
Gu, Mengtao, Xu, Chuanlong, Hossain, Md. Moinul and Li, Jian (2023) A 
low-rank decomposition-based deconvolution algorithm for rapid volumetric 
reconstruction of light field �PIV.  A low-rank decomposition-based deconvolution 
algorithm for rapid volumetric reconstruction of light field �PIV, 64 (2). ISSN 
1432-1114. (In press) 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/99994/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1007/s00348-023-03575-1

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Unmapped bibliographic data:

JO - Experiments in Fluids [Field not mapped to EPrints] 

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/99994/
https://doi.org/10.1007/s00348-023-03575-1
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


  

 

ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

a. National Engineering Research Center of Power Generation Control and Safety, 
School of Energy and Environment, Southeast University, Nanjing, China. E-mail: 
chuanlongxu@seu.edu.cn; eelijian@seu.edu.cn 

b. School of Engineering, University of Kent, Canterbury, Kent CT2 7NT, UK. 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

 

 

A low-rank decomposition-based deconvolution algorithm for 
rapid volumetric reconstruction of light field μPIV  

Mengtao Gu, a Jian Li, *a Md. Moinul Hossain, b and Chuanlong Xu *a 

Light field micro-particle image velocimetry (LF-μPIV) can characterize three-dimensional (3-D) microflow through the 

volumetric reconstruction of tracer particle distributions. This can be achieved by light field imaging and volumetric 

reconstruction techniques such as the Richardson-Lucy deconvolution (RLD) method. However, the convolution operations 

of RLD are computationally complex due to the laterally shift-variant point spread function (PSF), which significantly lowers 

the reconstruction efficiency. Thus, a low-rank decomposition-based deconvolution (LRDD) method is proposed to 

improve the reconstruction efficiency. Through direct deconvolution, the PSF is converted to a point source, eliminating 

the shift variance and decreasing the number of convolution kernels, thereby reducing the computational complexity of 

convolution operations. Further, the point source, which is composed of several two-dimensional (2-D) matrices, is 

decomposed into one-dimensional (1-D) kernels through low-rank decomposition for reducing the computational time of 

convolution operations. The performance of LRDD and RLD is investigated by numerical studies on the volumetric 

reconstruction. Experiments were carried out in a microchannel to validate the proposed LRDD. Results demonstrated that 

the reconstruction efficiency of LRDD is above 9 times faster than RLD for the volumetric reconstruction of the tracer 

particle distribution. 

1 Introduction 

Microfluidic chips are widely used in biological, chemical and 

environmental fields due to the advantages of high 

integration, low reagent consumption and strong 

controllability1-3. The performance of microfluidic chips such as 

micro-mixers and micro-reactors is closely related to the flow 

state of the internal microfluid. The convective, secondary and 

vortex flow in the microchannel can increase the contact area 

of different microfluid and thus improve the mixing or reaction 

performance of microfluidic chips4,5. Therefore, three-

dimensional (3-D) measurement and characterization of the 

microflow is of great significance for the design and 

optimization of microfluidic chips6. 

Light field (LF) imaging technique can capture the four-

dimensional (4-D) information (i.e., 2-D lateral position and 2-

D angular information) of a scene within a single camera 

frame7,8. The 3-D reconstruction of the scene can be realized 

with the axial depth of the scene derived from the angular 

information9-13. Recently, LF micro-particle image velocimetry 

(LF-μPIV)14,15 has been developed based on LF imaging and 

μPIV techniques. With the integration of a microlens array 

(MLA) between the microscope tube lens and the camera16, 

the LF microscope can record the 3-D tracer particle 

distribution in microflow in a single exposure. As a result, LF-

μPIV can measure the instantaneous 3-D velocity field of 

microflow through a single camera. Also, the LF-μPIV has 

apparent advantages in simplifying the experimental system 

and improving the temporal resolution, which overcomes the 

shortcomings of the conventional 3-D μPIV techniques, such as 

the low temporal resolution in confocal μPIV17, and the 

complexity of the imaging system in holographic μPIV18. 

Therefore, in recent years, the LF-μPIV has become one of the 

research interests in microfluidic measurement techniques. 

