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A B S T R A C T   

Cancer drug development is hindered by high clinical attrition rates, which are blamed on weak predictive power 
by preclinical models and limited replicability of preclinical findings. However, the technically feasible level of 
replicability remains unknown. To fill this gap, we conducted an analysis of data from the NCI60 cancer cell line 
screen (2.8 million compound/cell line experiments), which is to our knowledge the largest depository of ex
periments that have been repeatedly performed over decades. The findings revealed profound intra-laboratory 
data variability, although all experiments were executed following highly standardised protocols that avoid 
all known confounders of data quality. All compound/ cell line combinations with > 100 independent biological 
replicates displayed maximum GI50 (50% growth inhibition) fold changes (highest/ lowest GI50) > 5% and 
70.5% displayed maximum fold changes > 1000. The highest maximum fold change was 3.16 × 1010 (lowest 
GI50: 7.93 ×10-10 µM, highest GI50: 25.0 µM). FDA-approved drugs and experimental agents displayed similar 
variation. Variability remained high after outlier removal, when only considering experiments that tested drugs 
at the same concentration range, and when only considering NCI60-provided quality-controlled data. In 
conclusion, high variability is an intrinsic feature of anti-cancer drug testing, even among standardised experi
ments in a world-leading research environment. Awareness of this inherent variability will support realistic data 
interpretation and inspire research to improve data robustness. Further research will have to show whether the 
inclusion of a wider variety of model systems, such as animal and/ or patient-derived models, may improve data 
robustness.   

1. Introduction 

Cancer drug development is affected by large attrition rates. Only 
about 5% of agents that enter phase I cancer trials are eventually 
approved as anti-cancer drugs [1–3]. A lack of predictive power by 
preclinical models for cancer drug development has been blamed for 
these low success rates, which has been suggested to be at least in part 
caused by the limited replicability of findings in such systems [2,4–9]. 

In this context, the ‘Reproducibility Project: Cancer Biology’ most 
recently reported its findings on the replication of 50 experiments from 
23 highly influential preclinical cancer studies published between 2010 
and 2012, which resulted, according to the assessments of the authors, in 
the successful replication of only five of the investigated studies [3, 
10–13]. 

Such findings fit well into the ‘reproducibility crisis’ narrative in 
cancer research that commonly considers poor or even questionable 

research practices such as a lack of thoroughness, poor study design, 
biased reporting, and insufficient documentation of study detail as 
drivers of limited replicability and calls for higher research standards 
and more experimental standardisation [3–6,13–18]. 

Despite this strong narrative, the actual scale of the reproducibility 
crisis remains unclear and evidence largely anecdotal [19]. Perceptions 
are predominantly based on researcher views expressed in survey re
sponses [6,20,21,22] and on findings communicated as Comments or 
Correspondence without detailed experimental information [4,5]. 
Moreover, generally accepted criteria defining successful replication 
attempts are missing [19,22,23,24]. For example, some authors of re
ports that were considered not successfully replicated by the ‘Repro
ducibility Project: Cancer Biology’ claimed that their findings had been 
independently confirmed by other groups in the meantime and had 
resulted in clinical drug candidates currently undergoing clinical testing 
[23]. 
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Some findings have suggested a high level of data variability to be an 
inherent feature of complex biological systems [25–28]. However, few 
studies have directly addressed this issue. Replicability datasets are 
typically small and investigate complex animal models, including 
behavioural studies, or complex (at the time of the investigation) novel 

technologies, such as array platforms [26–30]. The complexity of animal 
studies is naturally high and the factors affecting the outcome are very 
difficult to disentangle. Moreover, it may not be too much of a surprise 
that novel technologies investigating highly complex datasets like 
array-based platforms may at least initially produce data of a 

Fig. 1. Variability in NCI60 GI50 data. A) Overview of the principle of the NCI 60 screen. B) Compound/ cell line combinations with two or more experiments in the 
NCI60 database. C) GI50 fold changes in dependence on the number of experiments per compound/ cell line combination. Numerical data are presented in the 
adjacent table. D) Distribution of maximum GI50 fold changes illustrated by density plots for experimental compound/cell line combination groups with an 
increasing minimum number of experiments. E) Percentage of compound cell line combinations with maximum fold changes above the indicated thresholds in 
dependence of the number of experiments. Numerical data are presented in the adjacent table. F) Distribution of GI50 fold changes in dependence of the concen
tration ranges in which compounds were tested. Numerical data are presented in the adjacent table. 
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considerable variability [3,19]. Hence, larger datasets obtained with 
simpler assays over a long time period are likely to provide a better 
starting point for determining the inherent variability of biological data. 

Therefore, here we analysed the variation in drug response data from 
the NCI60 screen [31] to develop a realistic understanding of the 
replicability of standardised assays. The NCI60 screen was selected, 
because it provides a dataset of unprecedented richness and depth. Since 
1989, the NCI60 screen has tested the anti-cancer activity of thousands 
of compounds multiple times in a 60-cell line panel following strict 
standard operating procedures (Fig. 1A) [31–37]. 

Moreover, the lead scientists of the NCI60 screen were well aware of 
the caveats associated with cell lines and cell line-based experiments 
including the potential impact of cell line misauthentication, contami
nation (e.g. mycoplasma), phenotypic drift, cell culture media, culture 
vessels, and other reagents [31,38–41]. Strict quality measures were in 
place regarding the sourcing of reagents and materials, cell identity, 
absence of contamination, cell numbers used for assays, and the 
avoidance of phenotypic drift by using cells within a defined window of 
30 passages [38]. Moreover, internal controls were used, in particular 
doxorubicin [42], and all data were analysed by exactly the same 
approach. Thus, the NCI60 database provides an unprecedented wealth 
of data on the replicability of drug testing in cancer cell lines using 
highly standardised procedures in a world-leading environment by 
highly skilled experts and, thus, a unique opportunity to establish an 
initial understanding of the inevitable intrinsic variability of biological 
data. 

