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Abstract

It is now generally true that the computer is widely 

used for analysing data from comparative experiments but 

relatively little attention has been paid to how the computer 

can assist at the design stage of an experiment. This thesis 

attempts to remedy this situation.

In Chapter 1 an attempt is made to formalize the 

conversation that takes place between an experimenter and a 

statistical consultant with a view to transferring the 

consultant's skills to the computer. To determine the 

difficulties involved experiments to compare two treatment 

means are considered.

Where there are more than two treatments it is essential 

to determine which treatment comparisons are important. 

Existing computerised algorithms for constructing suitable 

experimental designs deal solely with the case where there is 

an equal interest in all treatment comparisons and where all 

blocks are of the same size. Chapter 2 describes an 

algorithm without these limitations. It searches for 

treatment interchanges that improve a given design.

In Chapter 3 this algorithm is extended to cover row- 

and-column designs. A further algorithm is required to 

combine component designs.

One disadvantage of these algorithms is the invariance 

of the treatment replications once chosen. In Chapter 4 

completely different algorithms without this disadvantage 

are developed. They are based on an exchange procedure and

an interchange procedure.
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1
Introduction

Computers, nowadays, provide experimenters and 

statisticians with valuable assistance in the analysis of data 

from designed experiments. It is natural therefore, to enquire 

if the computer is able to assist at the design stage of an 

experiment. The work described in this thesis was begun in 

order to provide an answer to this question.

When executing a computer program it is usual to do it 

either interactively or in batch mode. With the former, 

information is fed into the computer and received back from it 

via a terminal device of some sort, e.g. a teletype or visual 

display unit. With the latter, cards or their equivalent are 

fed in and output is written to a line printer or equivalent 

medium. The difference betxsreen these two forms of use is that 

when executing interactively it is possible to get an immediate 

response from the computer. In batch mode there is usually 

some delay in the output getting printed as the computer jobs 

are executed sequentially.

Using the computer interactively means that it is possible 

to write a program that can carry out a dialogue with the user. 

That is, information can be requested by the program, acted 

upon and results printed or further information requested. The 

ability to program in this conversational mode suggests that 

a program could be written to provide experimenters with useful 

statistical advice on the design of their experiment. The 

computer would output questions on various aspects of the design 

and then, if possible, advise the experimenter on the best 

course of action.

Interactive computer programs for data analysis are, of 

course, available [the program GLIM described by Baker and



Nelder (1978), for example] but there does not appear to be 

a program that provides advice on the design of an experiment. 

To discover why this might be, an attempt was made to write 

such a program. The results of doing this are described in 

Chapter 1. There, to illustrate seme of the difficulties 

involved, an experiment to compare two treatment means is 

considered in detail. Also noted are those aspects of 

designing an experiment that cannot be incorporated into a 

computer program but require the advice of the experienced 

statistical consultant. Eventually, either during the 

conversation with a statistical consultant or with an 

interactive computer program, the point will be reached when 

it is necessary to provide the experimenter with a design 

that is ideally suited to his needs. There will only be a 

limited amount of experimental material available and this 

may have to be arranged in blocks or rows and columns to 

eliminate systematic variation from the treatment comparisons. 

Further, the experimenter may only be interested in certain 

treatment comparisons and may not have an equal interest in 

each one. The human consultant may find that a design, ideally 

suited to the experimenter's needs, is not available in the 

literature and may have to devise one somehow. If the 

interactive computer program described above is to provide 

designs optimal for the experimenter’s needs then computerised 

algorithms for constructing such designs are required. The 

rest of this thesis is therefore concerned with developing 

computerised algorithms that search for designs that are 

optimal for the experimenter's requirements. Such algorithms 

are another way the computer can assist at the design stage 

of an experiment.

In Chapter 2 an algorithm that searches for optimal
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block designs is described. This algorithm is based on 

interchanging treatments between blocks in an attempt to 

improve an appropriate optimality criterion. Two forms of 

the criterion are compared and the performance of the algorithm 

is evaluated.

