canny Algorithm Block Diagram
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4.5.1 Software Version of Canny Algorithm Using Floating 
Point Arithmetic

The first set of results can be seen in Figure 4.5-1, and were obtained using 

Matlab® with floating point arithmetic. Each image shows the output obtained 

from the different stages numbered 1 to 5 in the block diagram in Figure 4.4-1.

Figure 4.5-1: Software Implementation Using Floating Point Arithmetic
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5

Figure 4.5-1: Software Implementation Using Floating Point Arithmetic

As it can be seen, the binarized output image (Figure4.4-1:5) shows the sharp 

and thin edges produced by using the canny edge detection algorithm, and also 

verify why the canny edge detection algorithm is quite successful among others.

4.5.2 Software Version of Canny Algorithm Using Fixed Point 
Arithmetic
Figure 4.5-2 shows the results obtained using Matlab® with 8-bits fixed point 

arithmetic. Once again, each image shows the output obtained from the different 

stages numbered 1 to 5 in the block diagram in Figure 4.4-1.

1 2
Figure 4.5-2: Software Implementation Using 8-bits Fixed Point Arithmetic
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5

Figure 4.5-2: Software Implementation Using 8-bits Fixed Point Arithmetic

Even with fixed point arithmetic, it can be seen that the output of the image 

under test is very similar to the one using floating point. The difference between 

floating point and fixed point arithmetic was also investigated and the result is 

shown in Figure 4.5-3. In terms of pixel difference it was found that the two 

versions differ by 53152 pixels (=5.1%), out of 1048576 total pixels (1024 x 

1024).
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4.5.3 Hardware Version of Canny Algorithm Using Floating 
Point Arithmetic

A hardware version of the Canny edge detection was designed and tested, using 

floating point arithmetic and the results are shown in Figure 4.5-4. The 

magnitude calculation, as well as, the implementation of the directional non­

maximum suppression is the main differences between the software versions. 

Each image shows the output obtained from the different stages numbered 1 to 5 

in the block diagram in Figure 4.4-1.

1 2
Figure 4.5-4: Hardware Implementation Using Floating Point Arithmetic
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3 4

5

Figure 4.5-4: Hardware Implementation Using Floating Point Arithmetic

A sharp and thin edge output was produced (Figure 4.5-4:5) using the hardware 

version proving the success of the edge detection design. An investigation was 

made between the software version using floating point and the hardware, and 

the results are shown in Figure 4.5-5.
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Figure 4.5-5: Difference Between Software Version Using Floating Point and Hardware.

In terms of pixel difference it was found that the two versions differ by 23856 

pixels (~2.28%), out of 1048576 total pixels (1024 x 1024).

4.5.4 Hardware Version of Canny Algorithm Using Fixed Point 
Arithmetic

The final set of results was obtained using the hardware version of the canny 

algorithm using 8-bits fixed point arithmetic and can be seen in Figure 4.5-6. 

Each image shows the output obtained from the different stages numbered 1 to 5 

in the block diagram in Figure 4.5-1.

1 2
Figure 4.5-6: Hardware Implementation Using 8-bit Fixed Point Arithmetic

79



Chapter 4 Implementation of the Canny Edge Detection Method

5

Figure 4.5-6: Hardware Implementation Using 8-bit Fixed Point Arithmetic

Even with fixed point arithmetic, it can be seen that a satisfactory output was 

obtained. The difference between the hardware fixed point and the software 

floating point arithmetic was also investigated and the result is shown in Figure 

4.5-7. In terms of pixel difference it was found that the two versions differ by 

24742 pixels (~2.36%), out of 1048576 total pixels (1024 x 1024).
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Figure 4.5-7: Difference Between Hardware Version Using Fixed Point and Software 

Version Using Floating Point Arithmetic.

After the simulation of the hardware version using Modelsim, where 8-bit fixed 

point arithmetic was used, for the Canny edge detection algorithm, the number of 

logic requirements was calculated and the results are shown in Table 4.5-1.

As the table shows, for a 1024 x 1024 image, 1204 CLB’s and 30 18x18 

multipliers required. Assuming that the implementation is on a Virtex-4 series 

FPGA, where the maximum number of slices is 89088 (Chapter 5), the 

implementation of the canny edge detection occupies only ~ 5.41%.
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Table 4.5-1: Logic Calculations for the Canny Edge Detector

G auss
X

G auss
Y

DG auss
X D G aussY

M ax
Suppression

Threshold Thin T otal

Row
Memory 0

1024
x 2 x 

8

1024 x
2 x 8 N/A 1024x 3 x8 N/A

1024 
x 3 x 

2

1024
X

62/16

3968
Slices

Multipliers 3 9 9 9 N/A N/A N/A

30 
18 x 
18

Mults

Adders 2 X 
17

4x  17
+

2x  18
+

1 x 19

4x  17 + 
2x  18 + 
1 x 19

4x  17 + 
2x  18 + 
2x  18 + 

1 x 19

8 N/A N/A
447 

= 447 
Slices

Comparators 0 0 0 0 8 x 8 2 x 8 1x8
88 

= 88 
Slices

Logic slices 10 15 12 12 N/A 4 2 55
Slices

Sync
Circuits 0 1 1 N/A 1 0 1

4x  12 
= 48 
Slices

FF’s 2 x 8  
2 x 1

2x  18
2 x 1 
2 x 1 
8 x 2

9 x 8
2 x 8
4x1

9 x 8
2 x 8
4x1

9 x 8
8 x 8

8
2 x 2 9 x 2 424 

= 212 
Slices

Total Logic

4818
Slices/
1204

CLB’s
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4.6 A Synchronizing Circuit [133]

Extraction of edges in an image using the canny algorithm prior to the HT 

require a number of pre-processing steps to remove noise from the captured 

image or to accentuate features in the image prior to the image extraction, 

measurement or object recognition algorithms.

For many real-time applications this pre-processing is performed by convolving 

the image with simple 2D windowing functions having dimensions of 3x3, 5x5, 

7x7 or even 9x9 pixels. This type of processing requires row memories to store 

the data prior to processing it with the windowing function. As a consequence 

there is a latency (usually of a number of rows) before the output of the 

windowing function is ready to be used as the input to the next windowing 

function which, in turn, has its own latency. The increasing processing power 

and memory available on modern FPGAs is now making it possible to use larger 

windows and this leads to an increase in the latency between each stage of the 

pre-processing cascade. The filtering operations being performed by the 

windowing function itself also incur an additional latency. This is strongly 

dependent on the filter architecture chosen and the implementation technology 

used. This combined latency of the windowing function and the signal processing 

time itself (also called the pipeline) will vary depending on the requirements of 

the application and the length of the cascade being implemented.

Although it is a simple problem to calculate the delay through each part of the 

cascade it can be time consuming at the design stage to test and verify that the 
correct delays have been added to the logic controlling the timing of each 

element in the cascade. One solution is to use a global timing controller with 

decoders used for each stage of the processing chain. Although simple in 

principle, this approach becomes increasingly complex with the length and 

number of pre-processing elements. It also results in a significant routing 

overhead as the number of control signals required increase. An alternative, 

proposed here, is to build a matching Shift Register (SR) for each control signal
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which compensates for the delay in each processing element. The use of simple 

and efficient SR elements implemented using the RAM based LUTs in FPGA 

fabrics to build these delays, were designed for the canny edge detection.

The circuit in Figure 4.6-1 shows the basic architecture of the synchronising 

element used for each circuit in the cascade shown in Figure 3.6-1. A separate 

variable length SR is used to delay the controlling signal by the required number 

of lines and pixels dependent upon the size of the window and the number of 

clocks required to perform the filtering operation on one pixel element. The SRs 

are built using a simple SRL16 structure [134] which configures the Look-up 

Table (LUT) elements available in a logic slice to be configured as a variable 

length shift register. For Xilinx devices this usually incurs a minimum delay of 2 

clock cycles. (Smaller delays will require a simple FF to replace LUT based SR). 

Once the delay through each processing element has been determined the address 

bits for the pixel delays (AP) and for the line delays (AL) can be hardwired to 

constant logical values.

F V A L _ O U T

-t>

H V A L J D U T

-D

Figure 4.6-1: The Synchronization Circuit Block Diagram

The synchronisation cell described was modelled using Modelsim PE 6.4 

implemented on a Virtex-4 architecture using Xilinx ISE 9.2. Synthesis results 

show that each synchronising element requires just 3 CLBs. This represents a 

small fraction of the array logic available on most FPGA fabrics. For the Canny 

Edge Detection algorithm the synchronising circuit used just 12 CLBs out of a 

total of 22272 available.
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4.7 Conclusion

In this chapter, a hardware implementation of the Canny edge detection method 

was successfully presented, using the latest FPGA technology. A synchronization 

circuit for windowing operations was implemented, as a number of pre­

processing steps are required prior to the image extraction. With the use of the 

synchronization circuit the Canny edge detection method was implemented in 

software and hardware using both 8-bit fixed point arithmetic and floating point 

arithmetic.

For the software version, the difference between floating point and fixed point 

arithmetic was also investigated, and in terms of pixel difference it was found 

that they differ by 53152 pixels (-5.1%), out of 1048576 total pixels (1024 x 

1024).

For the hardware version, the difference between floating point and fixed point 

arithmetic was investigated as well, and in terms f pixel difference is was found 

that they differ by 24742 pixels (-2.36%), out of 1048576 total pixels (1024 x 

1024).

Simulations results show that only a small fraction (~ 5.23 %.) of the total 

available hardware resources in a Virtex-4 device required for the Canny edge 

detection implementation.
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CHAPTER FIVE

OVERVIEW OF FPGA 
TECHNOLOGY

5.1 Introduction

The aim of this chapter is to provide background information on digital 

implementation technologies, in order to aid understanding of the 

implementations proposed in later chapters of this thesis. There are many types 

of technology available today to enable the implementation of logic-based 

systems. The following section presents basic background information on some 

of the most common devices such as the digital signal processors (DSP) and 

ASICs for comparison with the FPGAs, for understanding the reasons using the 

FPGA in subsequent chapters. In section 3, the alternatives in modem FPGAs 

will be presented. Section 4 describes common value representation formats 

implemented on FPGA technology, and section 5 provides a description of the 

dedicated arithmetic function blocks available in the modern Xilinx FPGAs. 

Finally, section 6 provides a summary of the current chapter.

5.1.1 Digital Signal Processors

Digital Signal Processor (DSP) ICs combine high speed and computationally 

intensive applications on a single device. They are a class of hardware devices 

that fall somewhere between an ASIC (discussed later in this chapter) and a PC 

in terms of their performance and the design complexity. They are not used for 

control logic as much as they are used for digital signal processing. However, 

they are an important device for comparison with the FPGA for the purposes of 

the research presented in this thesis.
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A DSP device is capable of operating at high frequencies (1.2G Hz) and 

performing a vast number of instructions (e.g. 9600 per second). However, such 

high-performance devices can be costly. There are, nevertheless, more modest 

devices that can operate at lower frequencies and cost much less. C- 

programming language as well as Matlab, has become the main design tools for 

DSPs, where the main manufactures are Texas Instruments and Analog Devices. 