The LF-μPIV reconstructs the tracer particle distributions 

through LF images and a volumetric reconstruction technique. 

Consequently, the 3-D velocity field of microflow can be 

achieved by the cross-correlation calculation of the two 

consecutive reconstructed tracer particle distributions14,15. 

Thus, the development of a rapid and accurate volumetric 

reconstruction technique is crucial for LF-μPIV to realize the 

microflow's 3-D velocity field measurement precisely. Data-

driven and model-based approaches are used for the 

volumetric reconstruction of the tracer particle distribution19. 

The data-driven approach establishes a prediction model 

based on the mapping between LF images and corresponding 

3-D scenes through deep learning technique19. Studies20,21 

adapted a U-net architecture to establish a prediction model 

and LF images of particles and the corresponding 3-D particle 

distributions are used as training data. However, a large 

number of high-resolution 3-D particle distribution data is 

needed for the training and optimization of the prediction 

model. Thus, additional high-resolution 3-D imaging devices 
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such as confocal and light-sheet microscopes are required, 

which is costly and difficult to implement, thereby limiting the 

practical application of the data-driven approach. 

In contrast to the data-driven approach, the model-based 

approaches realize the volumetric reconstruction of tracer 

particle distributions where significant data collection is not 

necessary. However, these model-based approaches such as 

Refocusing14,16, ray-intersection22 and Richardson-Lucy 

deconvolution (RLD)15,23 establish a LF microscope forward 

imaging model based on the optics theories and then reversely 

carry out backward volumetric reconstruction. The 

reconstruction accuracy of these approaches is related to the 

accuracy of the forward imaging model. The refocusing and 

ray-intersection methods describe the ray propagation process 

based on geometrical optics theory and realize the volumetric 

reconstruction of tracer particle distribution through an 

inverse ray tracing technique. Although these methods take 

lower computational time for the volumetric reconstruction, 

the diffraction effect of the microscope is ignored by 

geometrical optics theory. The microlens is also simplified as a 

pinhole, i.e., only the center of the microlens is used for light 

sampling. Consequently, the light sampling density is limited 

by the microlens pitch (usually in the order of one hundred 

micrometers), resulting in lower lateral resolution and axial 

positioning accuracy of the reconstructed tracer 

particle14,15,22,23. 

The RLD method utilizes wave optics theory by 

considering the diffraction effect to model the point spread 

function (PSF), which accurately models the forward imaging 

process23. In addition, wave optics theory does not assume the 

microlens as a pinhole, which makes the space of light 

sampling smaller than the microlens pitch and improves the 

light sampling density. As a result, the reconstructed tracer 

particle distribution has higher lateral resolution and axial 

positioning accuracy24. Thus, the RLD method is one of the 

applicable methods for volumetric reconstruction in LF-μPIV. 

However, due to the imaging effect of MLA, the PSF of the LF 

microscope is laterally shift-variant23 and RLD needs to process 

a huge number of 2-D convolution operations during the 

reconstruction process which seriously lowers the 

reconstruction efficiency. A phase-space deconvolution is 

proposed to improve the reconstruction efficiency of RLD and 

the convergence speed based on the smoothness prior25. 

However, the smoothness prior is only applicable to 

continuous objects, such as cells and biological tissues, rather 

than the discrete micro tracer particles. For LF-μPIV, the 

forward calculation process of RLD is modified by the sparse 

characteristic of tracer particle distribution to eliminate the 

calculation redundancy caused by the zero voxels and thus to 

improve the reconstruction efficiency by 2-fold26. However, 

this modified method doesn’t optimize the 2-D convolution 

operations in the backward calculation process of RLD and 

takes longer computational time to complete the volumetric 

reconstruction26. Therefore, optimizations for the complex 

convolution operations of RLD are needed to improve the 

reconstruction efficiency in LF-μPIV. 

In the RLD, the PSF on the image plane is formed by the 

point source in object space through the forward imaging 

model. In object space, the angle of the point source related to 

the center of the microlens is different when the point source 

locates at different lateral positions, resulting in distinct PSF 

patterns on the image plane. As a result, the laterally shift-

invariant point source in object space is converted to the 

laterally shift-variant PSF on the image plane after the forward 

imaging model23,26. The forward imaging model from object 

space to the image plane in the LF microscope can be 

expressed as the direct convolution between the point source 

and corresponding PSF15. Direct deconvolution is the inverse 

operation of convolution and represents the backward 

reconstruction process from the image plane to object space27. 

