
Horpácsi, Dániel, Bereczky, Péter and Thompson, Simon (2023) Program
Equivalence in an Untyped, Call-by-value Functional Language with Uncurried
Functions. Journal of Logical and Algebraic Methods in Programming
. ISSN 2352-2208.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/100069/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1016/j.jlamp.2023.100857

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/100069/
https://doi.org/10.1016/j.jlamp.2023.100857
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
journal homepage: www.elsevier.com/locate/jlamp

Program equivalence in an untyped, call-by-value functional
language with uncurried functions

Dániel Horpácsi a,∗, Péter Bereczky a,∗, Simon Thompson a,b

a ELTE, Eötvös Loránd University, Hungary
b University of Kent, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 November 2021
Received in revised form 18 October 2022
Accepted 3 February 2023
Available online 9 February 2023

Keywords:
Contextual equivalence
Program equivalence
Logical relation
CIU theorem
Erlang
Coq

We aim to reason about the correctness of behaviour-preserving transformations of Erlang
programs. Behaviour preservation is characterised by semantic equivalence. Based upon our
existing formal semantics for Core Erlang, we investigate potential definitions of suitable
equivalence relations. In particular we adapt a number of existing approaches of expression
equivalence to a simple functional programming language that carries the main features of
sequential Core Erlang; we then examine the properties of the equivalence relations and
formally establish connections between them. The results presented in this paper, including
all theorems and their proofs, have been machine checked using the Coq proof assistant.
© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction

Most language processors and refactoring tools lack a precise formal specification of how the code is affected by the
changes they may make. In particular, refactoring tools are expected not to change the behaviour of any program, but
refactoring processes in most of the current tools are validated by testing only. This form of verification may or may
not provide trust in users willing to refactor industrial-scale code. Higher assurance can be achieved by making formal
arguments to verify behaviour preservation. This requires a rigorous formal definition of the programs being refactored, a
precise description of the effect of refactorings on these programs, and a suitable definition of program equivalence.

1.1. Refactoring and program equivalence

A program transformation is said to be a refactoring if it preserves the observable behaviour, while improving the inter-
nal structure [1]. The verification of whether a transformation is refactoring can be based upon the concept of (semantic)
program equivalence: the internal workings of the software may be altered, but the result has to be observationally indis-
tinguishable from the original in an arbitrary environment.

The typical refactoring process – reworking a piece of code to increase its quality – can be decomposed into multiple,
smaller refactoring steps (known as micro-refactorings). These smaller steps may vary from eliminating unused variables to
extracting code portions to function abstractions. Some are local to particular portions of code – such as an expression,

* Corresponding authors.
E-mail addresses: daniel-h@elte.hu (D. Horpácsi), berpeti@inf.elte.hu (P. Bereczky), s.j.thompson@kent.ac.uk (S. Thompson).
https://doi.org/10.1016/j.jlamp.2023.100857
2352-2208/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).

https://doi.org/10.1016/j.jlamp.2023.100857
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2023.100857&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:daniel-h@elte.hu
mailto:berpeti@inf.elte.hu
mailto:s.j.thompson@kent.ac.uk
https://doi.org/10.1016/j.jlamp.2023.100857
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
apply ’map’/2(fun(X) -> call ’+’(X,1), Xs) ≡
apply ’foldr’/3(fun(X, A) -> [call ’+’(X,1) | A], [], Xs)

Fig. 1. An equivalence formula in Core Erlang which can be seen as a simple refactoring.

a function or a module – but others make modifications across a code base, which seems to require the entire software
project to be examined for equivalence when reasoning about the correctness of a complex refactoring.

A key observation in our previous work [2,3] is that, when expressed with a well-designed set of skeletons, the ver-
ification of both local and non-local refactoring transformations can be reduced to checking the equivalence of simple
expressions. Thus, the work presented here aims to provide a basis for reasoning about refactorings by establishing the
appropriate semantics and definitions of program equivalence for languages like Erlang.

Although our ultimate goal is to prove Erlang refactorings correct, as a stepping stone we focus on Erlang’s intermediate
language (Core Erlang) and we investigate refactoring correctness and program equivalence on this lower-level language
first. For readers unfamiliar with Erlang, we note that Core Erlang contains all the essential features of the full language, so
that the work presented here can be extended to the full language in a routine way.

1.2. Running example

Let us show a motivating example informally, which we are going to revisit formally towards the end of the paper.
In functional programming, it is a fairly well-known fact that the higher-order function map can be expressed in terms
of the function foldr (also higher-order). Let us consider a special case where the function mapped over the list is the
incrementation function. In a functional pseudo-language, we would express this as an equivalence as follows:

map (+1) xs ≡ foldr (λx.λa.[x + 1|a]) [] xs

Somewhat less readable, Fig. 1 shows the formulation of the corresponding equivalence formula in Core Erlang. As
mentioned already, such equivalences can be seen as proof obligations of refactoring steps. In particular, rewriting the
former expression to the latter is a correct refactoring step if the two expressions are (contextually) equivalent; in the
rest of the paper, we will prove that this is indeed the case when using the standard definitions of map and foldr (see
Section 3.2).

1.3. Scope and contributions

Core Erlang is the intermediate language for a number of other programming languages, including Erlang, Elixir and LFE,
meaning that program equivalence in the core language can be used for checking equivalence in these other languages,
assuming the existence of a trusted translation from the source language to Core Erlang.

We have already developed natural and functional big-step semantics for sequential Core Erlang [4–6] in the Coq proof
assistant and defined simple behavioural equivalence. In this paper we distil the essential features of sequential Core Erlang
into an extended lambda calculus, and systematically define and compare various equivalence relations on that system. In
contrast with related work with similar goals, the novelty of our approach lies with the Erlang-like features (call-by-value
evaluation, pattern matching, and uncurried functions) of the programming language, and full, machine-checked formalisa-
tion.

The main contributions of the paper are:

• A (frame stack style) formal semantics for an extended, untyped, strict lambda calculus with uncurried functions, which
is essentially a subset of sequential Core Erlang.

• A formalisation of a number of termination-based equivalence concepts (namely, contextual equivalence, logical rela-
tions, and “closed instances of use” equivalence), and a proof of their coincidence for this language.

• A number of expression equivalence proofs, including the equivalence of the higher-order functions (map, foldr) as
shown in Fig. 1.

• A characterisation of behavioural equivalence that is not solely based on termination, and which is also proved to
coincide with the rest of the equivalence definitions.

• A machine-checked formalisation of the language, the definitions and the proofs in the Coq proof assistant.

The rest of the paper is structured as follows. In Section 2 we overview related work on program equivalence for similar
languages and point to some influential results that we reused in our work. In Section 3 we formally define the syntax
and semantics of the language we investigate, then in Section 4 we specify various equivalence definitions for Core Erlang,
including simple behavioural equivalence [7]. Next in Section 5 we make these definitions more accurate using an approach
based on logical relations [8,9], pointing out their advantages and disadvantages. Finally, Section 6 concludes.
2

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
2. Related work

In the early stages of our project, we have developed an inductive big-step semantics for sequential Core Erlang [4,5]
considering exceptions and simple side effects, which has also been implemented in Coq. This semantics is based on related
research on Erlang and Core Erlang, e.g. reversible semantics and debugging [10–12], a framework for reasoning about
Erlang [13] and symbolic execution [14]. We have also investigated different big-step definition styles [15], and recently we
also implemented an equivalent functional big-step semantics [16] which enabled extensive validation [6].

However, for proving refactoring correctness, we need accurate definitions of program equivalence. We have proved some
simple expressions equivalent in our formalisation, however, the used equivalence concept is rather an ad hoc definition of
behavioural equivalence, and it has not been suitable to reason about equivalence of function expressions. This motivates
the investigation of (other) approaches.

The literature discusses a number of ways to describe and investigate equivalence between programs of a language after
having its semantics formally defined. In this section, we provide a brief overview of related results.

The simplest notion of program equivalence is behavioural equivalence [7], which requires syntactical equality of the
program evaluation results. This notion is a rather strict characterisation of the equivalence concept, but may prove sufficient
in some simple cases. Clearly, its main advantage is the simple definition lacking any reference to expression contexts.

Another fundamental equivalence definition is the contextual (also called observational) equivalence, which characterises
the congruence property of the equivalence relation. Two programs are contextually equivalent if they are indistinguishable
in arbitrary expression contexts observing their behaviour. In most cases, the observed behaviour is simply the termination
property of the programs (in all syntactical contexts): mutual termination is sufficient to ensure the result values to be
equivalent by a suitable value equivalence relation; Pitts provides a draft proof of this in [17], and we give a formal proof
in Section 5.6 with our formalisation. The idea behind the proof is that supposing that two programs show the same
termination behaviour in every syntactical context, and they are evaluated to non-equivalent results, then we can show a
context, in which one of the programs terminate while the other does not, contradicting our assumptions. In general, while
it is straightforward to disprove programs equivalent with this notion by giving such a counterexample context, establishing
contextual equivalence requires induction on all expression contexts. To avoid this burdensome induction, related work
proposes alternative definitions of the relation, such as bisimulations, CIU (“closed instances of uses”) equivalence and
logical relations.

Bisimulations (or applicative bisimulations [18]) are binary relations between expressions based on their reduction being
in the same relation. Bisimulation approaches [17,19] are naturally proved to be sound for contextual equivalence, ensuring
that bisimilar programs are equivalent (using Howe’s method for proving congruence [20]); therefore, bisimulations can be
used to prove expressions equivalent. However, completeness does not necessarily hold as bisimulations sometimes provide
a finer approach (defining a stricter equivalence), distinguishing some terms that are contextually equivalent [21].

The other widespread approach to establishing contextual equivalence is using alternative equivalences (CIU equivalence,
logical relations) and proving that these relations coincide with contextual equivalence. The idea of the CIU equivalence
originates from Mason and Talcott [22], but since then other authors investigated and used this characterisation with success
for imperative languages [23], for variants of lambda calculus [9,24,25], lambda calculus with recursive types [26,27], and
with quantified types [26]. Some authors also included effects in this characterisation [22,28]. Most of these results used
the same idea: they defined a form of continuation-style semantics (such as reduction semantics, frame stack semantics) or
termination relation, then defined CIU and contextual equivalence and proved that they coincide. The novelty of the various
results lie in the choice of the type system and the language constructs under investigation.

Other authors [8,9,25,26,29] also defined logical relations and proved that they also coincide with the previous
equivalences. In case of the logical relations, there was two main approaches: type-indexed [8] or step- (and type)-
indexed [9,25,26,29].

There are further approaches to prove program equivalence, for example using algorithms; however, for these to work
we need either an operational semantics based on term rewriting [30], or reasoning in some dedicated logics like matching
logic [31].

In the remainder of this paper, we investigate step-indexed logical relations, CIU equivalence, and contextual equivalence
for a simple untyped functional language based on the previous results of the above-mentioned authors. We remind the
reader that our definitions and theorems are fully formalised in the Coq proof assistant [32] (similarly to the formalisation
by Wand et al. in Coq [9], or the formalisation by McLaughlin et al. in Agda [24]).

3. An untyped, strict, uncurried functional language with recursion and pattern matching

In this section, we present the syntax and semantics of a functional language that is a subset of Core Erlang. In later
sections we define equivalence relations over expressions of this language.

3.1. Syntax

We start with the formal definition of the syntax. We use i to range over integers, x over program identifiers, k, n to
denote natural numbers, and a, f are used for atoms. Although not complete, the language we present here is a repre-
sentative subset of Core Erlang. It is future work to formalise the omitted language constructs too (such as tuples, pattern
3

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
matching with more than two branches, value lists, value sequences), but the equivalence concepts presented in this paper
are expected to be extensible to these expressions in an analogous way.

