
Thompson, Simon, Rowe, Reuben, Harrison, Joseph Richard and Varoumas,
Steven (2020) API migration: compare transformed. OCaml workshop 2020
.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/100124/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/100124/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

API migration: compare transformed
Joseph Harrison

Simon Thompson

Steven Varoumas

{J.R.Harrison,S.J.Thompson,S.Varoumas}@kent.ac.uk
University of Kent, Canterbury, UK

Reuben Rowe

reuben.rowe@rhul.ac.uk
Royal Holloway

University of London, UK

Abstract
In this talk we describe our experience in using an automatic

API-migration strategy dedicated at changing the signatures

of OCaml functions, using the Rotor refactoring tool for

OCaml. We perform a case study on open source Jane Street

libraries by using Rotor to refactor comparison functions

so that they return a more precise variant type rather than

an integer. We discuss the difficulties of refactoring the Jane

Street code base, which makes extensive use of ppx macros,

and ongoing work implementing new refactorings.

1 Motivation
A common part of the software engineering life cycle is refac-

toring source code: changes need to be made as applications

evolve and as technical debt is incurred. Refactoring can be

performed manually, but automatic refactoring saves time

and reduces room for human error.

Our aim here is to apply meaning-preserving API changes

to a large codebase, going beyond changing the name of

OCaml values, which was the initial feature of our refactor-

ing tool Rotor [5, 6]. This talk is an experience report on

providing an automated and systematic way of changing the

types of functions, applied in a case study of the Jane Street

libraries. Because of the size of these projects, such changes

could not be applied manually to the entire codebase, and

this served as an opportunity to add new functionality to Ro-

tor so that this refactoring, as well as other API migrations,

can be handled automatically.

2 Approach
Rotor has a high-level model for refactorings that uses visi-

tor classes and the OCaml compiler’s libraries to automati-

cally rename identifiers across OCaml projects of arbitrary

size and complexity. We will show that by extending Rotor

with support for targeted code inlining and 𝛽-reduction of

anonymous function applications, we can refactor OCaml

values in various ways. For example, with using these tech-

niques we can automatically:

• add/remove arguments to/from functions; and

• modify the order of function arguments; and

• change the type of a function’s arguments or result.

In many cases we also use automatic code generation to

create adapters: small anonymous functions injected at call

sites which transform existing function calls to match the

updated function definitions. Furthermore, we use Rotor’s

notion of dependencies to automatically update all relevant

definitions in source and interface files, for example updating

the appropriate type declarations in module signatures.

3 Case Study: compare in Jane Street code
Jane Street Capital’s open source projects base and core
consist of over 90,000 lines of OCaml code across more than

500 source files. The libraries in these projects often expose

a compare function for the types or data structures they

export; similarly to Stdlib.compare these functions return

an integer value of -1, 0, or 1. For reasons of precision, these

functions could return a specific ordering type, such as Ord.t,
that explicitly states the order relation, rather than coding

this as an integer. This representation also has the advantage

of containing no “junk” values, such as 42 and -37.

module Ord = struct
type t = Less | Equal | Greater

let to_int = function
| Less -> -1
| Equal -> 0
| Greater -> 1

end

The programming style used in the base and core li-

braries dictates that for each module M that exports a type t,
the comparison function will be named M.comparewith type
M.t -> M.t -> int. Our goal is to refactor each exported

compare function so that it returns an Ord.t instead of an

int. For each such module, the approach is as follows:

1. The programmer provides a new comparison func-

tion (e.g. M.compare_new : t -> t -> Ord.t), but
leaves the old function M.compare unchanged.

2. The programmer modifies M.compare so that it is a

thin wrapper for the new function, e.g.:

let compare x y =
Ord.to_int (compare_new x y)

3. The programmer runs Rotor, instructing it to replace

calls to M.compare with calls to M.compare_new.
4. Rotor automatically rewrites all call sites, performing

inlining and 𝛽-reduction.

5. M.compare is deleted, and M.compare_new is renamed

to M.compare.

J. Harrison, S. Thompson, S. Varoumas, R. Rowe

Once this process is repeated for all comparison functions

defined in base and core, all of the comparison functions

which previously returned integers will have been replaced

with comparison functions which return variants of Ord.t.
As part of this process the definition of the old comparison

functions were inlined, and then 𝛽-reduction applied to the

result to produce more readable code. For example, the call

M.compare x y is first refactored to:

(fun a b -> Ord.to_int (M.compare_ord a b)) x y

However, this code is somewhat verbose due to the unneces-

sary anonymous function definition where M.compare once

was. By repeatedly 𝛽-reducing the refactored expression we

can obtain more readable code:

Ord.to_int (M.compare_ord x y)

ppx_compare Both base and core make extensive use of

the ppx_compare[7] library, which uses macros to generate

comparison functions for user-defined types. If we are to

refactor this code successfully, we need to take into account

the generated code: there are two approaches to doing this.