Thus, the point source in object space can be reconstructed 

from the PSF on the image plane through direct deconvolution 

to eliminate the lateral shift variance and to reduce the 

number of 2-D convolution operations. Moreover, the 

simplification of the 2-D convolution operation can further 

improve the reconstruction efficiency. The Low-rank 

decomposition28-30 method also simplifies the 2-D convolution 

operation. By decomposing the 2-D convolution kernel into 

two one-dimensional (1-D) ones, low-rank decomposition can 

significantly reduce the computational time of 2-D convolution 

operations. Thus, applying low-rank decomposition to deal 

with the 2-D convolution operations in RLD has the potential 

to improve the reconstruction efficiency in LF-μPIV. 

In this study, a new low-rank decomposition-based 

deconvolution (LRDD) method is proposed for reducing the 

computational time of convolution operations and improving 

the efficiency of the volumetric reconstruction of the tracer 

particle distribution in LF-μPIV. Through direct deconvolution, 

the laterally shift-variant PSF in the RLD method is 

reconstructed into a laterally shift-invariant point source, 

which reduces the number of 2-D convolution operations. The 

low-rank decomposition is then applied to simplify the 2-D 

convolution operations and further improve the 

reconstruction efficiency. Numerical simulations were 

conducted on the volumetric reconstruction of tracer particle 

distributions to verify and compare the reconstruction 

efficiency of LRDD and RLD. Experiments of the microflow in a 

Y-shaped microchannel were also carried out to validate the 

performance of the proposed LRDD. The results achieved from 

simulations and experiments are presented and discussed. 

2 Low-rank decomposition-based deconvolution 

Fig. 1 shows the forward imaging model of the LF microscope. 

The light intensity is instantaneously recorded by the LF 

microscope and formed LF image. With the captured LF image, 

the volumetric reconstruction of the tracer particle 

distribution can be performed through RLD, which is expressed 

as, 

( ) ( ) 1i i i    + t tF = G H / F H H F              (1) 
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Fig. 1 Schematic diagram of the forward imaging model of the LF microscope 

where Fi and Fi+1 represent the estimation of the tracer particle 

distribution at the ith and (i+1)th iteration, respectively. G is the 

LF image captured by the LF microscope. H is a series of PSF of 

the LF microscope. Ht is the transpose of H. The symbol “” 

represents the compound operation of convolution and 

summation. Details can be found elsewhere in the 

references26,31. 

In the RLD, the computational time mainly occurs from 

the generation of the intermediated particle distribution Fi’, 

which is expressed as, 

( )i i=  '
tF F H H                                (2) 

where Fi’ needs to be updated as Fi varies with iteration. 

Moreover, the number of H and Ht is vast due to the lateral 

shift-variance of PSF23. Assuming the ratio of the microlens 

pitch to the pixel pitch is N2, the PSFs in the whole 

measurement volume is N2K 26. The number of Ht is also N2K. 

Hence, 2N2K 2-D convolution operations need to be completed 

to obtain Fi’ according to Eq. (2), which is time-consuming. 

1mea

z

D
K

V
= +                                             (3) 

where K is the number of depth layers in the measurement 

volume, Dmea and Vz represent the axial depth volume and 

axial voxel size of measurement, respectively.  

According to the commutative law of convolution and 

summation, Eq. (2) can be rewritten as, 

( )i i i=   = '
tF F H H F P                        (4) 

H records the pixel distribution of the point source by the 

forward imaging model, and Ht defines a backward projection 

of a single pixel through the LF microscope into object space32. 

Thus, P = HHt can be considered as the direct deconvolution 

of the LF image of a point light source, which represents the 

reconstructed point source (RPS) in object space. Comparing 

Eq. (4) with Eq. (2), it can be seen that the convolution kernels 

change from PSF and its transpose (H and Ht) to RPS (P). 