Definition 3.1 (Syntax of the language).

p ∈ Pattern ::= i | a | x | [p1|p2] | []
e, v ∈ Exp ::= i | a | x | f /k | fun f /k(x1, . . . , xk) → e | [e1|e2] | []

| [e1|e2]
v | apply e(e1, . . . , ek) | case e1 of p then e2 else e3

| rec f /k = fun(x1, . . . , xk) → e0 in e | let x = e1 in e2

| call e(e1, . . . , ek)

The language we investigate has integers (denoted by numbers), atoms (enclosed in single quotation marks), lists and
variables as patterns. The expressions include atoms, integers, variables, function identifiers, lists, uncurried function ab-
straction and application, pattern matching with case, let-binding, explicitly recursive function abstraction with rec, and
built-in function (BIF) call with call. We note that having uncurried function abstraction and application poses a number
of challenges in the formalisation, e.g. mutual induction between lists and expressions in proofs, expressing the evaluation
order of parameters in the semantics.

Let binding Binding expressions are let and rec. With let x = e1 in e2, the variable x (which can be used in e2) is
bound to the expression e1, while in rec f /k = fun(x1, . . . , xk) → e0 in e the function identifier f /k (which can be used
both in e0 and e) is bound to a (potentially recursive) function expression.

Names Both variable and function identifiers are called names. For simplicity, in the machine-checked formalisation [32]
we use a nameless variable representation, that is, names are de Bruijn indices [33]. This way, in the body of a binder, the
outermost indices denote the bound variables, i.e. for functions, the 0th index points to the identifier of the function, while
the next k indices denote the formal parameters. One could write non-recursive functions by simply omitting the use of the
0th index. For readability, in the paper we present our results with explicit names for readability; however, we implicitly
regard alpha equivalent expressions, patterns and values as equal.

Pattern matching Note that unlike the majority of the cited related work, we included pattern matching, which allows us
to observe the differences between values and implement conditionals in the object theory. In the case expression, if
e1 matches p, then e2 will be evaluated, if not, then e3 will be evaluated. Without pattern matching (or similar language
features that allow for inspecting and comparing the contents of values) we cannot prove that contextual equivalence (which
coincides with CIU equivalence) and behavioural equivalence coincide (Theorem 5.18). We use the following three auxiliary
functions for pattern matching (we omit the formal definitions):

• vars(p) is the list of variables used in p;
• is_match(p, v) decides whether the value v matches the pattern p;
• match(p, v) yields the substitution (Section 3.3) that matches p with v .

Built-in function (BIF) calls The BIF call expressions are used to express function calls between modules in (Core) Erlang
(e.g. calling to standard library functions). Since we do not include the formalisation of the module system, we simulate
the behaviour of these functions by interpreting them directly. In our formalisation, we chose the addition of integers as a
representative example, but other operations can be implemented analogously.1

Expressions and values On the level of the syntax, we do not differentiate between values and expressions. Their separation
is expressed by the scoping judgement (Section 3.4). There is one exception; we distinguished two constructs for lists
(namely [e1|e2] and [e1|e2]v), one for expression lists and one for value lists. This distinction is necessary to preserve the
determinism of the semantics, and implement the reduction rules for lists more accurately without negative preconditions
(we refer to Section 3.5.1 for more details). For long lists we use the notation of [e1,e2, . . .,ek] ([v1,v2, . . .,vk]

v

respectively for lists of values) with the meaning of [e1|[e2| . . .[ek|[]] . . .]].
It is also to be highlighted that, especially in contrast to the work of Wand et al. [9], our language does not require parts

of compound expressions to be in normal form (i.e. reduced to value by explicit sequencing with let expressions). This
poses some challenges in the formalisation, namely subexpressions of all expressions need to be evaluated by the semantics
explicitly. However, this also keeps the consistency between the formalised language syntax and the syntax of Core Erlang.

1 Furthermore, we use the BIF construct to express the meaning of concurrent features, but those are not in the scope of this paper.
4

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
rec ’map’/2 = fun(F, L) ->
case L of [H | T]
then [apply F(H) | apply ’map’/2(F, T)]
else []

in apply ’map’/2(e f , el)

(a) A mapping function and its application

rec ’foldr’/3 = fun(F, D, L) ->
case L of [H | T]
then apply F(H, apply ’foldr’/3(F, D, T))
else D

in apply ’foldr’(e f , ed, el)

(b) A folding function and its application

Fig. 2. Example expressions.

3.2. Running examples

Next, we show two Core Erlang expressions as running examples for the next sections. Both (Fig. 2a, Fig. 2b) examples
are higher-order functions with their application. To present these examples in a general way, we use the meta-variables
e f , el, ed (which can be replaced by a function expression, a list expression, and any expression, respectively) to denote
the inputs of the functions in rec. The function ’map’/2 transforms the elements of the list el based on the parameter
function e f . On the other hand, ’foldr’/3 aggregates the list el , based on e f . In Section 5, we show the conditions for
the equivalence of the expressions in Figs. 2a and 2b.

3.3. Substitution

Before giving semantics to expressions, we develop some metatheory. In particular, we define capture-avoiding, parallel
substitutions as functions mapping names to expressions as usual. We refer to substitutions with σ and define the following
notations (the formal definitions are present in the formalization [32]):

• We use id to denote the identity substitution.
• σ(x) is the expression associated with the name x in the substitution σ .
• We use σ {x1 �→ e1, . . . , xk �→ ek} to denote an updated substitution that maps the names x1, x2, . . . , xk to the given

expressions e1, e2, . . . , ek . Every other name x is mapped to σ(x).
• σ \ {x1, . . . , xk} stands for a restricted substitution of σ , which is obtained by the removal of the bindings for

x1, x2, . . . , xk from the substitution σ .
• The application of the substitution σ to the expression e is denoted by e[σ]. This operation replaces all the free variables

and function identifiers of e with expressions they are associated with in σ .
• e[x1 �→ e1, . . . , xk �→ ek] abbreviates e[id{x1 �→ e1, . . . , xk �→ ek}].

Partial substitutions The Coq proof assistant requires functions to be total; thus, in the implementation, the substitutions
were implemented as total functions on the set of names. With this approach, names that should be not affected by the
substitution are mapped to themselves. This approach comes with a number of lemmas and theorems to argue about
substitution updates, but it is still more favourable in a proof assistant than using other formalisations of (sub)sets for the
domain of the substitutions, which would potentially require proof carrying in parameters and loss of computability of the
substitution.

3.4. Variable scoping judgement

Note that the small language we work with is untyped, we cannot define a typing judgement and index equivalence
relations with types; instead, we define a variable scoping judgement, following the techniques of Wand et al. [9]. The
scoping judgement is used to express the set of free variables used by an expression. We separate the values of the language
from the expressions with this definition. It also allows us to define our equivalence concepts in a scope-indexed way, where
expressions can only be equivalent if they have the same scope.

Definition 3.2 (Name scoping of values and expressions). We mutually define two scoping judgements in Fig. 3, one for values
and one for expressions: � �val v holds if all free variables of v are in �, and � �exp e holds if all free variables of e are in
�. We say that v is a closed value if ∅ �val v; similarly, e is a closed expression if ∅ �exp e. An expression v is a value, if it
satisfies � �val v for some �. We call � the scope of the expression (or value) in the judgement.

With the scoping judgement, we can derive that the expressions in Fig. 2a and 2b are closed, supposing that the e f , el
and ed are closed.

The scoping judgement can be generalised to substitutions. This relation characterises that the substitution σ maps the
names in � to values that are scoped in �.

Definition 3.3 (Substitution scoping). A substitution maps the names in � to � (denoted � �sub σ � �) if ∀x ∈ � : � �val σ(x).
5

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
� �val l
x ∈ �

� �val x

f /k ∈ �

� �val f /k

� ∪ { f /k, x1, . . . , xk} �exp e

� �val fun f /k(x1, . . . , xk) → e

� �val v1 � �val v2

� �val [v1|v2]v � �val []

� �val e

� �exp e

� �exp e1 � �exp e2

� �exp [e1|e2]

� �exp e � �exp e1 · · · � �exp ek

� �exp apply e(e1, . . . , ek)

� �exp e1 � ∪ {x} �exp e2

� �exp let x = e1 in e2

� ∪ { f /k, x1, . . . , xk} �exp e0 � ∪ { f /k} �exp e

� �exp rec f /k = fun(x1, . . . , xk) → e0 in e

� �exp e � �exp e1 · · · � �exp ek

� �exp call e(e1, . . . , ek)

� �exp e1 � ∪ vars(p) �exp e2 � �exp e3

� �exp case e1 of p then e2 else e3

Fig. 3. Scoping rules.

〈K ,let x = e1 in e2〉 −→ 〈let x = � in e2 :: K , e1〉 (SLet)

〈K ,[e1|e2]〉 −→ 〈[e1|�] :: K , e2〉 (SCons1)

〈K ,apply e(e1, . . . , ek)〉 −→ 〈apply�(e1, . . . , ek) :: K , e〉 (SApp)

〈K ,call e(e1, . . . , ek)〉 −→ 〈call�(e1, . . . , ek) :: K , e〉 (SCall)

〈K ,rec f /k = fun(x1, . . . , xn) → e0 in e〉 −→ 〈K , e[f /k �→ fun f /k(x1, . . . , xn) → e0]〉 (SRec)

〈K ,case e1 of p then e2 else e3〉 −→ 〈case� of p then e2 else e3 :: K , e1〉 (SCase)

Fig. 4. Frame stack semantics rules (group 1).

We refer to Appendix A for more details about scoping and related theorems.

3.5. Frame stack semantics

In our previous work, we defined natural and functional big-step-style semantics for a larger subset of sequential Core
Erlang [4,5,34]. However, it proved to be not fine-grained enough for accurate definitions of program equivalence (described
in Section 5). On the other hand, the frame stack style is a more fine-grained small-step definition,2 which also handles
continuations (frame stacks) that behave similarly to syntactical expression contexts during the evaluation, which property
is quite advantageous when proving correspondence between the equivalence definitions.

First, we describe the syntax of frame stacks and frames, which resemble syntactical contexts. For the stacks, we use lists
and use the following notations: ε denotes the empty stack, and F :: K prepends the frame F to K .

Definition 3.4 (Syntax of frames, frame stacks).

F ∈ Frame ::= let x = � in e2 | case � of e2 then e3 else

| call �(e1, . . . , ek) | call v(�, . . . , ek) | · · · | call v(v1, . . . ,�)

| apply �(e1, . . . , ek) | apply v(�, . . . , ek) | · · · | apply v(v1, . . . ,�)

| [e1|�] | [�|v2]

K ∈ FrameStack ::= ε | F :: K

Definition 3.5 (Frame stack semantics). We define the semantics of the language as an inductive relation that reduces con-
figurations 〈K , e〉 consisting of a frame stack K and a reducible expression e. The frame stack K can also be seen as the
continuation of the computation, after the expression e has been evaluated.

Furthermore, we define 〈K , e〉 −→n 〈K ′, e′〉 as the step-indexed reflexive transitive closure of the reduction relation, and
〈K , e〉 −→∗ v as the any-step evaluation, formally, ∃n : 〈K , e〉 −→n 〈ε, v〉.

The rules of the semantics can be categorised into three groups:

1. Rules that extract the first redex from an expression (Fig. 4), by putting this redex into the second cell of the configu-
ration (this will be the next reducible expression), and the remaining parts of the expression on top of the frame stack.
For example, SApp deconstructs an apply expression by promoting its first subexpression for reduction.

2. Rules that modify the frame on the top of the stack (Fig. 5). These rules put the reduced value into the top frame, and
start the evaluation of the next redex which is extracted from the frame. For example, SAppNext starts the evaluation of
the (i + 1)st parameter of an apply expression, by putting back the value of the ith parameter back to the top frame,
and extracting the (i + 1)st expression to start its evaluation.

2 The frame stack style definition is also suitable to express the semantics of concurrent language features, opposed to the big-step definitions [35].
6

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
〈[e1|�] :: K , v2〉 −→ 〈[�|v2] :: K , e1〉 (SCons2)

〈apply�(e1, . . . , ek) :: K , v〉 −→ 〈apply v(�, . . . , ek) :: K , e1〉 (SAppParam)

〈call�(e1, . . . , ek) :: K , v〉 −→ 〈call v(�, . . . , ek) :: K , e1〉 (SCallParam)

〈apply v(v1, . . . , vi−1,�, ei+1, . . . , ek) :: K , vi〉 −→ 〈apply v(v1, . . . , vi−1, vi ,�, ei+2, . . . , ek) :: K , ei+1〉 (if i < k) (SAppNext)

〈call v(v1, . . . , vi−1,�, ei+1, . . . , ek) :: K , vi〉 −→ 〈call v(v1, . . . , vi−1, vi ,�, ei+2, . . . , ek) :: K , ei+1〉 (if i < k) (SCallNext)

Fig. 5. Frame stack semantics rules (group 2).