2. Results 

2.1. NCI60 drug response data are characterised by a high level of 
variability 

All drug sensitivity data derived from NCI60 testing are made 
available via Cell Miner [32–34,36,37]. In total, 52,585 compounds 
were tested in the NCI60 resulting in 2.8 × 106 compound/cell line 
combinations. Two or more (up to 2286) experiments were carried out 
for 11,841 compounds and 594,450 compound/cell line combinations 
(Fig. 1B, Suppl. Table 1; Suppl. Table 2). More than 100 experiments in 
at least one cell line were performed for 18 compounds and more than 
1000 experiments for two compounds (Suppl. Table 3). Concentration 
ranges covered by the dose-response curves varied from 101.2 to 1012.1. 
612 compounds were screened with multiple concentration ranges, and 
the most common concentration range was 104 (11,213/ 94.7% of the 
compounds), representing the standard testing range using five 10-fold 
dilution steps (Suppl. Table 4). 

The maximum fold change between the lowest and highest GI50 
concentration (reduces cell viability by 50%) was detected for cyano
morpholinodoxorubicin in the colorectal cancer cell line COLO 205 
(3.16 ×1010; lowest GI50: 7.93 ×10-10 µM, highest GI50: 25.0 µM) 
(Suppl. Fig. 1 A, Suppl. Table 5). 232,315 (39.1%) drug/cell line com
binations displayed maximum fold changes > 2, 108,247 (18.2%) drug/ 
cell line combinations fold changes > 5, 59,638 (10%) drug/cell line 
combinations fold changes > 10, 19,089 (3.2%) drug/cell line combi
nations > 100, and 8320 (1.4%) drug/cell line combinations > 1000 
(Suppl. Table 5). The mean and median maximum GI50 fold changes for 
all compound/cell line combinations were 318,410 (standard deviation 
(SD) = 5.71 × 107) and 1.6 (interquartile range (IQR) = 1.1–3.4), 
respectively (Suppl. Table 6). The low median fold change reflects the 
large number of experiments that were only performed twice. Only two 
experiments were performed for 99.9% (361,872) experiments of the 
362,135 compound/ cell line combinations (60.9% of the total 594,450 
of compound/cell line combinations) that displayed maximum GI50 fold 
changes of less than two. When we only considered experiments that 
were repeated more often, the median GI50 values increased consider
ably, as indicated below. 

2.2. Variability increases with the number of experiments 

The percentage of compound/cell line combinations with high 
maximum fold change strongly increased with the number of experi
ments (Fig. 1 C, Suppl. Fig. 2A, Suppl. Fig. 2B, Suppl. Table 6). The mean 
and median GI50 fold changes increased from 41,292 and 1.4 for 
compound/cell line combinations with two experiments to 53,343,445 
and 1841 for compound/cell line combinations with > 20 experiments 
(Fig. 1C, Fig. 1D, Suppl. Table 6). 

When we considered compound/cell line combinations with a min
imum of five experiments, the mean and median GI50 fold change for all 
combinations was 5.32 × 106 (SD = 2.48 ×108) and 10 (IQR =
3.1–98.7) (Table 6). 25,496 (84.4%) of 30,212 compound/cell line 
combinations displayed maximum fold changes > 2 and 3832 (12.7%) 
compound/cell line combinations > 1000. For compound/ cell line 
combinations with > 100 experiments, all 794 compound/ cell line 
combinations displayed a maximum fold change > 5% and 70.5% (560 
out of 794) displayed a maximum fold change > 1000 (Fig. 1E, Suppl. 
Table 7). 

Taken together, maximum GI50 fold changes increase with the 
number of experiments. In agreement, a significant correlation was 
detected between maximum GI50 fold changes and the number of ex
periments per compound/cell line combination (Spearman correlation 
coefficient = 0.34, p < 2.2 ×10-16) (Suppl. Fig. 3A). 

2.3. Variability increases with the concentration range covered 

The observed fold changes also reflected the tested concentration 
ranges per compound/ cell line combination in addition to the number 
of experiments, i.e. the broader the range of concentrations that were 
tested, the larger was the maximum fold change (Fig. 1D, Suppl. 
Table 8). A positive correlation was observed between concentration 
range and maximum fold change for all compound data (Spearman 
correlation coefficient = 0.31, p < 2.2 ×10-16) (Suppl. Fig. 3B). 

The mean and median GI50 fold changes for compound/ cell line 
combinations for which a maximum concentration range < 1.0 × 105 

was covered were 146.8 and 1.5, which increased to 68,121,059 and 
289,734 for those with a concentration range of ≥ 1.0 × 109 (Fig. 1F, 
Suppl. Table 8). 

To further investigate whether a larger concentration range results in 
larger GI50 fold changes, we considered four FDA-approved drugs 
(doxorubicin, fluorouracil, cisplatin, vinblastine) with at least 100 ex
periments performed on more than 20 cell lines. However, the vast 
majority of experiments were performed using the same concentration 
range for fluorouracil (99.5% of experiments), doxorubicin (99.3%), and 
vinblastine (91.2%). Only cisplatin was tested more frequently (21% of 
experiments) with different concentration ranges. Hence, we used the 
cisplatin dataset for further analyses. 

