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Abstract: Inertial sensors are widely used in human motion monitoring. Orientation and position are
the two most widely used measurements for motion monitoring. Tracking with the use of multiple
inertial sensors is based on kinematic modelling which achieves a good level of accuracy when
biomechanical constraints are applied. More recently, there is growing interest in tracking motion
with a single inertial sensor to simplify the measurement system. The dead reckoning method
is commonly used for estimating position from inertial sensors. However, significant errors are
generated after applying the dead reckoning method because of the presence of sensor offsets and
drift. These errors limit the feasibility of monitoring upper limb motion via a single inertial sensing
system. In this paper, error correction methods are evaluated to investigate the feasibility of using a
single sensor to track the movement of one upper limb segment. These include zero velocity update,
wavelet analysis and high-pass filtering. The experiments were carried out using the nine-hole peg
test. The results show that zero velocity update is the most effective method to correct the drift from
the dead reckoning-based position tracking. If this method is used, then the use of a single inertial
sensor to track the movement of a single limb segment is feasible.

Keywords: upper limb motion monitoring; inertial sensor; zero velocity update; dead reckoning;
wavelet analysis; high-pass filter

1. Introduction

Neurological disorders are the leading cause of disability-adjusted life years (the sum
of years of life lost and years lived with disability) and the second leading cause of death
according to recent research on the global burden of neurological disorders [1]. The report
on neurological prevalence published by the UK Neurological Alliance, states that there are
an estimated 14.7 million neurological cases in the UK. This equates to at least 1 in 6 people
living with one or more neurological conditions [2]. Severe neurological conditions such as
stroke, Parkinson’s disease, traumatic brain injury, spinal cord injury, motor neuron disease
and multiple sclerosis can result in the impairment of limb mobility, and difficulties in
carrying out normal cognitive tasks (learning and communication) [3].

Between 73% and 88% of first-time strokes result in an acute hemiparesis of the upper
and/or lower limbs [4]. A significant number of patients who had a stroke had one of their
arms affected [5]. A survey of stroke patients with arm and leg paresis showed that more
than 75% of the patients on admission to a stroke unit required significant assistance with
upper limb function recovery [6]. Rehabilitation programs involve occupational therapy
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and physiotherapy to help the patients to ease the symptoms, regain upper limb mobility
and, furthermore, lead an independent life. Our previous work [7] used low-cost gaming
sensors to assess the upper limb movement of patients pre and post-Botulinum Toxin
treatment. Additionally, remote rehabilitation using automatic recognition of physical
exercise is getting more attention [8]. With the use of the deep-learning-based method,
Bijalwan et al. [9] proposed a model for post-injury walking pattern restoration and postural
stability rehabilitation exercise recognition. In addition, there are also speech and language
therapists, nurses and other specialists working together in a typical multidisciplinary
rehabilitation team. In particular, it has been shown that in terms of regaining independence
in everyday living, improving upper limb function is one of the important factors in a
patient’s rehabilitation [10–12], and research indicates that more attention is needed for
the treatment of upper extremity impairment [13–15]. Therefore, having an effective
rehabilitation program and an objective means of monitoring the efficacy of that program
should be of value to both clinicians and patients.

Typical tests to monitor response to rehabilitation include the nine-hole peg test,
drinking test and bean bag test [16]. Currently, data from these tests are usually restricted
to the use of a stopwatch to measure test completion time and visual observation of the
limb trajectory. A more objective measure would provide additional information to the
clinician. One means to do this is to use inertial sensors to monitor limb segment motion.
The use of inertial sensors can provide information on additional parameters such as the
timing of specific movements within the test, acceleration, velocity profiles, movement
smoothness and the path followed by the limb during the tests.