In Chapter 3 the algorithm described in Chapter 2 is 

modified to search for the component designs that make up an 

optimal row-and-column design. Again an appropriate optimality 

criterion is used. The algorithm only provides the component 

designs and a second algorithm is required to arrange them as 

a row-and-column design. Three alternative versions of this 

algorithm are proposed and compared. Again the performance of 

the optimality algorithm is evaluated.

Some of the disadvantages of the optimality algorithms 

described in Chapters 2 and 3 are overcome in Chapter 4 by 

using a different approach in the search for optimal designs.

An exchange procedure and an interchange procedure are 

developed which can be used to search for optimal block 

designs and optimal row-and-column designs. The performance 

of these procedures are evaluated and compared with that of 

the algorithms described in the previous chapters.

-  3 -
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Chapter 1. The problem of writing an interactive computer 

program that gives advice on the design of an 

experiment.

1.1 Introduction

In recent years the computer has played an important 

role in the analysis of results from comparative experiments. 

The data iron large experiments can be analysed quickly and 

complicated experimental designs can now be dealt with as a 

matter of routine. It is reasonable therefore for the 

experimenter to expect the computer also to provide assistance 

at the design stage of an experiment. Statistically informed 

experimenters can of course use a number of computerised 

algorithms to construct designs that have certain optimal 

properties but there does not appear to be a computer program 

that can be used by the layman. There is no program that can 

be used to help the experimenter decide on a suitable 

experimental design. Expressed somewhat differently, there 

is no computer program that attempts to replace the 

conversation that takes place between the experimenter and 

the statistical consultant.

In this chapter the problems of writing such a program 

are considered. The role of the statistical consultant is 

discussed and the views of a number of statisticians on the 

problems of consultancy are noted. Those aspects of 

consultancy that can be usefully transferred to the computer 

are discussed with a view to seeing how much can be undertaken 

by the computer.

An attempt is made to write a program that will provide 

guidance on the design of an experiment for comparing two 

treatment means. Following this the additional difficulties



that arise when more than two treatments are to be compared 

are noted.

1.2 The nature of the interactive computer program

The program outputs questions onto a computer terminal 

and invites the user to give suitable replies. This question 

and answer procedure continues until sufficient information 

has been accumulated for an appropriate experimental design to 

be suggested. The output from the program consists of the 

type of design and the number of experimental units to use and 

a randomised plan of the design.

1.3 The computer as a statistical consultant

If the experimenter is going to be guided by a computer 

program on how to design his experiment he must be able to 

describe the experimental conditions and the aim of the 

experiment to the computer. Consequently, if the advice 

given by the computer is to be useful the computer must in 

some way perform the functions of the statistical consultant 

whose role therefore needs to be considered. Those aspects 

that can be usefully transferred to the computer can then 

be identified and perhaps more importantly those features that 

cannot be transferred can be noted. In the following the 

terms client and experimenter will be used interchangeably 

and so with the terms consultant and statistician.

Consider first some definitions of the statistical 

consultant.

Eisenhart (1947): 'The function of a statistical consultant 

in a research organization is to furnish advice and guidance 

in the collection and use of data to provide quantitative 

foundations for decisions."

Kastenbaum (1969): 'The resident bookie ... [who] can quote
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odds on most quantitative studies before they are performed 

... he can tell how many observations are required to detect 

differences of specific magnitude for pre-assigned levels of 

risk."

C.P. Cox (1968): 'The general aim of statistical consulting 

[is] the application of statistical principles and methods 

to the furtherance of research."

Cameron (1969): quotes Eisenhart as defining the role of the 

statistical consultant "to use the Mathematical Theory of 

Probability to determine what conclusions can be drawn and 

with what confidence, and in determining the amount and type 

of data needed as evidence."