The architecture of an ADSP-21xxx core can be seen in Figure 5.1-1, where it 

contains three independent computational units: the ALU, the 

multiplier/accumulator (MAC), and the shifter.
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Figure 5.1-1: Block Diagram of an ADSP-21xxx Core.

DSP’s are available as both floating point and fixed point architectures. 

However, there is a significant speed, as well as, price difference between them 

and for that reason fixed-point representation mostly used. These sequentially 

executed instructions are compiled from a high level language, and are stored in 

an internal program memory. This allows for in-circuit reprogramming. General 

input / output pins are often available.
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5.1.2 ASICs

Application Specific Integrated Circuits (ASICs) are custom-built chips designed 

to perform a specific task. An important feature of these chips is that once the 

application has been designed, and the IC built, the functionality cannot be 

changed without redesigning and remanufacturing the chip. The ASIC is not 

general purpose, and the logic cells are not configurable. Low level logic is used 

for the design of the device, which will therefore be directly translated on to the 

device substrate. Embedded processor cores are used for the design of some 

ASICs.

The custom-built design of the ASICs enables its optimisation for high speed and 

low power, far more than could be achieved with general purpose programmable 

logic devices like DSPs, microcontrollers and FPGA’s. The design of the ASICs 

dictates the exact speed and power required [10].

Nevertheless, ASICs have very expensive fabrication process, and, as a result, 

FPGAs are often used for prototyping before a final chip is designed and 

manufactured. This allows for removing of errors and mistakes, without re­

fabrication costs. Like FPGAs, the hardware can be configured allowing for 

parallel concurrent logic operations, rather than instructions sequentially 

executed. Therefore, the devices can operate in the same way, using compatible 

designs. FPGAs are generally more appropriate than ASICs for implementing a 

system where reconfiguration is necessary or proprietary systems where low 

volumes are manufactured.

5.2 Introduction to FPGA's

The FPGA, since its invention in 1984 by Xilinx’s Ross Freeman, has become 

the optimal hardware for the implementation of large and complicated logic 

systems. An FPGA, as name suggests, is a programmable device in which the 

final logic structure can be directly configured by the end user for a variety of 

applications. Figure 5.2-1 shows the architecture of a conceptual FPGA.
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Figure 5.2-1: FPGA Architecture [ 130]

Logic Block

The most important components in an FPGA are the configurable logic blocks 

(CLB’s), input-output blocks and programmable switches. The architecture is 

built from a 2-D array of CLB’s that are connected by general interconnection 

resources. These CLB’s can be as simple as 2-input NAND gates or it can have a 

complex structure such as multiplexers or look-up tables (LUT’s). Most logic 

blocks also contain some type of flip-flop, to enable the implementation of 

sequential circuits.

Figure 5.2-2 demonstrates a simplified representation of a typical FPGA logic 
cell. Previous configurable technology such as PLAs or PLDs, utilised sum-of- 

product based logic implementation; whereas FPGA implements a RAM-based 

LUT, configured during power-up to give a logic output based on the four inputs 

which make up the LUT address.
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Output

Figure 5.2-2: FPGA Programmable Logic Cell

The FPGA’s principle relies on programmable interconnections between the 

logic cells. The FPGA achieves enormous flexibility in its design due to the 

programmable routing channels between the logic cells. The use of separate logic 

cells enables the hardware to perform different tasks at the same time, allowing 

logic decisions to be made simultaneously, resulting in fast implementations with 

predictable timing.

Commercially FPGA’s have been classified into four-major categories based on 

their interconnection. The interconnection can be symmetrical array, row-based 

or hierarchical. Table 5.2-1 shows the commercially available FPGA’s.

Table 5.2-1: Summary of Four Commercial FPGA.

Company Architecture Logic Block Type Programming Technology

Actel Row-Based Multiplexer-Based Anti- fuse

Altera Hierarchical-PLD PLD Block EPROM

QuickLogic Symmetrical Array Mutltiplexer-Based .Anti-fise

Xilinx Symmetrical Array Look-up Table Static RAM

Modern FPGA’s can contain millions of logic gates, as well as, hardware blocks 

dedicated to specific high-speed functions. These include high performance 

input and output technology, system clock managers, dedicated blocks of 

memory, Ethernet MAC hardware and special arithmetic units (which will be 

discussed in more detail later in this chapter), and even microprocessors [9], 

Each of the aforementioned functions can be configured to fit particular 

requirements. For instance, the blocks of RAM can be configured as FIFOs,
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CAMs and ROMs with single or true dual port connectivity, with a number of 

possible output registers, aspect ratios and other settings to choose from.

Certain functions are readily available on dedicated hardware, but there are also 

functions that have been developed by second or third parties that can be bought 

separately. These include high speed LAN (Local Area Network), Camera Link 

interfaces, and many signal processing functions. These Intellectual Properties 

(IPs), once bought, can be implemented as sub-modules within the VHDL 

design.

This range of functions and versatility makes FPGA, not only useful for complex 

sub-systems, but also applicable for the implementation of complete systems. 

The technology on FPGAs has expanded so rapidly, that , now, whole computer 

control systems can be implemented on a single FPGA, such as the Commodore 

Amiga 500 in a project called MiniMig [161] (now commercially available), or a 

fully functional PC running Linux [135], [136], It must be mentioned, however, 

that some additional devices will still be required for power, analogue sub­

systems, configuration devices etc. Nevertheless, with the several hundred pins 

available on-chip, all logic, networking and digital input / output functions can be 

implemented on the single FPGA.

5.3 Summary of Modern FPGAs

Hardware implementation of complex digital systems finds a flexible medium in 

the form of FPGAs. The two main market-leading manufactures of FPGAs are 

Xilinx and Altera, providing many families available on the market, offering 

different levels of complexity, both in size and on-chip resources.

Table 5.3-1 lists the two main manufacturers’ latest FPGAs key features [141], 

[168], and [169], These devices represent the high-end (and high-cost) FPGA 

families with many additional high-performance dedicated hardware built in. It 

must be noted that both manufacturers offer less-costly FPGAs, without the 

additional features, such as high-speed dedicated resources (Spartan from Xilinx
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and Cyclone from Altera). During the period of writing up this thesis, Xilinx 

have introduced the Virtex-6 FPGA, and Altera has announced the Stratix III 

FPGA family.

Table 5.3-1 - Key Features for the Latest FPGAs
Manufacturer Series Logic Gates RAM Blocks DSP Blocks

Virtex-6 11,640- 118,560 9504Kb - 38,304Kb 288-2,016
Xilinx Virtex-5 4,800-51840 936Kb- 18,576Kb 24 - 1,056

Virtex-4 5,472 -89,088 648Kb - 9,936Kb 32-512
Altera Stratix II 15,600- 179,400 419Kb-9,383Kb 12-96

Stratix 1 10,570-41,250 920Kb - 3,424Kb 6 - 1 4

It should be noted here, that Altera’s logic is implemented in logic elements 

(LEs) (Figure 5.3-1), whereas Xilinx’s logic is implemented in slices (Figure 5.3- 

2). Although no direct comparison is possible, it can be said, as a rough 

estimation, that there are two Altera LEs to one Xilinx slice [10].

Figure 5.3-1: Altera Logic Element (LE) [ 10]
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Figure 5.3-2: Xilinx Virtex Slice. |10|

The DSP-dedicated hardware implemented in the Virtex 4 devices (as described 

in section 5.5) contains an 18 x 18-bit multiplier and a 48-bit adder, whereas the 

Virtex 5 devices [142], contains a 25 x 18-bit multiplier and a 48-bit adder. The 

operating mode can be set dynamically, with no configuration necessary and set 

during design. The DSP hardware on Altera’s Stratix devices [137] contains four 

18-bit multipliers, followed by three adders / accumulators (Figure 5.3-3), 

although for the Stratix I FPGAs, various parts of the DSP hardware cannot be 

individually or dynamically configured.
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Figure 5.3-3: Altera DSP Block Diagram |137|

5.4 Number Representation on FPGAs

Traditionally, arithmetic calculations have been the most inefficient tasks to be 

implemented on FPGA designs. These will need to be carefully designed at a 
low level for optimisation. Subsequent chapters will present the many 

techniques developed to simplify arithmetic calculations.

The arithmetic implemented in hardware uses two main formats of binary 

numbers. The first format is floating-point, where the value is represented by a 

mantissa (fraction) and exponent as shown in Figure 5.4-1. The IEEE-754-1985 

standard [138] defines two types of floating-point representation; these are single
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precision, which uses 32 bits, and double precision, which uses 64 bits, as 

illustrated in the figure below.

Single Precision
MSB Sign (1) Exponent(8) Mantissa (23)

Double Precision
MSB Sign (1) Exponent(11) Mantissa (52)

LSB

LSB

Figure 5.4-1: Floating-Point Representation

The order shown above ranges from the most significant bit (MSB) on the left, to 

the least significant bit (LSB) on the right. To allow for positive and negative 

values, the sign bit (S) is required. However, the exponent (E) can separately be 

positive or negative. To allow for this, the exponent is biased by -127 for single 

precision, and -1023 for double precision (B). This represents the number as 

shown in (5.4:1), where Mis the mantissa.

x = ( - l ) s (1 + O.M)2e~b <5-4:1)

This enables the representation of very large ranges of values with very good 

precision, particularly fractions, as these are explicitly represented. However, 

common arithmetic is difficult to implement due to the possibility of differing 

exponents. For FPGAs, this representation would be difficult to implement due 

to the requirement of 32 or 64 bits to represent values, and because of the non­

trivial arithmetic [139], [140], In most real-world applications, this range of 

representation is not commonly required.

More rational representations include unsigned binary, two’s complement and 

sign-magnitude. Since these do not include any information on an exponent, in 

their current form, they can only represent integers. However, the least 

significant bit (LSB) need not represent 2°. As long as the weights of the 

corresponding bits are the same and constant, the result will always be valid, 

although scaled by a power of two that is dependent on the scales of the input 

values and the arithmetic operation.
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To represent fractions, the LSB represents a power of two that is less than zero. 

This will, however, decrease the range of values that can be represented. This is 

the principle of representing fractions in fixed-point binary. As long as the 

position of the virtual binary point is known and kept consistent for each node, 

all arithmetic will be valid.

2 $  2  ^  21 2 °  2"1 2"2 2‘3 2" ^

1 0 1 0 1 0 0 1

Integer Fraction

Figure 5.4-2: Fixed-Point Representation

In the example shown in Figure 5.4-2, the unsigned integer value represented if 

the LSB was weighted 2° would be 169. However, with the weighting shown, 

the value 10.5625 is represented. Although the scale is not shown, as long as all 

values in this node are known to be scaled down by 24, values from 0 to 15.9375 

with steps of 0.0625 can be represented. This example shows the fixed-point 

representation with a format of (8,-4) which represents the total number of bits 

and the power of two weighting of the least significant bit respectively. The 

same principle holds for fixed-point variations of two’s complement and sign- 

magnitude representations.