Notably, RPS is nonuniform along with the axial depth but 

shift-invariant in the lateral direction. As a result, RPS can be 

generated from the PSF on the optical axis and Ht for a specific 

depth layer, which can be expressed as, 

( ) 1, 2, ,m m m K=  =
t

P H H                    (5) 

where Pm represents the RPS at mth depth layer with the size 

of d×d×K, and Hm is the PSF on the optical axis at mth depth 

layer with the size of d×d. d is the ratio of the lateral size of 

RPS to that of the voxel, which is in the order of tens. Every 

RPS is a 3-D convolution matrix consisting of K 2-D matrices, 

representing the intensity distribution of RPS at different 

depth layers. There are K2 2-D component matrices as 

convolution kernels in P, meaning that the number of 2-D 

convolution operations in Eq. (4) is K2. As mentioned 

previously, 2N2K 2-D convolution operations need to be 

performed according to Eq. (2). In LF-μPIV, N2 is usually in the 

order of hundreds, while K is usually in the order of tens15,24,26. 

Thus, the value of K2 is less than that of 2N2K, indicating that 

direct deconvolution can reduce the number of 2-D 

convolution operations. 

After the direct deconvolution in Eq. (5), the K2 2-D 

convolution operations in Eq. (4) can then be written as, 

( )'
1 ' 1

*
K K

mm
ii m

m m= =

='
F pF                             (6) 

where Fm 
i  represents the 2-D component matrix of Fi at mth 

depth layer with the size of s×t. The values of s×t are decided 

by the size of the LF image. pm 
m’ is the 2-D component matrix of 

Pm at mth depth layer with the size of d×d. The symbol “*” 

represents the convolution operation. 

As the RPS (Pm) can be fitted with a 3-D Gaussian 

distribution function21, the K2 2-D convolution kernels (pm 
m’) can 

be approximated correspondingly as a group of low-rank 2-D 

Gaussian distribution matrices. According to low-rank 

decomposition, the 2-D low-rank convolution kernel pm 
m’ can be 

decomposed into two 1-D ones28,30, which is expressed as, 

( )' ' '*  1,2, , ;  ' 1, 2, ,m m m

m m m m K m K = =p h v         (7) 

where hm 
m’ and vm 

m’ represent the horizontal and vertical 1-D 

convolution kernels with the size of d×1 and 1×d respectively. 

Then, the 2-D convolution operation of Fm 
i  and pm 

m’ in Eq. (6) is 

transformed into 

( )' ' '* * *m m mm m
i im m mp h vF F                     (8) 

As the sizes of Fm 
i and pm 

m’ are s×t and d×d respectively, the 

computational time of Fm 
i *pm 

m’ is O(d2st). Since the sizes of hm 
m’ 

and vm 
m’ are d×1 and 1×d respectively, the computational time 

of (Fm 
i * hm 

m’)* vm 
m’ is O(2dst)28. O(·) represents the asymptotic 

upper bound and describes the influence of input-data size on 

the computational time. As d is much greater than 2, low-rank 

decomposition reduces the computational time of the 

convolution operation significantly. 

The calculation of Fi’ through low-rank decomposition can 

be expressed as, 

( )' '

1 ' 1

* *
K K

m mm
ii m m

m m= =

'
F h vF                 (9) 

The total computational time of Eq. (9) is O(2K2dst), while that 

of Eq. (2) is O(2N2Kd2st). In theory, the reconstruction is  
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Fig. 2 Schematic diagram of proposed low-rank decomposition-based deconvolution 

accelerated by the times of N2d/K. Therefore, low-rank 

decomposition can improve the efficiency of the volumetric 

reconstruction significantly. 

By substituting Eq. (9) into Eq. (1), the low-rank 

decomposition-based deconvolution (LRDD) can be written as, 

  ( ) ( )1 ' '

1 ' 1

* *
K K

m mm
ii m m i

m m= =

   
  

   
+ tF = G H / h v FF       (10) 

Comparing Eq. (10) with Eq. (1), the convolution kernels 

change from 2-D kernels (H and Ht) to 1-D kernels (hm 
m’ and vm 

m’) 

through low-rank decomposition during the generation of the 

intermediated particle distribution Fi’ in each iteration, which 

significantly reduces the computational time of the 

convolution operations. As a result, LRDD substantially 

improves the reconstruction efficiency since the calculation of 

Fi’ accounts for most of the computational time of the iterative 

reconstruction. 