The first approach is to modify the macro definitions re-

sponsible for generating the comparison functions. Where

previously the programmer would modify the definition of

a comparison function as part of the refactoring process

(steps 1 and 2 above), s/he would instead modify the corre-

sponding macro definition itself.

For this approach to be successful, though, Rotor requires

a reliable method for detecting AST nodes that were not

present in the original source file, because Rotor uses the

location information stored in AST nodes when generat-

ing text replacements. There is a convention that generated

AST nodes are marked with ghost locations, but this is not
strictly enforced, making it unreliable. We therefore propose

changes to ppx_compare and ppxlibwhich force AST nodes

generated by macros to be clearly identified.

The second approach is to store the results of macro expan-

sions in the source files where they were invoked by using

the inlining features of ppxlib. Instead of generating code

during each compilation the macros are run once and their

output is stored in the original source files. The refactoring

can then proceed as normal, and Rotor no longer needs to

give any special consideration to macros. Once the macros

have been expanded however, there is no way to contract
them again: the refactored code will be out-of-sync with the

macro definition and if expanded once again portions of the

refactoring will be undone.

4 Related work
Previous authors have suggested that the process of gen-

erating refactorings on API evolution could be generated

automatically: the key insight being that the new API should

be able to implement all the services of the old API. Using

this adaptor, body [4], wrapper [8] or twinning [3], allows

replacement of calls to the old API by calls to the new, and

once replaced the code can further be rewritten automati-

cally too [1]. A related approach uses data-flow to determine

replacement points, but additionally requires rewrites to be

described explicitly [2].

5 Ongoing & Future Work
Ongoing work is focused on generalising the approach de-

scribed in this talk in order to handle different kinds of refac-

torings related to changes appearing at the interface level,

such as swapping the order of functions arguments or adding

a new argument to a function, as mentioned in section 2.

Furthermore, current work in progress is dedicated to auto-

matically checking the semantic equivalence of a program

before and after application of such refactorings. This makes

use of the aforementioned inlining and 𝛽-reduction transfor-

mations in order to transform both versions of a program to

(simpler) normal forms: equality of the normal forms implies

equivalence of the two program versions.

Finally, further code transformations might be used as a

way of “cleaning-up” the inlined adapter code introduced

by such refactorings by getting rid of the added wrapper

functions: for example, ideally, the following expression:

Int.equal (Ord.to_int (compare x y)) 1

could have its wrapper code removed and be turned into:

Ord.equal (compare x y) Ord.Greater

Although such transformationswould often produce cleaner

code, theymight be difficult to automate because they rely on

a high-level semantics of the program, and would still need

to be steered by the programmer to preserve the meaning of

the transformed expressions.

References
[1] Huiqing Li and Simon Thompson. 2012. Automated API Migration in a

User-Extensible Refactoring Tool for Erlang Programs. In ASE’12, Tim
Menzies and Motoshi Saeki (Eds.). IEEE Computer Society.

[2] László Lövei. 2009. AutomatedModule Interface Upgrade. In Proceedings
of the 2009 ACM SIGPLAN ErlangWorkshop. Edinburgh, Scotland, 11–21.

[3] M. Nita and D. Notkin. 2010. Using twinning to adapt programs to

alternative APIs. In 2010 ACM/IEEE 32nd International Conference on
Software Engineering.

[4] Jeff H. Perkins. 2005. Automatically Generating Refactorings to Support

API Evolution. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering (PASTE
’05). Association for Computing Machinery, 111–114.

[5] Reuben Rowe and Simon Thompson. 2017. Rotor: First Steps Towards

a Refactoring Tool for OCaml. In The OCaml Users and Developers
Workshop 2017.

[6] Reuben N. S. Rowe, Hugo Férée, Simon J. Thompson, and Scott Owens.

2019. Characterising renaming within OCaml’s module system: theory

and implementation. In Proceedings (PLDI 2019). ACM.

[7] Jane Street. 2020. ppx_compare : Generation of comparison functions

from types. https://github.com/janestreet/ppx_compare.
[8] Thiago Tonelli, Krzysztof Czarnecki, and Ralf Lämmel. 2010. Swing to

SWT and back: Patterns for API migration by wrapping. In Proceedings
ICSM ’10. IEEE Computer Society, 1–10.

https://github.com/janestreet/ppx_compare