Cisplatin had been tested more than 100 times in 24 cell lines. We 
then performed 100 experiments, in which we randomly selected 100 
GI50 values for each cisplatin/ cell line concentration in the most 
commonly used concentration range (0.05–500 µM) and calculated the 
maximum GI50 fold changes. Then, we performed a further random 100 
selections, but this time including all available concentration ranges. 
This was repeated 1000 times and the median maximum GI50 fold 
change for a compound/cell line combination was calculated. In 23 of 
the 24 cisplatin/ cell line combinations, the median GI50 fold change 
was significantly higher in the 100 random samples across all tested 
concentration ranges, than across 100 random samples from just one 
fixed concentration range (Suppl. Fig. 3E). This adds further evidence 
that the data variability increases when the covered concentration range 
increases. 

2.4. Variability in FDA approved drugs 

Since reliable clinical therapy outcomes depend on reproducible 
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drug effects, it may be speculated that FDA-approved drugs are more 
robust in their drug response data than experimental agents. However, 
the drug response data observed for FDA-approved drugs displayed a 
similar variability to that observed across all tested compounds. 

The NCI60 database contained data on 181 FDA-approved drugs, 
which had been tested at least twice, resulting in 399,686 experiments 
investigating 9970 individual drug/cell line combinations (Suppl. 
Table 1). The number of experiments for drug/cell line combinations 

Fig. 2. GI50 variation for FDA-approved drugs. A) Compound/ cell line combinations with 2 or more experiments in the NCI60 database. Numerical data are 
presented in the adjacent tables. B) Percentage of FDA-approved drug/ cell line combinations with maximum fold changes above the indicated thresholds in 
dependence of the number of experiments. Numerical data are presented in the adjacent table. C) Distribution of maximum GI50 fold changes illustrated by density 
plots for experimental compound/cell line combination groups with increasing minimum numbers of experiments. D) GI50 fold changes in dependence on the 
number of experiments per compound/ cell line combination. Numerical data are presented in the adjacent table. E) Distribution of GI50 fold changes in dependence 
of the concentration ranges in which compounds were tested. Numerical data are presented in the adjacent table. 
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ranged from 2 to 2286. 
The maximum GI50 fold change was 1.25 × 1010 observed for 

mithramycin in four cell lines, the colorectal cancer cell line COLO-205 
(26 experiments; lowest GI50: 1 ×10-7 µM, highest GI50: 1250 µM) 
(Suppl. Fig. 1B), the CNS cell lines SF-295 (24 experiments; lowest GI50: 
1 ×10-7 µM, highest GI50: 1250 µM) and U251MG (27 experiments; 
lowest GI50: 1 ×10-7 µM, highest GI50: 1250 µM), and the ovarian 
cancer cell line IGROV1 (26 experiments; lowest GI50: 1 ×10-7 µM, 
highest GI50: 1250 µM). Mithramycin, a member of the aureolic acid 
family was approved in 1970 but only temporarily used for testicular 
carcinoma and other types of cancer due to serious side effects [43]. The 
second highest GI50 fold change (7.28 ×107) was detected for pacli
taxel, a stabilising tubulin-binding agent and one of the most commonly 
used anti-cancer drugs [44], in MDA-MB-435 (lowest GI50: 1 ×10-7 µM, 
highest GI50: 7.28 µM) (Suppl. Fig. 1 C), which had originally been 
assumed to be a breast cancer cell line, but was later found to be derived 
from the melanoma cell line M14 [45]. The mean and median GI50 fold 
changes for all FDA approved drugs were 6.20 × 106 (SD = 2.57 ×108) 
and 2.9 (IQR = 1.27–50) (Suppl. Table 9). 

The maximum, mean, and median GI50 fold changes were higher 
among the FDA approved drugs than for the non-FDA approved com
pounds (Fig. 2A, Suppl. Table 9), probably because they were tested in 
more experiments and at bigger concentration ranges (Fig. 2A). 

When we considered the percentage of FDA-approved drug/ cell line 
combinations with maximum GI50 fold changes > 2, > 5, > 10, > 100, 
and > 1000 for combinations with > 5, > 10, > 20, and > 100 experi
ments (Fig. 2B, Fig. 2C, Suppl. Table 7, Suppl. Table 10), we obtained 
similar results to those across all compounds (Fig. 1E). 

In agreement with the findings across all compound/ cell line com
binations, the maximum GI50 fold changes also increased with experi
ment number when the FDA approved drug/cell line combinations were 
grouped into combinations with two experiments, 3–5 experiments, 
6–20 experiments, and > 20 experiments (Fig. 2D, Suppl. Table 11), and 
the maximum GI50 fold change was also correlated with the number of 
experiments performed (Spearman’s correlation coefficient = 0.72, 
p < 2.2 ×10-16) (Suppl. Fig. 3 C). 

Moreover, the maximum GI50 fold change increased with the con
centration range covered (Fig. 2E, Suppl. Table 12), and there was a 
significant correlation between the concentration range and the 
maximum GI50 fold change (Spearman’s correlation coefficient = 0.62, 
p < 2.2 ×10-16) (Suppl. Fig. 3D). 

Taken together, there is no indication that FDA-approved drugs 
would display less variability than experimental compounds. 

2.5. GI50 variability in experiments performed by month 

The reproducibility of results may be affected by parameters such as 
changes in the reagents, e.g. use of different lots or batches, different 
experimenters, and using cell lines at different passages [19,46,47]. 
Hence, near-contemporaneous experiments may be expected to display 
greater similarity than experiments performed at more distant points in 
time during the decades of anti-cancer compound testing by the NCI60. 