〈apply�() :: K ,fun f /0() → e〉 −→ 〈K , e[f /0 �→ fun f /0() → e]〉 (PApp0)

〈apply (fun f /k(x1, . . . , xk) → e)(v1, . . . ,�) :: K , vk〉 −→ 〈K , e[f /k �→ fun f /k(x1, . . . , xk) → e, x1 �→ v1, . . . , xk �→ vk]〉 (PApp)

〈call ’+’(i1,�) :: K , i2〉 −→ 〈K , i1 + i2〉 (PPlus)

〈let x = � in e2 :: K , v〉 −→ 〈K , e2[x �→ v]〉 (PLet)

〈[�|v2] :: K , v1〉 −→ 〈K ,[v1|v2]
v 〉 (CCons)

〈case� of p then e2 else e3 :: K , v〉 −→ 〈K , e2[match(p, v)]〉 (if is_match(p, v)) (PCaseTrue)

〈case� of p then e2 else e3 :: K , v〉 −→ 〈K , e3〉 (if ¬is_match(p, v)) (PCaseFalse)

Fig. 6. Frame stack semantics rules (group 3).

3. Rules that remove the top frame (Fig. 6). The effect of these rules is different for each language element, thus we will
give a brief description of them.
• PApp0 and PApp describe the final evaluation step for function application. If the top frame contains an apply

expression, and a function value is either in the second configuration cell (if there are no parameters), or it is inside
the top frame. In the second case, k − 1 values are also contained in the frame as the actual parameters, while the
last parameter is the value currently in the second configuration cell. The next reducible expression is the body of
the function value, in which the formal parameters are substituted with the actual ones, and the function name is
substituted with its definition (to express recursion).

• PPlus describes how the BIF for addition works. It requires the top frame to contain a call expression with ’+’
as the BIF name, and the integer value i1 as the first parameter, while the evaluated value i2 is the second integer
parameter. These will be added by integer addition resulting in an integer which will be in the second cell of the
result configuration.

• PLet describes when the first subexpression of a let expression has been evaluated to a value. The second subex-
pression, where x is substituted with the computed value, is the next evaluable expression.

• CCons describes the last evaluation step for lists. If there is a list frame on the top of the stack with a value in its tail,
and the head is also evaluated to a value, the result value list is constructed by putting the head into this list frame.

• PCaseTrue and PCaseFalse describe the final step for the evaluation of case expressions. If the given pattern matches
the computed value, then e2 is the next evaluable expression, otherwise it is e3.

Next, we show that the semantics is deterministic. Checking this property acts as a validation step since the reference
implementation of sequential Core Erlang is also deterministic. Furthermore, we use this property in later proofs, e.g. in
Theorem 5.5.

Theorem 3.1 (Determinism). For all expressions e, e1, e2 , frame stacks K , K1 , K2 , if 〈K , e〉 −→ 〈K1, e1〉 and 〈K , e〉 −→ 〈K2, e2〉, then
K1 = K2 and e1 = e2 .

Another natural property of the semantics we proved is that the reflexive, transitive closure is indeed transitive and
step-indexes add up.

Theorem 3.2 (Transitivity). For all expressions e1, e2, e3 , frame stacks K1, K2 , K3 , and step counters n1, n2 , if 〈K1, e1〉 −→n1 〈K2, e2〉
and 〈K2, e2〉 −→n2 〈K3, e3〉, then 〈K1, e1〉 −→n1+n2 〈K3, e3〉.

Another advantage of the frame stack semantics is that if there is a reduction sequence between configurations, adding
more frames to the bottom of the stacks in both configurations will not affect this evaluation sequence. This property will
be important when establishing connection between observational equivalence and other expression equivalence relations.
We use K ++ K ′ to denote the concatenation of K and K ′ . (We expect this property to hold even if exceptions are included
in the language semantics.)
7

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Theorem 3.3 (Extend frame stack). For all frame stacks K1, K2, K ′ , expressions e1, e2 , and step counters n, if 〈K1, e1〉 −→n 〈K2, e2〉,
then 〈K1 ++ K ′, e1〉 −→n 〈K2 ++ K ′, e2〉.

To prove more theorems about the semantics in Section 5.1.1, we first define the termination of configuration inductively
in Section 5.1.

3.5.1. Discussion
Evaluation order We have classified the semantics rules in 3 groups. We highlight that the evaluation of expressions always
includes the use of exactly one rule from category 1 and 3 above (with the exception of rec). Category 1 and 2 are the
structural rules of the semantics, they extract the next redex either from a complex expression or from the top frame of the
stack, therefore these are the rules that define the evaluation order of expressions. In the formalisation, we implemented
a leftmost-innermost evaluation strategy, which follows the behaviour of the reference implementation [36], although, the
language specification [37] does not define the evaluation order. Note that the evaluation of lists (defined by rules SCons1,
SCons2 and CCons) is right-to-left, which also reflects the behaviour of the reference implementation.

Values and expressions An obvious question about the syntax and semantics is why we need two separate list constructors.
The simple answer is that we need a syntactic way of differentiating list values from list expressions, and it is related to the
semantics rules. In fact, if we only had [e1|e2], then after having finished evaluating e1 and e2 (to v1 and v2), we could
build back the list with CCons. However, the result would be [v1|v2] without the distinction of value lists, thus SCons1
could be applied again, and also another rule which would put the result list into the top frame of the stack continuing the
evaluation. This anomaly causes nondeterminism and divergence. We could avoid this by using negative preconditions in
the rules (i.e. SCons1 would use ¬(∅ �val [e1|e2])), but this would decrease the usability of the semantics. Moreover, lists
of expressions that only contain values would never be evaluated step-by-step.

In the work of Wand et al. [9] with the use of explicit sequencing in let expressions, most of the rules from category 1
and 2 could be omitted, but this simplification poses restrictions on the syntax, as mentioned before.

Contrast to previous work Compared to our and others big-step formalisations [4,5,36], this frame stack semantics is more
fine-grained, and simpler to use, because the reduction rules do have far less premises as the rules of big-step definitions,
thus the use of the frame stack semantics is simpler than the use of the big-step definition for proofs. However, with
the frame stack approach, we have to reason about the reflexive transitive closure which is not needed for the big-step
semantics. Another advantage of frame stack approach, is that we can also define the concurrent semantics of Core Erlang
(which is ongoing work of ours), while the big-step version is not suitable for this work [35].

As mentioned before, our semantics described in this paper covers a subset of sequential Core Erlang. Other authors
chose slightly different subsets for their formalisation [14,38], because their formalisation focuses more on the concurrent
semantics. From the current formalisations, Fredlund’s formalisation of Erlang [13] is the most extensive, and uses a small-
step definition. Compared to other small-step semantics, the rules in the frame stack approach do not have any premises
about reductions, which means that no induction is necessary on the one-step evaluation, just case distinction.

3.5.2. Example evaluation
To demonstrate how this semantics is used for evaluation, we describe the evaluation of the expression in Fig. 2b with

the following parameters: e f = fun(X,A) -> [call ’+’(X, 1) | A] (this function will add 1 to each element of
the parameter list), ed = [], el = [1,2]. We use f foldr to denote the function value from the rec expression in Fig. 2b. For
readability, we use −→∗ to denote any-step reduction between two configurations here.

In the first steps, we evaluate the rec expression, which substitutes the ’foldr’/3 identifiers. Then we start evaluat-
ing the subexpressions of the application. The function expression and [] evaluate to themselves, while the list of [1,2]
needs to be deconstructed, and reconstructed as a list of values.

〈ε,rec ’foldr’/3 = ... in apply ’foldr’/3(e f ,[],[1,2])〉 −→
〈ε,apply ffoldr(e f ,[],[1,2])〉 −→∗

〈apply ffoldr(e f ,[],�) :: ε,[1,2]〉 −→
〈[1|�] :: apply ffoldr(e f ,[],�) :: ε,[2]〉 −→
〈[2|�] :: [1|�] :: apply ffoldr(e f ,[],�) :: ε,[]〉 −→
〈[�|[]] :: [1|�] :: apply ffoldr(e f ,[],�) :: ε,2〉 −→
〈[1|�] :: apply ffoldr(e f ,[],�) :: ε,[2]v〉 −→
〈[�|[2]v] :: apply ffoldr(e f ,[],�) :: ε,1〉 −→
〈apply ffoldr(e f ,[],�) :: ε,[1,2]v〉
8

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Next, we evaluate the application of the function value f foldr by substituting in its body (see in Fig. 2b, L is substituted with
[1,2]v , and D to []). The pattern matching succeeds, and the application apply F(H, apply ’foldr’/3(e f , D,
T) (denoted by body) is evaluated. First, the parameters of this application are evaluated, which means the recursive calls
in this case.

〈apply ffoldr(e f ,[],�) :: ε,[1,2]v〉 −→
〈ε,case [1,2]v of [H | T] then body else []〉 −→
〈ε,apply e f (1,apply ffoldr(e f ,[],[2]v)〉 −→∗

〈apply e f (1,�) :: ε,case [2]v of [H | T] then body else []〉 −→∗

〈apply e f (2,�) :: apply e f (1,�) :: ε,case [] of [H | T] then body else []〉 −→∗

〈apply e f (2,�) :: apply e f (1,�) :: ε, []〉
After the end of the recursion is reached, the application of the parameter function (in this case, the successor function)
starts, which builds back the list.

〈apply e f (2,�) :: apply e f (1,�) :: ε, []〉 −→∗

〈apply e f (1,�) :: ε,[call ’+’(2, 1) | []]〉 −→∗

〈apply e f (1,�) :: ε,[3]v〉 −→∗

〈ε,[call ’+’(1, 1) | [3]v]〉 −→∗

〈ε,[2, 3]v〉
Now we proceed to prove a more general property about the evaluation of the expression in Fig. 2b: its correspondence

with the map function. First, let us introduce some preliminaries:

• An object-level list of values v is proper, if it is built up in the following way: v = [v1|[v2| . . .[vk|[]]
v . . .]v]v .

• A proper object-level list of values v can be expressed as a meta-level list of values, we will denote it with v .
• Similarly, any meta-level list [v1, . . . , vn] of values can be expressed as a proper, object-level list, which we denote by

[v1, . . . , vn].
• An object-level function value v f computes the meta-level function f , if for all closed values v : 〈ε, apply v f (v)〉 −→∗

f (v).

Lemma 3.4 (Evaluation of ’foldr’). For all closed values vl representing a proper list, closed function values v f that compute a
function f , if v g = fun(X, A) -> [apply v f (X) | A] we can prove that

〈ε,rec ’foldr’/3 = ... in apply ’foldr’/3(v g,[], vl)〉 −→∗ map(f , vl)

where map denotes the metatheoretical list transforming function, which applies f to every element of its parameter list.

Proof. We proceed by induction on the length of vl . If vl was empty, the result will also be empty.
In the inductive case, there is a first element of the parameter list: vl = v :: v ′

l = [v, v1, . . . , vk]. From the induction
hypothesis, we can derive

〈ε,apply ffoldr(v1, . . . , vk)〉 −→∗ map f [v1, . . . , vk]
(where f foldr denotes the function value from the rec expression).

Next, we take some steps with the semantics in the conclusion to reach the configuration

〈apply v g(v,�) :: ε,apply ffoldr(v1, . . . , vk)〉
where we can apply the induction hypothesis with the help of Theorem 3.3 and Theorem 3.2. This results in the goal of

〈apply v g(v,�) :: ε,map f [v1, . . . , vk]〉 −→∗ map f [v, v1, . . . , vk]〉
which can be reached by taking a number of steps with the semantics. �
4. Naive definitions of program equivalence

In this section we briefly overview naive and too strict definitions of expression equivalence. The following relations are
simply induced by the evaluation relation, and are insufficient in the case of this higher-order functional language.
9

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
4.1. Behavioural equivalence

Naive program equivalence (simple behavioural equivalence by the textbook [7] definition) says two expressions to be
(behaviourally) equivalent if and only if they evaluate to the same result, or they both diverge. Note that the equivalence
relation is typically defined by the symmetrisation of a preorder relation.

