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Abstract

We study the global topology and geometry of the horofunction compactification of certain
simply connected smooth manifolds with a Finsler distance. The main goal is to show, for various
classes of these spaces, that the horofunction compactification is naturally homeomorphic to the
closed unit ball of the dual norm of the norm in the tangent space (at the basepoint) that generates
the Finsler distance. We construct explicit homeomorphisms for a variety of spaces in three
settings: bounded convex domains in C" with the Kobayashi distance, Hilbert geometries, and
finite dimensional normed spaces. For the spaces under consideration, the horofunction boundary
has an intrinsic partition into so called parts. The natural connection with the dual norm arises
through the fact that the homeomorphism maps each part in the horofunction boundary onto
the relative interior of a boundary face of the dual unit ball. For normed spaces the connection
between the global topology of the horofunction boundary and the dual norm was suggested by
Kapovich and Leeb. We confirm this connection for Euclidean Jordan algebras equipped with the
spectral norm.
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1 Introduction

A well known result in the theory of manifolds of nonpositive curvature says that if M is a complete
simply connected Riemannian manifold of nonpositive sectional curvature, then the horofunction
compactification of M is homeomorphic to the closed unit ball of the Hilbert norm in the tangent
space at the basepoint in M, e.g., [15, Proposition 1.7.6] or [16]. The main goal of this paper is to
establish analogues of this result for various classes of simply connected smooth manifolds with a
Finsler distance.

Recall that a Finsler distance dp on a smooth manifold M has an infinitesimal form F': TM — R
on the tangent bundle T M, such that dp(z,y) is the infimum of lengths,

Ly) = /0 F(y(t).7/(1)) dt,

over piecewise Cl-smooth paths v: [0,1] — M with v(0) = z and v(1) = .
More explicitly, we analyse the following general question.

Problem 1.1. Suppose M is a smooth manifold with a Finsler distance, such that the restriction
of F' to the tangent space T, M at b is a norm. When does there exist a homeomorphism from the
horofunction compactification of M, with basepoint b, onto the dual unit ball By of the norm in T, M
such that the homeomorphism maps each part in the horofunction boundary onto the relative interior

of a boundary face of B} ?

It should be noted that the answer to the question may depend on the basepoint b € M, as
the norm in TpM may have a different facial structure for different basepoints. The spaces we
consider here are homogeneous in the sense that the facial structure of the compact convex set
{veTyM: F(b,v) <1} is the same for all b € M.

We confirm the existence of such a homeomorphism for a variety of manifolds in three settings:
bounded convex domains in C™ with the Kobayashi distance, finite dimensional normed spaces, and
Hilbert geometries. For finite dimensional normed spaces the connection between the horofunction
compactification and dual unit ball was suggested by Kapovich and Leeb [30, Question 6.18], who
asked if for finite dimensional normed spaces the horofunction compactification is homeomorphic to
the closed unit ball of the dual normed space. This was confirmed by Ji and Schilling [28, 29] for
polyhedral normed spaces.

For the Kobayashi distance on bounded convex domains, we consider product domains B =
By x -+ x B, in C", where each B; is the open unit ball of a norm with a strongly convex C3-
boundary. Prime examples are polydiscs. The Finsler structure, i.e., the infinitesimal Kobayashi
metric, in the tangent space at 0 is given by the norm || - || whose (open) unit ball is B, see [I|
Proposition 2.3.34]. We will show that the horofunction compactification is naturally homeomorphic
to the closed ball of the dual norm of || - ||5. For domains D C C" with the Kobayashi distance,
various conditions are known that imply that the identity map on D extends as a homeomorphism
from the horofunction compactification of D onto the norm closure cl D, see [5, Theorem 1.2] and
[7, 10, 52]. These conditions typically involve strong convexity and smoothness properties of the



domain. In our setting, however, the domains are not smooth, and the identity does not extend as
a homeomorphism, as different geodesics converging to the same point in the norm boundary of the
domain can yield different horofunctions.

For finite dimensional normed spaces we will focus on the finite dimensional Euclidean Jordan
algebras equipped with the spectral radius norm, which are precisely the finite dimensional formally
real JB-algebras [4]. A prime example is the real vector space Herm, (C) consisting of all n x n
Hermitian matrices equipped with the spectral norm, ||A]] = max{|\|: A € o(A4)}. The Jordan
algebra structure allows us to give a complete characterisation of the horofunctions of these normed
spaces. We will use this characterisation to provide a natural homeomorphism of the horofunction
compactification onto the closed unit ball of the dual space. To prove the results we will not rely on
the characterisation of the Busemann points in arbitrary normed spaces obtained by Walsh [47, [51],
instead we will exploit the Jordan algebra structure.

For Hilbert geometries (£2,dy) we will consider domains €2 that are obtained by intersecting a
symmetric cone with hyperplane. A prime example is the space of strictly-positive definite n x n
Hermitian matrices with trace n. These Hilbert geometries are homogeneous in the sense that
Isom(2) acts transitively on €2, which ensures that the unit balls in the tangent spaces all have the
same facial structure. We show, for these Hilbert geometries, that the horofunction compactification
is naturally homeomorphic to the closed dual unit ball of the norm in the tangent space at the unit.
We will use the cone version of the Hilbert distance, see [38], which provides a convenient way to
analyse its Finsler structure [43] and the dual of its norm. The horofunction compactification of these
Hilbert geometries was determined in [37, Theorem 5.6] and is naturally described in terms of the
Euclidean Jordan algebra associated to the symmetric cone, which will be exploited in the analysis.

The origins of the horofunction compactification go back to Gromov [6, [19] who associated a
boundary at infinity to any locally compact geodesic metric space. It has found numerous applications
in diverse areas of mathematics including, geometric group theory [II], noncommutative geometry
[45], complex analysis [1, 5l [7, Ol 10, 52], Teichmiiller theory [14], 32, [41], 49], dynamical systems and
ergodic theory [8, [18, 31 37]. A more general set up was discussed by Rieffel [45], who recasted the
horofunction compactification of a locally compact geodesic metric space as a maximal ideal space of
a commutative C*-algebra. Rieffel’s set up works for any metric space, but if the metric space is not
proper, then the embedding into its horofunction compactification need not be a homeomorphism.

The horofunction compactification is a particularly powerful tool to study isometry groups of
metric spaces and isometric embeddings between metric spaces, see [36, 40, 50, HI]. Especially
useful in this context are the so called Busemann points in the horofunction compactification, which
are limits of almost geodesics. They were introduced by Rieffel [45], who asked whether every
horofunnction is a Busemann point in a finite dimensional normed space. Walsh [47] gave a complete
solution to this problem and found necessary and sufficient conditions for a finite dimensional normed
to have the property that all horofunctions are Busemann points.

In the metric spaces under consideration in this paper, all horofunctions are Busemann points.
On the set of Busemann points one can define a metric known as the detour distance [2], [40], which
partitions the set of Busemann points into parts consisting of Busemann points that have finite detour
distance to each other. So, for the metric spaces M in this paper, the horofunction compactification
is the disjoint union of M and the parts in the horofunction boundary. If two Busemann points have
finite detour distance, it means that the corresponding almost geodesics are in some sense asymptotic.
Moreover, any isometry on the metric space M induces an isometry on the set of Busemann points
under the detour distance. In each of our settings we will give an explicit homeomorphism that
maps M onto the interior of the closed dual unit ball, and each part in the horofunction boundary
of M onto the relative interior of a boundary face of the dual unit ball. It is this property of the
homeomorphism that naturally connects the global topology of the horofunction compactification to
the closed unit dual ball in each of our spaces.



In general it is hard to determine the horofunction compactification explicitly, and only in rel-
atively few spaces has this been accomplished, even in the context of normed spaces. We give an
incomplete list of results in this direction. For CAT(0) spaces the horofunction compactification is
well understood, see [I1, Chapter I1.8]. At present the horofunction compactification has been de-
termined explicitly for a variety of normed spaces. Gutierrez [20} 21} 22] computed the horofunction
compactification of several classes of L,-spaces. It has also been identified for finite dimensional
polyhedral normed spaces, see [12, 23 29, B33]. In that case, the horofunction compactification is
homeomorphic to closed unit ball of the dual space [28] and closely related to projective toric vari-
eties [29]. For arbitrary (possibly infinite dimensional) normed spaces the Busemann points have been
characterised by Walsh [51]. For Hilbert geometries there exists a characterisation of the Busemann
points [49], and for the Hilbert distance on a symmetric cone in a Euclidean Jordan algebra, the
horofunction compactification was obtained in [37], for the cone in a (possibly infinite dimensional)
spin factor in [I3], and for the Funk p-metrics, with 1 < p < oo, on the symmetric cone in Herm,, (C)
in [25].

2 DMetric geometry preliminaries

We start by recalling the construction of the horofunction compactification and the detour distance.

Let (M, d) be a metric space and let RM be the space of all real functions on M equipped with the
topology of pointwise convergence. Fix a b € M, which is called the basepoint, and let Lip; (M) denote
the set of all functions h € RM such that h(b) = 0 and h is c-Lipschitz, i.e., |h(z) — h(y)| < cd(z,y)
for all z,y € M.

Then Lip§(M) is a compact subset of RM. Indeed, the complement of Lip§(M) is open, so
Lip§(M) is closed subset of RM. Moreover, as |h(z)| = |h(z) — h(b)| < cd(z,b) for all h € Lip§(M)
and = € M, we get that Lip§(M) C [—cd(x,b), cd(z,b)]M, which is compact by Tychonoff’s theorem.

For y € M define the real valued function,

hy(z) = d(z,y) —d(b,y) with z € M. (2.1)

Then hy(b) = 0 and |hy(z) — hy(w)| = |d(z,y) — d(w,y)| < d(z,w). Thus, h, € Lip,(M) for all
y € M. Using the previous observation one now defines the horofunction compactification of (M,d)
to be the closure of {h,: y € M} in RM  which is a compact subset of Lip} (M) and is denoted by

" Tts elements are called metric functionals, and the boundary oM = " \{hy:y € M} is called

the horofunction boundary. The metric functionals in 8Mh are called horofunctions, and all other
metric functionals are said to be internal points.

The topology of pointwise convergence on Lip;(M ) coincides with the topology of uniform con-
vergence on compact sets, see [42 Section 46]. In general the topology of pointwise convergence
on Lipi (M) is not metrizable, and hence horofunctions are limits of nets rather than sequences.
If, however, the metric space is separable, then the pointwise convergence topology on Lipé(M ) is
metrizable and each horofunction is the limit of a sequence. It should be noted that the embedding
t: M — Lip} (M), where ¢(y) = h,, may not have a continuous inverse on (M), and hence the metric
compactification is not always a compactification in the strict topological sense. If, however, (M, d)
is proper (i.e. closed balls are compact) and geodesic, then ¢ is a homeomorphism from M onto (M ).
Recall that a map ~ from a (possibly unbounded) interval I C R into a metric space (M, d) is called
a geodesic path if

d(v(s),y(t)) = |s—t| forall s,tel.

The image, y(I), is called a geodesic, and a metric space (M,d) is said to be geodesic if for each
x,y € M there exists a geodesic path v: [a,b] — M connecting = and y, i.e, y(a) = x and y(b) = y.
We call a geodesic ([0, 00)) a geodesic ray.



The following fact, which is slightly weaker than [45, Theorem 4.7], will be useful in the sequel.

Lemma 2.1. If (M,d) is a proper geodesic metric space, then h € oM" if and only if there exists a
sequence (z™) in M with d(b,z"™) — oo such that (hyn) converges to h € M as n — co.

A net (z%) in (M, d) is called an almost geodesic net if there exists w € M and for all € > 0 there
exists a (8 such that

d(z®, z%) + d(2® ,w) — d(z*,w) < e for all @ > o' > 6.

The notion of an almost geodesic sequence goes back to Rieffel [45] and was further developed by
Walsh and co-workers in [2, [36] 40, [51]. In particular, every unbounded almost geodesic net yields a
horofunction for a complete metric space [51].

Lemma 2.2. Let (M,d) be a complete metric space. If (%) is an unbounded almost geodesic net in
M, then
h(z) =limd(z, %) — d(b, %)
6

exists for all z € M and h € oM".

Given a complete metric space (M, d), a horofunction h € " is called a Busemann point if there
exists an almost geodesic net (z®) in M such that h(z) = lim, d(z, %) — d(b, z%) for all z € M. We
denote the collection of all Busemann points by Bj,.

Suppose that (M, d) is a complete metric space and h,h’ € 8Hh be horofunctions. Let W), be

the collection of neighbourhoods of A in M". The detour cost is given by

H(h,h) = sup < inf d(b,ﬂ:)+h/(x)>.
Wew,, \z:z)eW

The detour distance is given by
§(h,h') = H(h,h') + H(h', h).
It is known [51] that if (z®) is an almost geodesic net converging to a horofunction h, then

H(h, 1) = limd(b, 2%) + ' (z%). (2.2)

for all horofunctions h’. Moreover, on the set of Busemann points B, the detour distance is a metric
where points can be at infinite distance from each other, see [51]. The detour distance yields a
partition of Bj; into equivalence classes, called parts, where h and h' are equivalent if §(h,h') < co.
The equivalence class of h is denoted by Pp,. So (P, d) is a metric space and By, is the disjoint union
of metric spaces under the detour distance. Unlike in the setting of CAT(0) spaces, where each part
is a singleton, the parts in the spaces under consideration in this paper are nontrivial.

3 Complex manifolds

In this section we investigate Problem for certain bounded convex domains in C" with the
Kobayashi distance. We will start by recalling some basic concepts.



3.1 Product domains and Kobayashi distance

On a convex domain D C C” the Kobayashi distance is given by
kp(z,w) =inf{p(¢,n): If: A — D holomorphic with f(¢) = z and f(n) = w}.

for all z,w € D., where

1+‘—w___z 1 — lwl2) (1 — 22)\ /2
p(z,w) = log el R <1—( wl*)( - 2| )>
1_‘Ltz 11— wz]
1—zw

is the hyperbolic distance on the open disc, A := {z € C: |z| < 1}.

It is known, see [I, Proposition 2.3.10], that if D C C" is bounded convex domain, then (D, kp)
is a proper metric space, whose topology coincides with the usual topology on C". Moreover, (D, kp)
is a geodesic metric space containing geodesics rays, see [, Theorem 2.6.19] or [35, Theorem 4.8.6].