To investigate the effects of the time of testing on data variability, we 
compared experiments performed in the same month to control samples 
of the same size that were randomly selected across the whole testing 

period. For this analysis, we used the 18 FDA-approved drugs that were 
tested at least 100 times in at least one cell line over periods of 
95–275 months (Fig. 3 A, Suppl. Table 13), resulting in 51,872 drug/cell 
line combinations and a total of 321,709 experiments (Fig. 3B, Suppl. 
Table 14). 

For every set of experiments performed on the same date, we 
generated 1000 random control samples across all dates of the same size 
and compared the value distribution. The variability of GI50 fold 
changes for same date experiments was indeed lower than for random 
control samples, but remained high reaching up to 250,035 (Fig. 3 C, 
Suppl. Table 15) with a mean and median of 298.2 (SD = 2940) and 4.2 
(IQR = 17.6). Notably, for 45% of the same date drug/cell line combi
nations the GI50 fold change was higher than the mean fold change of 
the corresponding 1000 random samples (Fig. 3D, Suppl. Table 16). 

When we looked at the data per cell line, the same-date GI50 fold 
changes were higher than the mean random sample fold changes for the 
majority of drugs in ten cell lines, higher for half of the drugs in three cell 
lines, and lower for the majority of drugs in the remaining 47 cell lines 
(Fig. 3E, Suppl. Table 17). When we looked at the individual drugs, six 
displayed a majority of drug/cell line combinations with higher mean 
same date GI50 fold changes higher than in the random samples and 
twelve drugs displayed lower ones (Fig. 3F, Suppl. Table 18). 

Taken together, experiments performed in close temporal proximity 
display lower variability than experiments performed over a longer time 
period, but the variability remains very high, even between experiments 
conducted on the same date. 

2.6. GI50 fold changes remain high after removal of outliers 

We also determined GI50 outliers for compound/cell line combina
tions with 5 or more experiments (738 compounds, 30,212 compound/ 
cell line combinations, 598,243 GI50 values) using the adjusted boxplot 
method [48]. 5.7% (34,216) of GI50 values were outliers and 43.7% (13, 
208/30,212) of compound/cell line combinations had at least one GI50 
outlier (Suppl. Table 19). 

The highest percentage of outliers was 50% (7/14 experiments for 
maytansine in DU-145 prostate cancer cells) (Fig. 3G, Suppl. Table 19). 
The greatest number of outliers was 291 (16.8%) out of 1731 experi
ments for 5-fluorouracil in HOP-62 lung cancer cells (Fig. 3H, Suppl. 
Table 19). Outlier number increased with the number of experiments for 
a compound/cell line combination with a Spearman correlation coeffi
cient of 0.25 (p < 2.2 ×10-16) (Suppl. Fig. 4). The removal of outliers 
reduced data variability, but the overall variability remained high with a 
maximum GI50 fold range of 2.5 × 109 detected for maytansine in the 
ovarian cancer cell line OVCAR-5 over 35 experiments (Fig. 3I, Suppl. 
Table 19). 

As detected in the analysis across all experiments, maximum GI50 
fold changes increased with the number of experiments and the con
centration ranges covered also after the removal of outliers (Fig. 3J, 
Fig. 3K, Suppl. Table 19, Suppl. Table 20). A significant correlation was 
observed between experiment number and maximum GI50 fold change 
with a Spearman correlation of 0.39 (p < 2.2 ×10-16) (Suppl. Fig. 5A) 
and between concentration range and maximum GI50 fold change with 
a Spearman correlation of 0.47 (p < 2.2 ×10-16) (Suppl. Fig. 5B). 

Fig. 3. GI50 variability is high between compound/cell line combination experiments on the same date and is not caused by outliers. A) Time periods of drug testing 
for individual drugs. B) Testing of individual compound/cell line combinations by date. C) Maximum GI50 fold changes in experiments testing compound/ cell line 
combinations on the same date compared to maximum GI50 fold changes in 1000 random controls of the same sample size. D) Percentage of cases in which same date 
experiments had a higher fold change than control samples randomly picked across the timeline. E) Proportion of same date GI50 fold changes in compound/ cell line 
combinations that are higher or lower than random control samples per cell line. F) Proportion of same date GI50 fold changes in compound/ cell line combinations 
that are higher or lower than random control samples per drug. G) GI50 value distribution for maytansine in the prostate cancer cell line DU-145 (outliers indicated 
in red). H) GI50 value distribution for 5-fluorouracil in the lung cancer cell line HOP-62 (outliers indicated in red). I) Comparison of maximum GI50 fold changes 
before and after removal of outliers. Numerical values are presented in the adjacent table. J) Maximum GI50 fold changes increase with experiment number after 
removal of outliers. Numerical values are presented in the adjacent table. K) Maximum GI50 fold changes increase with the concentration range covered after 
removal of outliers. Numerical values are presented in the adjacent table. 
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2.7. GI50 fold changes remain high when using quality-controlled data 

Notably, there is awareness of the data variability within the NCI60 
project as indicated by the availability of quality-controlled GI50 values 
in CellMiner. The quality control procedure includes the removal of 
experiments, in which a given drug was tested in the NCI60 panel, when 
the GI50 range was smaller than log10 1.2 across the investigated cell 
lines or when the drug was tested in fewer than 35 cell lines. For ex
periments that pass these criteria, Pearson’s correlation coefficients are 
determined across the individual drug screens. After removal of any 
experiments with a mean Pearson’s correlation coefficient less than 
0.334, the experiment with the lowest correlation coefficient (< 0.6) is 
dropped and mean corelations for experiments recalculated. This is 
repeated until all experiments have a mean correlation coefficient of 0.6 
or higher, or a maximum of 25% or 253 (whichever is lower) experi
ments remain (minimum 2 experiments) [32]. Among FDA-approved 
drugs, this resulted in the exclusion of up to 96% of experiments (48 
out of 50) for a given compound (i.e. mitotane) (Suppl. Table 21) for the 
determination of mean GI50 values in COMPARE analyses [32,49]. 