The development of Micro Electro Mechanical Systems (MEMS) technology has re-
sulted in the availability of small inertial sensors which are designed to be attached to
the upper limb of a person. In recent years, inertial sensors are commonly used to com-
bine data from accelerometers, magnetometers and gyroscopes to measure the change in
position and orientation [16–20]. Initially typical applications were focused on tracking
head motion where the accelerometer was used as an inclinometer and the gyroscope
used to sense changes in orientation [21,22]. However, it was realised that in order to
improve the accuracy of measurement, data from magnetometers had to be fused with
that from the accelerometers and gyroscopes [23,24]. An inertial measurement system will
usually consist of several inertial sensors and a biomechanical model to interpret the sensor
data. Previous work focused on upper limb motion sensing using multiple sensors and
kinematic modelling [18,25–27]. There is, however, a growing need to adopt a less complex
system to reduce the cost and improve user compliance and ease of use. To date, there has
been a lack of studies that use a single inertial sensor for upper limb motion monitoring.
Leuenberger et al. [28] proposed a single wrist-worn inertial sensing measurement unit to
quantitatively assess the upper limb function of stroke survivors. However, the results are
mainly reported for a range of motion measurements, whereas limb trajectory is also of
clinical importance.

One approach to monitoring limb trajectory using inertial sensors is the Dead Reckon-
ing method (DR) [29]. The DR method has been used to estimate pedestrian navigation
using inertial sensors attached to a person’s lower limbs [30,31]. Labinghisa et al. [32] used
empirical mode decomposition to remove the drifts from the pedestrian dead reckoning.
Ju et al. [32] proposed an advanced heuristic drift elimination approach which used ZUPT
method. Elbes et al. [33] proposed a gyroscope drift correction method in support of
pedestrian dead reckoning and their proposed approach was able to remove more than
85% of the drift. Dead reckoning is a navigation technique widely used in inertial tracking
for ships and pedestrians. For those applications, errors within one meter can be accepted.
However, for the application of human upper limb motion position tracking, the errors
should be within one centimetre. To the authors’ best knowledge, there is no research has
been conducted in applying dead reckoning in human upper limb monitoring. This method
is of interest because, if successful, it would enable simpler setups for some clinical tests
using only one sensor to measure the movement of a particular upper limb segment, e.g.,
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the hand. This would be attractive in terms of system cost and set-up time. The accuracy
in the position monitoring for upper limb motion is important in understanding patient
performance, especially for movement related to hand and wrist dexterity.

To track upper limb segment position with a single inertial sensor, the DR method is
mandatory. However, the usefulness of DR method is limited because of the presence of
unavoidable system errors. These errors are due to the presence of sensor offsets and offset
drift—described as random walk [34–36]. The random walk error [37] presents as a low-
frequency component in limb segment movement. There are several techniques available to
minimise the impact of this low-frequency drift. To compensate the system error, the Zero
Velocity Update (ZUPT) [38], has been widely adopted in the area of pedestrian tracking.
However, one limitation of this method is the requirement that there are regular intervals
where the limb segment is at zero velocity. This is readily achievable when monitoring
gait when the forefoot is in contact with the ground [39]. Unlike the gait cycle where zero
velocity intervals are present, upper limb segment movements zero velocity events are
more difficult to predict. Therefore, in this paper, we evaluate the accuracy of three drift
correction methods; the ZUPT [38], and wavelet analysis [40–42] [38,39]. and high pass
filtering [43].

The remainder of the paper is arranged as follows. In Section 2, the DR method and
errors arising from drifts are presented. To reduce the drift, a range of methods including
ZUPT, wavelet analysis, high-pass filter are discussed in Section 3 and the results of the
drift correction methods are presented in Section 4. Section 5 concludes the paper.

2. DR Method

The basis of DR method is to estimate the current sensor position by using the pre-
vious position and to double integrate the translational acceleration over elapsed time to
estimate the change in position. However, the gravitational component in the measurable
acceleration data must first be subtracted from the measurable acceleration by applying
the quaternion or rotation matrix data. Additionally, the gravitational component in each
axis will change as the sensor orientation changes. Therefore, it is necessary to track the
orientation as well as the translational acceleration of the sensor in order to be able to
remove the gravitational component from the acceleration.

Therefore, it is challenging to estimate translation based on acceleration measurement
alone. Without any correction strategy, the position estimation is only expected to be
acceptable for upper limb measurements over a very short time—one or two seconds. For
example, a 0.01 m/s2 error in acceleration will result in an error in the position of 9 m after
30 s. An error in the estimate of acceleration of 0.1% of the maximum acceleration and will
result in a 10% offset error in position after 10 s.