Fig. 2 illustrates the schematic diagram for the volumetric 

reconstruction of the tracer particle distribution with the 

proposed LRDD. The PSF on the optical axis is converted to the 

RPS through direct deconvolution. Then, low-rank 

decomposition is performed on the RPS to acquire the 1-D 

convolution kernels. The initial particle distribution F0 is 

obtained through the LF image G and the transpose of PSF Ht. 

The iterative correction is then implemented to optimize the 

particle distribution. For each correction, the intermediated 

particle distribution Fi’ is acquired by convoluting the iterative 

particle distribution Fi with the 1-D convolution kernels 

obtained by low-rank decomposition. The reconstruction stops 

when the maximum number of iterations (I) is reached. 

3 Numerical simulations 

Numerical simulations were carried out to evaluate the 

performance of LRDD by reconstructing the volumetric particle 

distribution in the measurement volume. Fig. 3 illustrates the 

procedure of the simulations. The measurement volume is 

placed in the region of 30 μm ≤ z ≤ 130 μm and divided into 

650×500 voxels in the lateral direction. z represents the axial 

depth and the section of z = 0 is the focal plane of the 

objective lens. The PSF and the original particle distribution 

synthesize the LF image. For a comparative analysis, the 

reconstructed particle distributions are obtained from the 

synthetic image through RLD and LRDD. The reconstruction is 

performed on an Intel Core i9-10940X processor with a 

memory of 128 Gbytes. The optical parameters of the LF 

microscope are listed in Table 1. 

Two different criteria such as the reconstruction quality33 

and correlation quality34 are used to assess the quality of the 

volumetric reconstruction. The reconstruction quality Q is 

defined to evaluate the reconstruction accuracy of the particle 

distribution33 and expressed as 

( ) ( )
2 2

, , , ,

( , , ) ( , , )

O R

RO

E x y z E x y z
Q

x y z x y zE E
=

 


                      (11) 

where EO(x, y, z) is the original particle distribution, and ER(x, y, 

z) is the reconstructed one. Q ranges from 0 to 1, and a larger 

Q represents a higher reconstruction performance. 

 

Fig. 3 Procedure of numerical simulation 

Table 1 Optical Parameters of LF Microscope 

Elements Parameters Values 

Objective lens 
Magnification (Mm) 10 

Numerical aperture (NA) 0.3 

Microlens array 
Microlens pitch (D) 137.5 μm 

Focal length (fμ) 2292 μm 

Camera Pixel pitch (Pp) 5.5 μm 
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Though the reconstruction quality Q can describe the 

similarity between the reconstructed particle distribution and 

the original one, other such as the correlation quality is more 

critical for PIV purposes. The correlation quality34 evaluates 

the accuracy of cross-correlation results and is defined as, 

, ,

1

1 VN

R i O i

iV

C v v
N =

= −                          (12) 

where vR,i and vO,i represent the ith vector gained from the 

cross-correlation of the reconstructed particle distributions 

and the original distributions, respectively. NV is the total 

number of vectors. A small value of C indicates a high-quality 

reconstruction. 

As mentioned in Section 2, the acceleration effect of 

LRDD is inversely proportional to the number of depth layers in 

the measurement volume (K). According to the definition of K 

in Eq. (3), the acceleration effect depends on the axial voxel 

size (Vz) for a certain depth of the measurement volume. Thus, 

the influence of Vz on the reconstruction, including the 

reconstruction time, the reconstruction quality and the 

correlation quality are analysed. 

Fig. 4 illustrates the reconstruction time achieved through 

LRDD and RLD for different Vz. When Vz is 1 μm, 2μm and 4 

μm, LRDD takes 2641 seconds, 685 seconds and 179 seconds, 

respectively to complete 100 iterations, while RLD takes 25500 

seconds, 12117 seconds and 6048 seconds, respectively. This 

indicates that the reconstruction efficiency of LRDD is 10, 18 

and 34 times faster than that of RLD. According to Eq. (3), the 

values of K with 100 μm depth for the Vz of 1 μm, 2μm and 4 

μm are 101, 51 and 26, respectively. Thus, the acceleration 

effect of LRDD is inversely proportional to the value of K, 

which is consistent with the theoretical analysis as discussed in 

Section 2. 