Instead of 255 being the highest number, the weight of most significant bit is also 

scaled down by a factor of 24 in this example. Therefore, when deciding the 

fixed-point format, the highest possible value must be able to be represented. All 

other bits left over may be used to represent fractions where a set number of bits 

are defined. Therefore the format is arbitrary and can be set depending on the 

maximum value and precision required. With a fixed format, arithmetic is easily 

implemented. For example, division by a power of two only requires a virtual 

shift of the binary point, and the binary value need not be changed (or rounded). 

For this reason, it is the preferred format for high-speed, low-level logic-based 

implementations including implementations on the FPGA.

So far the two main formats of binary numbers have been discussed. There is 

also a third format of binary numbers. This is the logarithmic number system [3]
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which relies somewhere between the floating point and the fixed-point 

arithmetic. Logarithmic arithmetic will be used in this thesis for implementing 

the HT on an FPGA, and a more detailed description of it will follow in a 

subsequent chapter.

There are two main arguments why the logarithmic arithmetic is going to be 

used. Floating point arithmetic has a huge dynamic range and is relatively 

complex to implement on FPGA. Both the implementation of multipliers and 

adders in hardware are complex and require complicated logic structures. As it 

has been proved in Chapter 7, floating point arithmetic is far more accurate than 

is it actually needed for implemented the HT and such a large dynamic range is 

not required.

On the other hand, the fixed point arithmetic can be used to implement the HT, 

where the dynamic range can be controlled by the user, but a number of 

multipliers are required for equation 2.2:3 in Chapter 2, Section 2.2. One of the 

fundamental properties of logarithms is that multiplication in linear domain can 

be replaced by addition in the logarithmic domain (equation 1.3:1 in Chapter 1 

Section 1.3). Therefore, by using logarithmic arithmetic, multipliers became 

adders. Even though there are lots of multipliers on FPGA’s, there are still a 

limited number of them. Also, another reason for not using multipliers is that the 

size of them is significantly larger than it is actually needed. Logarithmic 

arithmetic may be is not that accurate, but it is relatively close to the fixed point 

arithmetic, and the conversion algorithms from logarithm to linear domain and 

visa versa are quite simple, allowing an efficient hardware implementation as 

shown in Chapter 6.

5.5 Xilinx’s Xtreme DSP Blocks

In the past years, the techniques that Xilinx have been using to implement 

multipliers on FPGAs were the distributed arithmetic, and the constant 

coefficient multiplier, which was built in the LUTs. Following those methods, 

the 18 x 18 bits multiplier was developed (Spartan III), where the latest families 

from Xilinx (Virtex 4, Virtex 5 and Virtex 6) include high-speed dedicated
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arithmetic blocks called DSP48s. Virtex 4 devices contain typically between 32 

and 192 of these dedicated slices, although the highest specification Virtex 4, 

designed towards high-speed DSP (Digital Signal Processing) functions, contains 

512 [10].

By appropriately configuring each DSP48 block, several operating modes, 

including multiply, add, multiply add and multiply accumulate, can be achieved. 

As these modes suggest, each DSP block contains a high-speed multiplier 

followed by a high-speed adder. The multiplier is 2’s complement 18x18 bit, 

and allows a 36-bit result to be passed to the 48-bit 3-input adder. Figure 5.5-1 

presents a detailed diagram of the DSP48 tile, consisting of two DSP48 slices, 

with full details available in the Xilinx Virtex 4 Xtreme DSP user guide [141], 

The DSP48 blocks used in the Virtex 4 FPGA exist as pairs, and share the 48-bit 

adder input, as seen on the above diagram. Furthermore, between one of the 18- 

bit multiplier inputs, and the output which feeds to the next adder, there are high­

speed dedicated interlinks, resulting in linked DSP48 blocks that form a high­

speed DSP chain.

These DSP blocks can perform operations at up to 500 MHz by using the Digital 

Clock Manager (DCM) blocks, which are embedded to the FPGA. As DSP 

blocks use dedicated high-speed logic, generic programmable logic could be 

utilised for implementing a design. Nevertheless, the aforementioned are still 

there, whether used or not. However, depending on the requirements of the 

application, they can be connected to and used by the programmable logic. This 

allows for the implementation of high-speed arithmetic, without the use of 

programmable logic, and can therefore save many logic slices.
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As has been shown in Chapter 7, Section 7.2.1, no more than 12 bits are required 

to perform the HT. The size of the DSP48 slices is 18 x 18 bits, which is far more 

accurate than is actually needed. As a result, the DSP48 slices are not going to be 

used for calculating the HT, and a number of them will be saved for other DSP 

requirements in the processing chain such as edge detection.

5.6 Conclusion

The FPGA, as demonstrated in this chapter, is a very versatile and powerful 

piece of hardware, capable of implementing large and complex logic-based 

designs. The FPGA is capable of implementing tens of thousands - up to 

millions - of logic elements on a single IC. In addition to this, many commonly 

used functions are still available, both as dedicated hardware within the IC, or as
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subsystems that can be bought and combined with the existing design. This 

enables several components such as logic, memory, communication, clock 

management, standard interfaces and mathematical function, to be implemented 

as a “black box”, to name but a few.

By describing the logic function, rather than giving a sequence of instructions, 

high-speed, concurrent operations can take place with predictable and 

optimisable timing and resource requirements. The optimisation component is 

what makes the FPGA different to other types of hardware that may also be used. 

Many alternative technologies that are able to implement similar applications 

execute a sequence of instructions, allowing for ease of development, at the 

expense of the ability to optimise. Each system or device described is useful for 

particular applications or circumstances.

Digital signal processor ICs are fit for use in high-speed, small-size and low-cost 

implementations of digital signal processing and arithmetic-based systems. 

These are not as applicable to logic-based systems, but the technology may be 

implemented within any other appropriate technology type.

ASICs are useful as a high-speed, low-power final product, but can become an 

expensive technology for development and prototyping as they are custom-built 

and not reconfigurable. It is common practice to design and develop an 

application on an FPGA, then port it to an ASIC once finalised and tested 

rigorously, in order to control for errors and mistakes.

Modem FPGAs now contain very fast and efficient dedicated DSP slices, 

capable of performing calculations without utilising logic cells that could, 
instead, be put to other uses. These DSP48 blocks are capable of operating at up 

to 500 MHz in ideal circumstances, and are often available, irrespective of 

whether used or not. Nevertheless, it has been shown that these units are 

designed to be configured for generic and common DSP architectures, and not 

the latest architectures developed for specific DSP functions
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An FPGA platform is being used for testing all the different algorithms 

developed and described in this thesis. By using FPGA technology it can be 

shown that these algorithms are working in such a system and a future design (if 

required) of an ASIC it may be possible to implement.

The purpose of this chapter was to provide an overview of FPGA technology, its 

principles, and the reasons behind its usage. Since all hardware implementations 

proposed in chapters to follow are designed for the latest FPGA technology, the 

capabilities and mathematical implementations were therefore introduced in this 

chapter.
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CHAPTER SIX

HYBRID LOGARITHMIC NUMBER
SYSTEM

6.1 Introduction

John Napier [143] first introduced the logarithm in 1614 in theoretical 

mathematical fields of study, and its use has since then become increasingly 

widespread in many areas of research. For instance, logarithms can be utilized in 

many areas of science for the representation of different scales; namely the 

Richter scale in seismology, the decibel for acoustic and electric power 

measurement, entropy in thermodynamics and the pH in chemistry. Many 

responses such as the human interpretation of acoustic amplitude or the cent, 

minor second, major second, and octave for the relative pitch of notes in music, 

are also logarithmic [10].

In mathematical terms, the logarithm of a given number to a given base is the 

power or exponent to which the base must be raised in order to produce the given 

number as shown in equation 6.1:1 where b is the logarithm base. As such, the 

inverse of the logarithmic transform is the base to the power of the logarithm of 

the number. Typical values for the base are e (called the natural log with a value 

of 2.718), 10 (or the common log) and 2, which will be represented throughout 

this chapter. The logarithmic base must be positive, but not 0 or 1.

x = ¿iogACx) (6.1:1)

As can be seen in Figure 6.1-1, for various logarithmic bases, with X  ranging 

from 1 to 10, the range of the transformed Log(A) is much smaller than 10. 

However, below 1, the transformed range is much greater than 1 and for that
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reason care must be taken with output precision when transforming from 

logarithmic to linear domain.

0 1  2 3 4 5 6 7 8 9  10
X

Figure 6.1-1 : Graph of Log(A) for 0<Af<10

Table 6.1-1 below shows various values for X, and their logarithmic equivalents. 

All of these values are independent of the logarithmic base.

Table 6.1-1- Logarithm Conversion Rules
Logffl

<0 NaN
0 -Inf
<1 Negative
1 0
Inf Inf

The representation of large ranges of values with a smaller range of values is 

facilitated by the non-linear nature of logarithms. The logarithmic transform 

response will be greater at lower values, where variation is most significant, than 

at higher values, presuming that the same amount of change occurred. For 
example, working in base 10, the change from 100 to 50 (in linear domain) is 50 

(reduction of 50%) and the change from 1000 to 950 is also 50, but this is only a 

reduction of 5%. Converting these linear values to logarithms, the change from 2 

to 1.69 (in logarithmic domain) is 0.31 and the change from 3 to 2.977 is 0.023.
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These fundamental properties may appear over-simplistic at first; however, their 

implications will be made clear later in this chapter. Moreover, in this chapter 

the main property of logarithms will be outlined, namely, their arithmetic 

properties.

It can be seen in the equations 1.3:1 and 1.3:2 in Chapter 1 Section 1.3 (where b 

is the logarithm base) that multiplication in the linear domain becomes addition 

in the logarithmic domain, and similarly, division becomes subtraction. For a 

simple example of multiplying 5 by 6 using 1.3:1, we can see that:

log10(5) + log10 (6) = 0.69897 + 0.77815 = 1.47712

10 1 477,2 = 30

Therefore 5 and 6 have been multiplied without doing any multiplication. 

Division is similarly calculated. This relationship can have a large impact on 

hardware in terms of calculations. Multiplication in hardware is an important 

operation that may require shared logic or resources that can be in much demand, 

therefore, rendering it inefficient with respect to speed. Logarithms provide the 

solution with regards to the aforementioned problem; multiplication can be 

performed on two numbers without actually multiplying or using any hardware 

specifically associated with it. Addition can be used instead, where the numbers 

are converted to and from the logarithmic domain. The result, if required, can be 

transformed back to the linear domain.

This very simple logarithmic method works well for multiplication and division. 

Multiplication and addition are both commonly used for Digital Signal 

Processing (DSP) algorithm, especially for filter implementations. The method 
of implementing addition and subtraction in the logarithmic domain [7] is much 

more complicated as can be seen from (6.1:2) and (6.1:3).

\ogh(A + B) = i + \ogh(\ + bJ-‘)
\ogb(A-B) = i + \ogh{\-bJ-')
Where: i = log|T| and j  = log|s|

(6.1 :2)
(6.1:3)
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Taking (6.1:2) as an example of adding 600 to 200 in logarithm base 2, we get:

log2 (600 + 200) = 9.2288 + log2 (1 + 2 7 6439' 9 2288) =9.6438 

296438 =  8 00

As seen above, this is not a straight forward equation, as the non linear functions 

(6.1:4) and (6.1:5) must be evaluated.