For the Euclidean ball B” = {(z1,...,2,) € C": ||z]|* < 1}, where [|z]|*> = 3, |2:|?, the Kobayashi

distance satisfies 1/2
_ 1—Jlw]®)(@ = l2]1*)
kgn =2tanh™! (1 — (
B (2, w) an ( 11— (2, w)

for all z,w € B", see [I, Chapters 2.2 and 2.3].
In our setting we will consider product domains B = [[;_; B;, where each B; is a open unit ball
of a norm in C™, and we will use the product property of kg, which says that

kp(z,w) = iiriaxr ki(zi, w;),

where k; is the Kobayashi distance on B;, see [35, Theorem 3.1.9]. So for the polydisc A" =
{(#1,...,2) € C": max; |z]| < 1}, the Kobayashi distance satisfies

kar(z,w) = max p(z;,w;) for all w = (wy,...,wy), 2 = (21,...,2,) € A".

For the Euclidean ball, B™, it is well known that the horofunctions of (B", kgn), with basepoint
b =0, are given by
|1 — <Z, £>|2

1—[|=|]?
where £ € 0B™. Moreover, each horofunction h¢ is a Busemann point, as it is the limit induced by
the geodesic ray t — ZZ—H&, for 0 <t < .
Moreover, if B is a product of Euclidean balls, then the horofunctions are known, see [I, Propo-

sition 2.4.12] and [36, Corollary 3.2]. Indeed, for a product of Euclidean balls B™ x --- x B™ the
Kobayashi distance horofunctions with basepoint b = 0 are precisely the functions of the form,

he(z) = log for all z € B™, (3.1)

h(z) = I?ea} (hgj (zj) — aj),
where J C {1,...,r} nonempty, ; € 0B™ for j € J, and minje s oj = 0. Moreover, each horofunc-
tion is a Busemann point.
The form of the horofunctions of the product of Euclidean balls is essentially due to the product
property of the Kobayashi distance and the smoothness and convexity properties of the balls. Indeed,
more generally, the following result holds, see [36, Section 2 and Lemma 3.3].



Theorem 3.1. If D; C C™ is a bounded strongly convex domain with C3-boundary, then for each
& € OD; there exists a unique horofunction he, which is the limit of a geodesic v from the basepoint
b; € D; to &. Moreover, these are all horofunctions. If D = ngl D;, where each D; is a bounded
strongly convex domain with C3-boundary, then each horofunction h of (D, kp) (with respect to the
basepoint b = (by,...,b.) is of the form,

h(z) = r;leajc(hf (zj) — aj) (3.2)
where J C {1,...,r} nonempty, & € 0D; for j € J, and minjcya; = 0. Furthermore, each

horofunction is a Busemann point, and the part of h consists of those horofunctions h' with

h'(z) = max (he; (25) = Bj)

with minje 7 B; = 0.

Now let D = [];_; D;, where each D; is a bounded strongly convex domain with C3-boundary.
Given J C {1,...,r} nonempty, & € 9D, for j € J, and o; > 0 for j € J with minjcyo; = 0, we
can find geodesics ;: [0,00) = D; from b; to &;, and form the path ~: [0,00) — D, where

vj(t —ay ) forall j € Jandt> a

V(1) = bj otherwise. (3-3)

Lemma 3.2. The path v: [0,00) — D in is a geodesic, and h.) — h where h is given by
.

Proof. Let k; denote the Kobayashi distance on D;. By the product property we have that
Ep(r(s), (1)) = max ki(y(s):, 4(1):)

for all s > ¢ > 0. By construction k;(vy(s)i,v(t):) g ki(7vi(s),7i(t)) =s—tforall i and s >t > 0. For
J € J with o;j = 0 we have that k;(v(s);,v(t);) = k;j(vj(s),7;(t)) =s—t for all s > ¢t > 0, and hence

Ep(1(5),2(0)) = max ki((s)s, (1)) = 5 — ¢

for all s >t > 0.
Note that for z € D we have

lim hyy(z) = lim kp(z,1(0) — kp(y(1).b)
20,7(8):) = 1)

= lim max(k;
t—oo 1

k;
= lim max(k

(
(2

Jim max(k (25,7(1);) — 1)
(
) -

(
(
= Jim max(k;(z), (= o)) = k; (7t = a5), b)) — @)
o j€
(2) = aj)

which shows that h, ) — h. O

= max (he (2;
]eJ(ﬁ J

Consider B = [[;_; B; € C", where each B is an open unit ball of a norm in C". Then B is the
open unit ball of the norm | - ||z on C". In fact,

[wllp = max |lwil s,
=1

[ARR)

7



Its dual norm satisfies ||2[|; = »2i_; [|2i[l5, and has closed unit ball,
B} ={z € C": Re(w, z) <1 for all w € clB}.

Now suppose that each B; is strictly convex and smooth. Then the closed ball B} has extreme
points p(&) = (0,...,0,£5,0,...,0), where £ € C™ is the unique supporting functional at & € 0B;,
ie., Re(&, &) =1 and Re(w;, §f) < 1 for w; € cl B; with w; # &;.

The relatively open faces of B} are the sets of the form:

F({&€0B:jed) =4 Ap(&): D Aj=land \; >0foralljeJ 3,
jed jeJ
where J C {1,...,r} is nonempty and §; € 0B; are fixed.

On B the Kobayashi distance has a Finsler structure in terms of the infinitesimal Kobayashi
metric, see e.g., [I, Chapter 2.3]. Indeed, we have that

ks (z,w) = inf L(y),
vy

where the infimum is taken over all piecewise C'-smooth paths v: [0,1] — B with v(0) = 2z and
~v(1) = w, and

10) = [ ka0, )t
with
kp(u,v) = inf{|{|: 3p € Hol(A, B) such that ¢(0) = v and (Dy)o(§) = v}.
Proposition 3.3. [1, Proposition 2.3.24] If B is the open unit ball of a norm on C", then
kp(0,v) = |jv||p for allv e C".

For z € Band ¢ = 1,...,r, if z; # 0, then we let 2] = ||z,||§3z, € 0B; and we write p(2]) =
0,...,0,2/,0,...,0), where z} is the unique supporting functional at z, € 9B;. If z; = 0, we set
p(z) = 0.

We will now define a map ¢p: B = B} and show in the remainder of this section that it is a
homeomorphism. For z € B let

s

1 o o
op(2) = ST i) + e hiz0) <Z(ek’( R ) C )> :

i=1

For a horofunction h given by (3.2) we define

1
pp(h) = =—— [ D_ e ¥n(&)
Z]EJ e jeJ !
In fact, we will prove the following theorem.

Theorem 3.4. If B = [[;_, B;, where each B; is the open unit ball of a norm on C™ which is
strongly convex and has a C3-boundary, then pp: B" — BY is a homeomorphism, which maps each

part of B" onto the relative interior of a boundary face of B.

In view of this result the following version of Problem is of interest.
Problem 3.5. Suppose that B is the open unit ball of a norm on C" and equipped with the Kobayashi
distance. For which B does there exist a homeomorphism from Eh onto B} which maps each part of

—=h . . . . . .
B onto the relative interior of a boundary face of BY ? Of particular interest are bounded symmetric
domains D C C" realised as the open unit ball in a JB*-triple, see [37)].



3.2 The map ¢pg: injectivity and surjectivity

Throughout the remainder of this section we assume that B = H;Zl B; and each B, is the open unit
ball of a norm on C", which is strongly convex and has a C3-boundary. So for each & € 0B; there
exists a unique £ € C™ such that

Re(¢;, &) = 1 and Re(w, &) < 1 for all w € cl B; with w # &,

as cl B; is strictly convex and smooth.
We start with the following basic observation.

Lemma 3.6. For each z € B we have that ¢p(z) € int Bf, and ¢p(h) € OB] for all h € oB".
Proof. Note that for z € B and w € ¢l B we have that

_ ]‘ : ki(zi,o) _ 7’451'(21',0) . *
Refw,¢5(2)) = S5 KG0 1 oht0) (Z(e ¢ JRe(w, 27
1= =1
1 N a(e0)  —ha(o00)
< 1 79 P 1 19
>~ Z::l eki(zi70) + e—ki(zi,O) (; € €
< 1-=9

for some 0 < § < 1, which is independent of w. Thus, sup,c.p Re(w, pp(z)) <1—3J < 1, and hence
vp(z) € int BY.

To see that pp(h) € 0BT, note that for w =3, ; p(§;) € cl B, where p(§;) = (0,...,0,;,0,...,0),
we have that Re(w, pp(h)) = 1. O

To show that ¢p is injective on B, we need the following basic calculus fact, which can also be
found in [28]. For completeness we include the proof.

Lemma 3.7. If p: R" — R is given by p(xy,...,x;) = Y% + e %, then x — Vlogpu(x) is
injective on R”.

Proof. For 0 <t <1lwelet p=1/t >1and ¢g=1/(1 —¢) > 1. Then by Hélder’s inequality we have
that

r r
p(te+ (1 —t)y) = Z et@ig(=tyi Z e tip—(1=t)y;
i=1 i=1

r r 1/p r T 1/q
<Z(€txi>p + Z(e—txi)p> (Z(e(l—t)yi)q + Z(e—(l—t)yi)q>
i=1

<
i=1 =1 =1
, t ooy 1—t
< <Z e e%‘) <Z eYi e?ﬁ) ,
=1 =1

which implies that p(tz + (1 — t)y) < u(x)tu(y)t—t. Moreover, equality holds if and only if

+x;

e (eitxi)p - C(ei(lft)yi)q — Clet¥i

for all ¢ and some fixed C' > 0. This is equivalent to +z; = +y; + log C' for all 4, and hence we have
equality if and only if z = y.
Thus, x +— log pu(x) is a strictly convex function on R". By strict convexity we have that

log pu(y +1/2(x — y)) — log u(y) . log pw(y + 1/4(x — y)) — log u(y) -
1/2 1/4

log () —log u(y) >



so that log u(x) —log pu(y) > Vlog u(y) - (x — y). Likewise, log u(y) — log u(x) > Vlog u(x) - (y — x).
Combining the inequalities, we see that 0 > (Vlog u(y) — Vlog u(z)) - (z —y) for all z # y, and hence

x +— Vlog u(x) is injective on R”. O

Note that

e’i —e i
T . — .
Dimg €% e

Lemma 3.8. The map ¢p is a continuous bijection from B onto int BJ.

(Vlog p(x)); = for all j.

Proof. Cleary ¢p is continuous on B and ¢p(z) = 0 if and only if z = 0. Suppose that z,w € B\ {0}
are such that ¢p(z) = pp(w). For simplicity write

eki(25,0) _ o—k;(25,0) 0 1 eki(w;,0) _ o—k;(w;,0) 0
o = > an P = > 0.
J S eki(2:,0) 1 e—ki(2:,0) — Bi S, eki(wi,0) 1 e—ki(wi,0) =

Note that a;p(z;) = 0 if and only if z; = 0, and, 8;p(w;) = 0 if and only if w; = 0. Thus, z; = 0 if
and only if w; = 0. Now suppose that z; # 0, so wj # 0. Then (p(v;), pr(2)) = (P(v;), ¢B(w)) for
each v; € B;j. This implies that

aj(vy, 27) = Bj{vj,w;) for all v; € By,

and hence a;z; = fjw}. It follows that a; = 3; and 27 = wj. Thus 2; = pjw; for some p; > 0. As
a; = f; for all i € {1,...,r}, we know by Lemma that k;(z;,0) = kj(w;,0), and hence z; = w;
by [1, Proposition 2.3.5]. So z = w, which shows that ¢ p is injective.

As pp is injective and continuous on B, it follows from Brouwer’s domain invariance theorem
that ¢p(B) is an open subset of int B by Lemma Suppose, by way of contradiction, that
vp(B) # int BY. Then dpp(B) Nint B} is nonempty, as otherwise ¢p(B) is closed and open, which
would imply that int Bf is the disjoint union of the nonempty open sets ¢p(B) and its complement
contradicting the connectedness of int Bf. So let w € dpp(B) Nint B} and (2") be a sequence in B
such that ¢p(2") — w. As ¢p is continuous on B, we have that kp(z",0) — oco.

Using the product property, kg(z",0) = max; k;(2',0), we may assume after taking subsequences
that af = kp(2",0) — ki(2]',0) = «o; € [0,00] and 2 = (; € cl B; for all i. Let I = {i: a; < oo}, and
note that for each i € I, (; € 0B;, as k;(2]',0) — co. Then

ny __ 1 . ki(2,0) —ki(2,0) ny*
pp(z") = S Ri(Z0) + o—Ri(210) (Z(e —€ )p((=)")

i=1¢€ i=1

_ 1 . —al —kp(z™,0)—k; (2,0 T\ *
TS e 4 e FBGE OG0 (Z<e e BB EOTRE (1)) | -

i=1¢ i—1

Letting n — oo, the righthand side converges to

L () | = w.
m (;6 p( z))

But this implies that w € 0B}, as Re(}_;c;p((),w) = 1 and ) ,.;p(¢;) € clB, where p(¢;) =
(0,...,0,¢;,0,...,0). This is impossible and hence ¢p(B) = int Bj. O

We now analyse ¢p on oB".
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Lemma 3.9. The map ¢p maps oB" bijectively onto 0B}. Moreover, the part Py, where h is given
by , is mapped onto the relative open boundary face

F({&€dBj:jed) =< \p(&): D _Aj=1and ;>0 forall j € J
jed jeJ

Proof. We know from Lemma that ¢p maps 88" into 0B7. To show that it is onto we let
w € 0BY. As BY is the disjoint union of its relative open faces (see [46, Theorem 18.2]), there exist
J C{1,...,r} and extreme points p(§;) of By and 0 < A; <1 for j € J with } .. ; A; = 1 such that
w =3y Ap(&). Let pj = —logA; and p* = minje; pj. Now set aj = pj — p* for j € J. Then
a; > 0 for j € J and minje; oj = 0.

Let h € 98" be given by h(z) = max;e;(he;(2) — a;). Then

op(h) = ZjEJ e*afp(f;) _ Zje] e*wp(ﬁ;‘) _ Zje] /\jp(§]’.‘) _

> jes €% > jes €t djes i
To prove injectivity let h, h' € 8§h, where h is as in 1) and
h'(z) = max(hy, (2;) — ) (3.4)
jeJ

for z € B. Suppose that pp(h) = ¢p(h'), so

op(h) = ZjeJ 67%17(5;) _ ZjeJ’ 675]’1?(?7}‘) )
b D jes €% diepe P s

We claim that J = J’. Indeed, if k € J and k ¢ .J/, then

0 = Re(p(&k), wB(N)) = Re(p(ér), ¢ (h)) >0,

which is impossible. In the other case a contradiction can be derived in the same way.
Now suppose that J = J’ and there exists k € J such that & # n. If

< ,
Zje] e % ZjEJ e_ﬁj ’

then

e~k e~k e Bk

Re(p(ni), o5(h)) = mf{emk,&’;) ST e < S

5 = Re(p(me), e5(M)),

as cl By is smooth and strictly convex. This is impossible. The other case goes in the same way.
Thus, J = J" and §; = n; for all j € J.
It follows that

e~ Ok e Bk

m = Re(p(&r), pB(h)) = Re(p(nk), vB(h)) = m

for all £ € J. We now show that ay = B for all k£ € J by using ideas similar to the ones used in the
proof of Lemma

11



Let v: R/ — R be given by v(z) = > jes€ . Then for z,y € R’ and 0 < ¢ < 1 we have that

v(te + (1 —t)y) < v(z)'v(y)' ™,

and we have equality if and only if there exists a constant ¢ such that x; = y, + ¢ for all k£ € J. So,
ifx#y+(c,...,c) for all ¢, then —Vlogv(z) # —Vlogr(y).