Definition 4.1 (Naive behavioural equivalence).

e1 ≤b e2
def= ∀v : 〈ε, e1〉 −→∗ v =⇒ 〈ε, e2〉 −→∗ v

e1 ≡b e2
def= e1 ≤b e2 ∧ e2 ≤b e1

In the formalisation, we prove the ≡b relation to be an equivalence, that is, show that it is reflexive, symmetric, and
transitive. We also show that it is indeed a behavioural equivalence over our expressions, characterised by congruence [7]
property. Congruence helps prove compound expressions equivalent, but it took significant effort to formalise and prove in
Coq [34].

Equivalence of function expressions The definition of behavioural equivalence checks for equality of result values. In case of
integer, atom, or list expressions, it relates expressions understood equivalent indeed. However, for function expressions,
checking strict equality is likely not to meet our expectations:

fun f/1(X) → call ’+’(X,2) = fun f/1(X) → call ’+’(call ’+’(X,1),1)

Obviously, we would expect functions with equivalent bodies to be equivalent, but as exemplified by the above snippets,
the naive approach only relates function closures whose body expressions are structurally equal. With this naive definition,
we can only prove identical function expressions equivalent.

4.2. Naive contextual equivalence

In case of function expressions, the equivalence relation should depend on whether the body expressions behave the
same way in the same expression contexts, i.e. they are contextually equivalent. In other words, contexts are supposed to
reveal any observable differences between the expressions.

We proceed by defining expression contexts, which are basically expressions with one of their subexpressions replaced
by a hole. The hole can be substituted with any expression (e.g. apply f (1, �, 3)[2] = apply f (1, 2, 3)) to obtain valid
expressions. We define expression contexts as follows:

Definition 4.2 (Expression context).

C ∈ Context ::= � | fun f /k(x1, . . . , xk) → C

| apply C(e1, . . . , ek) | apply e(C, . . . , ek) | . . . | apply e(e1, . . . , C)

| call C(e1, . . . , ek) | call e(C, . . . , ek) | . . . | call e(e1, . . . , C)

| rec f /k = fun(x1, . . . , xk) → C in e | let x = C in e2

| rec f /k = fun(x1, . . . , xk) → e0 in C | let x = e1 in C

| [C|e2] | [e1|C] | case C of p then e2 else e3

| case e1 of p then C else e3 | case e1 of p then e2 else C

We define the substitution of the � with an expression in the usual way (e.g. see [8]), and we will denote it by C[e].
Next, we define the contextual equivalence using contextual preorders.

Definition 4.3 (Naive contextual equivalence).

e1 ≤ctx e2
def= ∀C, v : 〈ε, C[e1]〉 −→∗ v =⇒ 〈ε, C[e2]〉 −→∗ v

e1 ≡ctx e2
def= e1 ≤ctx e2 ∧ e2 ≤ctx e1

Let us point out that this definition of naive contextual equivalence cannot overcome the issue with function expressions:
if we consider syntactical contexts too, the value (i.e. the function closure) is checked for equality in the empty context.
Actually, it escalates the problem even further: the latter relation coincides with syntactical equality since it requires the
10

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
〈ε, v〉 ⇓0

〈[e1|�] :: K , e2〉 ⇓n

〈K ,[e1|e2]〉 ⇓1+n

〈[�|v2] :: K , e1〉 ⇓n

〈[e1|�] :: K , v2〉 ⇓1+n

〈K ,[v1|v2]v 〉 ⇓n

〈[�|v2] :: K , v1〉 ⇓1+n

〈case � of p then e2 else e3 :: K , e〉 ⇓n

〈K ,case e of p then e2 else e3〉 ⇓1+n

〈K , e2[match(p, v)]〉 ⇓n is_match(p, v)

〈case � of p then e2 else e3 :: K , v〉 ⇓1+n

〈K , e3〉 ⇓n ¬is_match(p, v)

〈case � of p then e2 else e3 :: K , v〉 ⇓1+n

〈let x = � in e2 :: K , e〉 ⇓n

〈K ,let x = e in e2〉 ⇓1+n

〈K , e2[x �→ v]〉 ⇓n

〈let x = � in e2 :: K , v〉 ⇓1+n

〈K , e[f /k �→ fun f /k(x1, . . . , xk) → e0]〉 ⇓n

〈K ,rec f /k = fun(x1, . . . , xk) → e0 in e〉 ⇓1+n

〈apply �(e1, . . . , ek) :: K , e〉 ⇓n

〈K ,apply e(e1, . . . , ek))〉 ⇓1+n

〈apply v(�, . . . , ek)) :: K , e1〉 ⇓n

〈apply �(e1, . . . , ek)) :: K , v〉 ⇓1+n

〈apply v(v1, . . . , vi ,�, ei+2, . . . , ek) :: K , ei+1〉 ⇓n

〈apply v(v1, . . . , vi−1,�, ei+1, . . . ek) :: K , vi〉 ⇓1+n

〈call �(e1, . . . , ek) :: K , e〉 ⇓n

〈K ,call e(e1, . . . , ek))〉 ⇓1+n

〈call v(�, . . . , ek)) :: K , e1〉 ⇓n

〈call �(e1, . . . , ek)) :: K , v〉 ⇓1+n

〈call v(v1, . . . , vi ,�, ei+2, . . . , ek) :: K , ei+1〉 ⇓n

〈call v(v1, . . . , vi−1,�, ei+1, . . . ek) :: K , vi〉 ⇓1+n

〈K ,b[f /0 �→ fun f /0() → e0]〉 ⇓n

〈apply �() :: K ,fun f /0() → e0〉 ⇓1+n

〈K , i1 + i2〉 ⇓n

〈call ’+’(i1,�) :: K , i2〉 ⇓1+n

〈K ,b[f /k �→ fun f /k(x1, . . . , xk) → e0, x1 �→ v1, . . . , xk �→ vk]〉 ⇓n

〈apply (fun f /k(x1, . . . , xk) → e0)(v1, . . . ,�) :: K , vk〉 ⇓1+n

Fig. 7. Step-indexed, frame stack-style termination relation.

expressions to yield equal values, even in function abstraction contexts. Clearly, a special notion of value equality is needed
to treat function expressions properly.

In addition, while it is straightforward to prove that two expressions are not contextually equivalent (even with a less
strict notion of contextual equivalence, see Section 5.5), the proof of equivalence in general is understood to be significantly
more complex as it requires induction over contexts. In order to overcome these issues, we seek differently formulated
equivalence relations, which coincide with our intuition and at the same time they ease proving two expressions equivalent.

5. More accurate definitions of program equivalence

To reason about the correctness of refactorings, an appropriate and accurate program equivalence definition is needed
for the object language. In this section, we refine the contextual equivalence relation introduced in the previous section,
and we present a number of alternative, equal definitions, such as step-indexed logical relations [8,9,39] and CIU (“closed
instances of uses”) relations.

5.1. Frame stack termination relation

As briefly mentioned in Section 2, it is an important result discussed in related work that two expressions can be
shown contextually equivalent by proving that they both terminate or both diverge in arbitrary contexts. In other words, it
suffices to prove this termination property even when arguing about expression equivalences appearing in the verification
of refactoring.

Definition 5.1 (Termination relation). We formalise termination as an inductive, step-indexed relation, denoted by 〈K , e〉 ⇓n)
in Fig. 7. We also introduce the notation 〈K , e〉 ⇓ for any-step termination: ∃n : 〈K , e〉 ⇓n .

Remark The derivation rules of termination can be obtained by transforming the reduction rules of the semantics in Defi-
nition 3.5 in the following way. Suppose that there is a reduction rule 〈K , e〉 −→ 〈K ′, e′〉. To prove that the configuration on
the left-hand side terminates in some steps (〈K , e〉 ⇓n+1), it suffices to prove that the configuration on the right-hand side
terminates in one less step (〈K ′, e′〉 ⇓n).

5.1.1. Properties of termination and the frame stack semantics
With the termination relation defined, we prove the following correspondence as the validation of the definition of

termination.

Theorem 5.1 (Step-indexed terminations coincide). For all frame stacks K , expressions e and step-counters n, 〈K , e〉 ⇓n if and only if
there is a closed value v that satisfies 〈K , e〉 −→n 〈ε, v〉.

Proof. This lemma can be proven by induction on the step-index. The subgoal can be solved by basically applying the
induction hypotheses for the subexpressions. For more details, we refer to the Coq implementation [32]. �

For the following theorems, we extend the scoping to frames and frame stacks. We reuse the notation F [e] to substitute
the � in frame F with e.
11

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Definition 5.2 (Closed frame stacks). A frame stack K is said to be closed if and only if all of its frames are closed. A frame F
is closed, if for all closed expressions e, the expression F [e] is closed.

The concept of closed frame stacks is needed if we investigate evaluation which removes frames of the stack. In general,
when an expression is evaluated, all of its free variables are substituted before it is pushed to the stack [17], thus evaluations
that involve removing elements from the stack assume that all free variables have been substituted (i.e. the stack is closed).

We have investigated several properties of the semantics relevant to the termination relation too; here we highlight
some of these, the rest can be found in the Coq formalisation [32]. The following two theorems state that frames from the
stack can be transformed back to expressions by substituting the � with the current expression under evaluation.

Theorem 5.2 (Remove frame). For all closed frames F , closed expressions e, and all frame stacks K , if 〈F :: K , e〉 ⇓ then 〈K , F [e]〉 ⇓.

Proof. From 〈F :: K , e〉 ⇓ we assume that this termination takes k steps. We proceed with case distinction on frame F :
depending on the structure of F , the evaluation of F [e] should take n + k steps (e.g. for F = � + e2, n = 1, while for
F = v1 + �, n = 2, etc.) to reach the configuration in the premise (〈F :: K , e〉 ⇓k). �

The next theorem is the opposite of the previous one, allowing a context frame to be pushed to the stack.

Theorem 5.3 (Add frame). For all closed frames F , closed expressions e, and all frame stacks K , if 〈K , F [e]〉 ⇓ then 〈F :: K , e〉 ⇓.

Proof. This proof is basically the reverse of the previous one. Again, we do case distinction on F , and then we inspect the
premise 〈K , F [e]〉 ⇓ and investigate how this derivation could have been done. After taking some steps (e.g. for F = � + e2,
one step is enough, while for F = v1 + �, two steps are needed, etc.) we reach the configuration with some k number
〈F :: K , e〉 ⇓k we need to prove to terminate. �

We highlight two more theorems that relate the termination relation with the semantics. The first theorem states that if
a configuration can be reduced to a terminating one, then the former terminates too, and the steps add up.

Corollary 5.4. For all frame stacks K1, K2 , expressions e1, e2 , and step counters n1, n2 , if 〈K1, e1〉 −→n1 〈K2, e2〉 and 〈K2, e2〉 ⇓n2 ,
then 〈K1, e1〉 ⇓n1+n2 .

Proof. This theorem is a consequence of the fact that termination can be expressed in the semantics too (Theorem 5.1).
Next, transitivity (Theorem 3.2) can be used to chain the obtained reduction sequence with the one in the premise. �

The next theorem states that if there is a terminating configuration that can be reduced in some steps, then the result
configuration is also terminating.

Theorem 5.5. For all frame stacks K1, K2 , expressions e1, e2 , and step counters n1, n2 , if 〈K1, e1〉 ⇓n1 and 〈K1, e1〉 −→n2 〈K2, e2〉,
then 〈K2, e2〉 ⇓n1−n2 .

Note that determinism (Theorem 3.1) is crucial for this theorem, but for the sake of brevity, we omit the proof and refer to
the formalisation [32] for details.