Quality-controlled data were available for 1080 drug/cell line 
combinations among the 18 drugs that had been tested at least 100 times 
in one or more cell lines, and the GI50 variability remained high (Fig. 4, 

Suppl. Fig. 6, Suppl. Table 22). The highest maximum GI50 fold change 
(1.0 ×106) was detected for vinblastine in the leukaemia cell line SR 
(over 41 experiments) and the melanoma cell lines SK-MEL-28 (31 ex
periments) and UACC-257 (52 experiments). The mean maximum GI50 
fold change for a drug ranged from 10.47 (SD = 8.27) for doxorubicin to 
87,611 (SD = 231,891) for vinblastine, while the median maximum 
GI50 fold change ranged from 6.58 (IQR = 4.58–10.1) for carmustine to 
10,000 for cytarabine (IQR = 822.7–10,000) (Suppl. Fig. 6, Suppl. 
Table 22). 

Furthermore, when only considering quality-controlled data, all but 
one (1079 out of 1080, 99.9%) drug/ cell line combination displayed a 
maximum GI50 fold change of > 2, 96.5% a maximum GI50 fold change 
of > 5, 89.8% a maximum GI50 fold change of > 10%, and 60.6% a 
maximum GI50 fold change of > 100 (Fig. 4B, Suppl. Table 22). 

2.8. No drift in drug sensitivity over time 

Cancer cell lines may display substantial changes in genotype and 
phenotype over time [46,50]. Hence, part of the variability observed in 
drug sensitivity may be the consequence of a shift in drug response over 
time. To investigate this, we established timelines of the GI50 values for 
the 18 compounds, which had been tested at least 100 times in one or 

Fig. 4. GI50 variability remains high for drugs that were tested 100 times in at least one cell line when only quality-controlled (QC) [32] data are considered. A) 
Comparison of maximum GI50 fold changes using all data or quality-controlled (QC) data. B) Percentage of compound/ cell line combinations with maximum GI50 
fold changes > 2, > 5, > 10, > 100, and > 1000. 
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Fig. 5. Experimental time lines for individual compound/cell line combinations. The six experimental timelines for compound/cell line combinations (with more 
than 100 experiments performed in at least one cell line) with a fold change between the first and last mean GI50 that is 50% greater than the maximum GI50 for the 
remaining experiments. A) floxuridine in the ovarian cancer cell line SK-OV-3, B) methotrexate in the breast cancer cell line BT-549, C) 6-mercaptopurine in the 
breast cancer cell line BT-549, D) bleomycin in the leukaemia cell line K-562, E) vinblastine in the breast cancer cell line T-47D, F) M-AMSA in the melanoma cell line 
MDA-MB-435. Plot lines represent mean GI50s while data points represent individual experiments at an experimental date. 

Fig. 6. Variability between experiments performed using FDA-approved drugs at the same drug concentration range. GI50 fold changes in dependence of the number 
of experiments per drug/ cell line combination and percentages of compound/ cell line combinations with maximum fold changes above the indicated thresholds, and 
mean and median fold changes. 

I.G. Reddin et al.                                                                                                                                                                                                                                



Pharmacological Research 188 (2023) 106671

9

more cell lines. This resulted in time lines for 1080 compound/cell line 
combinations with time frames ranging from 95 months (vinblastine, 
floxuridine, cytarabine, daunorubicin, 6-mercaptopurine) to 275 
months (Doxorubicin) (Fig. 3A, Suppl. Table 13). 

Drug/ cell line combinations, in which the fold change between the 
mean GI50 on the first experimental date and the mean GI50 on the last 
experimental date was 50% or greater than the maximum GI50 fold 
change for the data points in between were considered as candidates for 
a drift in drug sensitivity. Only six (0.56%) out of 1080 drug/cell line 
combinations fulfilled these criteria (Fig. 5, Suppl. Table 23). 

The distribution of the individual GI50 values for three of the drug/ 
cell line combinations (floxuridine/ SK-OV-3, methotrexate/ BT-549, 6- 
mercaptopurine/ BT-549) did not indicate a GI50 shift over time 
(Fig. 5A-C, Suppl. Table 24). For the other three drug/ cell line combi
nations (bleomycin/ K-562, vinblastine/ T-47D, M-AMSA/ MDA-MB- 
435) a drift in sensitivity appears unlikely but cannot be excluded 
based on the data (Fig. 5D-F, Suppl. Table 24). However, such obser
vations are very rare. Moreover, a phenotypic drift in a cell line would be 
expected to result in changes in sensitivity to more than one drug over 
time. Hence, the data provide no evidence suggesting that the drug 
sensitivity of individual cell lines may have changed over time. These 
findings may also reflect that the NCI60 uses cell lines within a window 
of 30 passages [38]. 