As minjeyoj = 0 = minjey B, we can conclude that aj = B, for all k& € J. This shows that
h = h/ and hence g is injective on 8B".

To complete the proof note that ¢ p(h) is in the relative open boundary face F'({{; € 90B;: j € J})
of Bf. Moreover, b/ given by is in the same part as h if, and only if, J = J’ and §; = n; for all
Jj € J by [36], Propositions 2.8 and 2.9]. So, ¢p(h’) lies in F({§; € 0B;: j € J}) if and only if 1’ lies
in the same part as h. O

3.3 Continuity and the proof of Theorem
We now show that ¢p is continuous on B
Proposition 3.10. The map ¢p: B = B7 is continuous.

Proof. Clearly ¢p is continuous on B. Suppose that (z") is sequence in B converging to h € 8§h,
where h is given by (3.2). To show that ¢(2") — pp(h) we show that every subsequence of (¢ (2"))
has a subsequence converging to ¢p(h). So, let (pp(2™)) be a subsequence. Then we can take a
further subsequence (z"*m) such that

(1)

B" = kp(2"m,0) — kj(z;%’m,()) — B €[0,00] forall je{l,...,7}.

(2) There exists jo such that g} = 0 for all m > 1.

(3) (z;“””) converges to 1; € cl Bj and h_nym — hy, for all j € {1,...,7}.

Let J' = {j: B; < oo}. Then h_ny, — h', where h/(2) = maxje y/(hy,(2;) — B;) for z € B, as

: m) _ m . nkm _ . Nk,m
n}gnoo kp(z,2"m) — kp(z"™m,0) = n%gn mjax(k](z], ' ) kg(zj ,0) = Bj") = rjrgj)/(( n; (%) = Bj),
by the product property of kg.

As h = 1/, we know by [36, Propositions 2.8 and 2.9] that J = J', & = n; and a; = ; for all
7 € J. We also know by Lemma that kg (z™m™ 0) — oo, as h is a horofunction. So,

m _ kom 1. flk,m . A .
op(ZMm) = 22:1(6752' _ e kB(E"E™0)=ki(2, 70))p((znk,m) ) R Zjeje ﬁgp(nj) .
22:1 e B — e—kB(z”k,m70)—ki(z:k,m’0) Zjej e—Bi )

which shows that ¢p(z") — ¢p(h).
We know from Lemma that pp(B) C int B] and goB((‘)Eh) C 0Bj. So, to complete the

proof it remains to show that if (h,) in oB" converges to h € th, where h is as in l} then
vp(hy) = ¢p(h). For n > 1 let hy, be given by

hn(2) = %E}X( n(25) = B)

for z € B. We show that every subsequence of (pp(hy)) has a convergent subsequence with limit

ep(h).
So let (¢p(hy,)) be a subsequence. Then we can take a further subsequence (¢p(hg,,)) to get
that

12



(1) There exists Jy C {1,...,r} such that J, = Jy for all m.

(2) There exists jo € Jy such that B]’-Com =0 for all m.
(3) Bim — B; € [0, 00] for all j € Jo.
(4) 77;?”“ — n; for all j € Jy.

Note that for each j € Jy we have that h gl — hy, in B , as the identity map on clBj, that is

§j €clBj — he; € Bj, is a homeomorphism by [5, Theorem 1.2].
Let J' = {j € Jo: Bj < oo} and note that jo € J'. Then for each z € B we have that

_ by _ By _
imhy,,, ()—n}gnoorjré%?(hnfm(zj) Bim) = i max(h, ko (25) = B )*I]%i(( n; (25) = Bj)-

So, if we let h/(z) = maxjc y (hy,;(2;) — B;) for z € B, then I/ is a horofunction by Theorem and

hy, — K’ in B". As hn, — h, we conclude that A’ = h. This implies that J' = J and n; = &; and
,8] = oz]g for all j € J, as otherwise d(h, h’) # 0 by [36], Proposition 2.9 and Lemma 3.3]. This implies

that /™ — a; and 77] — ¢ for all j € J'. Moreover, by definition 5 — oo for all j € Jo\ J'.
Thus,
7ﬁkm k'm * — Qg *
. e i p : e YNp(&
pulhy, ) = 2= T PUTT) L 2gea €OPE) ),
ZjeJo e ZjeJo ©
which completes the proof. O

The proof of Theorem [3.4] is now straightforward.

Proof of Theorem[3.4]. | It follows from Lemmas and ﬂ and Proposition that ¢p: B >
B} is a continuous bijection. As B~ is compact and B} is Hausdorff, we conclude that pp is a

homeomorphism. Moreover, ¢ maps each part of 8§h onto the relative interior of a boundary face
of B by Lemma O

4 Finite dimensional normed spaces

Every finite dimensional normed space (V|| - ||) has a Finsler structure. Indeed, if we let

1
- [ ol
0

be the length of a piecewise C'l-smooth path 7: [0,1] — V, then

|z —yl = igfL(v),

where the infimum is taken over all C''-smooth paths 7: [0,1] — V with v(0) = z and (1) = y. So
for normed spaces V' the unit ball in the tangent space T,V is the same for all b € V.

We are interested in the following more explicit version of Problem which was posed by
Kapovich and Leeb [30, Question 6.18].

Problem 4.1. For which finite dimensional normed spaces (V, ||-||) does there exist a homeomorphism
v from the horofunction compactification of (V,|| -||) onto the closed dual unit ball B of V', which
maps each part of the horofunction boundary onto the relative interior of a boundary face of B} ?
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We show that such a homeomorphism exists for Euclidean Jordan algebras equipped with the
spectral norm. So we will consider the Euclidean Jordan algebras not as inner-product spaces, but
as an order-unit space, which makes it a finite dimensional formally real JB-algebra, see [4, Theorem
1.11]. We will give an explicit description of the horofunctions of these normed spaces and identify
the parts and the detour distance. In our analysis we make frequent use of the theory of Jordan
algebras and order-unit spaces. For the reader’s convenience we will recall some of the basic concepts.
Throughout the paper we will follow the terminology used in [3, 4] and [24].

4.1 Preliminaries

Order-unit spaces A cone Vi in a real vector space V is a convex subset of V' with AV, C Vi
for all A > 0 and V; N =V, = {0}. The cone V; induces a partial ordering < on V by z < y if
y—x € Vi, We write x < y if z <y and = # y. The cone V is said to be Archimedean if for each
x €V and y € V4 with nx <y for all n > 1 we have that x < 0. An element u of V is called an
order-unit if for each x € V there exists A > 0 such that —Au < 2 < Au. The triple (V, Vi, u), where
V., is an Archimedean cone and « is an order-unit, is called an order-unit space. An order-unit space
admits a norm,
|z]|w = Inf{\ > 0: —Au <z < Au},

which is called the order-unit norm, and we have that —||z||,u < z < ||z|,u for all x € V. The cone
V. is closed under the order-unit norm and u € int V..

A linear functional ¢ on an order-unit space is said to be positive if p(x) > 0 for all z € V. It is
called a state if it is positive and ¢(u) = 1. The set of all states is denoted by S(V') and is called the
state space, which is convex set. In our case, the order-unit space is finite dimensional, and hence
S(V) is compact (In general it is weak® compact). The extreme points of S(V') are called the pure
states.

The dual space V* of an order-unit space V' is a base norm space, see [3, Theorem 1.19]. More
specifically, V* is an ordered normed vector space with cone V' = {¢ € V*: ¢ is positive}, Vi -V} =
V*, and the unit ball of the norm of V* is given by

B} = conv(S(V)uU=S(V)).

Jordan algebras Important examples of order-unit spaces come from Jordan algebras. A Jordan
algebra (over R) is a real vector space V' equipped with a commutative bilinear product e that satisfies
the identity

2e(yex)=(r?ey)ex forallz,yecV.

A Dbasic example is the space Herm,,(C) consisting of n x n Hermitian matrices with Jordan product
Ae B =(AB+ BA)/2.

Throughout the paper we will assume that V has a unit, denoted u. For x € V we let L, be the
linear map on V given by L,y = x e y. A finite dimensional Jordan algebra is said to be Euclidean
if there exists an inner-product (-|]-) on V such that

(Lyy|z) = (y|Lyz) for all z,y,z € V.

A Euclidean Jordan algebra has a cone V; = {2?: x € V'}. The interior of V, is a symmetric cone,
i.e., it is self-dual and Aut(Vy) = {4 € GL(V): A(V4) = V4 } acts transitively on the interior of V.
In fact, the Euclidean Jordan algebras are in one-to-one correspondence with the symmetric cones
by the Koecher-Vinberg theorem, see for example [24].

The algebraic unit v of a Euclidean Jordan algebra is an order-unit for the cone V., so the triple
(V,V4,u) is an order-unit space. We will consider the Euclidean Jordan algebras as an order-unit
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space equipped with the order-unit norm. These are precisely the finite dimensional formally real
JB-algebras, see [4, Theorem 1.11]. In the analysis, however, the inner-product structure on V will
be exploited. In particular we will identify the V* with V using the inner-product.

Throughout we will fix the rank of the Euclidean Jordan algebra V' to be r. In a Euclidean Jordan
algebra V each x can be written in a unique way as x = 2+ — 2, where 27 and = are orthogonal
element z7 and z~ in V., see [4, Proposition 1.28]. This is called the orthogonal decomposition of x.

Given z in a Euclidean Jordan algebra V', the spectrum of x is given by o(x) = {A € R: Au —
x is not invertible}, and we have that V, = {x € V: o(z) C [0,00)}. We write A(z) = inf{\: 2 <
Au} and note that A(z) = max{\: A € o(x)}, so that

||| = max{A(x),A(—x)} = max{|\|: A € o(x)}

for all z € V. We also note that
Az + pu) = A(z) + 1

for all z € V and p € R. Moreover, if x < y, then A(z) < A(y).

Recall that p € V is an idempotent if p*> = p. If, in addition, p is non-zero and cannot be written
as the sum of two non-zero idempotents, then it is said to be a primitive idempotent. The set of all
primitive idempotent is denoted [J1(V) and is known to be a compact set [27]. Two idempotents p
and ¢ are said to be orthogonal if peq = 0, which is equivalent to (p|q) = 0. According to the spectral
theorem [24, Theorem III.1.2], each x has a spectral decomposition, x = >;_; Aip;, where each p; is
a primitive idempotent, the \;’s are the eigenvalues of x (including multiplicities), and p1,...,p, is
a Jordan frame, i.e., the p;’s are mutually orthogonal and p; + - - + p, = u.

Throughout the paper we will fix the inner-product on V' to be

(z]y) = tr(z o y),

where tr(z) = ). ; Ay and = ) _;_; \;jp; is the spectral decomposition of .
For x € V we denote the quadratic representation by U,: V — V' which is the linear map,

Uy =2z0(xey)—x?ey=2L,(Lyy) — Ly2y.

In case of a Euclidean Jordan algebra U, is self-adjoint, (U,y|z) = (y|Uz2).
We identify V' with V* using the inner-product. So, S(V) = {w € Vi: (u|Jw) = 1} which is
a compact convex set, as V is finite dimensional. Moreover, the extreme points of S(V') are the
primitive idempotents, see [24, Proposition IV.3.2]. The dual space (V|| - ||¥) is a base norm space
with norm,
|lz|l;, = sup{(z|z): = € V with ||z, = 1}.

If V is a Euclidean Jordan algebra, it is known that the (closed) boundary faces of the dual ball
B} = conv(S(V)U —S(V)) are precisely the sets of the form,

conv ((Up(V) N S(V)) U (Uy(V) N =S5(V))), (4.1)

where p and ¢ are orthogonal idempotents, see [I7, Theorem 4.4].

4.2 Summary of results

To conveniently describe the horofunction compactification V" of (VI - |lw), where V' is a Euclidean
Jordan algebra, we need some additional notation. Throughout this section we will fix the basepoint
beV tobe.

15



Let p1,...,pr be a Jordan frame in V. Given I C {1,...,r} nonempty, we write pr = >, ;p;
and we let V(pr) = U, (V). Recall 24, Theorem IV.1.1] that V(ps) is the Peirce 1-space of the
idempotent py:

Vipr) ={z € V:prex=ux},

which is a subalgebra. Given z € V(ps), we write Ay (,,)(2) to denote the maximal eigenvalue of 2
in the subalgebra V (pr).

The following theorem characterises the horofunctions in v,

Theorem 4.2. Let py,...,p, be a Jordan frame, I,J C {1,...,r}, with INJ =0 and IUJ nonempty,
and o € R™Y such that min{o;: i € IUJ} =0. The function h: V — R given by,

h(z) = max § Ay, (—Uplx — Z%’Pi) Avip) | Up,r — Z a;p; forx eV, (4.2)

iel jeJ

is a horofunction, where we use the convention that if I or J is empty, the corresponding term is

. . . . —h . .
omitted from the maximum. Fach horofunction in V' is of the form and a Busemann point.

To conveniently describe the parts and the detour distance we let V(pr,ps) = V(pr) ® V(ps),
which is a Euclidean Jordan algebra with unit p;; = pr + ps. The space V(pr,ps) can be equipped
with the variation norm,

[ 2||var = Av(p[,pj)(x) + AV(pI,pJ)(_x) = diam UV(PI,PJ)(:E)’
which is a semi-norm on V' (pr, ps). The variation norm is a norm on the quotient space V' (pr, ps)/Rpr.

Theorem 4.3. Given horofunctions h and h', where

h(.ﬁl}) = Imax AV(pI) <—Up1x — Z Oéip7;> ,Av(p(]) UpJ.%' — Z Oéjpj (4.3)
iel jeJ
and
W (z) = max § Ay (g, (—Uql,x - Z ﬁiqi> Avign | Ugyz — Z Biq; ) (4.4)
iel’ jeJ’

we have that
(i) h and h' are in the same part if and only if p;y = qp and py = qy .