The sensor reference frame is changing all the time with respect to the change in
the sensor orientation. In order to obtain the position estimation, a fixed reference frame
is needed, and, in this work, global reference frame is used. As shown in Figure 1, the
global reference frame is an earth-fixed reference frame in which the positive x direction
is pointing to the local magnetic North, the positive y direction is pointing to the West
according to the right-handed coordinate system and the positive z direction is pointing
up, in the opposite direction to the Earth’s gravitational field.
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By using the rotation matrix g
s R(t), the measurable acceleration vector in the sensor

reference frame s→a (t) can be converted from the sensor reference frame to the global
reference frame to g→a (t). Once the gravitational component

→
g has been removed then

double integration of the linear acceleration data in the global reference frame g→a linear(t)
should, in theory, enable any change in sensor or segment position to be estimated. The
equations for calculating linear position [18] are as follows:

g→a linear(t) =
g
s R(t) ∗ s→a (t)−→g (1)

g→v linear(t) =
∫

t

g→a linear(t)dt (2)

g→p linear(t) =
∫

t

g→v linear(t) =
x

t

g→a linear(t)dt (3)

where g→a linear, g→v linear and g→p linear are the linear acceleration, linear velocity and linear
position, respectively, in the global reference frame.

Dummy data which represent a typical ideal acceleration profile in one axis are used
here to illustrate the DR algorithm for position tracking. In the left column of Figure 1, a sine
wave has been used to create the acceleration dummy data whose maximum magnitude
is 2 m/s2. Velocity and position have been computed by using the DR algorithm, and
therefore an ideal example has been made. However, in real measurements, there exists
noise and offset in the acceleration measurements. Therefore, the dummy acceleration data
with white noise (mean value is 0.2 m/s2) were used to evaluate the performance of the
DR algorithm when there is noise in the acceleration. The dummy acceleration data with
white noise, the corresponding velocity and the position integrated from this acceleration
are presented in the right column of Figure 2. It shows the significant error in the tracking
of the position when the white noise is included can be up to twice its initial value.

The evaluation of the DR algorithm uses the dummy data presented, and although
this tracking method seems straightforward, it can be seen that when real data are used
there will be additional sources of error. These errors arise from uncertainty in the estimate
of the gravitational component and offsets and offset drifts inherent in the sensor itself.
The presence of these offsets, changes in offsets with time or temperature and noise in the
acceleration data can lead to significant errors in the calculation of the velocity and position
of the upper limb segments. To demonstrate the use of the algorithm, Nine Hole Peg Test
(NHPT) [44] is selected as it is a standard rehabilitation assessment test. The experiment
setting of NHPT is illustrated in Figure 3. During the NHPT, the subjects are asked to pick
up the pegs from the container one at a time using either their left or right hand and then
put the pegs into the holes in any order. To simplify the experiment, the participant is asked
to place pegs following the sequence from 1 to 9 as shown in Figure 3. Only one inertial
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sensor is attached to the hand of the participant by using a Velfoam strapping and is used
to track the hand movement. The coordinate system used in the experiment is the global
reference frame and the origin of the coordinate selected is the shoulder of the subject. The
double integration of any error in the estimation of the offset in the acceleration data can,
after a few seconds, result in errors in the calculation of position which are several hundred
percent greater than the actual translation of that point as shown in Figure 4—an example
of hand position tracking during the NHPT. As can be seen, the errors present when using
the DR algorithm can be several orders of magnitude greater than the signals of interest.
Even after all the offsets have been removed, a low-frequency error (that can be classified
into instrument noise and manipulation errors [45]) may still be present.
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Figure 2. Illustration DR algorithm using dummy data.
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Figure 4. Errors in position tracking using DR algorithm for NHPT.

This is because the integration or summing of the acceleration signal to calculate
velocity will integrate/sum any error in the estimate of offset. This error will increase in
direct proportion to the measurement time and sample rate. If the DC offset is not removed
from acceleration output or velocity calculation, the effect of errors in the estimation of
offset of the position will follow a square law relationship with time and sample rate.