2.9. High GI50 variability when only considering drug-response curves 
covering the same concentration range 

Finally, we analysed the variability among FDA-approved drug/ cell 
line combinations that were repeatedly tested at the same drug con
centration range. Ten drugs were tested at the standard five-point 1:10 
dilution range with a starting concentration of 25 µM, resulting in 581 
drug/cell line combinations. The variability remained high with a 
maximum fold change of 10,000, reflecting the fold change between the 
lowest and the highest tested concentrations (values were not extrapo
lated, if the GI50 was not reached the highest or lowest tested concen
tration was used as cut-off), observed for 94 drug/cell line combinations 
(Fig. 6, Suppl. Table 25). The mean maximum fold change for a drug 
across the different cell lines ranged from 1.02 (S.D. = 0.14) for 
tamoxifen (which was tested in two independent experiments per cell 
line) to 9943 (S.D. = 437.8) for doxorubicin (which was tested in 1894 
to 2265 independent experiments per cell line), and the median 
maximum fold change from 1 (IQR = 1 – 1) for tamoxifen to 10,000 (IQR 
= 10,000–10,000) for doxorubicin (Supp. Table 26). The maximum fold 
change increased as the number of experiments increased (Fig. 6). For 
drug/cell line combinations with two experiments, the mean and me
dian maximum GI50 fold changes were 1.82 (SD = 2.58) and 1 (IQR = 1 
– 2.58). For drug/cell line combinations with more than 20 experiments, 
the mean and median maximum GI50 fold changes were 4702 (SD =
4463) and 2832 (IQR = 269 – 10,000) (Fig. 6). 

Among drug/cell line combinations with two or more experiments, 
81% (472/581) displayed a maximum GI50 fold change of > 2, 70.4% 
(409/581) a maximum GI50 fold change of > 5, 63.3% (368/581) a 
maximum GI50 fold change of > 10%, and 41.5% (241/581) a 
maximum GI50 fold change of > 100. Among drug/cell line combina
tions with five or more experiments, 99.2% (374/377) displayed a 
maximum GI50 fold change of > 2, 93.6% (353/377) a maximum GI50 
fold change of > 5, 89.1% (336/377) a maximum GI50 fold change of 
> 10%, and 62.1% (234/377) a maximum GI50 fold change of > 100 
(Fig. 6, Supp. Table 29). 

3. Discussion 

In this study, we investigated variation among data derived from the 
NCI60 screen that has tested compounds for anti-cancer activity for 
decades following highest level quality control procedures [31–42]. 
Despite this very strict approach in a world-leading research 

environment, data variability was very high. The largest fold change 
between the lowest and highest GI50 in a given compound/cell line 
combination was 3.16 × 1010. Overall, mean and median GI50 fold 
changes were 318,410 (SD = 5.71 ×107) and 1.6 (IQR = 1.1–3.4). As 
might have been expected, the fold change between the lowest and the 
highest GI50 in a specific compound cell line combination increased 
with the number of experiments and the concentration range tested. 

CellMiner contains data on experimental compounds as well as on 
FDA-approved drugs that are in clinical use [32–37,51]. Although 
FDA-approved drugs might have been expected to result in more robust 
data, this was not the case and they displayed a similar data variability 
as that determined across all compounds. The variability also remained 
high when we only considered experiments that were performed in the 
same months, removed outliers, or only considered experiments, in 
which drugs were tested at the same concentration range. 

There is awareness of this variability within the NCI60 project as 
indicated by the awareness of quality-controlled NCI60 GI50 data in 
CellMiner, which results in the exclusion of up to 96% of experiments 
(48 out of 50) for a given compound (Suppl. Table 21) [32]. Such an 
approach would not be a feasible approach in most research labs. Even 
when we only considered these quality-controlled data among the 18 
compounds that were tested 100 or more times in at least one cell line, 
all but one (1079 out of 1080, 99.9%) drug/ cell line combination dis
played a maximum GI50 fold change of > 2), 96.5% a maximum GI50 
fold change of > 5, 89.8% a maximum GI50 fold change of > 10%, and 
60.6% a maximum GI50 fold change of > 100. 

This large GI50 variation among dose response experiments repeat
edly using the same drug in the same cell line is of relevance for the 
assessment of the potential clinical activity of drug candidates. Cytotoxic 
anti-cancer drugs are typically used at maximum tolerated doses that 
cannot be further increased without unacceptable toxicity [52–54]. 
Moreover, the maximum effects of targeted drugs, e.g. antibodies or 
kinase inhibitors that interfere with cancer-specific structures or en
tities, do not further increase beyond the ‘optimal biological dose’, i.e. 
the dose at which the biological target is completely inhibited [52–55]. 
Hence, even a two-fold difference in the GI50, which occurred in 25,496 
(84.4%) of 30,212 compound/cell line combinations with at least five 
experiments, is of potential relevance, as a two-fold increase of the 
clinical dose of an anti-cancer drug is rarely feasible. 

Data variability was not driven by changes in the sensitivity of the 
NCI60 cell lines over time, which indicates that the use of cell lines 
within 30 passages indeed prevented phenotypic drift [38]. Since the 
NCI60 applies strict quality measures that control for all known sources 
data variability in cancer cell line experiments including consistent 
sourcing of reagents and materials (including cell culture media and 
foetal calf serum), authentication of cell lines, testing for contamination, 
consistent cell numbers, and using doxorubicin as internal control [31, 
38–52,56], the observed data variability has at least in part to be 
attributed to the variation that is inherently associated with the use of 
biological systems. Even among the quality-controlled data for doxo
rubicin maximum GI50 fold changes ranged from 2.4 (in the prostate 
cancer cell line DU-145) to 56.9 (in the renal cancer cell line A498) 
(Suppl. Table 22). 