5.2. The logical relation

The majority of related work on program equivalence proposes logical relations, amongst others, for arguing about stan-
dard contextual equivalence. At first we followed the techniques of Pitts [8] and adapted his “logical simulation relation”.
Unfortunately, their mathematical definitions cannot be directly formalised in Coq for this untyped language as the state-
ments they use are not well-founded without type-indexing and therefore do not pass Coq’s positivity checker. Neither could
we adapt the techniques of Culpepper and Cobb [25], because they also use types to base their relations on. Therefore, we
decided to adopt the idea of step-indexed relations [9,29].

First, we define these logical relations for closed values, expressions and frame stacks. For better readability, we omit
the assumptions of closedness from the definitions. We use the same notations as Wand et al. [9]. We invite the reader to
observe how the value relation addresses the previously seen issue of function expression equivalence by relating the body
expressions.

Definition 5.3 (Logical relations for closed expressions, values and frame stacks). We describe the mutually dependent definitions
of the logical relations. First, we define the logical relation for expressions. We denote the set of related expressions with
En , where n is a step counter.
12

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Two expressions are related at index n if: whenever the first one terminates in at most n steps in some frame stack K1

the second one terminates in any stack related to K1.

(e1, e2) ∈En
def= (∀m ≤ n, K1, K2 : (K1, K2) ∈Km =⇒ 〈K1, e1〉 ⇓m =⇒ 〈K2, e2〉 ⇓)

We denote the set of related frame stacks Kn , where n is a step counter. The following definition is similar to the previous
one. Two stacks are related at index n if: whenever the first one terminates in at most n steps with a value v1 the second
one terminates in a configuration with any value related to v1.

(K1, K2) ∈ Kn
def= (∀m ≤ n, v1, v2 : (v1, v2) ∈ Vm =⇒ 〈K1, v1〉 ⇓m =⇒ 〈K2, v2〉 ⇓)

Finally, we define the concept of related values (the set of these value pairs is denoted by Vn , where n is a step counter).
This relation defines the base cases of the mutual definitions. Two atoms or integers are related when they are equal. Two
empty lists are always related, while non-empty value lists are related when their subvalues are related. Two functions are
related, if their bodies substituted with pairwise-related actual parameters are related expressions.

(i1, i2) ∈ Vn
def= i1 = i2

(a1,a2) ∈ Vn
def= a1 = a2

([],[]) ∈ Vn
def= true

([v1|v2]
v ,[v ′

1|v ′
2]

v) ∈ Vn
def= (v1, v ′

1) ∈ Vn ∧ (v2, v ′
2) ∈ Vn

(fun f /k(x1, . . . , xk) → e,fun f /k(x1, . . . , xk) → e′) ∈ Vn
def=

(∀m < n : ∀v1, v ′
1, . . . , vk, v ′

k : (v1, v ′
1) ∈ Vm ∧ · · · ∧ (vk, v ′

k) ∈ Vm =⇒
(e[f /k �→ fun f /k(x1, . . . , xk) → e, x1 �→ v1, . . . , xk �→ vk],
e′[f /k �→ fun f /k(x1, . . . , xk) → e′, x1 �→ v ′

1, . . . , xk �→ v ′
k]) ∈Em)

To ensure the well-foundedness of these relations, we used the step-index, which is decreased in V for functions (m < n,
while in the other relations we use m ≤ n). For list values on the other hand, we did not decrease this index, we only
used structural recursion. Alternatively, the step-index can be reduced in this case too, but then the mechanism of pattern
matching needs to be formalised in a step-indexed way too.

Just like in the work of Wand et al. [9], these relations with higher indices can differentiate more expressions, values and
stacks, i.e. V0 ⊇ V1 ⊇ · · · ⊇ Vn−1 ⊇ Vn (also for En and Kn), i.e. these relations have this monotonicity property defined
based on the step counter. For example, E0 contains every expression, except the non-equal values that are not functions,
because only values can terminate in 0 steps in empty stacks. The above relations can be generalised to open expressions
(or values) with closing substitutions (i.e. all free variables of the expression replaced by closed values).

Definition 5.4 (Logical relations with closing substitutions). First, we define the notion of related, closing substitutions. We
denote their set with G�

n , where n is the usual step counter, and � is the set of free variables that are substituted with
closed values by the substitutions.

(σ1,σ2) ∈G�
n

def= � �sub σ1 � ∅ ∧ � �sub σ2 � ∅ ∧ (∀x ∈ � : (σ1(x),σ2(x)) ∈ Vn)

With the concept of related closing substitutions, we can define the logical relations for open expressions (supposing that
they have the same scope �).

(v1, v2) ∈ V� def= � �val v1 ∧ � �val v2 ∧ (∀n,σ1,σ2 : (σ1,σ2) ∈G�
n =⇒ (v1[σ1], v2[σ2]) ∈ Vn)

(e1, e2) ∈E� def= � �exp e1 ∧ � �exp e2 ∧ (∀n,σ1,σ2 : (σ1,σ2) ∈G�
n =⇒ (e1[σ1], e2[σ2]) ∈En)

After having these relations defined, we proceeded to prove their two most important properties [9,25,29]: the compati-
bility rules which are forms of congruence and the “fundamental property” (a form of reflexivity). In our formalisation, we
state and prove a number of lemmas that support the proof of the main theorems (we refer to the implementation [32] for
more details).

Theorem 5.6 (Compatibility of expressions and values). The logical relations satisfy each of the following implications:
13

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
(v, v ′) ∈V�

(v, v ′) ∈E�

x ∈ �

(x, x) ∈V�

f /k ∈ �

(f /k, f /k) ∈V� (a,a) ∈V� (i, i) ∈V� ([],[]) ∈V�

(v1, v ′
1) ∈V� (v2, v ′

2) ∈V�

([v1|v2]v ,[v ′
1|v ′

2]
v) ∈V�

(e1, e′
1) ∈E� (e2, e′

2) ∈E�

([e1|e2],[e′
1|e′

2]) ∈E�

(e1, e2) ∈E�∪{ f /k,x1,...,xk}

(fun f /k(x1, . . . , xk) → e,fun f /k(x1, . . . , xk) → e2) ∈V�

(e1, e′
1) ∈E� (e2, e′

2) ∈E�∪{x}

(let x = e1 in e2,let x = e′
1 in e′

2) ∈E�

(e, e′) ∈E� (e1, e′
1) ∈E� · · · (ek, e′

k) ∈E�

(apply e(e1, . . . , ek),apply e′(e′
1, . . . , e′

k)) ∈E�

(e, e′) ∈E� (e1, e′
1) ∈E� · · · (ek, e′

k) ∈E�

(call e(e1, . . . , ek),call e′(e′
1, . . . , e′

k)) ∈E�

(e, e′) ∈E�∪{ f /k} (b,b′) ∈E�∪{ f /k,x1,...,xk}

(rec f /k = fun(x1, . . . , xk) → b in e,rec f /k = fun(x1, . . . , xk) → b′ in e′) ∈E�

(e1, e′
1) ∈E� (e2, e′

2) ∈E�∪vars(p) (e3, e′
3) ∈E�

(case e1 of p then e2 else e3,case e′
1 of p then e′

2 else e′
3) ∈E�

Proof. The compatibility rules for the non-recursive language constructs follow from the definitions. For recursive functions,
induction was needed by the step-index. For the other cases, we give a representative proof outline with the compatibility
proof of expression lists:

1. Give proof for closed expressions, then the compatibility with the closing substitutions is just a consequence of it.
2. From the premise 〈K , [e1|e2]〉 ⇓m (for any m ≤ n), we can deduce 〈[e1|�] :: K , e2〉 ⇓m−1 from the definition of the

termination. For the other derivation, we have (K , K ′) ∈Kn . To get 〈K ′, [e′
1|e′

2]〉 ⇓ it is sufficient to prove 〈[e1|�] ::
K ′, e′

2〉 ⇓. Now, we apply the premise (e1, e′
1) ∈ En , to conclude this subproof, but we still need to show that the two

frame stacks are in relation.
3. To prove ([e1|�] :: K , [e′

1|�] :: K ′) ∈ Km , we need to prove that for any k ≤ m, (v2, v ′
2) ∈ Vm : 〈[e1|�] :: K , v2〉 ⇓k

implies 〈[e′
1|�] :: K ′, v ′

2〉 ⇓. By definition, we can transform both the premise and the conclusion (just like above):
〈[�|v2] :: K , e1〉 ⇓k−1 implies 〈[�|v ′

2] :: K ′, e′
2〉 ⇓, which can be proven by (e2, e′

2) ∈ En , since k − 1 < k ≤ m ≤ n.
However, this step introduces another premise of the new frame stacks to be in relation.

4. To prove ([�|v2] :: K , [�|v ′
2] :: K ′) ∈ Km , we have to go through the same steps as before. We need to prove

that j ≤ k, (v1, v ′
1) ∈ Vk : 〈[�|v2] :: K , v1〉 ⇓ j implies 〈[�|v ′

2] :: K ′, v ′
1〉 ⇓. Once again, we apply the definition of

the termination to get 〈K , [v1|v2]v〉 ⇓ j−1 implies 〈K ′, [v ′
1|v ′

2]
v〉 ⇓. This goal can be solved by the original as-

sumption of (K , K ′) ∈ Kn , since j − 1 < n and K is monotone. However, to use this assumption, we have to prove
that ([v1|v2]v , [v ′

1|v ′
2]

v) ∈ V j−1. According to the definition of V j−1, it is sufficient to prove that (v1, v ′
1) ∈ V j−1

and (v2, v ′
2) ∈ V j−1 which can be solved by the monotonicity property and the assumptions created during the proof

(namely (v2, v ′
2) ∈Vm in step 3, and (v1, v ′

1) ∈Vk in step 4).

For the complete proof we refer to the formalisation [32]. �
The fundamental property (a form of reflexivity) of the logical relations is a consequence of Theorem 5.6.

Theorem 5.7 (Fundamental property). For all scopes � the following properties hold:

• For all expressions e, if � �exp e then (e, e) ∈E�;
• For all values v, if � �val v then (v, v) ∈V�;
• For all closing substitutions σ , if � �sub σ � ∅ then for all step counters n, (σ , σ) ∈G�

n holds.

Proof. We carry out induction on e (and v resp.). Then for all cases, we can just use the corresponding compatibility rule
from Theorem 5.6, moreover, the premises of these rules are satisfied either by the scoping premises or the induction
hypotheses.

The fundamental property of G�
n follows from the fundamental property of V� . �

All in all, logical relations proved to be useful for proofs, since these definitions do not require reasoning about the same
frame stacks and substitutions, but related pairs, which enables more flexibility in the proofs. However, this advantage turns
into a disadvantage while proving concrete expressions equivalent.
14

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
5.3. CIU equivalence

Alongside proving the properties of the logical relations, we have also formalised CIU (“closed instances of uses”) preorder
and equivalence relations [22].

Definition 5.5 (CIU preorder). Two expressions are CIU equivalent if they both terminate or diverge when placed in arbitrary
reduction contexts.

e1 ≤ciu e2
def= ∅ �exp e1 ∧ ∅ �exp e2 ∧ (∀K : K is closed ∧ 〈K , e1〉 ⇓ =⇒ 〈K , e2〉 ⇓)

e1 ≡ciu e2
def= e1 ≤ciu e2 ∧ e2 ≤ciu e1

We extend these concepts to open expressions with closing substitutions.

e1 ≤�
ciu e2

def= � �exp e1 ∧ � �exp e2 ∧ ∀σ : � �sub σ � ∅ =⇒ e1[σ] ≤ciu e2[σ]
e1 ≡�

ciu e2
def= e1 ≤�

ciu e2 ∧ e2 ≤�
ciu e1

Proving expressions CIU equivalent is usually simpler than proving them contextually equivalent, since contextual equiv-
alence potentially requires induction on the contexts [40]. In addition, a proof of two expressions being CIU equivalent
requires to reason about only one frame stack and one substitution, in contrast to logical relation which requires related
pairs of frame stacks and substitutions [9]. To maintain these related pair of expressions and frame stack would require
additional care. On the other hand, for the same reason, logical relations can be more flexible while proving properties
about the relations.

After defining the CIU preorder, we also proved its correspondence with the logical relations (see [32]):

Theorem 5.8 (CIU coincides with the logical relations). For all expressions e1, e2 , and scopes �, e1 ≤�
ciu e2 if and only if (e1, e2) ∈E� .