Equation (4) shows how the error in the estimate of velocity is proportional to the
acceleration error, offsets and time of measurement and the error in the estimate of the
position is proportional to the square of the elapsed time.

alinear(t) = alinear−ideal(t) + w + θ(t)
vlinear(t) = vlinear−ideal(t) + w · dt +

∫
θ(t)

plinear(t) = plinear−ideal(t) + 1/2 · w · (dt)2 + θ(t)
(4)

In which, the alinear, vlinear and plinear are the estimated linear acceleration, velocity and
position, respectively. dt is the elapsed time. The alinear−ideal , vlinear−ideal and plinear−ideal
are the ideal acceleration, velocity and position without noise. The measured acceleration
alinear is composed of the ideal acceleration alinear−ideal , an offset (constant value) w from
the sensor and an error from the computation of the orientation θ(t). The offset w will
cause an error that is proportional to the square of the measurement time. The occurrence
of θ(t) is the error in estimating the gravity component that also has to be removed from
the total acceleration in order to obtain the linear acceleration. The θ(t) may be the reason
that causes a very low-frequency component in the computed position plinear.

Therefore, it is challenging to estimate translation based on acceleration measurement
alone. Without any correction strategy, the position estimation is only expected to be
acceptable for upper limb measurements over a very short time—one or two seconds. For
example, a 0.01 m/s2 error in acceleration will result in an error in the position of 9 m after
30 s. An error in the estimate of acceleration of 0.1% of the maximum acceleration and will
result in a 10% offset error in position after 10 s. As has been seen the errors present when
using DR algorithm can be several orders of magnitude greater than the signals of interest,
and even after all the DC components have been removed, a low-frequency error (can be
classified into instrument noise and manipulation errors [45]) may still be present, as seen
in the NHPT data of Figure 5.
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Figure 5. Position tracking before and after DC offset removal.

There are different noises generated using IMU as it consists of different sensors
including accelerometer, gyroscope and magnetometer. For accelerometer, the main noise is
DC noise. In this study apart from remove DC offset from the accelerometer, random walk
errors appear after double integration, and they still need to be addressed. These errors
are due to the presence of sensor offsets and offset drift. As can be seen in Figures 4 and 5,
after removing the DC offset, there are still random walk errors from the double integration.
The method gives on a possible solution to track the position using a single sensor.

Initial evaluation [46] and evidence from the literature [47] indicate that position
estimation is only expected to be acceptable (1% of the total measurement distance) for
measurements over a very short time—one or two seconds. Therefore, error correction
methods are needed if a single inertial sensor and the DR algorithm are to be used for
limb segment position tracking. The dead reckoning position error correction methods
ZUPT [48], high-pass filter and wavelet analysis [49], will now be presented.

3. Methods
3.1. ZUPT

ZUPT is a standard drift correction method which was widely used in inertial naviga-
tion systems [50]. This method is based on the assumption that there are times when the
segment velocity is known to be zero. For this research, the upper limb evaluation tests for
example, NHPT, bean bag test [16] should meet this requirement. At these points in time
when the velocity is known to be zero, then the estimated velocity of the segment is reset to
zero thus minimising any errors in the velocity estimate accumulated during the previous
time period. If it also assumed that the drift in velocity between the rest points is caused by
the integration of a constant offset then this drift can be approximated to a straight line of
constant slope and a correction for that drift can also be made, thus further reducing the
error introduced by the offsets and their changes between the zero velocity points. Doing
this should then also reduce the error introduced when integrating the velocity to estimate
position. Although the occurrence of zero velocity can be identified by manual examination
of the waveforms an automatic method will be required for a practical system. Therefore,
in order to automatically estimate the occurrence of zero velocity the double threshold
method [51] is used. The short-time signal energy and zero crossing rates (ZCR) (the rate of
the signal sign changes) are used to estimate the two thresholds for this double-threshold
method. Since gyro data are sensitive to changes in orientation when compared with the
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accelerometer and magnetometer data, it is chosen as the signal s = gyroy in the equation
to obtain the zero velocity intervals. The short-time energy is calculated by:

Ei =
N

∑
n=1

si
2(n)

(
si = gyroyi

)
(5)

Additionally, the ZCR is calculated by:

Zi =
N

∑
n=1
|sgn[si(n)]− sgn[si(n− 1)]| (6)

where sgn[si(n)] =
{

1, si(n) ≥ 0
1, si(n) < 0

.