Fig. 5 shows the reconstruction quality Q obtained for 

LRDD and RLD under different Vz. In general, Q increases with 

iteration. When Vz increases from 1 μm to 2 μm, Q is 

unchanged whether for LRDD or RLD. When Vz increases to 4 

μm, Q is greatly degraded for both LRDD and RLD. According to 

the Shannon-Nyquist theorem35, the sampling frequency shall 

be at least twice the signal frequency. Otherwise, information 

loss occurs, and the sampling results can be degraded. The 

axial resolution of the LF microscope through the 

deconvolution method ranges from 5 to 15 μm when the 

depth of measurement volume is placed in the region of 30 μm 

≤ z ≤ 130 μm24. To reconstruct the particle distribution in the 

whole measurement volume without information loss, Vz less 

than 2.5 μm is necessary. Notably, Q in LRDD becomes lower 

than that in RLD regardless of Vz after about 30 iterations. The 

Q is degraded due to the approximation error generated by 

low-rank decomposition. With the cumulative approximation 

error after multiple iterations, the reconstructed result 

obtained through the LRDD deviates from RLD, thereby 

degrading the Q. 

Further to analyse the Q, the typical reconstructed 

particle distributions under Vz of 2 μm are presented in 

 

Fig. 4 Reconstruction time achieved through LRDD and RLD for different axial voxel 

sizes 

 

Fig. 5 Reconstruction quality obtained through LRDD and RLD for different axial voxel 

sizes 

Fig. 6(a-d). Compared with the reconstructed particles at the 

50th iteration, those at the 100th iteration have a smaller 

stretch both in LRDD and RLD, which is more consistent with 

the original particles. This decreased stretch explains the 

improvement of reconstruction quality. Moreover, Fig. 6(e-f) 

presents the centerline intensity profiles of the reconstructed 

particles [blue dotted circle in Fig. 6(a-d)]. The profiles 

obtained through the LRDD and the RLD both follow Gaussian 

distribution. The full width at half maxima (FWHM) at the 100th 

iteration is less than that at the 50th iteration [see the width of 

profile at the dashed line of intensity = 0.5 a.u. in Fig. 6(e-f)], 

which quantitatively verifies that multiple iterations can 

reduce the stretch of the reconstructed particle. The line 

intensity values through LRDD are different from that through 

RLD for a particular iteration, especially along the z-direction. 

As there are hundreds of reconstructed particles in the 

measurement volume, the accumulation of differences in 

intensity values declined the reconstruction quality. However, 

in terms of the overall distribution, FWHM and the position of 

maximum intensity of the centerline intensity profile obtained 

through the LRDD and RLD are uniform for a particular 

iteration, indicating that the particle position achieved by the 

LRDD is consistent with the RLD. The tracer particle is the main 

factor affecting the cross-correlation accuracy in LF-μPIV. 

Therefore, the accuracy of cross-correlation needs to be 

estimated for the LRDD.
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Fig. 6 Particle distributions reconstructed by LRDD and RLD when the axial voxel size is 2 μm: (a) 50th iteration through LRDD; (b) 100th iteration through LRDD; (c) 50th iteration 

through RLD; (d) 100th iteration through RLD; (e) Centerline intensity profiles of particles along the x-direction; (f) Centerline intensity profiles of particles along the z-direction 

 

Fig. 7 Correlation quality achieved through LRDD and RLD for different axial voxel sizes 