F(r = j - i )  = logb(\ + br) (6.1:4)

F(r = j - i )  = \og„{\-br) (6.1:5)

A graph of these functions in Figure 6.1-2 illustrates the singularity in f s(f) that 

makes linear approximation difficult. While f a(r) is well behaved near 0, f s(r) —* - 

oo as r —>• 0 [144], [145],

Figure 6.1-2: Non Linear Functions

It is commonly accepted [146] that the use of logarithmic arithmetic for hardware 

implementations, of signal processing in particular, is in need of further research 

and utilization. To the best of this author’s knowledge at the time this chapter 

was written, a study of the impact of performing the HT on FPGA technology, 

whilst taking advantage of logarithms has not been reported in the literature. The
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only report of the use of logarithms and FPGA technology can be found on [10]. 

This chapter will be dedicated to the investigation of the aforementioned impact.

The next section will describe how the HT can be optimally implemented on 

FPGA technology.

6.2 Logarithmic Converter Design

6.2.1 Design Considerations

In order to design the HT, certain considerations must be taken into account. For 

instance, the speed at which the device can operate is important. Such high 

speed can be achieved by using dedicated hardware rather than a software 

alternative. Hence, the hardware option is chosen for the aforementioned reason 

and it should be of high speed. At the same time, hardware space is finite, and 

shared resources on FPGAs may be required for other modules on the same 

device. As such, the logic resources must be minimised. This minimization will 

also result in a reduction of the power consumption of the device. This action 

will therefore make the device suitable for battery powered portable applications, 

or applications where wider processing is required in the same device.

For a solution to be a state-of-the-art, the proposed methods of the new solution 

must have advantages over current modem ones. For this reason, current and 

relevant solutions will be selected, described and compared in the next part of 

this thesis. As shown in the preceding literature review, there are many methods 

of converting between logarithmic and linear domains. A method that is deemed 

appropriate will be selected as an example for this thesis, although the structure 

proposed may be implemented using any appropriate conversion method. The 
test will take into account practical considerations for hardware implementation 

on FPGA technology.
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6.2.2 Logarithmic Converter

Full logarithmic arithmetic is used, for all calculations, e.g. addition, subtraction, 

multiplication and division being computed with the logarithmic number system 

(LNS). However, in one of the previous papers, a more rational approach has 

been taken [3]. A system known as the Hybrid-Logarithmic Number System 

(Hybrid-LNS) uses very simple arithmetic steps, effectively and efficiently, 

using LNS to make multiplications, and linear numbers to make the addition 

calculations.

The “Leading Zero Detector” (LZD) [160], [161] produces three values using 

simple logic. A single bit flag, indicating the sign of X, is produced. Trivial 

logic is required for sign-magnitude numbers to output the sign bit of X. 

According to the rules previously outlined in Table 6.1-1, at the beginning of this 

chapter, negative numbers cannot be converted to logarithms. Nevertheless, 

negative numbers can be multiplied; hence, the converter must be able to convert 

them. For negative values of X , the absolute value is converted, and the flag 

indicates the occurrence.

Similarly, a zero value of X  has no logarithmic equivalent, although 

multiplication by zero can be possible. Again, a value of zero in the LZD can be 

detected using simple logic. With a zero value of X  (or a value too small to be 

represented by anything other than zero), no conversion occurs, and this is 

indicated by the 1-bit “Zero” flag.

The LZD also produces an integer representing the position of the most 

significant ‘ 1 ’ (not including the sign bit) in the binary number X. This value 

also represents the integer part of the logarithm of X  (for base 2). To simplify the 

logic, this value is biased positively so that the “Integer” value is never negative, 

as has been implemented in [3],

The “Barrel Shifter” shifts X  to the right by the unbiased “Integer” number of 

places. Therefore the output of the “Barrel Shifter” (S) will have the equivalent 

decimal value 1 <S<2. Because the binary position weighted 2° will always have
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the value of ‘1’ (inferred bit), this bit can be ignored and only the bits 

representing the fraction of S will be converted in the look-up-table (LUT). The 

linear to logarithm converter is depicted in Figure 6.2-1 below.

Log2x

Figure 6.2-1: Linear to Log Converter Block Diagram [3]

The contents of the LUT are the rounded-to-fit, pre-calculated (offline) 

logarithmic equivalents to the input S. The proposed solution in this chapter uses 

a set relation between the bit-widths of the address and the contents, although 

they do not necessarily have to be related to each other. Therefore the address 

for the LUT is provided by S, and the fraction part of the logarithm result is 

provided by the contents of the LUT. As mentioned before, if the LUT is 

unfeasibly large for the hardware, further logic can be used to interpolate 

intermediate values in the LUT, something which for small LUTs would be 

unnecessary.

Table 6.2-1: Example Linear to Logarithm Converter LUT
Fraction (A) LUT Address Log2(v4+l) 

(rounded to 8 bits)
Contents 
Log2(A) (28)

0 0 0 0
0.125 1 0.171875 44
0.25 2 0.3203125 82
0.375 3 0.4609375 118
0.5 4 0.5859375 150
0.625 5 0.69921875 179
0.75 6 0.80859375 207
0.875 7 0.90625 232
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As an example illustrating this method, is given in Table 6.2-1 utilizing an LUT 

with three address bits, and a width of eight bits. The address represents fractions 

between 0 and 1 at equal intervals. The more bits in the LUT address and 

contents, the more precise and accurate the conversion will be.

To convert the linear value -164 to logarithm (base 2):

-164 = 110100100 in binary (sign magnitude)

This is non-zero, therefore ZERO = ‘O’, and is negative, therefore SIGN=  ‘1’

The leading one is in the seventh bit position (not including the sign bit) with 

significance 27, therefore:

INTEGER = 7

After scaling down by 27 and the removal of the leading ‘ U, the binary number is 

0.0100100, but with the fraction bits rounded to three bits gives 010 taking the 

fraction bits in isolation, which becomes the address of the LUT (address 2), 

giving the output 82 x 2'8 according to Table 6.2-1.

Therefore, FRACTION = 0.3203125

Theoretically log2 (164) = 7.357552. With this method using an 8 x 8bit LUT 

7.3203125 is given.

As only eight fractions are given in this example, the LUT gives a close 

approximation. If more fractions were to be stored in the LUT, the result will be 

much closer.

The logarithm-to-linear converter is shown in Figure 6.2-2. This is effectively an 

inverse transform, a mirror of the linear-to-logarithm converter, and works much
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in the same way. Two of the main components are identical, with the “Sign- 

Magnitude Converter” (SMC) using simpler logic than the LZD.

Log2x

Figure 6.2-2: Log to Linear Converter Block Diagram |3|

Using the LUT, the logarithm fraction is firstly converted into the linear fraction. 

The logarithm-to-linear LUT follows the same rules as the linear-to-logarithm 

LUT. The length and width need not match or be related, but the larger these 

are, the more precision and accuracy will be achieved in the conversion. The 

fraction provides the address for the LUT ROM, while the contents contain the 

closest equivalent linear value. The leading ‘ 1 ’ is not necessary to be stored in 

the contents of the LUT.

The Barrel Shifter will shift the output of the LUT with the leading ‘ 1 ’ inserted 

“Integer” places to the left or right, depending on the biased value. For positive, 

non-zero linear values, this will give the correct converted value. However, if 

the linear value is zero (from the linear to logarithm converter output flag), the 

output X, will be set to zero. The Sign flag will also be added to the sign bit o iX  

where sign magnitude representation is used (or used for negative conversion for 

2’s complement representation).

Taking the result of the linear-to-logarithm converter as an example for the 

logarithm-to-linear converter:

F raction  =  0 .3203125  

In teger  =  7
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Zero  =  0 

Sign -  1

A simple LUT for the logarithm-to-linear converter is shown in Table 6.2-2. 

Again this is an 8 x 8-bit LUT. It must be noted that in terms of accuracy and 

precision, this will produce large errors. However, it is an example for 

illustrational purposes, demonstrating the said operation.

Table 6.2-2: Example Logarithm to Linear Converter LUT
Fraction (A) LUT Address 2M

(rounded to 8 bits)
Contents
2a-1(28)

0 0 0 0
0.125 1 0.08984370 23
0.25 2 0.18750000 48
0.375 3 0.29687500 76
0.5 4 0.41406250 106
0.625 5 0.54296875 139
0.75 6 0.68359375 175
0.875 7 0.83593750 214

The LUT input will be 01010010 (fraction), which rounded to three bits gives 

011 and forms the address of 3 on the LUT.

Therefore the LUT output will be 76 scaled up by 28, or 0.296875.

By inserting back the inferred ‘ 1 ’, this becomes 1.296875.

The Barrel Shifter will shift this Integer places to the left (in this case multiplying 

by 27), giving 166.

Due to the sign flag, the sign bit becomes significant in the SMC, giving the final 

value of:

X '  = -166

X=  -164.
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Linear

Linear to 
Log LUT

Figure 6.2-3: LUT Shapes

Log to 
Linear LUT

Although this uses converter of an 8 x 8-bit LUT, precision and accuracy will be 

affected by the size and aspect ratios of the LUTs. A test, based on the examples 

shown, was devised in order to demonstrate the above. Input values X  ranging 

from 1 to 256, were converted to logarithms and back using LUTs as described 

above. Figure 6.2-3 exemplifies how the width of the linear-to-logarithm 

converter corresponds to the length of the logarithm-to-linear converter, and 

vice-versa. The LUT lengths and widths were varied from 2 to 8 bits, although 

the width and length of the linear-to-logarithm LUT kept the same as the 

logarithm-to-linear LUT as shown in Figure 6.2-3. The mean square error 

(MSE) as shown in (6.2:1) of these results is tabulated in 

Table 6.2-3. In this case, n = 256.

M
(6.2:1)

Table 6.2-3 -  MSE results for conversion to and from log / linear for different size / shaped
LUTs

Logarithmic bit-width (B)
2 3 4 5 6 7 8

3 2 352.1 200.5 48.9 48.9 48.9 48.9 48.9
¿3 3 391.3 166.6 51.6 12.3 12.3 12.3 12.3
TJ
A

4 541.4 138.4 41.1 18.9 3.2 3.2 3.2
5 490.8 129.0 40.1 12.5 4.9 0.9 0.9

X>i— 6 512.0 131.3 40.0 10.4 3.1 1.6 0.3
CÖ<D 7 480.4 124.4 33.8 8.6 2.1 0.6 0.2
hJ 8 485.2 126.8 34.5 8.4 2.0 0.6 0.1

It is clear to see from Table 6.2-3 that without enough bits to represent the linear 

values (linear-to-logarithm LUT length and logarithm-to-linear LUT width, or A 

in Figure 6.2-3), the errors can see a limited reduction as the logarithm’s bit-
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above four or five. When the logarithmic bit-width (B) is A+2 or above, no 

additional advantage is given with respect to the errors.

6.2.3 Logarithmic Multiplication Implementation

Hybrid-LNS implement the equivalent of multiplying by using adders. However, 

these adders cannot take into account the Zero and Sign flags unassisted; extra 

elementary logic is required as shown in Figure 6.2-4. Multiplying two negative 

numbers gives a positive answer, as does multiplying two positive numbers, and 

a negative multiplied by a positive gives a negative. Therefore an XOR is used 

on the two sign flags for the numbers being multiplied. Similarly, if either value 

being multiplied is zero, the result will be zero, and therefore an OR gate will be 

used on these flags.