After short-time energy computation, the higher threshold T1 and lower threshold
T2 in short-time energy are selected to detect the start and end point to a movement (See
Figure 4). The low threshold T2 should be small enough to include every possible velocity
greater than zero due to movement and the high threshold should be large enough to
exclude every possible velocity greater than zero due to noise. These values for T1 and T2
are based on trial and error learning and are chosen to make sure that displacements due
to motion can be detected while at the same rejecting any displacements due to noise. T3 in
the ZCR is used as another threshold to detect the zero points, which provides additional
information for zero velocity interval detection. It is required in order to ensure accuracy
in the detection of the zero velocity intervals. Additionally, these thresholds are also used
in detecting the start and end point of the individual elements of the segment movement.
Thus, the time taken to perform actions such as the placing of individual pegs in the
nine-hole peg test and the overall time to carry out a test can be automatically measured.

When applying the signal to Equations (5) and (6), the energy and ZCR are calculated.
An example of the application of this process is shown in Figure 6 for the first two peg
placements in the nine-hole peg test. The details of the process of double threshold method
are illustrated in Figure 7. The red line and green line in Figure 8 represent the start and
end of each peg insertion movement, respectively. Since one of the features is that the
peaks in the velocity signal correspond to the peaks in the gyro energy, the start and end
points in the velocity signal can be figured out. This algorithm will start from the first
frame (according to the short-term energy), the comparison will be made between the low
threshold value T2 and the short time energy. If the first point N1 exceeds the value T2
but the next point after N1 does not exceed value T2, this point cannot be treated as start
point. If point N1 exceeds the high threshold value T1, N1 is the first start point. The
same method is applied for detecting the end-point N2 as well. Now that the zero velocity
events can be detected, the ZUPT algorithms can be applied to the measurements from the
nine-hole peg test where there will be zero velocity at the point of peg pick up.
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3.2. Wavelet Analysis

The basis of the wavelet analysis is to decompose a signal (a time-series) into different
scale components using wavelets. Fourier analysis deals with the reconstruction of the sig-
nal by sinusoidal components whereas the wavelet analysis does this in terms of wavelets.
Wavelet analysis can decompose a signal into the optimal approximation (low-frequency
part) and high-frequency part with detailed information [49]. Multiple-level decomposition
is used. After decomposition, reconstruction of the signal is the process of assembling all
the frequency components except for the low-frequency part.

The wavelet transforms the signal s(t) with respect to the wavelet function ψ(t) as
defined in Equation (7):

S(b, a) =
1√
a

∫ ∞

−∞
ψ′
(

t− b
a

)
s(t)dt (7)

where the wavelet function is: ψa,b(t) = 1√
a ψ
(

t−b
a

)
.

The original signal s(t) can be reconstructed by the following Equation (8).

s(t) =
1
cψ

∫ ∞

−∞

∫ ∞

−∞
S(b, a)ψa,b(t)

dadb
a2 (8)

The signal is initially decomposed into two parts—approximation coefficient (A1) and
detail coefficient (D1) and then A1 is decomposed into approximation coefficient (A2) and
detail coefficient (D2) at the second decomposition level. A wavelet decomposition tree is
presented in Figure 9.

The MATLAB Wavelet toolbox is used to present in a more direct way as shown in
Figure 10. This example is the wavelet decomposition of the position tracking data after
integrating the acceleration. The wavelet ‘db6’ is selected because its shape is similar to
the analysed signal. This given example has chosen wavelet ‘db6’, and the decomposition
level chosen is 6. Another example chooses wavelet ‘db6’, and the decomposition level
chosen is 9. In this case, the wavelet type (‘db6’) and decomposition level (‘9’) are based on
experience and a trial-and-error process.
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3.3. High-Pass (HP) Filter

High pass filtering has been shown to be effective in digitally removing the DC com-
ponent offset. The random walk presented in the drift is very similar to a DC component
offset. Therefore, an alternative technique of removing offsets and low frequency changes
in offset is to apply a HP filter. Figure 11 shows that the low frequency fluctuations after
double integration are about 0.05 Hz.
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Figure 11. Low frequency offset variation after double integration (red plot is the low frequency 
trend). (a) Experiment Test 1. (b) Experiment Test 2. (c) Experiment Test 3. (d) Experiment Test 4. 
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Figure 11. Low frequency offset variation after double integration (red plot is the low frequency
trend). (a) Experiment Test 1. (b) Experiment Test 2. (c) Experiment Test 3. (d) Experiment Test 4.