Fig. 7 shows the correlation quality C achieved by the 

LRDD and RLD for different Vz. As the voxel size is not uniform 

under different values of Vz, C is characterized in micrometers 

instead of voxels. The C decreases with iteration, indicating 

that multiple iterations improve the accuracy of cross-

correlation results. When Vz increases from 1 μm to 2 μm, C is 

the same for both LRDD and RLD after 100 iterations. Further 

increasing Vz to 4 μm, C is significantly degraded for both LRDD 

and RLD due to the information loss. Notably, C in LRDD is 

performed similarly to RLD for a certain Vz, which is different 

from the variation of the reconstruction quality Q as presented 

in Fig. 5. The C is affected by the distribution of particle 

positions. As the entire distribution of particle positions of 

LRDD is highly like the RLD under the same Vz (Fig. 6), a similar 

C between the LRDD and the RLD is obtained. 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 2 Overview of reconstruction performance at the 100th iteration 

† The acceleration ratio, which is the ratio of the reconstruction time of RLD to that of LRDD under the same axial voxel size, represents the improvement of 

reconstruction efficiency achieved by the LRDD compared with RLD. A larger acceleration ratio indicates a higher improvement in reconstruction efficiency. 

Table 2 summarizes the reconstruction performance at 

the 100th iteration achieved through the LRDD and RLD. Under 

different Vz, LRDD is above 9 times faster than the RLD for the 

volumetric reconstruction. Although increasing Vz decreases 

the reconstruction time and increases the acceleration ratio, it 

declines the quality especially when information loss occurs 

due to the large Vz of 4 μm. Therefore, Vz needs to be 

determined considering a trade-off between the 

reconstruction efficiency and the quality. Eventually, Vz of 2 

μm is preferred and the reconstruction time of LRDD is nearly 

18 times lower than that of RLD. Although the Q drops from 

0.70 (RLD) to 0.62 (LRDD), the C slightly changes from 0.88 μm 

to 0.89 μm. The change of C caused by LRDD is less than 0.01 

voxel. Thus, it can be concluded that LRDD can improve the 

reconstruction efficiency with similar correlation quality of RLD 

when Vz is 2 μm. 

4 Experimental study 

Experiments were carried out on a laminar flow at the junction 

of a Y-shaped microchannel to verify the proposed LRDD, as 

shown in Fig. 8. The LF-μPIV system consists of a double pulse 

laser, a syringe pump, a LF microscope (composed of a 

microscope and a cage LF camera) and a synchronizer. The 

cage LF camera is assembled by inserting an MLA between the 

tube lens and the camera through a 1:1 relay lens system. The 

parameters of the LF microscope are the same as listed in 

Table 1. The Y-shaped microchannel has a 150 μm width and 

100 μm depth with an angle of 90o. The tracer particles are 2 

μm fluorescent polystyrene microspheres with a density of 

1.05 g/cm3. During the experiment, the water injected into the 

microchannel is seeded with tracer particles at the 

concentration of 1 ppm (tracer particle per microlens). The 

flow rates of inlets 1 and 2 are both 14 μL/min, resulting in the 

bulk flow rate of 28 μL/min after the junction. The LF 

microscope captures the LF images of the tracer particles with 

a two-frame interval of 200 μs. The measurement volume is 

discretized into voxels with the size of 0.55 μm × 0.55 μm ×2 

μm, resulting in 650×500×51 voxels. 

Fig. 9 illustrates the typical captured LF image and 

corresponding reconstructed tracer particle distribution at the 

 

 

Fig. 8 Schematic of the experimental setup: (a) LF-μPIV system; (b) Y-shaped 

microchannel 

100th iteration. It takes 695 seconds for LRDD to finish the 

reconstruction with 100 iterations, while RLD takes up to 

12859 seconds. Therefore, LRDD is still about 18 times faster 

than the RLD. The similarity between the two reconstructed 

tracer particle distributions is acquired through Eq. (11). The Q 

value of 0.91 indicates that the two reconstructed tracer 

particle distributions are highly similar, which experimentally 

confirms the feasibility of the LRDD. The measured velocity 

field is subsequently calculated by the 3-D cross-correlation 

algorithm. The interrogation window size is 64×64×10 voxels 

(35.2 μm × 35.2 μm ×20 μm) with a 50% overlap. Fig. 10 shows 

the measured 3-D velocity fields achieved by the LRDD and 

RLD. The two velocity fields are identical, further validating the 

feasibility of the LRDD. 