In conclusion, this study analysed data replicability in the largest 
dataset that has been investigated for this purpose. In contrast to other 
replication studies that often use complex model systems and novel 
technologies [26–30], the NCI60 dataset reports data from a comparably 
simple cancer cell line screen that has been performed over decades 
under highly standardised conditions in a world-leading environment 
applying the highest standards to avoid known sources of data vari
ability [31,38–41], i.e. under ideal conditions that the vast majority of 
research groups will not be able to afford. Hence, a significant part of the 
observed data variation is likely due to the inherent complexity of bio
logical systems. Strict experimental standardisation as suggested by 
many commentators to improve data quality and reliability [5,14–19, 
57–60] does therefore not appear to be a straightforward way to resolve 
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issues associated with limited replicability in preclinical cancer research 
and high attrition rates during cancer drug development. In this context, 
our data support the notion that the primary value of pharmacological 
cell line studies lies in the generation and validation of hypotheses 
rather than the direct prediction of clinical drug activity (which is also 
likely to be an unrealistic aim, given that cell lines do not adequately 
represent the tumour environment) [61,62]. Notably, our findings are 
not only of relevance to the cancer field, but to the whole life science 
field, in which there is a perception of a "reproducibility crisis" or 
"replication crisis" [4–6,14,19–21,63–67]. 

Awareness of the inherent variability of experimental results, will 
help researchers to develop a realistic understanding of the meaning of 
their data and inform and inspire further research that will improve the 
robustness, reliability, and meaningfulness of research data. Experiment 
heterogenisation, the testing of a hypothesis in many different (experi
mental) systems and datasets and different laboratories, has been sug
gested to provide more robust and meaningful data, in particular for 
more complex experimental systems that are known to be affected by 
reproducibility issues [2,25–28,68–70]. Such a strategy is also in line 
with the NCI60 strategy that emphasises that follow-up testing, 
including animal testing, is needed to identify drug leads [31]. More
over, the involvement of patient-derived cancer models may improve 
data robustness [71]. However, further research will need to show 
whether and, if yes, to which extent such strategies and others that are 
still to be developed will actually improve data replicability and 
robustness. 

4. Methods 

4.1. Data availability 

All data were obtained from CellMiner [72] Version 2.2. Dose con
centration range data (June 2018 release) were obtained from the Na
tional Cancer Institute DTP NCI bulk data for download pages 
(https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60 +
Growth+Inhibition+Data). Of the 52,585 NCI codes given to com
pounds tested on the NCI-60 cell line panel, 42,794 were given to 
unnamed compounds and 9791 were given to 9027 named compounds. 
262 named compounds received two or more individual codes. Some 
GI50 values represent minimum or maximum drug concentrations 
where the actual GI50 was not reached [32]. Since such values under
state the actual data variation, we did not remove these data. All data 
generated during this study are included in this published article and its 
supplementary information files. 

4.2. Maximum GI50 fold change calculation 

The drug sensitivity data was converted from –log10 GI50, to the 
GI50 (µM) for all compound, all cell lines and all experiments. Maximum 
fold changes were calculated for each compound/cell line combination 
with more than one experiment (594,450) by dividing the maximum 
GI50 for a cell line by the minimum GI50. 

4.3. Number of experiments and experimental groups 

The number of experiments for each individual compound/cell line 
combination was calculated by counting all experiments performed on 
the same experimental date as well as experiments on different dates. 
The relationship between number of experiments and maximum fold 
change was investigated by using Spearman’s correlation coefficient as 
the distribution of maximum GI50 fold change was not normal. 

The compound/cell line combinations were then assigned experi
mental groupings based on the number of experiments performed: all 
data, 5 or more experiments, 10 or more experiments, 20 or more ex
periments, and 100 or more experiments. This allowed comparison of 
“high” maximum fold changes (>2, >5, >10, >100, and >1000) for 

combinations with varied number of experiments. Additionally, com
pound/cell line combinations were assigned to experimental groups: 2 
experiments, 3–5 experiments, 6–20 experiments and over 20 experi
ments. These experimental groupings enabled comparison of GI50 fold 
change statistics (mean, median, minimum, maximum, variance) for 
compound/cell line combinations with number of experiments ranging 
from lower to higher. 

4.4. Concentration range and experimental groups 

Maximum dose concentration range for a compound/cell line com
bination was determined by using the minimum and maximum dose 
concentration used in an experiment for an individual compound on an 
individual cell line. The minimum concentration range was 1.0 × 101.2 

and the maximum concentration was 1.0 × 1012.1. The relationship 
between dose concentration range and maximum fold change was 
investigated by using Spearman’s correlation coefficient as the distri
bution of maximum GI50 fold change was not normal. 

Compound/cell line combinations were assigned to groups based on 
the dose concentration range for that combinations: maximum concen
tration range less than 1.0 × 105, maximum concentration range 
1.0 × 105 to 1.0 × 109 exclusive and maximum concentration range 
1.0 × 109 and above. These experimental groupings enabled compari
son of GI50 fold change statistics (mean, median, minimum, maximum, 
variance) for compound/cell line combinations between lower and 
higher concentration ranges. 

4.5. Individual dose concentration range vs all dose concentration ranges 

For this analysis, the cisplatin GI50s were used from cell lines, in 
which cisplatin was examined in at least 100 experiments. The most 
common individual 5-fold dose concentration range for cisplatin was 
0.05–500uM, which was used for 79% of cisplatin/cell line combination 
experiments. The maximum GI50 fold change was calculated for 100 
random experiments using the 0.05–500uM concentration range 1000 
times and the median maximum GI50 fold change over all iterations for 
a drug/cell line combination was calculated. The same method was used 
on the data considering all dose concentration ranges, and the median 
maximum GI50 fold changes were compared, including statistical ana
lyses using Wilcoxon rank sum test, and FDR calculated using 
Benjamini-Hochberg multiple test correction. 