The source of this error may come from the orientation estimation algorithm since
the orientation has been used in calculating the linear acceleration in order to remove
the component due to gravity. The orientation estimation algorithm uses all acceleration,
gyroscope, magnetometer outputs based on sensor fusion. Considering the characteristics
of the variations in offset, MATLAB (Filter Designer) was used to create an HP filter with
a cut-off frequency of 0.3 Hz to provide an initial evaluation of the effect of applying the
filter.
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4. Results and Discussion
4.1. Results Using ZUPT

In order to investigate the feasibility of using only a single sensor for tracking hand
position, the DR method is applied to the NHPT with data from volunteers. As discussed
in the previous sections, the presence of errors in the estimate of offsets in the acceleration
and the effect of the presence of noise must be minimised. One methodology is to apply
the ZUPT algorithm and an offset correction whenever the velocity is known to be zero. In
the NHPT there will be a small pause—zero velocity, at peg pick up and at peg insertion
into the hole. The velocity and position plot before and after the ZUPT correction for a
healthy volunteer’s movement in the z-direction (horizontal direction with respect to the
test board) in the trunk reference frame is shown in Figure 12a,b, respectively. Additionally,
the corrected position tracking result is presented in Figure 12c.
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Figure 12. Comparison of hand position tracking by using DR (with and without ZUPT correction).
(a) Velocity integrated from acceleration before and after ZUPT. (b) Position tracking before and after
ZUPT. (c) Position tracking after ZUPT.

As can be seen in Figure 12, ZUPT has set position to zero during the detected zero
velocity intervals of peg pick-up. This means that any movement during the estimated
zero intervals has been ignored and will add an error to the estimate of position. It was
observed that one current disadvantage of applying the ZUPT is that there is a loss of
data which made it necessary to scale the ZUPT position data to that obtained from the
kinematic model for presentation in Figure 12. One cause of this scale factor is thought to
be the data loss in the interval where the velocity is assumed to be zero.

When the DR algorithm is used, the application of the ‘ZUPT’ correction can reduce
errors introduced through the double integration of acceleration from several meters to
0.8% of the total movement distance. Additionally, it should be noted that the algorithm of
the double threshold method can also be used in the automatic measurement of the timing
of segment movements such as individual peg pick-up and placement. This will provide
the clinician with additional data for the assessment of patient performance.

4.2. Results Using Wavelet Analysis

The correlation coefficient between the corrected data using the wavelet correction
and the referenced kinematic modelling result is used as the criteria of evaluating the
effectiveness of the chosen wavelet decomposition. The results indicate that wavelet ‘db6’
decomposed in level 9 (correlation coefficient is 0.88) is better than that of the same wavelet
decomposed in level 6 (correlation coefficient is 0.36). Therefore, in the following drift
correction analysis, wavelet ‘db6’ is chosen and the position signal has been de-composed
in level 9. Components D1, D2, D3, D4, D5, D6 and D7 have been used to reconstruct
the position. Components D8, D9 and A9 are used to construct the drift trend. The
original position signal plot, drift trend estimated by the wavelet, corrected signal after
using wavelet as well as kinematic model position estimation result have been shown in
Figure 13.
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Figure 13. Drift correction for position using wavelet analysis. (a) Experiment Test 1. (b) Experiment 
Test 2. (c) Experiment Test 3. (d) Experiment Test 4.The result after applying the correction using 
wavelet analysis has been compared with the kinematic modelling tracking result which has been 
treated as a more accurate position tracking method (See Figure 14). 