 

Algorithm Axial voxel size Vz / μm 
Reconstruction time / s 

(Acceleration ratio†) 
Reconstruction quality Q Correlation quality C / μm 

RLD 

1 25500 0.71 0.83 

2 12117 0.70 0.88 

4 6048 0.54 1.12 

LRDD 

1 2641 (9.66) 0.63 0.84 

2 685 (17.69) 0.62 0.89 

4 179 (33.79) 0.47 1.17 

(a) 

(b) 
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Fig. 9 LF image and reconstructed tracer particle distributions: (a) LF image; (b) Reconstructed tracer particle distributions 

 

   

Fig. 10 Measured velocity fields: (a) LRDD and (b) RLD 

   

Fig. 11 Comparisons of the measured and theoretical velocity at different x positions over the x-y section of z = 80 μm 

   

Fig. 12 Comparisons of the measured and theoretical velocity at different x positions over the x-z section of y = 150 μm 

To evaluate the measurement accuracy, the measured 

velocity fields achieved by LRDD and RLD are compared with 

the theoretical values obtained by the computational fluid 

dynamics (CFD)  based on the laminar model26. Figs. 11 and 12 

show the comparative results between measured and 

theoretical velocity over the x-y section of z = 80 μm and x-z 

section of y = 150 μm, respectively. The results achieved by the 

LRDD and RLD are consistent with the theoretical values. Over 

the x-y section, the velocity distribution is a superposition of 

two parabolas before mixing (x = 240 μm). After entering the 

(b) (a) 

(a) (b) 

(a) (b) (c) 

(a) (b) (c) 
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junction, the fluids in different inlet channels mix (x = 140 μm) 

and the velocity distribution finally becomes a single parabolic 

distribution (x = 40 μm). This measured mixing process follows 

the microchannel junction flow characteristic. While over the 

x-z section of y = 150 μm, the velocity remains a single 

parabola distribution, and the values increase with the 

increasing distance from the junction wall (x = 300 μm), which 

coincides with the theoretical flow, as shown in Fig. 12. 

To quantitatively evaluate the measured velocity fields, 

the relative deviation ve is defined as, 

100%
PIV theory

e

theory

v v
v

v

−
=                            (13) 

where vPIV and vtheory are the measured velocity by LF-μPIV and 

the theoretical value, respectively. The average relative 

deviations of the LRDD and RLD over the x-y section are 5.85% 

and 5.80%, respectively, while those over the x-z section are 

7.33% and 7.13%, respectively. The relative deviation over the 

x-z section is higher than that over the x-y section. This can be 

interpreted that the reconstructed tracer particles having a 

more considerable stretch along the axial direction. Hence, the 

measurement accuracy in the axial direction is less than that in 

the lateral direction. Overall, the bulk flow rates after the 

junction are estimated as 26.82 μL/min and 27.02 μL/min for 

the LRDD and RLD. They are very close to the experimental 

flow rate of 28 μL/min. Therefore, a similar accuracy of 

velocity field measurement between the LRDD and the RLD 

can be achieved. 

5 Conclusions 

In this study, a low-rank decomposition-based deconvolution 

method is proposed to improve the efficiency of the 

volumetric reconstruction in LF-μPIV. Numerical simulations 

are performed on the volumetric reconstruction of tracer 

particle distribution to analyse the effects of axial voxel size on 

reconstruction efficiency and quality. Measurements of the 

microflow in a Y-shaped microchannel were carried out to 

evaluate the performance of the proposed LRDD. The 

concluding remarks drawn from this study are summarized as 

follows. 

• The proposed LRDD method optimizes the complex 

convolution operations in the volumetric reconstruction 

and thus improves the reconstruction efficiency above 9 

times faster than the RLD. 

• It has been observed that increasing the axial voxel size 

can improve reconstruction efficiency but degrade the 

quality. An appropriate axial voxel size of 2 μm is selected 

considering the trade-off between the reconstruction 

efficiency and the quality. 

• The LRDD method provides similar accuracy to RLD for 

the microflow measurement and significantly reduces 

reconstruction time. It is suggested the LRDD method can 

be used in the LF-μPIV for 3-D microflow measurement. 

Future work will focus on the application of the proposed 

LRDD method in different microflows such as convective, 

secondary and vortex flow. 
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