Proof. We follow the techniques of Wand et al. [9] in this proof.
⇒: We prove (e1, e2) ∈E� and e2 ≤�

ciu e3 implies (e1, e3) ∈E� , which is a trivial consequence of the definitions. There-
after, we prove our goal by using (e1, e1) ∈ E� as the first premise of this helper statement by the fundamental property
(Theorem 5.7).

⇐: The closing substitution required by the CIU preorder is denoted by σ . We specialize Definition 5.4 of E� with
σ1 = σ2 = σ , and by the fundamental property (Theorem 5.7), (σ , σ) ∈ G�

n . Thereafter, we just use Definition 5.4 of En to
finish the proof. �
5.4. Example simple equivalences

We also proved a number of simple programs to be CIU equivalent. We show the proof sketch of the last one, but omit
the others and refer to the formalisation [32]. The first equivalence is special, because it will be used in the proofs for the
equality of the equivalence relations. In the examples we suppose that all meta-variables are implicitly quantified, but omit
this detail for readability.

Example 5.9 (Beta reduction 1).

� ∪ {x} �exp e ∧ � �val v =⇒ e[x �→ v] ≡�
ciu let x = v in e

The next example is a generalised version of the beta-reduction. We note that in this case, from the application we
cannot reach the substituted expression in one reduction step, but in k + 2, because all sub-values are evaluated in one step.

Example 5.10 (Beta reduction 2).

� �val fun f /k(x1, . . . , xk) → e ∧ � �val v1 ∧ · · · ∧ � �val vk =⇒
e[f /k �→ fun f /k(x1, . . . , xk) → e, x1 �→ v1, . . . , xk �→ vk] ≡�

ciu apply (fun f /k(x1, . . . , xk) → e)(v1, . . . , vk)

Corollary 5.11 (Expressions are equivalent to their values). For all closed expressions e, and values v, if 〈ε, e〉 −→∗ v, then e ≡ciu v.

Proof. This theorem is a consequence of Theorem 3.3, and the fact that termination can be expressed in the semantics too
(Theorem 5.1). �
15

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Finally, we prove that the expressions in Fig. 2a and 2b are equivalent for particular parameters. We omit the function
definitions here for readability, but they are shown in the figures mentioned before.

Example 5.12 (Fold-map equivalence). For all closed values vl, v f , supposing that vl is a proper list and v f computes a meta-level
function f (for these definitions, we refer to Section 3.5.2), we can prove that

rec ’map’/2 = ... in apply ’map’/2(v f , vl) ≡ciu

rec ’foldr’/3 = ... in apply ’foldr’/3(fun(X, A) -> [apply v f (X) | A], [], vl)

Proof. A general way to prove such equivalences is to prove that both expressions evaluate to the same value v . We refer
to Lemma 3.4 for the evaluation of ’foldr’, and to the formalisation for the evaluation of ’map’. Next, we can use
Corollary 5.11 to establish that both expressions are equivalent to v . Finally, the CIU preorder relations are also reflexive and
transitive (we refer to Theorem 5.14 in the next section, and note that the contextual preorder is transitive by definition). �
5.5. Revisiting contextual preorder and equivalence

We describe a refined contextual equivalence relation based on the definitions by Wand et al. [9] and Gordon et al. [23].

Definition 5.6 (Contextual preorder). We define the contextual preorder to be the largest family of relations R� that satisfy
the following properties:

• Adequacy: (e1, e2) ∈ R∅ =⇒ 〈ε, e1〉 ⇓ =⇒ 〈ε, e2〉 ⇓
• Reflexivity: (e, e) ∈ R�

• Transitivity: (e1, e2) ∈ R� ∧ (e2, e3) ∈ R� =⇒ (e1, e3) ∈ R�

• Compatibility: R� satisfies the compatibility rules for every expression from Theorem 5.6.

We also adjusted our previous notion of contextual preorder and equivalence. In this case the context “closes” the
potentially open expressions.

Definition 5.7 (Syntax-based contextual preorder and equivalence).

e1 ≤�
ctx e2

def= � �exp e1 ∧ � �exp e2 ∧ (∀(C : Context) : ∅ �exp C[e1] ∧ ∅ �exp C[e2] =⇒ 〈ε, C[e1]〉 ⇓ =⇒ 〈ε, C[e2]〉 ⇓)

e1 ≡�
ctx e2

def= e1 F e2 ∧ e2 ≤�
ctx e1

Next, we proved that ≤�
ctx (from Definition 5.7) satisfies the criteria of being a contextual preorder.

Theorem 5.13 (Syntax-based contextual preorder is a contextual preorder). The relation ≤�
ctx satisfies the criteria of Definition 5.6.

After defining the contextual preorder properly, we could prove the equality between ≤�
ciu and ≤�

ctx , stated in Theo-
rem 5.14 and in Theorem 5.16.

Theorem 5.14 (CIU is a contextual preorder). For all expressions e1, e2 , and scopes �, if e1 ≤�
ciu e2 , then e1 ≤�

ctx e2 .

Proof. This theorem is just a consequence of the compatibility of the logical relations (Theorem 5.6), which coincide with
CIU (Theorem 5.8). Only the proof of transitivity requires simple reasoning in first-order logic. �

Next, we prepare a lemma for the theorem that states that contextual equivalence implies CIU equivalence. This theorem
states that contextually equivalent, open expressions can be closed step-by-step and we still obtain contextually equivalent
expressions.

Lemma 5.15 (Contextual equivalence is closed under substitution). For all expressions e1, e2 , values v, names x, and scopes �, if
e1 ≤�∪{x}

ctx e2 and � �val v, then e1[x �→ v] ≤�
ctx e2[x �→ v].

Proof. This lemma is a consequence of Example 5.9 with the expressions let x = v in e1 and let x = v in e2, transitiv-
ity, and the fact that CIU equivalence implies contextual equivalence (Theorem 5.14). �
Theorem 5.16 (CIU is the greatest contextual preorder). For all expressions e1, e2 , and scopes �, if e1 ≤�

ctx e2 , then e1 ≤� e2 .
ciu

16

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Proof. We follow the idea of Wand et al. [9]. We carry out induction by the size of �.

• If � = ∅, both e1 and e2 are closed expressions, that is, we need to prove e1 ≤ciu e2: for any closed frame stack K ,
〈K , e1〉 ⇓ =⇒ 〈K , e2〉 ⇓. We do induction by the structure of K .
– If K = ε, then we just use the fact of adequacy of e1 ≤∅

ctx e2 with the empty context to prove 〈ε, e1〉 ⇓ =⇒ 〈ε, e2〉 ⇓.
– If K = F :: K ′ , then we apply Theorem 5.2 to the hypothesis, while Theorem 5.3 to the goal to be able to apply the

induction hypothesis. Now only remains F [e1] ≤∅
ctx F [e2] to prove. After separating cases by the structure of F , we

can apply the compatibility properties of ≤∅
ctx to finish the proof.

• If � = �′ ∪ {x}, we need to prove that for every �′ ∪ {x} �sub σ � ∅, e1[σ] ≤ciu e2[σ]. We can also assume that x /∈ �′ . We
can divide σ into two parts: e1[x �→ σ(x)][σ \ {x}]. Now we can apply the induction hypothesis, and the only remaining
goal is e1[x �→ σ(x)] ≤ctx e2[x �→ σ(x)] which is proven by Lemma 5.15. �

Putting Theorem 5.14 and Theorem 5.16 together, we prove the coincidence of the CIU and contextual equivalence.

Theorem 5.17 (CIU theorem). For all expressions e1, e2 , and scopes �, e1 ≤�
ciu e2 if and only if e1 ≤�

ctx e2 .

5.6. Revisiting behavioural equivalence

While defining the logical relations, CIU, and contextual equivalence we used only a termination criterion. But why is
termination sufficient for the results of the evaluation to be equivalent? What would it mean for two expressions or values
to be equivalent? We can take the definition of naive behavioural equivalence, and improve it so that it does not distinguish
different function values. For this purpose, we define the equivalence of functions in an application-indexed way, that is
equivalent functions should evaluate to the same values after the same number (n) of applications, over a limit.

Definition 5.8 (Behavioural preorder).

e1 ≤R e2
def= ∀v1, K : K is closed =⇒ 〈K , e1〉 −→∗ v1 =⇒ ∃v2 : 〈K , e2〉 −→∗ v2 ∧ (v1, v2) ∈ R

v1 ≤val
0 v2

def= true

a1 ≤val
(1+n′) a2

def= a1 = a2

i1 ≤val
(1+n′) i2

def= i1 = i2

[]≤val
(1+n′) []

def= true

[v1|v2]
v ≤val

(1+n′) [v ′
1|v ′

2]
v def= v1 ≤val

n′ v ′
1 ∧ v2 ≤val

n′ v ′
2

fun f /k(x1, . . . , xk) → e1 ≤val
(1+n′) fun f /k(x1, . . . , xk) → e2

def=
(∀v1, . . . , vk : ∅ �val v1 ∧ · · · ∧ ∅ �val vk =⇒

e1[f /k �→ fun f /k(x1, . . . , xk) → e1, x1 �→ v1, . . . , xk �→ vk] ≤≤val
n′

e2[f /k �→ fun f /k(x1, . . . , xk) → e2, x1 �→ v1, . . . , xk �→ vk])
We say that two values v1, v2 behave the same way (v1 ≤val v2, note that this is only a preorder relation), when

∀n : v1 ≤val
n v2. Two expressions are equivalent (e1 ≈ e2), if e1 ≤≤val

e2 ∧ e2 ≤≤val
e1.

Next, we prove that behavioural equivalence coincides with CIU equivalence.

Theorem 5.18 (Behavioural equivalence coincides with CIU). For all closed expressions e1, e2 , e1 ≈ e2 if and only if e1 ≡ciu e2 .

Proof. ⇒: Since termination can be expressed with the semantics (Theorem 5.1), this direction is just a simple consequence
of the definitions.

⇐: Since we have 〈K , e1〉 −→∗ v1 for some v1 value, we can show that 〈K , e2〉 −→∗ v2 for some v2 by e1 ≡ciu e2 and
Theorem 5.1. We only need to prove that ∀n : v1 ≤val

n v2.
We carry out induction on n. The case n = 0 is true by definition. For the case n = 1 + n′ , we show the induction

hypothesis:

∀K , v1, v2 : 〈K , e1〉 −→∗ v1 =⇒ 〈K , e2〉 −→∗ v2 =⇒ v1 ≤val
n′ v2

Now we do case distinction on v1 and v2. If both values were empty lists, equal atoms, or integers, then they are equivalent
by definition.
17

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Inequivalent values If the structure of v1 and v2 differ (e.g. v1 is an integer, v2 is a function, etc.), or if they are dif-
ferent atoms or integers, we construct a contradiction from the hypothesis e1 ≡ciu e2. If v1 is not a function value, we
can use the following idea: if e1 ≡ciu e2, then 〈K ′, e1〉 ⇓ implies 〈K ′, e2〉 ⇓ for any closed K ′ . We choose K ′ = K ++
[case � of pv1 then 0 else �], where � denotes the diverging expression apply (fun f/0() → apply f/0())(), and
pv1 is the pattern that has the same structure as v1, thus v1 will match it, while v2 will not. We note that because Theo-
rems 3.3, 5.4, 5.5 the evaluation of e1 to v1 in K ′ consumes K from the stack (similarly for e2 and v2).

Since v1 and v2 were constructed differently, and 〈K ′, e1〉 ⇓ holds (for the K ′ above), therefore, 〈K ′, e2〉 ⇓ should also
hold (because e1 ≡ciu e2), however this is a divergent configuration, because the pattern matching fails, and � does not
terminate, so we got a contradiction.

If v1 is a function value, while v2 is not, we can use the same idea for the other part of e1 ≡ciu e2, i.e. 〈K ′, e2〉 ⇓ implies
〈K ′, e1〉 ⇓ with v2.