Figure 13. Drift correction for position using wavelet analysis. (a) Experiment Test 1. (b) Experiment
Test 2. (c) Experiment Test 3. (d) Experiment Test 4.The result after applying the correction using
wavelet analysis has been compared with the kinematic modelling tracking result which has been
treated as a more accurate position tracking method (See Figure 14).
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Figure 14. Drift removed by wavelet compared with the kinematic model.
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In the above Figure 14, wavelet ‘db6’ has been used in the plot and has been decom-
posed in level 9. Though the drift trend has been greatly reduced, the error in each peg
movement is still significant, e.g., the maximum error is about 2 cm, which may indicate
that this method may not be acceptable for low-frequency error correction especially for
this NHPT.

4.3. Results Using HP Filter

An alternative technique of removing offsets and low-frequency changes in offset
is to apply a HP filter. Figure 15 shows that the low-frequency fluctuations after double
integration are about 0.05 Hz.
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The source of this error may come from the orientation estimation algorithm since the
orientation has been used in calculating the linear acceleration in order to remove gravity.
The orientation estimation algorithm uses all acceleration, gyroscope, and magnetometer
outputs based on sensor fusion. Considering the characteristics of the variations in offset,
MATLAB (Filter Designer) was used to create a HP filter with a cut-off frequency of 0.3 Hz
to provide an initial evaluation of the effect of applying the filter.

The result after applying the correction has also been compared with the Kinematic
modelling tracking result which is assumed to be the most accurate position-tracking
method (Figure 15). The trend has been marked by the red plot. The blue plot is the original
plot and the black plot is corrected after the HP filter.
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Although the position tracking after using the HP filter correction seems to have
improved, it still deviates from the position computation by the kinematic model, especially
at the beginning and the end of the plot (Figure 16).
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4.4. Comparisons between Different Drifts Correction Methods

A comparison of the different drift correction methods is shown in Figure 17. The
spearman correlation coefficient has been calculated in comparing the different drifts
correction method, in which the plots after different correction methods are compared with
the kinematic modelling. A perfect correlation is close to 1 or −1. Table 1 below shows the
correlation coefficient. Besides, by using the kinematic modelling result as the reference
result, the mean and standard deviation of the error of using different correction techniques
have been presented in Table 2.
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Table 2. Mean and standard deviation of error after different drifts correction methods.

(cm) ZUPT HP Wavelet

Mean 0.48 0.49 0.50
STD 0.86 1.43 1.65

From the results of these two tables, ZUPT, as might be expected from a visual inspec-
tion of the plots, gives the best correction method. Therefore, the ZUPT is recommended as
the method to correct the integration error when there are regular zero velocity intervals.
HP can also be used in cases where there are no zero intervals available.

The experiments performed in this work are only on the healthy volunteer. ZUPT
showed the best performance as there are clear zero velocities during the phases in NHPT
for a healthy subject. For patients who are under neurological rehabilitation, it is still
possible to use ZUPT but different thresholds will need to be chosen on the consideration
that the patients may have jerky movements or use wrist and forearm to compensate for
the hand movement. Furthermore, HP and Wavelet methods are not affected by the zero
velocity requirements and can still be used to correct the drifts from the dead reckoning
method. Therefore, in future work, we would like to explore the feasibility of applying
ZUPT to neurological patients.

5. Conclusions

This paper investigates the possibility of using only one inertial sensor to monitor
upper limb motion by utilising the dead reckoning method. The effect of errors in the
estimate of offsets, drifts in those offsets and the presence of white noise present significant
challenges to position estimation for measurement periods of more than a few seconds,
e.g., 0.01 m/s2 error in the estimate of acceleration can result in a 9 m error in position
estimate after 30 s. Therefore, three drift correction methods were assessed. These are
ZUPT, HP filter, and wavelet analysis. Initial analysis indicates that when there are regular
zero velocity intervals present the ZUPT is the most effective drift correction method. The
use of an HP is recommended for those measurement regimes where readily identifiable
zero velocity intervals are not present in the data.

An additional benefit of the ZUPT is that the zero-interval detection method—the
double threshold method can also be used in the automatic measurement of timing intervals
for specific segment movements during an assessment. This will provide the clinician with
additional information not available through observation and the use of a stopwatch.
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