Integer^Fraction) 

Integer.Fraction lnteger3.Fraction3

Figure 6.2-4: Logic for Multiplication in the Logarithmic Domain

As an example, in Figure 6.2-4 two linear numbers that are to be multiplied using 

Hybrid-LNS are converted using separate linear-to-logarithm converters as 

described above. Each gives four signals as shown in Figure 6.2-4. The 
subscripts 1 and 2 denote the signals from each linear-to-logarithm converter and 

subscript 3 denotes the input to the logarithm-to-linear converter. The integer 

and fractions from each linear-to-logarithm converter are combined before being 

summed together. The resulting four signals would then be used by the 

logarithm-to-linear converter to produce the result of the logarithmic addition.
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6.3 Conclusion

The aim of this chapter was to provide background information on the underlying 

principles of logarithms for arithmetic, intending towards hardware 

implementation. From the basic principles of logarithms, it can be seen that 

multiplication, a process often difficult and slow to implement in hardware, can 

be effectively replaced with the addition of logarithms. This can also be used in 

a similar way for division (although most DSP applications only use 

multiplication), although addition and subtraction have been shown to be not so 

simplistic in their implementation with logarithms.

This part of this thesis also had a detailed look at the implementation of an 

efficient linear / logarithmic converter with the use of an example. Furthermore, 

optimisation of the implementation with respect to the look-up-table design was 

examined, particularly addressing the effect of different aspect ratios. From the 

results shown as part of this research, LUT sizes of address bits = width bits -  2 

for the linear-to-logarithmic converter LUT (and opposite for the logarithmic-to- 

1 inear converter LUT) have been shown to give optimum results where any more 

address bits would give no further advantage in conversion quality. This is 

convenient for when the LUT width is said to be equivalent to the width of the 

linear representation, then the address bits of the LUT will be the same as the 

linear bit-width after removing the sign and inferred bits.

As clearly demonstrated in this chapter, the most suitable arithmetic operation is 

multiplication. The implementation of multiplication, using logarithms with 

respect to hardware implementation, has also been described. The background 

information presented in this chapter sets the foundations for the HT 

implementation using the Hybrid-LNS that will be outlined in the next chapter.
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CHAPTER SEVEN

HYBRID-LNS & HOUGH 
TRANSFORM

7.1 Introduction

A detailed introduction to logarithms, as well as, conversion and arithmetic 

implementations has been discussed in the previous chapter. Multiplication can 

be effectively replaced with the addition of logarithms. Using the Hybrid-LNS, 

multiplication is performed in the log domain and addition performed in the 

linear domain. This chapter will apply the methods investigated in the previous 

chapter to the SHT. The effects that logarithmic arithmetic will have on the 

structures and quality of results of the HT have not yet been investigated in 

current literature, and it is this that this chapter will contribute.

It has been shown previously [12], [13] how the HT can be implemented on 

technology such as the FPGA. These solutions typically use multipliers on the 

FPGA fabric to calculate the HT. This chapter will describe how, by using 

logarithmic arithmetic, the need for multipliers is eliminated, while precision of 

the algorithm is maintained. Also, an implementation of the HT on FPGA using 

Hybrid-LNS arithmetic will be described in the following sections and a 

comparison with the linear HT will be made. The results will be presented in 

sections 6.3 and 6.4, with a summary and conclusion in section 6.5.

7.2 The Linear Hough Transform

The implementation of the HT, as it has been discussed in the Chapter 2, Section 

2.2, is based on the equation 2.2:3, where the set of lines passing through each 

point in an image is represented by a set of sinusoidal curves in (p, 0) parameter 

space. Although, elegant in concept the HT is beset by a number of 

computational problems when applied to real-time image processing of large
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images: the computation of all possible values of p and 6 for each point in the 

image and the accumulation of the results for all possible points in (p, 0) 

parameter space. Evaluation of equation 2.2:3 for each pixel element in the 

image represents the fundamental signal processing operations required for 

implementing the HT. A direct form, as shown in Figure 7.2-1, requires the use 

of two multipliers and an adder. The contents of the LUT are the pre-calculated 

(offline) logarithmic equivalents for sine and cosine respectively, rounded to fit.

e

Figure 7.2-1: Basic HT Calculation Element

However, the choice for implementing the function shown in the above figure is 

not ideal, as multiple structures are needed to process image data at mega-pixel 

resolution images. Using a Pulnix AccuPIXEL monochrome camera with a 

resolution of 1024 x 1024 pixels at 25 frames per second the input frequency is 

1024 x 1024 x 25 Hz ~ 26MHz. For each pixel to be calculated for, say 180 

angles, requires 1024 x 1024x 25 x 180 ~ 4.7 x 109 operations per second. To be 

realistic 32 or 64 Hough elements working in parallel would be required to 

achieve these frame rates as it can be seen from Table 7.2-1.
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Table 7.2-1: Correlation Between Number of Hough Elements with Operations per Second.

H ough elem ents O perations per second
1 4.7 x 10y
2 2.35 x 10y
4 1.175 x 109
32 146.9 x 106
64 73.4 x 106

Furthermore the longest possible line in the image is Vl024x 1024 = 1024 bits. 

This requires each accumulator cell in the PSF to be at least 10 bits wide. If 180 

angle increments are required, then according to Matlab® software routines there 

must be 2896 x 180 = 521280 accumulator bins. If each accumulator need to be 

10 bits then this represents 325.8 Kbits of memory (each bin store 16 addresses). 

From the above example it can be seen that an alternative architecture, using the 

general FPGA fabric (the CLBs or Configurable Logic Blocks), could produce a 

more efficient solution. A potential advantage of this approach is that it would 

leave the DSP slices and Block RAM free for other functions in the image 

processing chain.

7.2 .1  P ro p o sed  L in e a r  Im p lem en ta tio n  U sin g  M a tla b ®

Simulation of the results for the proposed implementation will be made on 

Matlab® with software routines defined in [162]. Standard test images [163] will 

be used to obtain the results, as have been used in other, similar papers, as well 

as, captured images using the Pulnix 1280 x 1024 monochrome camera. These 

are shown in Figure 7.2-2. Each original image is 1024 x 1024 pixels, 8 bits per 

pixel and greyscale. Each image is imported into Matlab® with the imread() 

function. A first step is to look the effects of using finite precession arithmetic 

for the HT on the test images. For a full set of results for these tests, please refer 

to Appendix A. A representative sample of two images is provided in this 

chapter for analysis. Figure 7.2-2 shows the test images captured by a Pulnix 

camera. It was aligned at different angles to the camera, 60 and 45 degrees 

respectively [14].
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Figure 7.2-2: Test Image at Rotated Angles of 60 and 45 Degrees.

After a series of tests, which can be found in Appendix B, with different fixed 

points (4-bit, 8-bit, 10-bit, 12-bits, 16-bit and 20-bit), it was concluded that: 

below 8-bits of precision the results were unsatisfactory, as information of the 

images was lost and above 12-bits of precision the results were the same as the 

floating point ones. For this reason it was decided that for the entirely tests 8-bits 

and 12-bits of precision will be used. Also the effect of using the round function 

in comparison with the fix function was tested, and is shown that using the round 

function the results were closer to the optimum ones. The parameter space was 

calculated using Matlab® with floating point precision and again using 8-bit and 

12-bit fixed point arithmetic for the values of the sine and cosine stored in the 

LUTs. Figures 7.2-3, 7.2-4 and 7.2-5 show the outputs of these calculations for 

45° and 60°.
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Hough Accu Cells Distribution
400 v 

350 s

300 v I
N................................ ;  .......................................................... h i " "

theta

(a) Floating Point calculation at 60°
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(b) Floating Point calculation at 45°

Figure 7.2-3: Hough Transform Parameter Space Output Graphs on 1024 x 1024 
Binarised Images Using Floating Point Arithmetic Precision.
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Hough Accu Cells Distribution

(a) Linear calculation 8 bits (rounding) at 60°

Hough Accu Cells Distribution
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(b) Linear calculation 8 bits (rounding) at 45°

Figure 7.2-4: Hough Transform Parameter Space Output Graphs on 1024 x 1024 
Binarised Images Using Linear 8-bit Arithmetic Precision.
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Hough Accu Cells Distribution
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(a) Linear calculation 12 bits (rounding) at 60°
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(b) Linear calculation 12 bits (rounding) at 45°

Figure 7.2-5: Hough Transform Parameter Space Output Graphs on 1024 x 1024 
Binarised Images Using Linear 12-bit Arithmetic Precision.
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Figures 7.2-3(a), and 7.2-3(b) shows the accumulator distribution of the linear 

Hough output when floating point arithmetic was used on the test images. The 

high peaks which correspond to the higher value of the accumulator cells can 

also be seen. Figures 7.2-4(a), and 7.2-4(b) shows the accumulator distribution 

when 8-bits of precision was used. It can be seen that even with such low 

precision, the same peaks have been identified with small variation on the peak 

values. Finally with the last set of figures, 7.2-5(a), and 7.2-5(b), where 12-bits 

of precision are used, the output results are almost identical with the floating 

point ones. Another method for supporting the above statements is to take the 

difference between the floating point arithmetic and the two fixed point 

solutions.

Accu Cell Differences

Figure 7.2-6: Hough Transform Parameter Space Difference Graphs on 1024 x 1024 
Binarised Images Between Floating Point and Linear 8-bit Arithmetic Precision.
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Accu Cell Differences
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(b) Linear calculation 8 bits (rounding) at 45°

Figure 7.2-6: Hough Transform Parameter Space Difference Graphs on 1024 x 1024 
Binarised Images Between Floating Point and Linear 8-bit Arithmetic Precision.

Accu Cell Differences

theta
(a) Linear calculation 12 bits (rounding) at 60°

Figure 7.2-7: Hough Transform Parameter Space Difference Graphs on 1024 x 1024 
Binarised Images Between Floating Point and Linear 12-bit Arithmetic Precision.
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Accu Cell Differences

theta

(b) Linear calculation 12 bits (rounding) at 45°

Figure 7.2-7: Hough Transform Parameter Space Difference Graphs on 1024 x 1024 
Binarised Images Between Floating Point and Linear 12-bit Arithmetic Precision.

Figure 7.2-6(a) and 7.2-6(b) shows the difference maps between the Hough 

output where the floating point arithmetic, and the 8-bits of precision was used 

for the 60 and 45 degrees test images respectively. For the 60 degree image the 

highest peak difference is between ± 280, where for the 45 degrees image is ± 

125. Those values as it can be seen from figures 7.2-7(a) and 7.2-7(b) are 

dropped significantly to ± 28 and ± 29 respectively, when 12-bits of precision 

were used. As previously, the maps show that even at relatively low precision the 

peaks are similar to those produced when using floating point arithmetic.