It seems therefore that the computer could perform 

some of the functions mentioned above. The computer can 

perform complicated mathematical calculations in seconds and 

so is ideal for determining levels of risk, numbers of 

observations needed, analysing data and any calculations 

that can be programmed in advance. The computer then is 

likely to bear most similarity to Kastenbaum's definition of 

a consultant, rather than Cox's or Eisenhart's. The 

difficult problem for the computer is that of extracting the 

information it needs from the experimenter. This is 

difficult even for the human consultant:

Daniel (1969): "Every successful client-consultant relation 

seems to ... require three client conditions and one 

consultant condition. There must be a good problem, a ready 

client and a favourable organizational situation. The 

consultant must be well prepared."

Hyams (1971): "The Ideal Consultation is not a consultation.

It is a working together, a voluntary meeting of minds and the 

union of energies whose prime aim is to seek 'truth'."

-  6 -



7
C.P. Cox (1968): "... consultancy is a craft an art scarcely 

a science"

It is clear therefore that the attitudes and personalities 

of the client and consultant are very important if their 

collaboration is to be successful. The computer program if it 

is to be wholly general and able to satisfy all comers must be 

prepared to advise the unready or difficult client as well as 

the well prepared. The program must at the same time possess 

as many qualities of the 'good' consultant as possible.

Hyams (1971) has discussed some negative stereotypes of 

both client and consultant and whilst he admits these 

stereotypes are extreme they do help focus attention on the 

bad features that can enter into any consultation.

Consider the negative stereotypes of the consultant:

(1) The Model Builder fits any and every data set to a model 

he is presently interested in or knows something about.

(2) The Hunter will subject every data set to an exhaustive 

and extrañe computer analysis (even for a relatively simple 

problem).

(3) The Gong who starts every conference by drawing a bell 

shaped curve.

(4) The Traditionalist who is convinced nothing really new has 

happened in statistics since R.A. Fisher ... He views computers 

as the devil's work.

(5) The Randomophiliac who believes it doesn't matter what 

else you do as long as you have randomised.

(6) The Quantophiliac who believes that it doesn't matter if 

you observe what you want as long as you get a hard measurement.

(7) The More Data Yeller.

(8) The Nit Picker will always focus his attention on the

inconsequential but debatable.



In fact if not carefully programmed it would be very 

easy for the computer to suffer from all the above faults.

Some analogous faults the computer could suffer from are 

(la) The Model Builder will suggest one of the designs 

programmed into its memory no matter what.

(2a) The Hunter will ask an enormous amount of questions 

without checking whether they are relevant to the problem 

posed or not.

(3a) The Gong assumes the data that are to be collected 

will always be of a particular form.

(4a) The Traditionalist is likely to be outdated and less 

effective unless the program is regularly updated to include 

new developments in the subject of the design of experiments. 

(5a) The Randomophiliac does not persevere and determine the 

real nature of the client's problem.

(6a) The Quantophiliac will suggest any design as long as 

it is a 'respectable' one without considering if it is wholly 

appropriate.

(7a) The More Data Yeller will suggest the most obvious and 

probably the largest design without determining if the client 

is prepared to sacrifice seme of the less important points 

he \vas hoping to explore in order to reduce the size of the 

design. For example, confounding certain unimportant 

treatment comparisons in order to obtain smaller blocks.

(8a) The Nit Picker will ask an endless list of questions on 

a relatively unimportant aspect of the design structure. This 

stereotype is perhaps indistinguishable from (2a) above.

The computer program should lack all the above faults 

whilst possessing as many features of the good consultant as 

possible. Before discussing these good features it is useful 

first to examine seme negative stereotypes of the client.
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Hyams (1971) has given the following list:

(a) The Probabilist' s only interest is in a significant 

'p' value.

(b) The Numbers Collector has performed ... N,ISi experiments. 

Settled in his chair he has the greatest difficulty framing 

his questions.

(c) The Sporadic Leech is the casual aquaintance who makes it 

clear that the consultant's expertise is nice but unnecessary.

(d) The Amateur Statistician who calls the type of analysis 

to apply.