4.6. FDA-approved compound analysis 

All compounds that were classed as FDA-approved drugs by the NCI- 
60 in CellMiner Database Version 2.2 and where two or more experi
ments had been performed were extracted from the complete dataset. 
This created an FDA-approved dataset of 181 drugs for which 399,686 
experiments for 9970 individual drug/cell line combinations were per
formed. Analysis of relationship between the number of experiments/ 
concentration ranges and maximum GI50 fold change for drug/cell line 
combinations was performed as for the complete dataset, described 
above. 

4.7. Experiments on the same date 

Month and year of each experiment was available so experimental 
timelines were established for compounds by calculating the time be
tween the first and last experiment date. Multiple experiments were 
carried out on the same date for many of the compound/cell line com
binations, particularly the 18 compounds with at least one cell line with 
100 total experiments. The data for these 18 compounds, 17 of which 
were FDA-approved, was extracted from the complete dataset to create a 
subset of data deemed suitable to compare GI50 variability on the same 
date with GI50 variability over an experimental timeline. 

The maximum GI50 fold change on each date where there were 

I.G. Reddin et al.                                                                                                                                                                                                                                



Pharmacological Research 188 (2023) 106671

11

multiple experiments for a compound/cell line combination were 
calculated by dividing maximum GI50 by minimum GI50 value. The 
number of experiments on a specific date for a compound/cell line 
combination was used to determine the maximum GI50 fold change over 
the same number of experiments picked randomly from that combina
tion’s experimental timeline. This was performed 1000 times so that for 
every compound/cell line combination and experimental date with a 
maximum GI50 fold change over multiple experiments there were 1000 
corresponding maximum GI50 fold changes calculated from random 
samples of the same number of experiments on that compound/cell line 
combination’s timeline. The mean maximum GI50 fold change was 
calculated for the 1000 random samples for each compound/cell line 
combination and the number of maximum GI50 fold changes for ex
periments on the same date higher and lower than the random sample 
mean were counted. For each compound, significance of the difference 
between same date maximum GI50 fold change and sample mean GI50 
fold change was calculated using Wilcoxon Rank Sum Test. This was 
performed using all cell line data combined for each compound and for 
each cell line individually for each compound. Where a significant dif
ference between same date and random sample mean maximum GI50 
fold changes were observed, the number of times the same date GI50 
fold change was higher or lower than the random sample mean 
maximum GI50 fold change was counted. 

4.8. Analysis of quality-controlled data 

The quality controlled-data for the 18 most tested drugs was ob
tained from CellMiner [72] Version 2.7. For a total of 1080 drug/ cell 
line combinations, a total of 101,912 individual GI50 values were 
available for analysis (compared to 326,788 when considering all data). 
Analyses performed on the quality controlled data were as previously 
described. Quality control methods are described in [32]. 

4.9. Drift in drug sensitivity 

The mean GI50 fold change was calculated for each experimental 
date (month) for the 18 compounds with 100 or more experiments for at 
least one cell line. The GI50 fold change between the first experimental 
date and the last experimental date was calculated using the mean GI50 
on those dates. The first/last GI50 fold change was then compared to the 
maximum GI50 fold change for each compound/cell line combination 
and considered a candidate for a drift in sensitivity if it was 50% or more 
of the maximum fold change. 

4.10. Removal of outliers 

The adjusted boxplot method was used to identify outlier thresholds. 
This method was chosen as the data set was highly skewed. To use this 
method the medcouple (MC), a robust measure of skewness, had to be 
calculated (where Xn = {x1, x2,…, xn} represents data for every com
pound/cell line combination): 

MC(x1,…, xn) = med
(
xj − medk

)
− (medk − xi)

xj − xi  

Where medk is the median of Xn, and i and j have to satisfy 
xi ≤ medk ≤ xj, and xi ∕= xj. 

Using the MC the upper (U) and lower (L) thresholds could be 
determined. If ≥ 0: 

L = Q1 − 1.5 × exp( − 3.5MC) × IQR  

U = Q3 + 1.5 × exp(4MC) × IQR 

If≤ 0: 

L = Q1 − 1.5 × exp( − 4MC)IQR  

U = Q3 + 1.5 × exp(3.5MC) × IQR 

If MC = 0 the adjusted boxplot method was not used but instead the 
Tukey method was used: 

L = Q1 − 1.5IQR  

U = Q3 + 1.5IQR  

Where Q1 is the lower quartile, Q3 is the upper quartile and IQR is the 
interquartile range. 

For each compound/cell line combination any GI50 value below L or 
above U were removed from the dataset. Analyses were performed on 
this dataset as previously described for the complete dataset. 

4.11. Data processing 

Data was carried out using perl version 5.26.0, Microsoft Excel 
(2011) and R statistical packages version 3.4.4. Perl modules Statistics: 
Descriptive and Statistics::R were used. Packages used in R were 
robustbase, dplyr, webr, moonBook, tidyverse, reshape2, scales, gplots, 
ggpubr, ggExtra, RColorBrewer, corrplot, ggplot2, and tidyr. 

Significance statement 

Only 5% of anti-cancer drug candidates entering clinical trials are 
eventually approved. This is attributed to a lack of robustness in pre
clinical research, although the technically achievable replicability level 
remains unknown. The NCI60 screen has tested compounds in cancer 
cell lines since 1989 following the strictest quality measures accounting 
for the sourcing of reagents/ materials, cell identity, contamination, 
assay parameters, and phenotypic drift. Data variability remains high 
even under these optimized conditions. 71% of compound/ cell line 
combinations with > 100 experiments displayed maximum GI50 (50% 
growth inhibition) fold changes (highest/ lowest GI50) > 1000. The 
highest maximum fold change was 3.16 × 1010. Awareness of this 
inherent variability is crucial for the development of robust approaches 
and for improving success rates in therapy development. 
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