Functions If v1 = fun f /k(x1, . . . , xk) → b1 and v2 = fun f /k(x1, . . . , xk) → b2, for readability, first we introduce two
notations fun1

def= fun f /k(x1, . . . , xk) → b1 and fun2
def= fun f /k(x1, . . . , xk) → b2, and later redefine v1 and v2.

We need to prove that the bodies of these functions behave the same way when substituting their parameters to equal
values. That is, in any closed frame stack K2, for any closed values v1, . . . vk, v , 〈K2, b1[f /k �→ fun1, x1 �→ v1, . . . xk �→
vk]〉 −→∗ v implies ∃v ′ : 〈K2, b2[f /k �→ fun2, x1 �→ v1, . . . xk �→ vk]〉 −→∗ v ′ and v ≤val

n′ v ′ .
Now we connect the hypotheses, since 〈K , e1〉 −→∗ fun1 and 〈K2, b1[f /k �→ fun1, x1 �→ v1, . . . xk �→ vk]〉 −→∗ v through

Theorem 3.3 and Theorem 3.2 to obtain: 〈K++ [apply �(v1, . . . , vk)] ++K2, e1〉 −→∗ v .
By e1 ≡ciu e2, we also prove that for some v ′ , 〈K++ [apply �(v1, . . . , vk)] ++K2, e2〉 −→∗ v ′ . From this hypothesis,

after taking some reduction steps (by 〈K , e2〉 −→∗ fun2 and Theorem 3.3 and Theorem 3.2), we can prove 〈K2, b2[f /k �→
fun2, x1 �→ v1, . . . xk �→ vk]〉 −→∗ v ′ . We only need to prove that v ≤val

n′ v ′ , which is done by applying the induction hypothe-
sis, moreover, its premises (〈K ++[apply �(v1, . . . , vk)] ++ K2, e1〉 −→∗ v and 〈K++ [apply �(v1, . . . , vk)] ++K2, e2〉 −→∗
v ′) have already been proved.

Lists If v1 = [v11|v12]v and v2 = [v21|v22]v , then we need to show that v11 ≤val
n′ v21 and v12 ≤val

n′ v22. We can do that
by applying the induction hypothesis twice, but there are still some evaluations to show (note that we have 〈K , e1〉 −→∗
[v11|v21]v and 〈K , e2〉 −→∗ [v12|v22]v):

• We can show 〈K ′, e1〉 −→∗ v11 implies 〈K ′, e2〉 −→∗ v12 for K ′ = K ++ [case � of [X|Y] then X else 0] (which
selects the head of the list).

• We can show 〈K ′, e1〉 −→∗ v21 implies 〈K ′, e2〉 −→∗ v22 for K ′ = K ++ [case � of [X|Y] then Y else 0] (which
selects the tail of the list). �

6. Conclusion and future work

In this paper, we described our idea of verifying compound refactorings via decomposition to local transformations. To
reason about their correctness, we need a suitable program equivalence definition. Initially we investigated and formalised
simple behavioural equivalence [7] in Coq, but this turned out not to be expressive enough since it characterised equivalence
as structural rather than semantic.

To solve this issue, in this paper we formalised contextual, CIU preorder and equivalence together with logical rela-
tions [8,9,25,29]. We discussed that logical relations are suitable for proving properties, CIU equivalence is best used for
concrete expression equivalence proofs, while the verification of refactorings can be based on contextual equivalence and
its congruence property. With these equivalences, we are able to prove non structurally-equivalent functions equivalent
when they have the same behaviour, and we also proved the equivalence of two higher-order functions. Moreover, we
also presented a proof that reasoning about termination is sufficient to characterise equivalence by giving a formal defini-
tion of behavioural equivalence which is also proved to coincide with the other definitions. Our definitions and results are
formalised in the Coq [32] proof assistant.

Future work Currently, we are working on the extension of the semantics with the formalisation of concurrent features
of (Core) Erlang, for example asynchronous message passing, process creation and termination, process supervision. We
are also extending the semantics with other sequential concepts (e.g. tuples, exceptions, sequential side effects) too, based
on our previous work [5,34]. In our earlier ad hoc equivalence definitions we used complete and weak equivalence of the
results, where complete equivalence required the same side effects to resolve in the same order during evaluation, while
weak equivalence allowed this order to be different for the two expression evaluation. It is therefore a future goal for us to
investigate such “weaker” definitions of equivalences too.

In the medium and longer term, we plan to formalise Erlang in full in Coq. Our longer-term goals also include the
investigation of bisimulation relations for program equivalence, covering inter alia formalised concurrent language features.
18

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

We have shared the link to the source code in the article.

Acknowledgements

The project has been supported by ÚNKP-20-4 and ÚNKP-21-3 New National Excellence Program of the Ministry for
Innovation and Technology and “Application Domain Specific Highly Reliable IT Solutions” financed under the Thematic
Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme by the National Research,
Development and Innovation Fund of Hungary.

Appendix A. Scoping

Based on scoping (Section 3.4), a number of theorems can be proven about substitution; we highlight here the important
ones on which either our equivalence results depend, or they are fundamental properties that should hold for substitution
and scoping. The omitted ones are technical lemmas mainly parametrised by induction hypotheses to enable arguing about
lists of expressions and values, while others prove the scope of some concrete substitutions. For the proofs and the omitted
lemmas we refer to the formalisation [32].

In some theorems, we needed to prove the same (or similar) properties for both expressions and values due to mutual
induction. For instance, when proving a general statement on function values, the induction hypothesis requires the state-
ment to hold on the body expression of the function. Here, we only provide proof sketches, and refer to the complete proof
in the formalisation [32].

The first theorem states that an updated substitution maps a larger set of names to values in the same scope.

Theorem A.1 (Scoping of extended substitutions). For all expressions v, substitutions σ , scopes �, �, if � �val v and � �sub σ � �,
then for all names x /∈ �, � ∪ {x} �sub σ {x �→ v} � �.

Next, we show that a scope of an expression (or value) can be extended, thus a scope can contain any names that are
not free in the expression (or value).

Theorem A.2 (Scope extension (weakening)). For all expressions e, scopes �, �, if � �exp e then � ∪� �exp e. The same property holds
for the value judgement.

Thereafter, we show a theorem about the scopes of substitutions. If we restrict a substitution (i.e. remove bindings from
it), then the removed names will appear in the scope of this new substitution, since they become mapped to themselves.

Theorem A.3 (Scoping of restricted substitutions). For all substitutions σ , scopes �, �, if � �sub σ � � then for all names x1, . . . , xk,
(� ∪ {x1, . . . , xk}) �sub (σ \ {x1, . . . , xk}) � (� ∪ {x1, . . . , xk}).

Now we define the set of names that are not modified by a substitution, i.e. these are mapped to themselves.

Definition A.1 (Substitution identities). We say that a substitution σ preserves a scope, if for all names x ∈ �, σ(x) = x.

In a restricted substitution, any names that are removed from the substitution will be mapped to themselves, i.e. they
are preserved by the restricted substitution.

Theorem A.4 (Restriction of substitution identities). For all substitutions σ , scopes �, if σ preserves �, then for all names x1, . . . , xk,
preserves(� ∪ {x1, . . . , xk}, σ \ {x1, . . . , xk}).

If we apply a preserving substitution to an expression, which has the same scope as the preserved names, the substitu-
tion does not modify the expression.

Theorem A.5 (Preserving substitution is identity). For all expressions e, substitutions σ , scopes �, if σ preserves �, and � �exp e, then
e[σ] = e. The same property holds for values too.
19

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
With the help of the previous lemma, we can show that closed expressions are not modified by any substitutions, since
every substitution preserves the empty set of names.

Corollary A.6 (Closed expressions are not modified by substitutions). For all expressions e, substitutions σ , if ∅ �exp e, then e[σ] = e.
The same property holds for values too.

Scoping of values (and expressions) can be combined with the scoping of substitutions: applying a scoped substitution
on a scoped value (or expression) keeps it scoped, and conversely, a substituted value (or expression) can be shown to be
scoped without the substitution.

Theorem A.7 (Substitution preserves scoping). For all expressions e, substitutions σ , scopes �, �, if � �exp e and � �sub σ � �, then
� �exp e[σ]. The same property holds for values too.

Theorem A.8 (Substitution implies scoping). For all expressions e, scopes �, �, if for all substitutions σ , � �sub σ � � implies � �exp

e[σ], then � �exp e. The same property holds for values too.

Appendix B. Supplementary material for Section 3.5

In this section, we provide the proofs for two properties of the frame stack semantics. First, we show the proof of
determinism.

Proof of Theorem 3.1. We only give the sketch of the proof here. We proceed with case distinction on the two reductions. If
different reduction rules were used, then we can find a contradiction between their premises. If the same rules were used,
then the result configurations are the same. �

Next we show the proof that extending the frame stack does not affect the evaluation.

Proof of Theorem 3.3. We carry out induction on the length of the derivation (n).

• For n = 0, from 〈K1, e1〉 −→0 〈K2, e2〉 we acquire K1 = K2 and e1 = e2, from which the conclusion follows by the
definition of −→0.

• For n = 1 + n′ , we inspect the possible derivations of 〈K1, e1〉 −→1+n′ 〈K2, e2〉, and just take the same step in the
conclusion together with the induction hypothesis (if necessary). �

Appendix C. Supplementary material for Section 5.4

In this section, we show theorems and proofs of program equivalence. The first proof is about Example 5.9.

Proof of Example 5.9. Since we prove an equivalence, it means two preorders. We also need to prove a number of closed-
ness properties, which can be done by the hypotheses and the lemmas in Section 3.3, we leave these to the reader.

• First, we need to prove the following: for any closed frame stack K and closing substitution σ (i.e. � �sub σ � ∅),
〈K , e[x �→ v][σ]〉 ⇓ implies 〈K , let x = v[σ] in e[σ]〉 ⇓. Let us assume that 〈K , e[x �→ v][σ]〉 ⇓k for a step-index k.
We can show that 〈K , let x = v[σ] in e[σ]〉 ⇓2+k by definition. If we make these two steps, we get 〈K , e[σ \ x][x �→
v[σ]]〉 ⇓k , and by the properties of capture-avoiding substitution, e[σ \ x][x �→ v[σ]] = e[x �→ v][σ] (we refer to the
formalisation for more details [32]).

• Next, we need to prove the following: for any closed frame stack K and closing substitution σ (i.e. � �sub σ � ∅),
〈K , let x = v[σ] in e[σ]〉 ⇓ implies 〈K , e[x �→ v][σ]〉 ⇓. Now we inspect the premise 〈K , let x = v[σ] in e[σ]〉 ⇓,
and conclude that by definition 〈K , e[σ \ x][x �→ v[σ]]〉 ⇓k should hold for some k. This k is suitable for the derivation
in the goal (〈K , e[x �→ v][σ]〉 ⇓k), which is identical to this premise when we use the previous thought about the
equality of the substitutions e[σ \ x][x �→ v[σ]] = e[x �→ v][σ]. �

Next, we also show another version of beta-reduction, when we suppose that the formal parameters are not used in the
function’s body.

Example C.1.

∅ �val v1 ∧ . . .∅ �val vk ∧ � �exp e ∧ x1, . . . , xk /∈ � =⇒ e ≡� apply (fun f /k(x1, . . . , xk) → e)(v1, . . . , vk)
ciu

20

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
The following equivalence (the commutativity of addition) is also special to us: in our current language (which is a
simplified variant of sequential Core Erlang) it holds, but with side effects and exceptions added, other preconditions will
be needed to prove it.

Example C.2 (Commutativity of addition).