7.3 The Logarithmic Hough Transform

An alternative structure, which may result in a better utilization of FPGA 

resources, is based on the use of the log arithmetic instead of normal binary
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arithmetic. Hybrid-LNS or hybrid-log arithmetic is an alternative solution where 

multiplication is performed in the log domain and addition performed in linear 

domain. The contents of the LUT are the pre-calculated (offline) logarithmic 

equivalents for sine and cosine respectively, rounded to fit. However, in the 

logarithmic HT method additional LUTs are used to translate between the log 

and linear domains [14].

e

Figure 7.3-1: Hybrid-LNS HT Element

Figure 7.3-1 shows the proposed architecture of the hybrid-log HT calculation 

unit. It can be seen that multiplication has been replaced by addition. As with the 

original linear solution the sine and cosine components are stored in LUTs. The 

difference is that it is the logarithm of the sine and cosine components that are 

stored. These have been calculated offline so there is no need for a converter. 

The basic architecture of the log-to-linear converter is show in figure 6.2-2 in 

Chapter 6 Section 6.2.2. To ensure that the logarithm can represent a number 

arbitrarily close to zero the data can be scaled by a multiplication factor of 2" 

where n is an integer. The pixel location as defined by x and y  needs a Lin2Log 

conversion, but this will be common to all HT units and hence has not been 

included in this diagram.
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7.3.1 Proposed Logarithmic Implementation Using Matlab®

Matlab® experiments using hybrid-log architecture for the HT processing unit 

have been performed on the test images shown in Figure 7.2-2 with software 

routines defined in [162]. The parameter space was calculated using Matlab® 

for floating point precision and again using 8-bit and 12-bit fixed point arithmetic 

for the values of the sine and cosine stored in the LUTs, as well as, for the values 

in the logarithm-to-linear converters. The HT maps for floating point, 8 and 12 

bits of fractional precision are shown in Figures 7.3-2, 7.3-3, and 7.3-4.

Hough Accu Cells Distribution

theta

(a) Floating Point calculation at 60°

Figure 7.3-2: Hough Transform Parameter Space Output Graphs on 1024 x 1024 
Binarised Images Using Floating Point Arithmetic Precision.
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Hough Accu Cells Distribution 
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(b) Floating Point calculation at 45°

Figure 7.3-2: Hough Transform Parameter Space Output Graphs on 1024 x 1024 
Binarised Images Using Floating Point Arithmetic Precision.

Hough Accu Cells Distribution 
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(a) Hybrid-log calculation 8 bits (rounding) at 60°

Figure 7.3-3: Hough Transform Parameter Space Output Graphs on 1024 x 1024 
Binarised Images Using Hybrid-Log 8-bit Arithmetic Precision.
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Hough Accu Cells Distribution
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(b) Hybrid-log calculation 8 bits (rounding) at 45°

Figure 7.3-3: Hough Transform Parameter Space Output Graphs on 1024 x 1024 
Binarised Images Using Hybrid-Log 8-bit Arithmetic Precision.

Hough Accu Cells Distribution

(a) Hybrid-log calculation 12 bits (rounding) at 60°
Figure 7.3-4: Hough Transform Parameter Space Output graphs on 1024 x 1024 

Binarised Images Using Hybrid-Log 12-bit Arithmetic Precision.
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Hough Accu Cells Distribution 
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(b) Hybrid-log, 12 bits (rounding) at 45°

Figure 7.3-4: Hough Transform Parameter Space Output graphs on 1024 x 1024 
Binarised Images Using Hybrid-Log 12-bit Arithmetic Precision.

Figure 7.3-2(a), and 7.3-2(b) shows the logarithmic Hough output using floating 

point arithmetic for both images. The high peaks which correspond to the higher 

value of the accumulator cells can also be seen. By comparing the results from 

figure 7.3-2 with the results in figure 7.3-3 it can be seen that, even when 8- bits 

of arithmetic precision is used, the same peaks are identified with a small 

variation on the accumulator values. More accurate results compared with those 

in figure 7.3-2 can be seen in figure 7.3-4, where 12-bits of arithmetic precision 

are used. Once more, the difference between the floating point arithmetic and the 

two fixed point solutions was taken and the results can be seen in figures 7.3-5 

and 7.3-6.
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Figure 7.3-5: Hough Transform parameter Space Difference Graphs on 1024 x 1024 
Binarised Images Between Floating Point and Hybrid-Log 8-bit Arithmetic Precision.
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Figure 7.3-5(a) and 7.3-5(b) shows the difference maps between the Hough 

output where the floating point arithmetic, and the 8-bits of precision was used 

for the 60 and 45 degrees test images respectively. For the 60 degree image the 

highest peak difference is between ± 80, where for the 45 degrees image is ± 90. 

Figures 7.3-6(a), and 7.3-6(b) show that the values has been dropped 

significantly to ± 18 and ± 25 respectively, when 12-bits of precision were used 

(The error of the log plots at -90 degrees as shown in these plots is spurious). 

Comparison between figures 7.2-6, 7.2-7 and 7.3-5, 7.3-6, shows that the hybrid- 

log architecture outperforms the linear equivalent at similar levels of fractional 

precision, as it generates fewer errors than the equivalent linear one.

7.4 Hardware Implementation

Matlab® results have shown that hybrid-log architecture outperforms the linear 

one. The next step was the implementation of both architectures in hardware for 

the calculation of the required hardware resources. For the hybrid-log 

implementation, apart from the LUTs where the pre-calculated (offline) 

logarithmic equivalents for sine and cosine are stored, additional LUTs, required 

for the conversion between the logarithmic and the linear domain.

The size of the LUTs needed to convert between the log and linear domains 

grow exponentially with the number of bits of resolution and becomes 

prohibitively large when more than 16 bits of accuracy are required [164], At 16 

bits the overall size of the LUTs has been reduced by using solutions based on 

piecewise linear, Taylor or polynomial approximation [165]. This reduces the 

size of the LUT at the cost of additional multiplier(s) of small dimension. At 

resolutions of 12 bits and below there are a wide range of solutions with reduced 

memory requirements which are completely multiplierless [166], [167]. For 

image processing, where the image data is limited to 8-10 bits of resolution, the 

LUT requirements are acceptable and both LNS and Hybrid-LNS arithmetic have 

been shown to be suitable low-complexity and low-power alternatives to fixed- 

point processing of gray scale images. In the case of the HT an equal number of
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additions and multiplications are required so, in principle at least, both LNS and 

hybrid log appear possible alternatives to using fixed point arithmetic.

The major elements used in both the linear and hybrid log solutions shown in 

Figures 7.2-1 and 7.3-1, were generated using the Xilinx CoreGenerator® toolset 

with maximum pipelining. Both solutions have been implemented and 

synthesized using Xilinx ISE 9.2 and the results are shown in Table 7.4-1 [14].

Table 7.4-1: Implementation Statistics of HT Elements

Number of CLBs / slices

Implementations
8 addresses 

per LUT 
23 LUTs in total

16 addresses 
per LUT 

12 LUTs in total

32 addresses 
per LUT 

6 LUTs in total

64 addresses 
per LUT 

3 LUTs in total

Linear 8-bits 257/1028 134/536 67 / 268 34/136

Linear 12-bits 564 / 2256 294/1176 147 / 588 74 / 296

Log 8-bits 315/1260 164/656 82 / 328 41 /164

Log 12-bits 602 / 2408 314/1256 157/628 79/316

The number of CLBs as well as the number of respectively slices (one CLB = 

four slices) required for all the above implementations can be seen in Table 7.4- 

1, where the memory elements are available in multiples of 8 (3-bits), 16 (4-bits), 

32 (5-bits) and 64 (6-bits) respectively. As the performance of the hybrid-log 

with 8 bits of fractional precision is equivalent to the linear solution with 12-bit 

resolution it can be seen that there is an advantage to be obtained by using the 

hybrid-log solution. For real-time implementation with the megapixel camera 64 

HT elements running at approximately 74 MHz are necessary to achieve a 

performance of 25 frames per second.

7.5 Conclusion

This chapter has shown that it is possible to use multiplierless architectures based 

on hybrid-log arithmetic to implement the main processing elements necessary to 

perform the HT. It has been found that below 8-bits of precision the results were
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unsatisfactory, as information of the images was lost and above 12-bits of 

precision the results were the same as the floating point ones.

A linear and a logarithmic implementation using Matlab® with 8-bits, 12-bits 

and floating point arithmetic was presented. The high peaks which correspond to 

the higher value of the accumulator cells was found and compared. Even with 8- 

bits of resolution the same peaks have been identified compared to the floating 

ones, with small variation on the peak values. The difference between the 

floating point and the two fixed point solutions was taken for the two test images 

and it shows for the linear implementation and the 60 degree image that the 

highest peak difference is between ± 280, where for the 45 degrees image is ± 

125. Those values are dropped significantly to ± 28 and ± 29 respectively, when 

12-bits of precision were used. For the logarithmic implementation it can be seen 

that for the 60 degree image the highest peak difference is between ± 80, where 

for the 45 degrees image is ± 90. Those values have been dropped significantly 

to ± 18 and ± 25 respectively, when 12-bits of precision were used.

Matlab® results have shown that hybrid-log architecture outperforms the linear 

one. The implementation of both architectures in hardware for the calculation of 

the required hardware resources was presented and it shows that the performance 

of the hybrid-log with 8 bits of fractional precision is equivalent to the linear 

solution with 12-bit resolution. Consequently, there is an advantage to be 

obtained by using the hybrid-log solution.

The relative simplicity of these structures means that it is feasible to implement 

multiple elements operating in parallel using just the basic CLB elements 

available on a typical FPGA fabric and leaving the DSP slices and Block RAM 
free for other functions in the image processing chain. Depending on the overall 

throughput it is possible to process data from a 1024 x 1024 pixel camera at a 

rate of up to 25 frames per second. However, as indicated earlier in the thesis this 

is only the first problem associated with implementing the HT on an FPGA 

fabric. Another limitation is the size of the memory array needed, which will be 

described in the next chapter.
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CHAPTER EIGHT

DESIGN OF A LUT BASED 
ACCUMULATOR CELL

8.1 Introduction

This chapter presents a simple and compact architecture for building the 

accumulator cells needed in a HT processor to store “hits” when binarised image 

data, defined by their x and y  co-ordinates, are translated into a Parameter Space 

Function (PSF) prior to extracting geometric primitives from the image. Also, the 

complete system is presented in terms of hardware requirements. The 

accumulator cells are implemented using Look-Up Table (LUT) resources 

available on most modern FPGA fabrics and are configured to allow high-speed 

real-time processing of the image. The modular architecture can easily be 

expanded to accommodate images with different resolutions. It is particularly 

suited to architectures such as the Xilinx Virtex 4 and Virtex 5 which has 

increased the capacity of the LUT cells available in the fabric as well as 

increasing the number of them that can be found on a single device making this 

architecture a suitable candidate for performing the HT in real-time on mega­

pixel images.

8.2 Parametric Description of a Straight Line

As already it has been shown in Chapter 2, Section 2.2, the original method used 

to calculate the lines in the HT represented every possible line using the slope- 

intercept equation as shown in 2.2: l .