(it) If h and b’ are in the same part, then 6(h,h') = |la = bl[var, where @ = Y, r ipi + > ey p;
and b =73, Bidi + 3 ey Bidj-

(i1i) The part (Py,0) is isometric to (V(pr,ps)/Rprs, | - |lvar)-

Remark 4.4. A basic example is (R", | - ||oo), Where [|2]cc = max; |z, which is an associative
Euclidean Jordan algebra. In that case every horofunction is a Busemann points and of the form,

h(z) = —T; — ), =
(z) max{r?g_x( T — ;) r;lea}(mj a;)}

where I,J C {1,...,n} are disjoint, / U J is nonempty and o € RY/ with minge; yar = 0,
see also [20, Theorem 5.2] and [36]. Moreover, (Py,d) is isometric to (RY//R1,|| - |lvar), where
1=(1,...,1) e RIY/,
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We will show that the following map is a homeomorphism from 7" onto BT. Let ¢: v By
be given by

90(33) = (eix+_e€$Tu) - ZT )‘11 4+ e~ (Z(eM o e_Ai)pi> (45)

i=1¢ i=1

forx =377, \ipi € V, and

1
h) = E i — E “Yp; 4.6
gp( ) Zz‘el eiai“—zje{] i e D (& pj ( )

icl jed
for h € av" given by 1)

Theorem 4.5. Given a Euclidean Jordan algebra (V)| - ||u), the map ¢: v B} is a homeomor-
phism. Moreover the part Py, with h given by , is mapped onto the relative interior of the closed
boundary face

conv (U, (V) N S(V)) U (Uy, (V) N =S(V))).

4.3 Horofunctions

In this subsection we will prove Theorem We first make some preliminary observations. Note
that x < Au if and only if 0 < Au — x, which by the Hahn-Banach separation theorem is equivalent
to (Au — z|w) > 0 for all w € S(V). As the state space is compact, we have for each x € V' that

Ax) = wIenSE’L(}‘(/)(ﬂw). (4.7)

As || - ||l is the JB-algebra norm, ||z e y|l, < ||||u||y||w, see [4, Theorem 1.11]. It follows that if
2" = zand y" — yin (V)| - ||u), then 2™ e y* — z @y, since

2" o y™ —weylly < [lz" o (4" —y)llu + (2" — z) e yllu < [[2"[[ully”™ = yllu + [|2" — zlle[[yllu-
Thus, we have the following lemma.
Lemma 4.6. If 2" — x and y"* — y in (V.| - ||lu), then Ugny™ — Uyy.

We will also use the following technical lemma several times.

Lemma 4.7. Forn > 1, letp},...,p} be a Jordan frame in V and I C {1,...,r} nonempty. Suppose
that

(1) pi — p; for alli e I.
(it) =" € V(p}) with ™ — x € V(pr).
(111) B > 0 with B — B; € [0,00] for alli € I.

IfI' ={iel: B; <} is nonempty, then

lim Ay m) (2" = BrPF) = Ay Upp — > Bipi).

n—00 -
el iel’

17



Proof. We will show that every subsequence of (Ay(n) (2" — > ,c; 8'p}')) has a convergent subse-
quence with limit Ay, ) (Up, = i Bipi). So let (Av(p}mk)(x — > ic1 Bi*pi*)) be a subsequence.
By . ) there exists d" € S(V(p}*)) with
nk) "k Zﬁnk TLk — (g™ _Zﬂznkp?k’dnk)
el i€l

By taking subsequences we may assume that d"* — d € S(V (pr)).
Using the Peirce decomposition with respect to the Jordan frame p;*, i € I, in V(p}*), we can

write
=Y Y
icl i<jel
Note that as d™ > 0, we have that p* = (d"|p;*) >0 for all i € I.
We claim that for each ¢ € I\ I’ we have that p;* — 0. Indeed, as I’ is nonempty, there exist
[ € I' and a constant C' > 0 such that

B = 3T B 2 (" = 37 AP I) = (@™ B = B 2 e~ B > —C
i€l i€l
for all k, since (2" [p;"*) < ||z, Moreover,
Zﬁnk k‘dn’“ — (g™ dmk Zﬁnk N < Hx”u Zﬂnk nE _ Z IBnk nk.
el i€l el’ ieI\I’

As B, p* > 0 for all i € I and 5 — oo for all ¢ € I\ I, we conclude from the previous two
inequalities that p;* — 0 for all i € I\ I'.
Using the Peirce decomposition with respect to the Jordan frame p;, ¢ € I, we write

d=> i+ Yy di.

iel i<jel
We now show that
d=Y mpi+ > di, (4.8)
iel i<jel’

and hence d € V(pr). Note that
pi = pi* = (dlpi) — (A" |p;*) = (d — d"*|p;) + (d"*|p; — p;*) = 0.

We conclude that p)* — p; for all ¢ € I, and hence (d|pj) = p; = 0 for all j € I'\ I’. This implies by
[24) TII, Exercise 3] that dep; =0 for all j € I\ I'. So,

1
OZdOpj:§ ;dlj—i-j;djm y
j m

which shows that d;; = 0 = djy, for all | < j < m, as they are all orthogonal. This implies (4.8]).
Next we show that limy_, AV(p}”v)( =3 e B pi*) = (Up, @ — > ;cp Bipild). First note that

Z/Bnk nk = (2™ — Zﬁznkp?”dnk) _ Z (Blnkp:”c’dnk)

i€l iel’ icI\I'
= (@™ = Y Bl = Y B
icl’ iel\I'
< (2™ =) BEpe|d™)
iel’
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kit >0 for all ¢ and k. This implies that
lim supA ZB"’“ ) < hm Zﬁ"’“ R |d) = (z — Zﬁzpz]d)

k— i€l el’ iel’
As Uy, d = d and Uy, is self-adjoint, we find that

(1" - Z/sz7,|d) .T - Z /szz|UpI/d pI/ Z/sz7,|d

el el el
so that
lim sup AV( kY Z B pi*) Up, x Z Bipild). (4.9)
k—o0 el iel’

Now let p7F = 3, pi*. As pjF — pp, it follows from Lemma that U nd — Up,d = d. This
I/
implies that

Zﬁnk k|U nkd )( p?,kd’p?k)_l < AV(p"’“ Zﬁnk nk
1€l il
for all k large, and
Nk, Tk nEy—1 N nk g\ —1
Jim (2" b= B DU d) (U dlp) ™ = klggo (Uprp ™ = B (U, dlpp)
il iel’
= pI/ Zﬁzpz‘d
iel’

as (Up,,d|pr) = (d|Up,,pr) = (d|pr) = 1. This shows that (U, ,x—> .. p Bipild) < liminfy_,o Av(p?k)(m"k—
Y icr BiFpi*). From (4.9) we conclude that
(Upl,x — Zﬁlplw) = khm AV(pnk Zﬁnk nk
icel’ oo iel
To complete the proof we show that
(Upﬂx - Z 62p2|d) = AV(pI/ pp L Z ﬂzpz (4.10)
el iel’
As d € S(V,,), we know from by (4.7) that
Uppw =Y Bipild) < sup Uy, =Y Bipil2),

iel’ z€S(V(pyr)) icl’

so that (Up, @ — Y icp Bipild) < Ay (p,)(Up, @ — D icp Bipi). On the other hand, if w € S(V(pr)) is

such that
pI/ Z/szz|w sup (_Upﬂx - Zﬁzpz‘z)
el zeS(V(pp)) iel’

then by definition of d"* we get for all k large that
(o= S0 A ) > (= 3 BB U ) (Upglp)
il icl
= (U~ > B p*w)( Uy wlp) ™"
el
This implies that
lim A, nk) Zﬁ”’“ R > hm (U R Zﬁ"’“ R w) (U nkw|u) Up, @ Zﬁmﬁw

k—o0
el iel’ iel’

as (Up,w|pr) = (w|pr) = 1, and hence (4.10) holds. O
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To prove that all horofunctions in Vh are of the form |D we first establish the following
proposition by using the previous lemma.

Proposition 4.8. Let (y") be a sequence in V, with y™ = > ;_| N'pl'. Suppose that hyn — h € av"
and (y™) satisfies the following properties:

(1) There exists 1 < s <r such that |\?| =™ for all n, where r'™* = ||y"||,.

(2) pi — pr for all1 <k <r.

ere exists I, J C {1,...,r} disjoint, with I UJ nonempty, such that r"* — X' — oy for alli € I,

3) Th sts I, J 1 disjoi ith TUJ h that r™ — A7 liel
"+ A} = aj for all j € J, and r™ — [A}| — oo for allk ¢ TU.J.

Then h satisfies .

Proof. Take x € V fixed. Note that for all n > 1,

[ = 4" lu = ly"llu = max{A(z —y"), A(—z + y")} =" = max{A(z — y" —r"u), A(=z +y" —r"u)}

As h is a horofunction, [[y"[l, = 7" — oo by Lemma(2.1} Thus, \? — oo for alli € I and A} — —oo for
all j € J. Now note that if J is nonempty, then 7"+ — oo for alli € I, and r"+ A} > 7" —|A\}| = oo
foral k¢ TUJ. As

Ao —y" —r"u) = Az =D (" + X)pf = > (" + A)pp),
jeJ keJ

it follows that
Tim A(z —y" = ") = Ay, (Up,@ = ) ajp;)

JjeJ
by Lemma [£.7] Likewise, if I is nonempty, then
: _ n_,.n
n]l_}II;OA( r+y" —r"u) = Ay, ze;alpz
1

by Lemma We conclude that if I and J are both nonempty, then

hz) = lim o=y u—lly" e = lim max{A(-z+y" - r"u), Az —y" — ")}
= Ay (U — 3 o) Mvig U2 — Y]
el JjeJ

To complete the proof it remains to show that lim, o || — y"||w — |||« = limy—eo A(—x +y"™ —
r"u) if J is empty, and limy, o0 |2 — ¥" || — [|9" || = limy 00 Az — y™ — r™u) if I is empty. Suppose
that I empty, so J is nonempty. For each ¢ € {1,...,7} we have that r — A — co. Note that

—x4+y" —r"u=—x— Z(r —Api < —x — mm( —Mu < (||l2]|u — mm( — A))u.
Thus, A(—z + y"™ — r"u) < A((||z||e — ming(r™ — A?))u) = ||z|l, — min;(r™ — A7) for all n, and hence
A=z +y" —r"u) — —o0. As

max{A(z —y" —r"u), A(—z +y" —r"u)} = |z = y"[[u = |y"[lu = —[|#[lu > —o0,

we conclude that || — y"||u — |y" |l = A(x — y™ — r™u) for all n sufficiently large, and hence

pJ) Z ajpj

JjeJ

h(z) = lim A(x —y" —r"u) =
n—oo
The argument for the case where J empty goes in the same way. O
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The following corollary shows that each horofunction is of the form (4.2)).

Corollary 4.9. If h is a horofunction in Vh, then there exist a Jordan frame py,...,p. in'V, disjoint
subsets I,.J C {1,...,r}, with I U.J nonempty, and o € R!Y with min{a;: i € TUJ} =0, such that
h:V — R satisfies forallx € V.

Proof. Suppose that (y") is a sequence in V' with hy» — h in V", Then for each z € V we have that
lim [z =y |lu = [ly" [l = h(z)
n—oo

and |y"||, — oo by Lemma [2.1]

To show that the limit is equal to it suffices to show that we can take a subsequences of
(y™) that satisfies the conditions in Proposition First we note that by the spectral theorem [24]
Theorem II1.1.2], there exist for each n > 1 a Jordan frame pY,...,p} in V and A}, ..., A} € R such
that

Yyt = AP A AP
where  is the rank of V. Denote r" = ||y, = max; |A}'].

Now by taking subsequences we may assume that there exist I, C {1,...,r} and 1 < s <r such
that for each n > 1 we have r™ = |A?| and

A >0foralliely and A <Oforalli¢ .
Now for each i € {1,...,7} and n > 1 define

n r* =\ forie Iy

YT A forig I,

Note that o € [0,00) for all i. Again by taking subsequences we may assume that o' — «a; € [0, o0],
as n — oo, for all i. Recall that o) = 0 for all n, so agy = 0. Furthermore we may assume that
pir — p; in J1(V) for all 4, as it is a compact set [27]. Note that py,...,p, is a Jordan frame in V.
Now let
I={i:a;<ocandiecl;} and J={j:a;<ocand;j¢I}.

So I'NJ is empty, s € I UJ and min{«;: i € IUJ} = as = 0. Then the subsequence of (y") satisfies
the conditions in Proposition and hence h is a horofunction of the form (4.2)). O

The next proposition shows that each function of the form (4.2)) can be realised as a horofunction,
and is a Busemann point.

Proposition 4.10. Let py,...,p, be a Jordan frame in V. Given I,J C {1,...,r}, with INJ =
and IUJ nonempty, and o € RTY with min{c;: i € ITUJ} =0, Forn > 1 let y™ = \ip1+---+A"p,,
where
n—o; fiel
N=1| —n+toa; ificJ
0  otherwise.
Then (y™) is an almost geodesic sequence and hyn — h where h satisfies forallx € V. In

. . . . x>h
particular, h is a Busemann point in V.

Proof. We will use Proposition[1.8] Let k& > max{a;: ¢ € IUJ} and note that for n > k we have that
"™ = ||y"||. = n, as min{a;: i € TUJ} = 0. The sequence (y"), where n > k, satisfies the conditions
in Proposition 4.8} Indeed, for n > k we have that v — A} = «; for all i € I, 7" 4+ A} = «; for all
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i € J, and ™ — A" = n otherwise. Also for 1 < s < r with oy = min{e;: i € I U J}, we have that
X2 = 1= 1yl

Finally to see that (hyn) converges, we note that if we define z = 37, ; —ap; + 3 ; a;jp; and
W= crPi— Z]EJ pj, then y™ = nw + z, which lies on the straight-line ¢ — tw + z. Hence (y") is
an almost geodesic sequence, so

hz) = Tim {lz —y"[lu = [[y" |
n— o0
exists of all z € V. Thus, we can apply Proposition and conclude that h satisfies (4.2)). Moreover,
as (y") is an almost geodesic sequence, h is a Busemann point in the horofunction boundary. O

We can now prove Theorem [£.2]

Proof of Theorem[[.3 Corollary shows that each horofunction in V" is of the form 1) It
follows from Proposition that any function of the form (4.2)) is a horofunction and by the second
part of that proposition each horofunction is a Busemann point. ]

4.4 Parts and the detour metric

In this subsection we will identify the parts in the horofunction boundary of Vh, derive a formula for
the detour distance, and establish Theorem [£.3] We begin by proving the following proposition.