� �exp e1 ∧ � �exp e2 =⇒ call ’+’(e1, e2) ≡�
ciu call ’+’(e2, e1)

References

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley Longman Publishing Co., Inc., USA, ISBN 0201485672, 1999.
[2] D. Horpácsi, J. Kőszegi, Z. Horváth, Trustworthy refactoring via decomposition and schemes: a complex case study, arXiv:1708 .07225, https://doi .org /

10 .4204 /EPTCS .253 .8, 2017.
[3] D. Horpácsi, J. Kőszegi, S. Thompson, Towards trustworthy refactoring in Erlang, arXiv:1607.02228, https://doi .org /10 .4204 /EPTCS .216 .5, 2016.
[4] P. Bereczky, D. Horpácsi, S. Thompson, A proof assistant based formalisation of a subset of sequential Core Erlang, in: A. Byrski, J. Hughes (Eds.), Trends

in Functional Programming, Springer International Publishing, Cham, 2020, pp. 139–158.
[5] P. Bereczky, D. Horpácsi, S.J. Thompson, Machine-checked natural semantics for Core Erlang: exceptions and side effects, in: Proceedings of Erlang

2020, ACM, 2020, pp. 1–13.
[6] P. Bereczky, D. Horpácsi, J. Kőszegi, S. Szeier, S. Thompson, Validating Formal Semantics by Property-Based Cross-Testing, ACM, New York, NY, USA,

2021.
[7] B.C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, B. Yorgey, Software foundations, https://softwarefoundations .cis .upenn .edu/,

2022. (Accessed 14 October 2022).
[8] A.M. Pitts, Operational semantics and program equivalence, in: G. Barthe, P. Dybjer, L. Pinto, J. Saraiva (Eds.), Applied Semantics, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2002, pp. 378–412.
[9] M. Wand, R. Culpepper, T. Giannakopoulos, A. Cobb, Contextual equivalence for a probabilistic language with continuous random variables and recur-

sion, Proc. ACM Program. Lang. 2 (ICFP) (Jul. 2018), https://doi .org /10 .1145 /3236782.
[10] I. Lanese, N. Nishida, A. Palacios, G. Vidal, A theory of reversibility for Erlang, J. Log. Algebraic Methods Program. 100 (2018) 71–97, https://doi .org /10 .

1016 /j .jlamp .2018 .06 .004.
[11] I. Lanese, N. Nishida, A. Palacios, G. Vidal, CauDEr: a causal-consistent reversible debugger for Erlang, in: J.P. Gallagher, M. Sulzmann (Eds.), International

Symposium on Functional and Logic Programming, Springer, Springer International Publishing, Cham, 2018, pp. 247–263.
[12] N. Nishida, A. Palacios, G. Vidal, A reversible semantics for Erlang, in: M.V. Hermenegildo, P. Lopez-Garcia (Eds.), International Symposium on Logic-

Based Program Synthesis and Transformation, Springer, Springer International Publishing, Cham, 2017, pp. 259–274.
[13] L.-Å. Fredlund, A framework for reasoning about Erlang code, Ph.D. thesis, Mikroelektronik och informationsteknik, 2001.
[14] G. Vidal, Towards symbolic execution in Erlang, in: A. Voronkov, I. Virbitskaite (Eds.), International Andrei Ershov Memorial Conference on Perspectives

of System Informatics, Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 351–360.
[15] P. Bereczky, D. Horpácsi, S. Thompson, A comparison of big-step semantics definition styles, arXiv:2011.10373, 2020.
[16] S. Owens, M.O. Myreen, R. Kumar, Y.K. Tan, Functional big-step semantics, in: P. Thiemann (Ed.), Programming Languages and Systems, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2016, pp. 589–615.
[17] A. Pitts, Operationally-based theories of program equivalence, in: Publications of the Newton Institute, Cambridge University Press, 1997, pp. 241–298.
[18] S. Abramsky, C. Ong, Full abstraction in the lazy lambda calculus, Inf. Comput. 105 (2) (1993) 159–267, https://doi .org /10 .1006 /inco .1993 .1044.
[19] A. Simpson, N. Voorneveld, Behavioural equivalence via modalities for algebraic effects, ACM Trans. Program. Lang. Syst. 42 (1) (Nov. 2019), https://

doi .org /10 .1145 /3363518.
[20] D.J. Howe, Proving congruence of bisimulation in functional programming languages, Inf. Comput. 124 (2) (1996) 103–112, https://doi .org /10 .1006 /

inco .1996 .0008.
[21] U. Dal Lago, D. Sangiorgi, M. Alberti, On coinductive equivalences for higher-order probabilistic functional programs, SIGPLAN Not. 49 (1) (2014)

297–308, https://doi .org /10 .1145 /2578855 .2535872.
[22] I. Mason, C. Talcott, Equivalence in functional languages with effects, J. Funct. Program. 1 (3) (1991) 287–327, https://doi .org /10 .1017 /

S0956796800000125.
[23] A.D. Gordon, P.D. Hankin, S.B. Lassen, Compilation and equivalence of imperative objects, J. Funct. Program. 9 (4) (1999) 373–426, https://doi .org /10 .

1007 /BFb0058024.
[24] C. McLaughlin, J. McKinna, I. Stark, Triangulating context lemmas, in: CPP 2018, Association for Computing Machinery, New York, NY, USA, 2018,

pp. 102–114.
[25] R. Culpepper, A. Cobb, Contextual equivalence for probabilistic programs with continuous random variables and scoring, in: H. Yang (Ed.), Programming

Languages and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, pp. 368–392.
[26] A. Ahmed, Step-indexed syntactic logical relations for recursive and quantified types, in: P. Sestoft (Ed.), Programming Languages and Systems, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 69–83.
[27] L. Birkedal, A. Bizjak, J. Schwinghammer, Step-indexed relational reasoning for countable nondeterminism, Log. Methods Comput. Sci. 9 (4) (Oct. 2013),

https://doi .org /10 .2168 /LMCS -9(4 :4)2013.
[28] N. Benton, A. Kennedy, Monads, effects and transformations, in: hOOTS ’99, Higher Order Operational Techniques in Semantics, in: Electronic Notes in

Theoretical Computer Science, vol. 26, 1999, pp. 3–20.
[29] A.M. Pitts, Step-indexed biorthogonality: a tutorial example, in: A. Ahmed, N. Benton, L. Birkedal, M. Hofmann (Eds.), Modelling, Controlling and

Reasoning About State, in: Dagstuhl Seminar Proceedings (DagSemProc), vol. 10351, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 2010, pp. 1–10.

[30] D. Lucanu, V. Rusu, Program equivalence by circular reasoning, in: E.B. Johnsen, L. Petre (Eds.), Integrated Formal Methods, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013, pp. 362–377.

[31] Ş. Ciobâcă, D. Lucanu, V. Rusu, G. Roşu, A language-independent proof system for mutual program equivalence, in: S. Merz, J. Pang (Eds.), Formal
Methods and Software Engineering, Springer International Publishing, Cham, 2014, pp. 75–90.

[32] Core Erlang mini, https://github .com /harp -project /Core -Erlang -mini /releases /tag /v1.4, 2022. (Accessed 14 October 2022).
[33] N. de Bruijn, Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser

theorem, Indag. Math. (Proceedings) 75 (5) (1972) 381–392, https://doi .org /10 .1016 /1385 -7258(72)90034 -0.
[34] Core Erlang formalization, https://github .com /harp -project /Core -Erlang -Formalization, 2022. (Accessed 20 September 2022).
21

http://refhub.elsevier.com/S2352-2208(23)00011-1/bib0815E63C905CD79A4D3982E374540C56s1
https://doi.org/10.4204/EPTCS.253.8
https://doi.org/10.4204/EPTCS.253.8
https://doi.org/10.4204/EPTCS.216.5
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibDB5FD8D2DA9238DF53B545929A50D7C8s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibDB5FD8D2DA9238DF53B545929A50D7C8s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib4EA39DAE8EB505E709D49B9830A5AAE1s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib4EA39DAE8EB505E709D49B9830A5AAE1s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib82A935EED6ADE6D46658690C77272A81s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib82A935EED6ADE6D46658690C77272A81s1
https://softwarefoundations.cis.upenn.edu/
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib10535841DE34D652F4363B64754C2E0Bs1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib10535841DE34D652F4363B64754C2E0Bs1
https://doi.org/10.1145/3236782
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.1016/j.jlamp.2018.06.004
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibF366E63524FEED1A793CD50613885D28s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibF366E63524FEED1A793CD50613885D28s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib3A6683095662875488328106679D49A7s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib3A6683095662875488328106679D49A7s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibE337A7686C0306019EE69463318BF7F6s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibD7E0A048B5F78855BC87953B43E10801s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibD7E0A048B5F78855BC87953B43E10801s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibD7A5F1E93B3CD804DC0857582E455876s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibF6475DF8CF3A860259731760EF99F72As1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibF6475DF8CF3A860259731760EF99F72As1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibAB90252C3A66F31749B79F5AD552E39Fs1
https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1145/3363518
https://doi.org/10.1145/3363518
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1145/2578855.2535872
https://doi.org/10.1017/S0956796800000125
https://doi.org/10.1017/S0956796800000125
https://doi.org/10.1007/BFb0058024
https://doi.org/10.1007/BFb0058024
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibF262EF975BB83EB2E6A1E4F0E6DFB859s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibF262EF975BB83EB2E6A1E4F0E6DFB859s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibC7A4CD7011864FD385982FC7B3D42030s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibC7A4CD7011864FD385982FC7B3D42030s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibA31E2F21DF64473D20E18B0C38838501s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibA31E2F21DF64473D20E18B0C38838501s1
https://doi.org/10.2168/LMCS-9(4:4)2013
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib37A990D59ADFBE32CC5DA49FC3B64276s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib37A990D59ADFBE32CC5DA49FC3B64276s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib7704D2A3ADBF8AE6DBB66923DC5DDD57s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib7704D2A3ADBF8AE6DBB66923DC5DDD57s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib7704D2A3ADBF8AE6DBB66923DC5DDD57s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibE83694BFDF957455AB24545BA37AF6FDs1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibE83694BFDF957455AB24545BA37AF6FDs1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib682C14787AC67ED053784CE1340C3784s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib682C14787AC67ED053784CE1340C3784s1
https://github.com/harp-project/Core-Erlang-mini/releases/tag/v1.4
https://doi.org/10.1016/1385-7258(72)90034-0
https://github.com/harp-project/Core-Erlang-Formalization

D. Horpácsi, P. Bereczky and S. Thompson Journal of Logical and Algebraic Methods in Programming 132 (2023) 100857
[35] P.D. Mosses, Formal semantics of programming languages: — an overview, in: Proceedings of the School of SegraVis Research Training Network on
Foundations of Visual Modelling Techniques (FoVMT 2004), Electron. Notes Theor. Comput. Sci. 148 (1) (2006) 41–73, https://doi .org /10 .1016 /j .entcs .
2005 .12 .012.

[36] M. Neuhäußer, T. Noll, Abstraction and model checking of Core Erlang programs in Maude, in: Proceedings of the 6th International Workshop on
Rewriting Logic and Its Applications (WRLA 2006), Electron. Notes Theor. Comput. Sci. 176 (4) (2007) 147–163, https://doi .org /10 .1016 /j .entcs .2007.06 .
013.

[37] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S.-O. Nyström, M. Pettersson, R. Virding, Core Erlang 1.0.3 language specification, Tech. rep., https://
www.it .uu .se /research /group /hipe /cerl /doc /core _erlang -1.0 .3 .pdf, 2004. (Accessed 14 October 2022).

[38] I. Lanese, D. Sangiorgi, G. Zavattaro, Playing with bisimulation in Erlang, in: M. Boreale, F. Corradini, M. Loreti, R. Pugliese (Eds.), Models, Languages,
and Tools for Concurrent and Distributed Programming, Springer, Cham, 2019, pp. 71–91.

[39] A.M. Pitts, I.D. Stark, Operational reasoning for functions with local state, in: Higher Order Operational Techniques in Semantics, 1998, pp. 227–273.
[40] R. Ramanujam, V. Arvind, Foundations of Software Technology and Theoretical Computer Science, Springer, 1998.
22

https://doi.org/10.1016/j.entcs.2005.12.012
https://doi.org/10.1016/j.entcs.2005.12.012
https://doi.org/10.1016/j.entcs.2007.06.013
https://doi.org/10.1016/j.entcs.2007.06.013
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib864BE5A8AA849FD11964552484837687s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib864BE5A8AA849FD11964552484837687s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bib7F3F8217342D68F747C70B9A91586FC5s1
http://refhub.elsevier.com/S2352-2208(23)00011-1/bibE4AA28E399BD2C0561C95D32B0CF2636s1