However, this approach is impractical due to the unlimited ranges of a and b 

when used to describe vertical or near-vertical lines. This approach has therefore 

been replaced by the normal or (p ,6) form as shown in equation 2.2:3 and
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Figure 2.2-2 in Chapter 2. Now the set of lines passing through each point Pj in 

an image is represented by a set of sine curves in (p ,6 ) parameter space.

Although elegant in concept the HT is beset by a number of practical problems 

when applied to real-time image processing. Two of the main problems are the 

computational overhead incurred by the necessity to calculate all possible values 

of p  and 0 for each non-zero point in a binary image and the memory required

to store the results of accumulating all possible points in (p ,$) parameter space

before post processing them to find the most significant lines in the image.[5] 

Both of these problems become increasingly acute when dealing with increasing 

image resolutions now available with mega-pixel cameras operating at increasing 

frame rates (> 100 frames per second). Although the use of high speed parallel 

processing elements has helped with the first problem, the problem of the 

parameter space memory remains a significant one, especially when the signal 

processing is being performed on an FPGA which even at current levels of 

integration is limited for such applications.

8.3 Accumulator Cell

Each processing element (PE) is used to calculate p  using a disjoint subset of 6  

in parallel. The resulting 2-tuple in parameter space (p-0) represents a unique 

address in (p ,0) parameter space. Flence the accumulation process can also

proceed in parallel using a unique accumulation element (AE) associated with 

each PE.

In Figure 8.3-1, a basic block diagram of the accumulator cell can be seen. The 

size of the accumulator is determined by the maximum length of a line that can 

be found in the image of interest. Using the Pulnix AccuPixel camera the 

resolution is 1024 x 1024 pixels and the longest line in the image is

Vl0242 x 10242 = 1448pixels (8.3:1)
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For such an image an accumulator cell would require 11 bits of precision to 

ensure that overflow cannot occur during accumulation.

Figure 8.3-1: Basic Accumulator Cell Block Diagram

Each accumulator block is a subset of 0 and p and it is addressed using n bits 

whereby k bits are used to decode the accumulator block and / bits are used to 

address the accumulator cell within this block. For a Xilinx Spartan3 or Virtex4 

device this / is 4 bits because the size of the LUT in a slice is 16x1 bits. [141] For 

Xilinx Virtex5 [142] (and the new Virtex6) devices, the size of the LUT has been 

expanded to 64x1, making this architecture more efficient.

Each time a valid address to the accumulator cell is detected the incrementer is 

set to +1 and the accumulator addressed is incremented by one bit. Once the 

entire image has been scanned the data in the accumulator cells need to be passed 

on to a post processor which is used to extract any geometric features present in 

the original image. Because of the architecture in the FPGA there are several 

different methods for doing this, such as reading the data one block at a time 

through a decoder. Each method has an impact on the amount of time available 

before the next frame of the image can be processed.

8.4 An Alternative Accumulator Cell

A disadvantage of the cell shown in Figure 8.3-1 is that the contents of all the 

accumulators need to be read before the next frame of calculations can begin. If 

this is done sequentially this takes a significant amount of time which impacts on
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the overall throughput of the algorithm. The cell shown in Figure 8.4-1 shows an 

alternative architecture which exploits the architectural attributes of the LUT 

structures implemented on Xilinx devices which can also be configured as 

variable length shift-registers. Each cell is read sequentially and stored in a 

separate SR. This is done in each block, in parallel. Once the data is stored in the 

SR is can be downloaded and processed while the next frame is being calculated.

Figure 8.4-1: Alternative Accumulator Cell Block Diagram

8.5 Simulation Results

The accumulator cells described above was modelled using Modelsim 

implemented on a Xilinx Virtex 4 architecture using Xilinx ISE 9.2. For the 

simulation the address space was 16 bits. The simple architecture shown in 

Figure 8.3-1 used 16 slices or 4 CLBs and synthesis results indicate that it can 

operate at a maximum frequency of 77 MHz. The architecture in Figure 8.4-1 

used 25 slices or 7 CLBs and operated at a maximum clock frequency of 77 MHz 

as well.
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For the architecture in Figure 8.4-1 and according to Matlab® software routines 

defined in [148], the following number for the accumulator cells required for 180 

degrees with a step of one degree per pixel (drho) in a 1024x1024 image:

For rho axis:

the maximum length of the image is: D = Vl0242 + 10242 =1448

, . . D 1448the quantization steps are : Q = ------= -------= 1448
drho 1

therefore, the number of steps where the rho axis will be divided is:

nrho = 2 * Q = 2896

For theta axis:

With the assumption of one degree per pixel, the theta axis will be divided in 180 

steps.

This has a result of a total
2896*180 = 521280 cells

As each accumulator cell requires to be at least 11 bits wide and the depth of 

each cell is 16 bits, in terms of memory usage the amount of memory required is:

c o 1980
*H = 358.38 Kbits or 44.77 Kbytes

16

In terms of number of CLBs required, if each accumulator cell requires 25 slices 

and stores 16 addresses then:

C O  1 O O A

— —̂— * 25 = 814500 slices or 203625 CLBs 
16

The above calculations were made with the assumptions that a Virtex-4 FPGA 

slice is used, which is based on 4-input LUT’s (16 bits). The Virtex-5 and 

Virtex-6 FPGA slices are based on a 6-input LUT’s (64 bits), where less memory 

(81.45 Kbits or 10.18 Kbytes) and hardware resources are required (203625 

slices or 50907 CLBs).
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8.6 The Complete System

After presenting the LUT based accumulator cell, which is the last individual 

stage of the overall system in this thesis, it is worth looking at all the stages 

described so far in terms of occupancy of hardware resources in an FPGA device, 

and more specifically in a Virtex-4 FPGA.

As it can be seen from Figure 8.6-1, the overall process of the HT 

implementation with the hardware requirements necessity can be categorized in 

three stages.

Canny edge
Implementation 
of the HT using

Storing the HT 
output using

Total amount 
of hardware

detection. + the Hybrid-LNS 
method.

+ the LUT based 
accumulator 

cells.

resources
required.

Figure 8.6-1: Stages of the HT Implementation

A summary of all the stages and the number of hardware requirements is shown 

in Table 8.6-1. When implementing the Canny edge detection on a Virtex-4 

device, only 5.23% of the device is used. Similarly, the implementation of the 

HT using the Hybrid-LNS method can require from 0.18% (using 3 LUT with 8- 

bits of precision) up to 2.7% (using 23 LUT with 12-bits of precision) of the 

device. Finally, as it can be seen from the calculations above, implementing the 

accumulator cells is impossible in a Virtex-4 device, Virtex-5 devise or even in a 

Virtex-6 using only the distributed RAM. The required slices for the accumulator 

cell implementation are 814500 for a Virtex-4 and 203625 for a Virtex-5 device 

and Virtex-6 devise, where the maximum number of slices in a Virtex-4, Virtex- 

5 and Virtex6 are 89088, 51840 and 118560 respectively [141], [168], [169],

The absolute worse case scenario is considered for the above calculations, as a 

full frame is processed and there are accumulator cells for every pixel in that 

frame. If a full frame is required, then the internal Block RAM needs to be 

considered. The maximum block RAM in a Virtex-4 device is approximately 

lOMbytes, where for a Virtex-5 device is approximately 18Mbytes and for a 

Virtex-6 devise is approximately 38Mbytes. [168] Otherwise, coarse to fine
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techniques or time multiplexing techniques for reducing the number of 

accumulator cells are necessary. Such techniques, involve examination of the 

accumulator array at various scales and an attempt is made to evaluate it in detail 

only in those areas having a high density of counts. Some of such techniques 

have been described in literature review chapter (Chapter 2) and can be 

combined with the described implementation, as all of them are applicable, in 

order for the combined system to be implemented faster and with less 

computational cost.
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8.7 Conclusion

This chapter has presented a new LUT based accumulator cell that can be used as 

part of the HT architecture, for storing the calculated Parameter Space Function 

(PSF) derived from a binary image. The accumulator cell uses the distributed 

memory elements available on a Xilinx FPGA fabric to store the intermediate 

results prior to passing them on for post-processing and feature extraction. This 

architecture enables a parallel implementation of the HT and PSF accumulators 

to be implemented, thereby speeding up the processing of the image or enabling 

significantly larger (megapixel) images to be processed in real-time. Additional 

local LUT resources can also be easily configured as temporary local memory, 

which can be used to reduce the inter-frame latency of the system.

Also, the complete system, which consists of three stages, was presented in terms 

of hardware requirements and a comparison between the stages was also detailed. 

The results show that the implementation of the Canny edge detection, as well as 

the HT using the Hybrid-LNS system, uses only a small percentage 

(approximately 8%) of a Virtex-4 FPGA device, in comparison to the 

implementation of the accumulator cells, where different techniques need to be 

considered. If a full frame requires processing, the internal Block RAM can be 

used for implementing the required accumulator cells.
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CHAPTER NINE

SUMMARY & CONCLUSION

9.1 Summary

This thesis has presented techniques using Hybrid-LNS arithmetic for building 

the HT algorithm on FPGA technology. This work included the analysis of the 

HT using Hybrid-logarithmic arithmetic, the implementation of the Canny edge 

detection method for the binarization of the image, as well as the design of a 

compact architecture for building the accumulator cells, when binarized image 

data are translated into a Parameter Space Function (PSF), prior to extracting 

geometric primitives from the image.

Chapter 1 introduced, the general concept of the HT algorithm, the necessity of 

the edge detection prior to the HT, and the implementation of the HT using the 

Hybrid-LNS arithmetic. As stated in this chapter, the HT focuses on image 

processing applications, with goals set in the areas of speed, size (in terms of 

logic) and accuracy.

The HT was described in detailed terms in Chapter 2, starting from the basic 

principles of the algorithm, along with how it works, the advantages and 

disadvantages of it, as well as, the different applications and methods. The 

process of calculating the HT was also shown, along with the possible parallel 

processing architectures for implementing it on the target technology.

Edge detection of an image is necessary prior to the HT algorithm calculation. 

The comparison between edge detection methods, as well as, the detailed 

description of the Canny method was presented in Chapter 3. A literature review 

of the digital logarithms is also presented in this chapter, and it was shown, 

through a review of the relevant literature, how the implementation of logarithms
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and logarithmic arithmetic has developed over the past fifty years into a method 

appropriate for the implementation of DSP functions.

As a number of pre-processing steps are required for removing noise or to 

accentuate features in the image prior to the image extraction, a novel generic, 

synchronizing circuit architecture for windowing operations was implemented in 

Chapter 4. The Canny edge detection method was implemented in hardware 

using the latest FPGA technology, where fixed point arithmetic it was compared 

with solutions built using floating point arithmetic. The synchronizing circuit 

architecture with the implementation of the Canny edge detection method formed 

the two of the contributions of the thesis. Simulation results showed that a small 

fraction of the array logic available on most FPGA fabrics is used for the 

implementation of the Canny edge detection on FPGA, allowing other functions 

in the image processing chain to be processed.

All designs proposed in this thesis are aimed towards implementation on FPGA 

technology, as they are very versatile and powerful piece of hardware, capable of 

implementing large and complex logic-based designs and in a very high speed. A 

more detailed description of the FPGAs is outlined in Chapter 5. Also, the most 

common devices such as the digital signal processors (DSP) and the ASICs are 

compared with the FPGAs, and the most advanced arithmetic technology for 

FPGAs were described in detail.