Proposition 4.11. If

h(z) = max AV(pI) (Uplsv - Z aipi> ,AV(pJ) Up,xz — Z a;p; , (4.11)
i€l JjeJ
and
h'(z) = max AV(qI/) <—Uq1,l‘ — Zﬁqu> 7AV(qJ/) Ug, ® — Z Bjq; , (4.12)
iel’ jeJ!

are horofunctions with pr = qp and py = qy, then h and h' are in the same part and
5(h7 hl) = ”a - b”var = AV(p],pJ) (CL - b) + AV(p[,pJ) (b - a)?

where a = Zie[ a;p; + ZjeJ Qa;p; and b = Zz‘e]’ Biqi + ngj/ ﬂij in V(pIaPJ)-
Proof. As in Proposition for n > 1 let y" = N'p1 + -+ - + \'p,, where
n—aqo; ifiel

N=| n+a ifield
0 otherwise.

and let w™ = pt'q1 + - - - + ©'qr, where

n—p0; ifiée I
=1 —n+p ifie
0 otherwise.

By Proposition we know that (y") and (w") are almost geodesic sequences with hy» — h and
hwr — h'. Note that

Uplw = quw = 122 q’ qi = M di
iel’ iel’
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for all m, so that

Ay (~Up ™ =Y i+ 0™ lupr) = Ay (~Ugpw™ =Y aip; + [[w™|ugr)

iel iel
= AvipnQ_([w™ i — > aipi).
el’ i€l
Thus,
Tim Ay (=Up,w™ = aipi + 0™ lupr) = lim Ay (Y (0™l = 1")ai — Y aips)
il iel’ iel
= AV(pI)(Z Biqi — Z aip;)
iel’ icl

AV(pI) (b — CL).

In the same way it can be shown that

Jim Ay, ) (Up,w™ = > aipi 4 W™ lups) = Avp) (D Bigg =D ap) = Ay, (b — a).
jes jer jes

So, it follows from ([2.2)) that

H(h, 1) = W}gnoo ™[ + max{Ay,, Z ipi)s Ay (p,) Z a;pj)}
i€l jeJ
= lim max{Ay ) (~Up,w™ =) aipi + 0™ [up1), v (Up,w™ =Y azpj + [w™llups)}
i€l jeJ
= max{Ay ) O Bigi — Y aipi), Avpy (D Bigj — Y aipi)}
iel’ icl jeJ’ jed

= Ay pn(b—a)
Interchanging the roles of h and I’ gives
H(KW, h) = Av(p, p,(a—Db),

and hence (h,h') = ||a — bl|var- O

To show that h and A’ are in different parts, if pr # qp or p; # ¢, we need the following lemma.
Lemma 4.12. If p and q are idempotents in V with p £ q, then Uyq < p.
Proof. We have that U,q < Upu = p. In fact, Uyq < p. Indeed, if U,q = p, then

p=Upu="Up(u—q) + Upg = Up(u— q) +p,

and hence Up(u —¢) = 0. This implies that p+ (v —q) < u by [26, Lemma 4.2.2], so that p < ¢. This
is impossible as p € ¢, and hence Upq < p. O

Proposition 4.13. If h and h' are horofunctions given by (4.11) and (4.19), respectively, and p; #
qr or pj # qy, then

5(h, 1) =
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Proof. Suppose that p; # qp. Then pr £ qp or qp % pr. Without loss of generality assume that
pr £ qr. Let (y™) in V(pr) and (w™) in V(qp) be as in Proposition 50 hyn — h and hym — R
To prove the statement in this case, we use (2.2)) and show that

H(h’,h) = lgll [lw™ ||y + h(w™) = 0. (4.13)
Note that
[w™ [+ 2(w™) > 0™ 0 + Ay o) (=Up 0™ =Y~ ips) = My oy (= Up,w™ = > aipi + |w™[|upr)-
iel iel

As w™ < |[w™|luqp for all m large, we have that Uy, w™ < ||w™||,Up,qr for all m large. Thus,

—Upw™ = aipi+ [[w™lupr > —[lw™ WUy qrr =Y cipi + [[w™|[upr
el el
= |[w™lulpr = Uprar) = Y aipi

el

for all m large.

We know from Lemma that pr — Up,qr > 0. As pr — Up,qr € V(pr) we also have that
pr—Up,qr = Z;zl 747, where v; > 0 for all j and the r;’s are orthogonal idempotents in V' (py). It
now follows that for all m large,

V

Ay o) (~Upw™ =Y api+ ™ lupr) = ([w™ll Y virs = Y cwpilrs)(prlr) ™"

iel j=1 iel

= (l™ vt = Q_ awilr))(prlr) ™!
el

The right-hand side goes to oo as m — oo, and hence (4.13)) holds.
For the case py # g a similar argument can be used. O

We now prove Theorem

Proof of Theorem[{.3 Parts (i) and (ii) follow directly from Propositions and Clearly the
map p: P, — V(p1,ps)/Rprs given by p(h') = [b], where

W(x) =max Ay (g, < an® Zﬁz%) Vigy) | Ugp® Zﬂj% ’

iel’ jeJ’

and b =} .. Bigi + ZjeJ’ Biq; € V(pr,ps) with min;eruy 8; = 0, is a bijection. Indeed, for each
[c] € V(p1,p)/Rp1s, there is a unique ¢’ € [c] with min oy, , 1(¢') = 0. So, by Proposition |4.11} p
is an isometry from (Py,8) onto (V(pr, ps) /Rp1s, | - ) 0
4.5 The homeomorphism onto the dual unit ball

In this subsection we show Theorem To start we prove a basic lemma that will be useful in the
sequel.

Lemma 4.14. If ¢ < p are idempotents in V and z € V(p), then Ay (4)(Ugz) < Ay (2)-
Proof. If A = Ay (,)(2), then 0 < Ap — 2, so that 0 < AUyp —Uyz. As q=U,q < Uyp < Ugu = P =q,
we find that 0 < AUyp — Uyz = A\g — Uyz, and hence Ay () (Uyz) < A O
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We will show that ¢ given by 1) and 1) is a continuous bijection from V" onto Bj. As v’
is compact and Bj is Hausdorff, we can then conclude that ¢ is a homeomorphism. We begin by
showing that ¢ maps V into the interior of Bj.

Lemma 4.15. For each x € V we have that p(z) € int Bf.

Proof. For x € V there exists y € V with [|y||, = 1 such that

le(@)lly = sup  |(wlp())] = (yle()),

weV: |lw|l.<1
where (v|w) = tr(v e w). So, if z has spectral decomposition = Y7 ; \;p;, then we can consider
the Peirce decomposition of y,
,
Y= Zﬂz’pi + Zyija
i=1

i<j
to find that

1 A oA > (M — e )il
* _ i 7 . < 1=1 1 < 1
le(@)lls = (e(@)ly) = ST e (;_1(6 e Mpily) < ST e ;

as i = (ylpi) < (ulp;) = 1 and p; = (ylpi) > (—ulp;) = —1. O
Lemma 4.16. The map ¢ is injective on V.

Proof. Suppose that z,y € V with « = )\, o;p; and y = >, 7:q;, where o1 < ... < 0, and
71 <...< 7, satisfy o(z) = ¢(y). Then ¢(x) = ;_; aipi = > .. Biqi = ¢(y). where

e’ —e el —e T

and P =
Seren M TS e

a; =

for all j. Asa; < ... <, and 1 < ... < f,, it follows from the spectral theorem (version 2) [24],
Theorem II1.1.2] that c; = 3; for all j. Lemma 3.7 now implies that o = (01,...,0,) = (71,...,7) =
T, as

(1,...,00) =Vlogu(o) and (B4,...,05,) = Vliog u(r)

Note that a; = «; if and only if 0; = 0}, and, 8; = ; if and only if 7; = 7, as Vlog pu(x) is injective.
It now follows from the spectral theorem (version 1) [24, Theorem III.1.1] that z = y. O

Lemma 4.17. The map ¢ maps V onto int BT.

Proof. As ¢ is continuous on V and ¢(V) C int Bf it follows from Brouwer’s domain invariance
theorem that ¢(V') is open in int Bf. Suppose, for the sake of contradiction, that ¢(V') # int Bj.
Then dp(V)Nint B} is nonempty, as otherwise ¢(V) is closed and open, which would imply that int B}
is the disjoint union of the nonempty two open sets contradicting the connectedness of int Bf. So we
can find a z € 9p(V)Nint Bf. Let (y™) in V be such that ¢(y™) — z and write y" = >_._; A\'p!". As ¢
is continuous on V', we may assume that r" = ||y"||, — co. Furthermore, after taking a subsequence,
we may assume that (y") satisfies the conditions in Proposition So, using the notation as in
Proposition we get that

o) = S (e — e )P (e —em Al
2221 e + e~ erzl e THAY 4 e~ T AL
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The right-hand side converges to

1 o iy
[ P e 'p; — e pj | ==z
Diere M+ e e ; ]GZJ
But this implies that z € 0B}, which is impossible. Indeed, if we let p; = >, ;p; and p; = ZjEJpj’
then 1 > ||lz|[7, = (z|pr —ps) =1, a8 —u < p; —p; < u. O

For simplicity we denote the (closed) boundary faces of B} by
Fp g = conv (Up(V) N S(V)) U (Ug(V) N =S(V)))
where p and ¢ are orthogonal idempotents in V.

Lemma 4.18. If h is a horofunction given by , then ¢ maps Py, into relint F),

1,PJ "

Proof. Let w = (|I| + |J|)"*(p; — p.s), and note that w € F}, ,,. We first show that w € relintF, ,,.
Let ¢ € Fy, p, be arbitrary. Note that we can write ¢ =3,y Aigi —>_ ¢y Ajqj, where Y .1 qi = pr,
ZjeJ’ qj = pJ, and Y .o A + ZjeJ’ Aj =1 with 0 < A\, A; < 1 for all ¢ and j. We see that
w+e(w—c)=(1+e)w—ece I, forall ¢ >0 small, and hence w € relint Fy, ;..

Clearly, p(h) € F), p, = conv (U, (V)N S(V)) U (Up, (V)N —=S(V))). To complete the proof we
argue by contradiction. So suppose that ¢(h) & relintF), Then ¢(h) is in the (relative) boundary
of Fp, p,, and hence

1,PJ"

ze = (1+¢)p(h) —cw ¢ Forps

for all e > 0, as w € relintF,, ,,, and Fy, ,, is convex.
However, for each i € I we have that the coefficient of p; in z.,

(I14+e)e €
Doier€ M+ Y e e I+ ]I

is strictly positive for all &€ > 0 sufficiently small. Likewise, for each j € J we have that the coefficient
of —p; in z,

(14+¢e)e™ €
Dier €Y jege” I+
is strictly positive for all € > 0 sufficiently small. This implies that z. € F},, ,,, for all ¢ > 0 small,
which is impossible. This completes the proof. ]

. ... . —h
We use the previous result to show that ¢ is injective on V.

Corollary 4.19. The map ¢: v BT is injective.

Proof. We already saw in Lemmas and that ¢ maps V into int B and is injective on V.
So by the previous lemma, it suffices to show that if p(h) = ¢(h') for horofunctions h and h’, then
h = h'. Let h be given by (4.2) and suppose that h’ is given by

h/(l‘) = max AV(‘II/) <_Uq1/x o ZﬁlQl) ’AV(‘IJ’) UqJ/m o Z ﬁjqj

iel’ jeJ’

Then

1
h) = E Q. § Q.
gp( ) Zz‘el e~ + Z]EJ o € Di & by

icl jeJ
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and

1
o(h') = — — e Pigi— Y e Pig;
Sier € P+ Y ey e P Z i Z j

iel! jeJ!
As ming ag, = 0 = ming S we know by the spectral theorem (version 1) [24, Theorem III.1.1]

that
1 1

— — = lle(M)lu = [l )lu = : —
dier€ a“"zjeJe & ! ! dier e pi +ZjEJ’e B

Y oeipi =Y e =Y e Pigi— > e Pig;

icl jeJ iel’ jeJ’

so that

As each € V can be written in a unique way as = + — 2™, where 2™ and 2~ are orthogonal
element 2™ and 2~ in V4, see [4, Proposition 1.28], we find that Y, ;e %p; = >, e Pig; and

ZjeJ e %p; = ZjeJ, e*ﬂiqj, so that

D aipi=—log» e ¥pi=—logy e Pg=>" Big

icl icl iel’ iel’
and
D ajpi=—log) e pi=—log Y e g =" Bq
jed jeJ je’ je

Now using the spectral theorems (versions 1 and 2) |24, Theorem III1.1.1 and I11.1.2], we also get that
pr = qp and py = ¢y, and hence h = h'. O

The next result shows that ¢ is continuous on av".

Theorem 4.20. The map ¢: V' B} is continuous.

Proof. Clearly ¢ is continuous on V. Now suppose that (y") is a sequence in V' such that hy» —

h e dV". We claim that o(y™) — @(h). Let (p(y™)) be a subsequence. To prove the claim we show
that it has a subsequence which converges to ¢(h).
As h is a horofunction, we know that r" = ||y"*||, — oo by Lemma For each k there exists

a Jordan frame ¢7'*, ..., ¢ in V and AJ*,..., A\ € R such that
T
i=1
By taking a subsequence we may assume that there exists I, C {1,...,7} and 1 < s < r such that

P = ||y™ ||, = [AZE|, AT* > 0 if and only if i € I, for all k.
For each k let 8" = r™ — A for i € I, and ;" = r™ +\"* for i ¢ I,.. Note that ™ > 0 for all
i and k, and % = 0 for all k. By taking a further subsequence we may assume that 8;'* — 3; € [0, o]
and ¢;* — ¢; for all . Let I' = {i € I;.: §; < oo} and J' = {j & I;-: B; < oo}. Note that s € I' U J'
and we can apply Proposition to conclude that hyn, — b’ € th, where
W () = max{Ay ) (~Ug,z = Y Bigi), Avig,)(Ug,m = Y Bigj)}-
icl’ jeJ

As hyn — h, we find that h = A’ and hence §(h, k') = 0. This implies that p; = ¢; and py = ¢ by

Theorem [4.3] Moreover,
S aipi+ Y api=> Bigi+ Y. Big.

iel jed el jeJ
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It follows that

> aipi =Up, (O aipi + Y apy) = Uy, O Bigi+ > Biagy) = > Bidi

icl icl jeJ icl’ jer i€l
and
> ap=Up, (O aipi+ Y ap) =Uqy, O Biai + Y Bigg) = > B
jel icl jeJ i€l jer jer

so that Y., e%p; = Y, ePig; and dics €9p; =D e efig;. We conclude that

T (e kAR
lim QD( ) — lim Zz:rl(e - z)\nk e _ 1/\2}:.11
k—o0 k—o0 Zi:l(eir AT pemmETA )

Yiere g - > e e Pig;
Siep € i Y e P
Doier € Vi Yjes€ Mp;
dier€ M+ ZjeJ e~
By Lemmas and we know that ¢ maps V into int B} and av" into 0B7. So to complete

the proof we need to show that if (h,) in ov" converges to h € th, then ¢(hy) — ¢(h). Suppose
h is given by (4.2) and for each n the horofunction h,, is given by

= p(h).

hn(x) = max AV(q?n) (—Uq?nm — Z qu?) 7AV(qf}n) Ug x— Z Bid; forz €V, (4.14)

iel, JE€EJIn

where Ip,, J, C {1,...,r} are disjoint, I, U J,, is nonempty, and min{s}: k € I, U J,} = 0.
To prove the assertion we show that each subsequence of (¢(hy,)) has a convergent subsequence
with limit ¢(h). Let (¢(hy,)) be a subsequence. By taking a subsequences we may assume that

(1) There exist Iy, Jo C {1,...,r} disjoint with Iy U Jy nonempty such that I, = Iy and J,, = Jo
for all k.

(2) B"™ — B; € 0,00] and ¢;"* — ¢; for all i € Iy U Jp.
(3) There exists i* € Ip U Jy such that 5* = 0 for all k.

Let I'={i € Ip: B; < oo} and J' = {j € Jp: B < oo}, and note that i* € I'U J'.
We now show by using Lemma that hy, — b/, where

h/(gL’) = max AV(qI/) <—Uq1,x — Z’quz> 7AV(qJ/ (IJ/ Z ﬁjq] . (415)

iel’ jeJ’

Note that if I’ is nonempty, then by Lemma we have that

lim A

k—o0 (qIO - nk:z: - Z 57% Nk = Av(qﬂ ( qI/ Zﬂz%) ’

i€lp el’
as Uz — Uy, @ by Lemma (4.6 and Uy, (Uy, x) = Uy, @ by [4, Proposition 2.26]. Likewise if J' is

Io
nonempty, we have that

lim Ay, Vi) U, = Z 5nk nk =Av(g,) | Ugpz Z B4

k—o0
j€Jo JjeJ’
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Thus, if I’ and J' are both nonempty (4.15) holds.
Now suppose that I’ is empty, so J' is nonempty. As —x < ||z||,u, we get that

gz < ||$Hqu;L0ku = |lzllu(ayy)? = llzlluds

This implies that _Uq?okx — i Bt 4™ < Yier, (I llu — Bi™)g;™, and hence

Avigpy | U = 250" | < max(llallu = 57%) = —oc.

i
i€lp

On the other hand, h,, (z) > —||z||,, for all k. Thus, for all k sufficiently large, we have that

_ _ ng nk
hnk (iL‘) - Av(qu q]éﬂx Z 6 )
j€Jo

which implies that holds if I’ is empty. In the same way it can be shown that holds if
J' is empty.

As h, — h, we conclude that &’ = h, so §(h,h') = 0. It follows from Theorem [4.3| that p; = ¢,
p;=qy,and ), ; ;p; + deJ a;pj =D icp Bigi + Z]GJ’ Bjq;. This implies that

Z Qip; = Z Bigi and Z a;ip; = Z /BJQJa

i€l el’ jeJ jeJ’
so that > .. epi = cp ePig; and ZjeJ e%ip; = ZjEJ’ efig;. Thus,

lim i) = Jim = - _qi ~Zuich :Z e
> Zielo e P 4+ Zjejo e’
Yiere Pgi - > e e Pig;
Siep e i Y peP
dier€ NP — Y jese Vp;
Diere M+ Zje] e

which completes the proof. O

= ¢(h),

Theorem 4.21. The map p: v By is onto.

Proof. From Lemma we know that (V) = int Bj. Let z € 0B}. As Bj is the disjoint union
of the relative interiors of its faces, see [46, Theorem 18.2], we know that there exist orthogonal
idempotents p; and p; such that z € relintF, So we can write

IPJ*
2= Nipi— > A\,
icl jeJ

where pr =3 1 pi, 1 = ey 2, 0 <Ay < 1lforallk e TUJ, and 3 pcp; A = 1.
Define pp = —logAg for k € TUJ. So, pp > 0 and let p* = min{ug: k € T U J}. Set
a = pr — p* > 0 and note that min{ay: k€ TUJ} = 0.
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Then h, given by

h(z) = max AV(pI) <—Up1x — Z aipl) ,AV(pJ) Up,z — Z a;p;j

iel jeJ

for x € V, is a horofunction by Proposition Moreover,

1
h = Qi %y
SD( ) Ziel e—i 4 ZJGJ e g (& Di g (& p]

iel jed

1

il jed

1
N dicr it 2 ies A Z b Z i )

I \iel jeJ

and hence ¢(h) = z, which completes the proof. O

The proof of Theorem is now straightforward.

Proof of Theorem[[.5 It follows from Theorems and and Corollary [4.19| that ¢: v
B} is a continuous bijection. As V' is compact and Bj is Hausdorff, we conclude that ¢ is a
homeomorphism. It follows from Lemma that ¢ maps parts onto the relative interior of a
boundary face of Bj. O

Remark 4.22. It is interesting to note that a similar idea can be used to show that the horofunction
compactification of a finite dimensional normed space (V|| - ||) with a smooth, strictly convex, norm
is homeomorphic to the closed dual unit ball. Indeed, in that case the horofunctions are given by
h: z +— —x*(z), where z* € V* has norm 1, see for example [21, Lemma 5.3]. Moreover for (y") in
V' we have that hyn — h if and only if y"/||y"|| — = and ||y"|| — oo.

In this case we define a map : v B as follows. For x € V with = # 0, let

=l — e—l=
([ TC )
V() = (exn +e—||x> v
where z* € V* is the unique functional with z*(x) = ||z|| and ||z*|| = 1, and let ¥(0) = 0. For
hedV" with h: z —x*(z) let
P(h) = —z".
It is straightforward to check that 1) is a bijection from 7" onto B7, and % is continuous on int B}. To

show continuity on th, we assume, by way of contradiction, that (h,) is a sequence of horofunctions
with hy, — h and h,(z) = —a}(2) for all z € V, and there exists a neighbourhood U of ¢ (h) in Bj
such that ¢ (hy,) ¢ U for all n. Then for each z* € 0B} with z* ¢ U we have that z*(z) < 1. So, by
compactness, 0 = max{1l — z*(z): z* € 0By \ U} > 0. It now follows that

hn(x) —h(z) = —x)(x) + 2% (x) =1 —x),(x) >0 >0

for all n, which contradicts h,, — h. This shows that ¢ is continuous bijection, and hence a homeo-
morphism, as 7" s compact and B is Hausdorftf.
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More generally, one can consider product spaces V = [[;_; V; with norm ||z|v = max]_; |lvi|;,
where each (V;, | - ||;) is a finite dimensional normed space with a smooth, strictly convex, norm. In
that case we have by [36, Theorem 2.10] that the horofunctions of V' are given by

h(v) = max(hg;f (vj) — o), (4.16)

jedJ

where J C {1,...,r} nonempty, minje;ja; = 0, § € V;* with [|§7|| = 1, and hgj*_(vj) = =& (vj).
One can use similar ideas as the ones in Section 3 to show that the horofunction compactification

is homeomorphic to the closed unit dual ball of V. Indeed, one can define a map ¢y : v B7 as
follows. For v € V' let

1 T
— lvilli _ g—llvills *
Pv(V) = ST e Tl (Z(e e ply; )) :

i=1

and ¢y (0) = 0. Here p(v)) = (0,...,0,v,0,...,0) and v} is the unique functional such that
v (vi) = |lvill; and ||vf]|; = 1, if v; # 0, and we set p(v}) = 0, if v; = 0. For a horofunction h given
by (4.16]) we define
1 .
pv(h) = = [ D_ e p(&)

e Y
2jes j€d
Following the same line of reasoning as in Section 3 one can prove that ¢y is a homeomorphism.

The connection between the global topology of the horofunction compactification and the dual
unit ball seems hard to establish for general finite dimensional normed spaces, and might not even
hold. In the settings discussed in this paper all horofunctions are Busemann points, but there are
normed spaces with horofunctions that are not Busemann, see [47]. It could well be the case that
the horofunction compactification of these spaces is not homeomorphic to the closed unit dual ball,
but no counter example is known at present.

5 Hilbert geometries

In this section we study global topology and geometry of the horofunction compactification of certain
Hilbert geometries. Recall that the Hilbert distance is defined as follows. Let A be a real finite
dimensional affine space. Consider a bounded, open, convex set 2 C A. For x,y € Q, let £;, denote
the straight-line through x and y in A, and denote the points of intersection of ;,, and 99 by z’ and
y', where z is between 2’ and y, and y is between z and 3/, as in Figure

Figure 1: Hilbert distance

On () the Hilbert distance is defined by

[z =yl Iy’ —w|>

5.1
2" — x| [y — ¥ (5:1)

pr(x,y) = log (
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for all x # y in Q, and pg(z,z) = 0 for all € Q. The metric space (€, pgr) is called the Hilbert
geometry on §2.

These metric spaces generalise Klein’s model of hyperbolic space and have a Finsler structure, see
[43, 44]. In our analysis we will work with Birkhoff’s version of the Hilbert metric, which is defined
on a cone in an order-unit space in terms of its partial ordering. This provides a convenient way
to work with the Hilbert distance and its Finsler structure. In the next subsection we will recall
the basic concepts involved in our analysis. Throughout we will follow the terminology used in [38,
Chapter 2|, which contains a detailed discussion of Hilbert geometries and some their applications.
We refer the reader to [44] for a comprehensive account of the theory of Hilbert geometries.

5.1 Preliminaries and Finsler structure

Let (V, Vi, u) be a finite dimensional order-unit space. So V. is a closed cone in V' with u € int V..
Recall that the cone V, induces a partial ordering on V by z <y if y —x € V., see Section 4.1. For
x €V and y € Vy, we say that y dominates x if there exist o, 5 € R such that ay < x < By. In that
case, we write

M(z/y) = inf{8 € R: x < By}
and

m(z/y) = sup{a € R: ay < z}.

By the Hahn-Banach theorem, x < y if and only if ¢(z) < ¥(y) for all v € Vi = {p €
V*: ¢ positive}, which is equivalent to ¢ (x) < 1(y) for all v» € S(V). Using this fact, it easy to
verify that for each z € V and y € int V; we have

M(xz/y) = sup v(@) and m(x/y) = inf ()

wes(v) YY) wes(v) P(y)
We also note that if A € GL(V) is a linear automorphism of V,, i.e., A(Vy) = Vi, then z < Sy
if, and only if, Az < fAy. It follows that M (Az/Ay) = M(x/y) and m(x/y) = m(Axz/Ay).
If w € int V., then w dominates each = € V', and we define

|| = M (xz/w) — m(x/w).

One can verify that |- |, is a semi-norm on V, see [38, Lemma A.1.1], and a genuine norm on the
quotient space V/Ruw, as |z|, = 0 if and only if x = Aw for some X € R.

Clearly, if x,y € V are such that y = 0 and y dominates z, then = 0, as V. is a cone. On the
other hand, if y € Vi \ {0}, and y dominates x, then M (z/y) > m(x/y). The domination relation
yields an equivalence relation on V by x ~ y if y dominates x and  dominates y. The equivalence
classes are called the parts of V.. As V, is closed, one can check that {0} and int V. are parts of V.
The parts of a finite dimensional cone are closely related to its faces. Indeed, if V is the cone of a
finite dimensional order-unit space, then it can be shown that the parts correspond to the relative
interiors of the faces of V,, see [38, Lemma 1.2.2]. Recall that a face of a convex set S C V is a
subset F' of S with the property that if x,y € S and Ax + (1 — \)y € F for some 0 < A\ < 1, then
z,y € F.

It is easy to verify that if x,y € V4 \ {0}, then x ~ y if, and only if, there exist 0 < a < 3 such
that ay < x < By. Furthermore, if z ~ y, then

m(x/y) =sup{a>0:y <a 'z} = M(y/z)~ " (5.2)
Birkhoff’s version of the Hilbert distance on V, is defined as follows:

i) = tog () = log M (a/y) + 1og M (/) (53)
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for all x ~y with y # 0, d(0,0) = 0, and d(z,y) = oo otherwise.

Note that dg(Ax, py) = dg(x,y) for all z,y € Vi and A\, u > 0, so dy is not a distance on V.
It is, however, a distance between pairs of rays in each part of V.. In particular, if ¢: V — R is a
linear functional such that ¢(z) > 0 for all z € V. \ {0}, then dy is a distance on

Qy ={z cintVi: p(z) =1},

which is a (relatively) open, bounded, convex set, see [38, Lemma 1.2.4]. Moreover, the following
holds, see [38] Proposition 2.1.1 and Theorem 2.1.2].

Theorem 5.1. (Qy,dg) is a metric space and dg = pg on Qy .

It is worth noting that any Hilbert geometry can be realised as (Qy,dp) for some order-unit
space V' and strictly positive linear functional .

A Hilbert geometry (y,dm) has a Finsler structure, see [43]. Indeed, if one defines the length
of a piecewise C''-smooth path 7: [0,1] — Qy by

1
Liy) = /0 I (8)] o,

then
dp (x,y) = inf L(y), (5.4)

where the infimum is taken over all piecewise C''-smooth paths in Qy with v(0) = z and (1) = y.
So for Hilbert geometries Problem [I.1] can be formulated more explicitly as follows.

Problem 5.2. Let (V,Vy,u) be a finite dimensional order-unit space and ¢: V — R be a linear
functional with p(xz) > 0 for all x € Vi \ {0} and ¢(u) = 1. For which Hilbert geometries (Qy,dgr)

does there exists a homeomorphism from the horofunction compactification Q}‘Z/ with basepoint u onto
the closed dual unit ball BY of | - |, on V/Ru, which maps each part of the horofunction boundary
onto the relative interior of a boundary face of B} ?

It should be noted that in the case of Hilbert geometries the unit ball {z € V/Rw: |z|, < 1} in
the tangent space at w € 2y may have a different facial structure for different w. This phenomenon
appears frequently in the case where 2y, is a polytope.

This problem, however, does not arise in the spaces we analyse here. Indeed, we will consider
order-unit spaces (V,Vy,u), where V is a Euclidean Jordan algebra of rank r, V, is the cone of
squares, and wu is the algebraic unit. So int V is a symmetric cone and Isom(Qy) acts transitively
on Q. Throughout we will take ¢: V — R with () = tr(z), which is a state and

—r
Qu={rcintVi: p(z) =1} ={r €int V;: tr(z) =r}.
In that case we call (Qy,dy) a symmetric Hilbert geometry. A prime example is
Qy = {A € Herm,,(C): tr(A) = n and A positive definite}.