An alternative method of implementing arithmetic on hardware using logarithms 

was described in Chapter 6. The most appropriate number system for arithmetic 

implementation on hardware was analysed and fully described, and was found to 

be a cross between logarithmic and linear arithmetic. A description was given of 
how multiplication is most efficiently implemented with logarithms, and addition 

with the linear number system. This is known as hybrid-logarithms number 

system.

Chapter 7, therefore, proposed the implementation of the system already 

described in Chapter 6, specifically applied to the HT algorithm. The chapter 

showed the benefits that implementing arithmetic on hardware can bring to the
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transform. Such a method has not been investigated in any published literature 

and it forms the main novel investigation presented in this thesis. How this can 

be implemented in the HT algorithm, was demonstrated in Chapter 7, along with 

the potential advantages it has to offer over purely linear-based arithmetic 

implementations. Due to the relative simplicity of the structure described in 

Chapter 6, it is feasible to implement multiple such elements operating in 

parallel. It was shown that, by using logarithmic arithmetic, the need of 

multipliers is eliminated, while precision of the HT is maintained. Depending on 

the overall throughput it is possible to process data from a 1024 x 1024 pixel 

camera at a rate of up to 25 frames per second.

Computational cost is a main drawback of the HT algorithm, but is not the sole 

concern. The size of the memory array needed to store the results of 

accumulating all possible points in the PSF, before post processing them to find 

the most significant lines in the image, is another main problem of the HT 

algorithm. Chapter 8 presented a novel LUT based accumulator cell that can be 

used as part of the HT architecture for storing the calculated PSF. The 

aforementioned PSF is derived from a binary image. Assuming the worst 

absolute scenario, where there is an accumulator cell for every pixel in the 

image, it was shown that it is not possible to implement the accumulator cells in 

one of the latest FPGAs devices.

In the same chapter, a comparison between the implementation of the Canny 

edge detection, in conjunction with the HT main processing block using 

logarithmic arithmetic and the LUT based accumulator cell was made. It was 

found that, the hardware implementation on an FPGA of the Canny method with 

the HT main processing block, require only a small percentage of the overall 
hardware recourses. However, when implementing the accumulator cells for a 

1024 x 1024 image, different techniques need to be considered.

Overall, this thesis has made several contributions to the state of the art that can 

be summarized as follows:

• An investigation into the effects and possible benefits that the use of 

Hybrid-Logarithmic arithmetic has on the HT algorithm. This showed
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how the need for multipliers could be eliminated, while the precision of 

the algorithm is maintained.

• An optimal implementation of the HT proposed using the most advanced 

arithmetic hardware available on modern FPGAs. Despite not 

implementing multipliers, the algorithm performance was found to be 

almost identical to the software implementation.

• A flexible design of a generic synchronization circuit proposed for 

windowing operations in 2D imaging filters of variable dimensions, 

enabling parallel processing implementation on FPGA fabrics.

• A successful implementation of the Canny edge detection method on 

hardware, by the use of a novel synchronization circuit for the windowing 

operations, using fixed point arithmetic.

• A design of a LUT based accumulator cell for high speed HT algorithms 

on FPGA fabrics for storing the PSF.

• A combined implementation between the Canny edge detection, the main 

HT processing block and the LUT based accumulator cell on FPGA 

fabrics.

9.2 Future Work

This thesis has provided evidence of a comprehensive investigation into the 

implementation of the HT algorithm on FPGA technology. A novel technique for 

efficient implementation of the algorithm using Hybrid-LNS has been shown, 

along with the implementation of the algorithm on the latest FPGA technology. 

No doubt, as FPGA technology incorporates faster, more accurate, and more 

versatile integrated arithmetic components, new possibilities and techniques will 

become possible.

The effects of using hybrid-logarithmic-based arithmetic on the HT algorithm 

were investigated, in addition to a successful hardware implementation of the 

Canny edge detection method. Although the design of a LUT based accumulator 

cell for storing the calculated PSF was made, further investigation is required for 

reducing the number of the accumulator cells, such as splitting the image in
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smaller sections rather than processing the full frame. Another solution could be 

the use of coarse to fine or time multiplexing techniques described in the 

literature review chapter (Chapter 2), as all of the aforementioned methods are 

applicable to the proposed HT implementation. In the case that a full frame is 

required to be processed, the Block RAM available in the FPGA devices needs to 

be considered for the implementation of the accumulator cells.

Another possible line of future research that can potentially offer further valuable 

information, but was out of the scope of this thesis, is the implementation of the 

HT using hybrid-logarithmic arithmetic in more generic shapes rather that 

straight lines. These shapes could be curves, circles or parabolas.

As camera technology is incorporated faster and operates at higher resolutions 

(up to 10 Mpixels), this research can be scaled to work with those higher 

resolutions. Although more computations, as well as memory will be required, 

the principles used will be the same as the ones proposed in this thesis.
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APPENDIX A:Test images and HT parameter
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Appendix B

APPENDIX BiSeries of tests with different
fixed points

Matlab
files .mat file names No of 

F.B Peaks selected

Hough Gold hough — 284 40 59 53 396 51 68 41
1 Hough linear round

X Hough linear 4 4 284 46 59 62 396 62 68 46
X Hough linear 8 8 284 41 59 52 396 54 68 41

Ok Hough linear 10 10 284 40 59 52 396 51 68 40
Ok Hough linear 12 12 284 41 59 53 396 53 68 40
Ok Hough linear 16 16 284 40 59 53 396 52 68 41
Ok Hough linear 20 20 284 40 59 53 396 51 68 41

Hough linear fix
X Hough linear fix4 4 284 45 59 57 396 64 68 45

Ok Hough linear fix8 8 284 40 59 52 396 52 68 41
Ok Hough linear fix 10 10 284 41 59 53 396 53 68 41
Ok Hough linear fix 12 12 284 41 59 53 396 53 68 40
Ok Hough linear fix 16 16 284 41 59 53 396 52 68 41
Ok Hough_linear_fix20 20 284 40 59 53 396 52 68 41

HoughTest Log2

X log_Sc_th8xyl_FB4 4 1326 208 440 269 136
4 167 163 134

X log_Sc_th8xyl_FB5 5 672 113 220 134 128
1 103 92 79

X log Sc th8xyl FB6 6 375 61 109 69 891 71 68 60
x log Sc th8xyl FB7 7 287 48 56 59 623 62 55 48
X log Sc th8xyl FB8 8 284 47 47 52 521 53 51 42
X log Sc th8xyl FB9 9 284 43 56 54 396 54 56 41
X log Sc th8xyl FB10 10 284 39 59 51 396 53 61 43

Ok log Sc th8xyl FB11 11 284 39 59 50 396 55 62 42
Ok log Sc th8xyl FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xyl FB20 20 284 40 59 53 396 52 68 41
Ok log Sc th8xyl_FB25 25 284 40 59 53 396 51 68 41

X log_Sc_th8xy2JFB4 4 1326 208 440 269 136
4 167 163 134

X log Sc_th8xy4_FB4 4 1326 208 440 369 136
4 167 163 134

X log_Sc_th8xy6_FB4 4 1326 208 440 269 136
4 167 163 134

X log_Sc_th8xy8_FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc_th8xylO_FB4 4 1326 208 440 269 136
4 167 163 134

X log_Sc_thl2xy2_FB4 4 1326 208 440 269 136 167 163 134
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X logJSc_thl 6xy2_FB4 4 1326 208 440 269

4
136
4 167 163 134

X log_Sc thl2xy4_FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc thl6xy4_FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc thl2xy6 FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc thl6xy6_FB4 4 1326 208 440 269 136
4 167 163 134

X log_Sc_thl2xy8_FB4 4 1326 208 440 269 136
4 167 163 134

X log Sc thl6xy8_FB4 4 1326 208 440 269 136
4 167 163 134

Matlab
files .mat file names No of 

F.B Peaks selected

HoughTest_Log2

X log_Sc_thl2xylO_FB4 4 1326 208 440 269 U46 167 163 134

X log Sc thl6xylO_FB4 4 1326 208 440 269 U4 167 163 134

X log_Sc _th8xy2_FB8 8 284 47 47 52 521 53 51 42
X log_Sc_th8xy4 FB8 8 284 47 47 52 521 53 51 42
X log_Sc_th8xy8_FB8 8 284 47 47 52 521 53 51 42
X log Sc th8xyl0_FB8 8 284 47 47 52 521 53 51 42
X log Sc thl2xy2_FB8 8 284 47 47 52 521 53 51 42
X log_Sc_thl6xy2_FB8 8 284 47 47 52 521 53 51 42
X log_Sc_thl 2xv4 FB8 8 284 47 47 52 521 53 51 42
X log_Sc_thl 6xy4_FB8 8 284 47 47 52 521 53 51 42
X log Sc thl2xy6_FB8 8 284 47 47 52 521 53 51 42
X log Sc thl6xy6 FB8 8 284 47 47 52 521 53 51 42
X log_Sc_th8xy2FBl 0 10 284 39 59 51 396 53 61 43
X log Sc_th8xy4_FB10 10 284 39 59 51 396 53 61 43
X log_Sc_th8xy6 FB10 10 284 39 59 51 396 53 61 43
X log Sc th8xy8_FB10 10 284 39 59 51 396 53 61 43
X log Sc th8xyl0_FB10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 2xy2_FB 10 10 284 39 59 51 396 53 61 43
X log Sc thl6xy2 FB10 10 284 39 59 51 396 53 61 43
X log Sc thl2xy4 FB10 10 284 39 59 51 396 53 61 43
X log Sc thl6xy4 FB10 10 284 39 59 51 396 53 61 43
X log_Sc thl2xy6_FB10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 6xy6_FB 10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 2xy8_FB 10 10 284 39 59 51 396 53 61 43
X log Sc thl6xy8 FB10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 2xy 10_FB 10 10 284 39 59 51 396 53 61 43
X log_Sc_thl 6xy 10_FB 10 10 284 39 59 51 396 53 61 43
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Ok log Sc th8xy2 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xy4 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xy6 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xy8 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc th8xyl0 FB12 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xy2 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xy2 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xy4 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xy4 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xy6 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xy6 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xy8 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xy8 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xyl0 FB12 12 284 38 59 53 396 53 67 40
Ok log Sc thl6xyl0 FBI2 12 284 38 59 53 396 53 67 40
Ok log Sc thl2xyl_FB16 16 284 40 59 53 396 52 68 41

Matlab .mat file names No of Peaks selected
files F.B

HoughTest_Log2
Ok log Sc thl6xyl FB16 16 284 40 59 53 396 52 68 41
Ok log Sc th20xyl FBI6 16 284 40 59 53 396 52 68 41
Ok log Sc th8xy2 FBI6 16 284 40 59 53 396 52 68 41
Ok log Sc th8xy4 FBI6 16 284 40 59 53 396 52 68 41
Ok log Sc th8xy8 FBI6 16 284 40 59 53 396 52 68 41
Ok log Sc_th8xyl2_FB16 16 284 40 59 53 396 52 68 41