In a symmetric Hilbert geometry the distance can be expressed in terms of the spectrum. Indeed,
we know that for z € V invertible, the quadratic representation U, : V — V is a linear automorphism
of V4, see [24, Proposition I11.2.2]. Moreover, U, ' = U,-1 and U,—1/22 = u. Furthermore, for z € V
we have that

M(z/u) = inf{\: r < Au} =maxo(xr) and m(zx/u) =sup{\: \u <z} =mino(z),
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so that |z|, = maxo(xz) — mino(z). Also for z,y € int Vi we have that

log M(z/y) =log M(U,-1/22/u) = logmax o (U,-1/2x) = maxo(log U, -1/2x)
and

log M(y/x) =logm(z/y) ™" = —logm(U,-1j2x/u) = —mino(logU,-1/2z).
It follows that

du(z,y) =log M(z/y) +log M(y/x) = |log U, -1/22|y = diamo(log U,y jpx) for all z,y € int V.

Moreover, for each w € 0y, we have that

||y = M(x/w) —m(z/w) = M(U,-1/22/u) — m(U,-122/u) = |U,-1/22|, forallzelV,

which shows that the facial structure of the unit ball in each tangent space is identical, as U1z is
an invertible linear map.

By using the Jordan algebra structure there is a direct way to show that a symmetric Hilbert
geometry has a Finsler structure.

Proposition 5.3. If (Qy,dy) is a symmetric Hilbert geometry, then for each x,y € Qy we have that
dy(z,y) = inf L(7), where the infimum is taken over all piecewise Ct-smooth paths ~: [0,1] —
with v(0) =z and v(1) =y, and
1
SO

Proof. Let v: [0,1] — Qy be a piecewise C'l-path with v(0) = x and v(1) = y. We have

du(z,y) = logM(y/z)—logm(y/z)
V) i 1op YW

= e 8 ) T o) B @)
1q 1g
= wglsagé)/o 3 o8 vy ())dt—lpggn / 3z log v (y(1)dt
- Lap(+/(t) V(Y (1))
T pesn Jo v(y(D) at - ves(v / Y(y(t) a

B0 )

L), [ )

/o 25 D) ¢ /o RO
1

- /O MY (8)/4(8)) — m(x/(t) /() dt

1
- /0 I (£)] ot

Now let z,y € Qy and consider the C'-smooth path o in C° given by,

o(t) = U,i2(Uy-1/2y)t for 0<t<1.

T

Note that 0(0) = U,1/2u = x and o(1) = y. Define

t
wu(t) = forall0 <t < 1.

34



So, 1 is a C'-smooth path connecting = and y in Qy. A direct calculation gives

w(t) = ot) _ plo'(t) o(t) for0<t<1.

plo(t)  elo(t))?

We also have that U,,;)-1/2 = ¢(0(t))U,;)-1/2 for 0 < ¢ < 1, which implies

o0 (1)
o)™

Upiy1r2 (8) = Upgyy 1720 (1) — (5.5)

Furthermore
o' (t) = Upaso(Up-1/29)' 10g(U,-1/2y))  for 0 <t < 1.

Write z = U,-1/2y and let z = ) _;_; A\;p; be the spectral decomposition of z. Then 2t = Yoy Ap;
and log z = Y., (log A\;)pi, and hence

Ztlog z = Z()\f log \i)pi. and  U,_./2(z"log z) = log z.
i=1

From we get that
M (8)/u(t)) = m(u' () /u(t)) = MU0 () /1) = m(U, 172 (£) /1)
= M(Usy120" (1) /1) = MUy )12 (8) ).
It follows that
M (t)/u(t)) = m(p' () /pu(t)) = M(o'(t)/a(t)) — m(o’'(t)/o(t))

(o
= M(U. - 1/20( )/ —1720(t)) —m(U. = 1/20( )/ —120(t))
= M(2'logz/2") — m(z'log z/2")

= M(logz/u) — m(logz/u)
= log M(U,-1/2y/u) — logm(U,—1/2y/u)

x x

= log M(y/x) —logm(y/x).

We conclude that

1
L) = [ tog M (/) = logm{y/z)dt = di(z.),
which completes the proof. O

5.2 Horofunctions of symmetric Hilbert geometries

The main objective is to confirm Problem for symmetric Hilbert geometries. To describe the
homeomorphism, we recall the description of the horofunction compactification of symmetric Hilbert
geometries given in [37, Theorem 5.6].

Theorem 5.4. The horofunctions of a symmetric Hilbert geometry (Qv,dg) are precisely the func-
tions h: Qy — R of the form

h(z) =log M(y/x) +log M(z/z~Y)  forz € Qy, (5.6)

where y, z € OV are such that ||yl = |||, = 1 and (y|z) = 0.
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It follows from the proof of [37, Theorem 5.6] that all horofunctions are in fact Busemann points.
Indeed, if y and z have spectral decompositions

y= Z)\z‘pi and z= Zﬂjpj7

il jeJ
where I, J C {1,...,r} are nonempty and disjoint, and py, ..., p, is a Jordan frame, then the sequence
(yn) € int V. given by,
1 1
Yn Z iPi Z n2ﬂj Dj Z npk
il jeJ kgIUJ

has the property that y, — y, y,'/|lyntllu — 2 and hy, — h, where h is as in (5.6)). Note that if we
let v, = yn/@(yn) € Qy, then hy, (2) = hy, (2) for all z € Qy, so h,,, — h.
Also note that for n,m > 1,

2
Uygl/zym = Zpi + Z %Pj + Z %pk-

iel jeJ kgIUuJ

This implies that for each n > m > 1,
M(ym/yn) = M(Uygl/Qym/u) = HUy;l/?ymHu = n2/m27

so that log M (ym/yn) = 2logn — 2log m. Moreover, log M (yn/ym) =logl =0 for alln >m > 1. It
follows that

dH('Umvm) + dH(Umavl) = dH(ymym) + dH(yma yl) = dH(ymyl) = dH(Um Ul)

for all n > m > 1. Thus, (v,) is an almost geodesic sequence in €y, and hence each horofunction in

ﬁ}(/ is a Busemann point.
To identify the parts and describe the detour distance we need the following general lemma.

Lemma 5.5. Let (V,Vy,u) be a finite dimensional order-unit space. Ifv € OV, \{0} and w, € int V4
with wy41 < wy, for alln >1 and w, — w € OVy \ {0}, then

lim M(vjw,) = | /W) i w dominates v

n—00 00 otherwise.

Proof. Set A\, = M (v/wy,) for n > 1. Then for n > m > 1 we have that 0 < A\w, — v < Aw,, —v.
This implies that A, < A, for all m < n, and hence (\,) is monotonically increasing.

Now suppose that A = M(v/w) < oo, i.e., w dominates v. Then 0 < Aw — v < Aw,, — v, and
hence A\, < X for all n. This implies that A, &> A\* < XA < 0c0. As 0 < \yw, — v for all n and V, is
closed, we know that limy, 00 Apw, —v = A*w —v € V. So A* > A, and hence A* = A. We conclude
that if w dominates v, then lim, oo M (v/wy) = M (v/w).

On the other hand, if w does not dominate v, then

Aw—v Ve forall A>0. (5.7)

Assume, by way of contradiction, that (\y) is bounded. Then A, — A* < oo, since (\y,) is increasing,
and \w,—v — A*w—v € V4, as V is closed. This contradicts (5.7)), and hence \,, = M (v/w,) — oo,
if w does not dominate v. O]
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Before we identify the parts in aﬁ?, and the detour distance, it is useful to recall the following
fact:
M(z/y) = M(y~t/z71) forall z,y € int V.,

if int V. is a symmetric cone, see [39, Section 2.4].
Proposition 5.6. Let (Qy,dy) be a symmetric Hilbert geometry and h,h' € 85}‘1/ with
h(z) = log M(y/) + log M(z/z~)

and
W (@) = log M(y/ /) +log M(='j2™")

for x € Qy. The following assertions hold:
(i) h and h' are in the same part if and only if y ~y' and z ~ 2.
(i1) If h and I/ are in the same part, then §(h,h') = dy(y,vy') + dg(z, 7).

Proof. Consider the spectral decompositions: y = > ,.; \ip;, 2 = ZjEJ wipi, Y = > icp igi, and

2= Bjgj. Set
1
Yn = Z AiDi Z ;pk

iel e kgIUJ
and
wn—zaz%‘i'z QJ+ Z *Qk
iel’ jer kglog

Then hy, — h and hy, — h' by the proof of [37, Theorem 5.6].
For all n > 1 large we have that ||wy|l, = ||¢/]|. = 1, so that

dpi (wn, u) = log M (wn /u) + log M (u/wy) = log |wslu +log M (w; " /u) = log |lw;*|u-
Now set v, = w;, ! /||w; ||, and note that by (2.2)),
H(h',h) = lim dy(wy,u)+ h(w,)

n—oo

— i log i+ log M(y/uy) + log M(=/uwy )
n—oo

= lim log M (y/wy) + log M (z/v,;b).
n—oo

Clearly w1 < w, and w, — y'. Also
RS TR S
el jeJ kgI'uJ’

So, for all n > 1 large, we have that Hw;lHu =n?,

U”_Z 2o q2+ZBJQJ+ Z

iel’ jeJ’ kgI’UJ’

as maxjcy f3; = Hz'Hu = 1. It follows that

for all n > 1 large. So, v,11 < v, for all n > 1 large and v, — 2. It now follows from Lemma
that H(h',h) = oo if y/ does not dominate y, or, 2’ does not dominate z. Moreover, if y' dominates
y, and, 2’ dominates z, then H(h',h) =log M (y/y') + log M (z/2").

Interchanging the roles between h and h' we find that H(h,h') = co if y does not dominate ¢/,
or, z does not dominate 2/, and H(h,h') = log M(y'/y) + log M (z'/z), otherwise. Thus, 6(h,h’)
di(y,y") +dg(z,2") if and only if y ~ ¢ and z ~ 2/, and §(h, h') = co otherwise.

Ol
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5.3 The homeomorphism

Let us now define a map ¢ : QI‘; — B7, where Bj is the unit ball of the dual norm of |- |, on V/Ru.
For x € Qy let
x x

pu(z) = tr(z)  tr(z—1)

and for h € 990 given by (5.6) let
Yy z

Tr(y)  te(z)

We will prove the following theorem in the sequel.

or(h)

Theorem 5.7. If (Qy,dy) is a symmetric Hilbert geometry, then the map ¢p: ﬁi‘l/ — B] is a

. . —h . . .
homeomorphism which maps each part of 0SYy, onto the relative interior of a boundary face of By.

We first analyse the dual unit ball B} of |- |, and its facial structure. The following fact, see also
[39, Section 2.2], will be useful.

Lemma 5.8. Given an order-unit space (V, Vi, u), the norm ||, on V/Ru coincides with the quotient
norm of 2|| - ||, on V/Ru.

Proof. Denote the quotient norm of 2| - ||, on V/Ru by | - |- Then

7llg = 2 inf llz = pull.
= 2inf e lp(x) — pl
= 2inf max{wglsa(%(w(w)) = 1, Sorerlsa&g)(—cp(w)) + 1}
= wrgsetg)(w(w)) + @rens%)(—sO(w))
= [Tl
for all T € V/Ru, as inf,cp max{a — pu,b+ pu} = (a +b)/2 for all a,b € R. O

Recall that in a Euclidean Jordan algebra V each x can be written in a unique way asx = ™ —x~,
where 1 and 2~ are orthogonal elements in V., see [4, Proposition 1.28]. This is called the orthogonal
decomposition of x. Let

Rut ={z € V: (uz) =0} ={z cV:tr(zh) = tr(z7)}.
It follows from Lemma [5.8] that
(V/Ru, |- L) = Re, ] - 2)
So the dual unit ball B in Ru* is given by
B} = 2conv(S(V)U —S(V)) N Ru™,
see [3, Theorem 1.19], and its (closed) boundary faces are precisely the nonempty sets of the form,
Ap g = 2conv (Up(V) N S(V)) U (Uy(V) N =S(V))) NRu™,

where p and ¢ are orthogonal idempotents, see [I7, Theorem 4.4].
To prove Theorem [5.7 we collect a number of preliminary results.
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Lemma 5.9. For each x € Qy we have that oy (x) € int B}, and for each h € 8@?} we have that
o (h) € 0Bj.

Proof. Let « = Y7, \ipi € Qy, so A; > 0 for all . Note that (u[¢g(z)) =1 —1 = 0 and hence
vn(z) € Rut. Given —u < z < u, we have the Peirce decomposition of z with respect to the frame

Pi1y---5Pr, ,
z = Z@Pi +Zzij
i=1

i<j

with —1 = —(u|p;) < 0y = (2|pi) < (u|p;) = 1. As this is an orthogonal decomposition we have that

1 r 1 r .
(zlpn(z)) = 237«7/\ <Z)\z‘0i> - ﬁ <Z A Uz’)

J=177 \4=1 J=17 i=1

_ XT:U, Ao AT
i=1 Z Z;:ﬂ\j Z§:1>‘;1

r A r )\'_1
< ()2 ()
i=1 (Zjl Aj) =\ 2=t Aj

= 2.

This implies that £ |l¢m ()|} = 3 sup_,<.<,(zl¢n(2)) < 1, and hence py(z) € int B.

To prove the second assertion let h be a horofunction given by h(x) = log M (y/x)+log M (z/z~1),
where |yl = ||z[lu = 1 and (y|z) = 0. Write y = > ,c; g and z = > . ; Bjq;. If we now let
ar = ier @ and g7 = ;5 qj, then —u < ¢; — ¢y < v and

(qar —aslen(h) = (1+1)/2=1.

DO | =

lr(M)|lw >
Moreover, for each —u < w < u we have that

[(wler (h)] < [(wly/tr(y))] + [(w]z/tr(2)] < (uly/tr(y)) + (ulz/tr(z)) = 2.
Combining the inequalities shows that ¢ (h) € OBf. O]
To prove injectivity of ¢z on 2y we need the following lemma, which is similar to Lemma

Lemma 5.10. Let p;: R" = R, fort=1,2, be given by

T

w1 (z) = Ze“i and  pa(z) = Z e ¥ forxeR",
i=1

i=1

and let g: x — log pi(xz) +log ua(z). If x,y € R™ are such thaty # x+c(1,...,1) for all c € R, then
Vg(z) # Vg(y).

Proof. For 0 <t <1,p=1/t and ¢ = 1/(1 —t) we have, by Holder’s inequality, that

1/p 1/q
pte + (1= t)y) =Y el =0 < (Z 6“) (Z e“) = p (@) (y)'

and we have equality if and only if there exists a C; > 0 such that e¥ = (e(1=0¥%)4 = O} (e!¥)P = C ™
for all ¢, which is equivalent to y; = x; 4+ ¢; for all 4.
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Likewise,
pa(te + (1= t)y) = pa(z) pa(y)'

and we have equality if and only if y; = x; + co for all 4.
It follows that g: x — log pi(x) + log pua(x) satisfies

gtz + (1 —t)y) < tg(z) + (1 —t)g(y)

for x,y € R" and 0 < t < 1. Moreover, we have equality if, and only if, there exists ¢ € R such that
y; = x; + ¢ for all 7. this implies that if x,y € R" are such that y # =+ ¢(1,...,1) for all ¢ € R, then

9(z) —g(y) > Vg(y) - (z —y) and g(y) — g(z) > Vg(z) - (y — z). So,

0> (Vg(y) — Vg(@)) - (z —y),
and hence Vg(y) # V(). 0
Lemma 5.11. The map @p is injective on Q.

Proof. Suppose that ¢p(z) = ¢u(y), where z = >0, \jp; and y = >, pig; in Qy. Note that
0 < A\, p; for all i and (z|u) = tr(z) = r = tr(y) = (y|u). After possibly relabelling we can write

\i At

SOH(iU) = T T - | Pi= a;p;
i—1 <Zj=1 Aj 2j=12 1> i=1

and
Hi p !

.
— — g =) Bia,
S art ) RS

where a1 < ... < a, and f; < ... < f3,. By the spectral theorem (version 2) [24] we conclude that
Q; = /Bl for all 1.

Consider the injective map Log: int R, — R” given by Log(r) = (logi,...,log7.). Let A =
{reintR}: 7 ;7 =r}. The map Vgo Log is injective on A by Lemma and

gl T 1 Ty Tt >

D i1 Ti > i Tfl D D o > i Tiil
Letting A = (A1,...,A\y) and p = (p1,. .., 4r), we have that A\, u € A and

Vg(Log(A) = (a1, ..., ar) = (b1, ..., br) = Vg(Log(n)),

Vo(Los(r) = (

SO A = L.

As Vg o Log is injective on A, we also know that ap = aj1 if and only if Ay = Agy1. Likewise,
Bk = Bry1 if and only if ux = pgy1. From the spectral theorem (version 1) [24] we now conclude that
T =y. O

In the next couple of lemmas we show that ¢ is onto.
Lemma 5.12. The map og maps Qy onto int BY.

Proof. Note that Qy is an open set of the affine space {x € V: tr(x) = r} which has dimension
dimV — 1. Also Bf C Rut has dimension dimV — 1. As ¢y is a continuous injection from Qy
into int B} by Lemmas and we know that ¢ (€y) is a open subset of int Bf by Brouwer’s
invariance of domain theorem. We now argue by contradiction. So, suppose that ¢y (Qy) # int Bj.
Then there exists a w € dp(Qy) Nint By, as otherwise ¢ (2y) is closed and open, which would
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imply that int B} is the disjoint union of two nonempty open sets contradicting the connectedness of
int Bf. So let w € 0py(Qy) Nint B} and let (v,) in Qy be such that ¢ (v,) = w.

As @ is continuous on Qy, we may assume that dg(v,,u) — oo. After taking a subsequence, we
may also assume that v, — v € 9Qy. Now let vy, = vy, /| vn|lw and set y = v/||v||,. Furthermore let
2n = YV /|y tle After taking subsequences we may assume that z, — z € 9V, and y, — y € OV,
0 ||yl = l12]lu = 1. As yn ez, = u/|y; |l — 0, we find that y e z = 0, which implies that (y|z) = 0.

Using the spectral decomposition we write y, = > 7_; A\Pp} and y = >, ; \ip; where \; > 0 for
all i € I. Likewise we let z, = >2i_, pi'p} and z = >~ ; jujp; with 1 > 0 for all j € J. Note that
pi = A7 g e

Then

Sph(v ) = - _ - - T
" 2 k=1 Ak D=1 (M) 7! 2 k=1 AR 2k=1 Mg kel Mk 2kes M
Now let w* =3,/ pi — >_ ey pj and note that —u < w* < w, as (y[z) = 0. We find that

S AN SO e S N S ] YierNipi 2jes MiPi _

S
Slholly 2 S(wlw’) = 1+ 1)/2=1,

and hence w € 0B7, which is a contradiction. O]

Lemma 5.13. The map g maps 85}(/ onto 0B7.

Proof. We know from Lemma that o maps aﬁ@ into 0B}. To prove that it is onto let w € 0B7.
Then there exists a face, say

Ap g = 2conv (U,(V)NS(V)) U (U, (V)N =S(V))) NRu*

where p and ¢ are orthogonal idempotents, such that w is in the relative interior of A, ,, as BY is the
disjoint union of the relative interiors of its faces [46, Theorem 18.2]. So,

w=> api— Y By,
i€l =
where a; > 0 for alli € I, §; > 0 forall j € J, and ), ;o + ZjeJ B; = 2. Moreover, > ,.;p; =P
and Zjequ =q.
As w € Rut, we have that 0 = (u|lw) = 3,c; a; — > jes Bj, and hence >,y =) .0, B = 1.

Put o = max;cs o; and f* = maxjcy B;. Furthermore, for i € I set \; = o;;/a* and for j € J set
pj = p;/B*. Then

w = <Z%€I%> _ <ZJ€JBJ%> _ (Ziel /\ipi) N (ZjeJ“J'qJ>
Zke[ Qg ZkeJ Bre Zke[ Ak ZkeJ we )

Note that 0 < A\; < 1 for all 4 € I and max;er A\; = 1. Likewise, 0 < p; < 1 for all j € J and
max;cj ﬁj =1.

Now let y = > ey Aipi and z = 3, ; p15q;. Then [[y[[, = [[2[lu = 1 and (y[z) = 0. Furthermore,
if we let h: Qy — R be given by

() = log M(y/z) + log M(z/z™")
for z € Qy, then h is a horofunction by Theorem [5.4] and
el )\ipi> B <Zje]:u'ij> Cw
D kel Mk D ke Mk
This completes the proof. ]

er(h) = <
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We already saw in Lemma that g is injective on Qy. The next lemma shows that g is
injective on ﬁi‘l/
Lemma 5.14. The map pg: ﬁi‘l/ — BY is injective.
Proof. We know from Lemmas [5.11] [5.12] and [5.13] that g is injective on Qy, oy maps Qy onto
int Bf, and @H(aﬁ’&) C 9B7. So, to show that ¢p is injective on ﬁ?/, it remains to show that if

h,h' € 00 and i (h) = @y (h'), then h = 1.
Suppose that

h(z) =log M(y/x) +log M(z/x~') and b (x)=log M(y'/x)+log M (2 /=1)

for all x € Qy. Then

_ Yy =z _ y/ _ 2 _ /
(pH(h)_tr(y) tr(z)  tr(y)  tr(2') AU

Using the fact that the orthogonal decomposition of an element in V' is unique, see [4, Proposition
1.26], we conclude that

/ /

Yy Yy z z

= d = —F.
tr(y)  tr(y’) o tr(z)  tr(2)
As |lyllw = |¥']|u, we get that tr(y) = tr(y’), and hence y = y'. Likewise, ||z]l, = ||2’]|. gives z = 2.
Thus, h = b/, which completes the proof. O

5.4 Proof of Theorem

Before we prove Theorem we recall some terminology from Jordan theory. For x,z € V we let
[x,z] ={y € Y: x <y <z}, which is called an order-interval. Given y € V. we let

face(y) = {z € Vi : z < Ay for some A > 0}.
In a Euclidean Jordan algebra V every idempotent p satisfies
face(p) N[0, u] = [0,p],
see [4, Lemma 1.39]. Also note that y ~ ¢ if and only if face(y) = face(y’).

. . . =h .
Proof of Theorem[5.7. We know from the results in the previous subsection that ¢g: Q — Bj is a
bijection, which is continuous on Qy .

To prove continuity of ¢y on the whole of Q}‘L/ we first show that if (v,) in Qy is such that
hy, = h € aﬁ@, then oy (vy) — @ (h). Let h(z) = log M (y/x) + log M (z/z~!) for € Qy, where
lyllw = ||zl = 1 and (y|z) = 0. For n > 1 let y,, = v, /||vn|lw and note that ¢r(v,) = @ (ys) for
all n. Let wy, = ¢u(vp,), K > 1 be a subsequence of (¢ (vy)). We need to show that (wy) has a
subsequence that converges to ¢ (h).

As h is a horofunction and (v, dgr) is a proper metric space, we have that dg(vp, u) = dg(yn, u) —
oo by Lemma [2.1] It follows that (y,,) has a subsequence (y,,) with yx, — ¥ € 9OV4 and
2k = y,;nlb/Hyk_m |l. = 2’ € V. Note that as y € OV, we have that Hy,;i |l — oo. This implies that

—1
y ez = lim yy,, Yo _ lim —— = 0,

m—00 ¢ —1 m—00 —1
||ykau ”ykau
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which implies that (y'|z’) = 0 by [24, III, Exercise 3.3], and hence z’ € dV,. Moreover, for each
T € Qy,
lim Ay, (x) = lim log M(yy, /x) +1og M(z/yk,,) —log M (yk,, /u) — log M(u/yy,,)

m—0o0
Yt /x7h) = log ||y, llu — log M (y; ' /u)
= lim log M(yg,, /z)+ log M y,;l/a:_l)—logHy;iHu

m—0o0

( ) (
= lim log M(yg,, /z) + log M(
( ) (€7

= lim log M(yy,, /) +log M (z,, /2 ™")

= log M(y'/x) +log M(z/z™1).
So, if we let h'(z) = log M(y'/z) + log M(z/x~1), then A’ is a horofunction by Theorem and
hy, — h'. As h =1/, we know that 0(h,h’) = dg(y,y’) + du(z,2') = 0, and hence y = ¢’ and
z = 2. Tt follows that

Ykom Yion y z

pult) = o) =y ) " D) ) () P

Recall that ¢z maps Qy into int Bf and ¢y maps 85}\1/ into 0B] by Lemma So, to prove
the continuity of ¢g it remains to show that if (h,) is a sequence in 9Qy, converging to h € 99y,,
then @p (hn) = @m(h).

Let (pm(hyn,)) be a subsequence of (¢ (hy)). We need to show that it has a subsequence
(¢pr(hg,,)) converging to ¢ (h). We know there exists vy, wy, € V4 with || v |lu = [|wm|lw = 1 and
(Um|wp,) = 0 such that

B (&) = og M (v /) + 10g M (w0 /2")

for z € Qy. By taking a further subsequence we may assume that v,,, = v € V4 and wy,, = w € V.
Then ||v]|y = ||w|, =1 and (v|w) = 0. Moreover,

log M (v, /z) — log M(v/xz) and log M(wy,/z~ ') — log M(w/x™1),

for each x € Qy, as y — M (y/z) is a continuous map on V, see [37, Lemma 2.2]. Thus, hy, — h* €
8@@, where

h*(z) = log M (v/z) +log M (w/z™ 1),
by Theorem As hy,, — h, we have that h = h*. This implies that y = v and z = w, as otherwise
d(h,h*) # 0 by Proposition Thus, v, — y and w,, — z, and hence
Um W, Y z

= o) w(wn) ) w - P

This completes the proof of the continuity of pp.

o (h,,)

Thus, ¢ is a continuous bijection from ﬁ}(/ onto B}. As Ql‘l/ is compact and B7 is Hausdorff, we
conclude that ¢ is a homeomorphism.

To complete the proof of the theorem it remains to show that ¢z maps each part onto the relative
interior of a boundary face of Bf. Let h(x) = log M (y/x) + log M (z/x~') be a horofunction, where
Y= icrAipi and z = ZjeJMij with Aj,p; > 0 for all i € I and j € J. Let py = > ,.;pi and
pr=>, jeg D As pyy is surjective, it suffices to show that ¢ maps Py into the relative interior of

Ap;py = 2conv (Up, (V)N S(V)) U (Up, (V)N =5(V)))N Ru*.

So, let h' € Pj, where h/(x) = log M(y'/x) + log M(2'/x=1) for x € Qy. Then p; ~ y ~ 3y and
pj ~ z ~ 2. Using the spectral decomposition write y' = >,y a;q; and 2’ = > jes Bjaj, where
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o > 0foralli € I"and 8; > Oforall j € J'. Nowlet gy = >, ;¢ and g = ZjeJ’ g;. It follows that
pr ~ qpr and py ~ qp. So, face(pr) = face(qr) and face(py) = face(qyr). As face(pr) N[0, u] = [0,p1]
and face(qr) N[0, u] = [0,qp] by 4, Lemma 1.39], we conclude that p; = ¢;-. In the same way we get
that p; = ¢y. As a; > 0 for all i € I’ and ; > 0 for all j € J', we have that

=A

is in the relative interior of A, PIDS-

»q gt

6 Final remarks

It would be interesting to find a general class of simply connected smooth manifolds M with a Finsler
distance for which Problem has a positive solution. A common feature of the spaces considered
in this paper is the property that the facial structure of the unit ball {z € T,M: F(b,v) < 1} is
the same for all b € M. In particular, one could consider spaces where the dp-isometry group of M
acts transitively on M. This is the case for all normed spaces and the symmetric Hilbert geometries.
A second feature of the spaces considered here is that all horofunctions arise as limits of geodesics.
This property might be a useful further assumption to make.

Even if both these properties hold in a finite dimensional normed space or a Hilbert geometry, then
it is not clear how one can define a homeomorphism for these spaces, despite the fact that we know
all horofunctions by Walsh [47, 50]. What made things work in our settings was the Jordan algebra
structure and its associated spectral theory, which allowed us to give a more explicit description of
the horofunctions and the parts of the horofunction boundary that gave a clear link with the dual
norm.

It is also worth noting that if both M and the normed space (T, M, || - ||») at the basepoint b have
a positive solution to Problem then there exists a homeomorphism between the horofunction
compactifications of these spaces that maps parts onto parts. It would be interesting to know if this
connection exists more generally. More specifically, one can ask the following general question.

Problem 6.1. Suppose M is a simply connected smooth manifold with a Finsler distance, such that
the restriction of F' to the tangent space TyM at b is a norm. When does there exist a homeomorphism
between the horofunction compactification of M with basepoint b and the horofunction compactification
of the normed space (TyM, || - ||p), which maps parts onto parts?

A solution to this problem would allow one to study the horofunction compactifications of these
manifolds by analysing the horofunction compactifications of finite dimensional normed spaces, which
might be easier.
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