(e) The Long Distance Runner who has no time for the 

consultant. He asks you to find something to say about his 

data, anything!

Before discussing these it is useful to note Sprent's 

(1970) list of client types:

(i) The timid apologist who has little statistical 

knowledge and expresses reluctance at wasting the consultant's 

time.

(ii) Significant difference and least significant difference 

experts who think all numerical results can be made respectable 

by quoting significant differences and significance levels.

(iii) The one technique amateur statistician.

(iv) The believer in sacred texts or computers.

(v) The experimenter with addled statistical ideas.

(vi) The expert data handler who is not a statistician.

(vii) The statistically informed experimenter.

Pridmore (1970) added to Sprent's list the experimenter 

who has unlimited faith in statistics. He suggests that such 

questions as "How big a difference do you want to detect?" 

are liable to be met by the answer "Surely that is a statistical

matter.
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One bad characteristic that the program is likely to 

possess is that it might get used frequently by Sprent's 

types (iii) and (iv) and Hyam's type (d). The believer in 

computers is unlikely to question the advice given by the 

program, and not appreciate that it will only give reasonable 

advice if it can obtain the full details of the client's 

problem. He may be tempted to make his problem fit the 

program rather than vice-versa. The program could also end 

up as the amateur statistician's one technique for solving 

each and every problem, even though some problems are really 

outside the program's scope. This type of client is likely 

to find a way round some of the traps laid by the program 

to stop it getting misused and misapplied. Sprent's type 

(v) could misinterpret seme of the questions or advice put 

out by the program. He may be tempted to reject offers by 

the program to give additional help with some questions and 

so eventually end up receiving wrong advice having misunderstood 

some of the questions. Sprent's type (ii) and Hyam's type (a) 

could abuse the program by finding ways around some of the 

traps set to stop the program being misused. They are only 

interested in getting a design that has been 'suggested by the 

computer'. The analogue of Hyam's type (b) is the client who 

has spent many hours studying the details of his proposed 

experiment without seriously considering what fundamental 

problems he hopes the experiment will solve. He may find he 

cannot answer the questions posed by the computer program.

The computer is programmed in advance and so will not be able 

to 'talk around the problem' in an attempt to elucidate from 

the client his true aims. Sprent's type (i) is likely to find 

the computer program a convenient way of avoiding contact with 

the statistician. He probably won't mind wasting his ora time
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sitting at a computer terminal as much as he minds wasting 

the statistician’s. However, if the client is timid and 

apologetic he may not be prepared to question the computer's 

advice and will accept it blindly. Sprent’s types (vi) and 

(vii) are likely to use the program intellegently, if they 

need to use it at all. They will soon realise if the program 

is designed to help solve their particular problem or not.

Hyam's types (c) and (e) are not likely to have the inclination 

to discuss their problems with a computer anyway and so we 

can probably ignore them in this discussion. Pridmore's type 

of client, like some of the others discussed so far, is likely 

to accept all the computer tells him without question.

The program if it is to serve as a consultant to a wide 

variety of users must be able to determine which type of 

client is using the program. This is likely to be difficult 

and even if it were possible would probably require a very 

large computer program. The two types of client that can most 

easily be prepared for in advance are the clients with no 

statistical expertise whatsoever and the statistically 

informed experimenters. The former it can be assumed requires 

help with everything whilst the latter is likely to require no 

help at all. Therefore, when the form of a particular type 

of program is discussed in detail below it will be assumed it 

is a program for the layman.

However, before moving on to discuss the positive features 

of consultancy attention should be drawn to two sorts of 

relationship that can take place between a client and a 

consultant. Boen (1972), for example, has mentioned the 

problems that can arise when the client insists on a parent-to- 

child relationship, i.e. when the client insists on being the 

boss and deciding what will be done. Boen lias also mentioned
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the child-to-parent relationship, i.e. when the client expects 

the consultant to make all the decisions even though some of 

them relate to the client's own subject area. If a parent- 

to-child relationship exists then the client is likely to 

find ways of forcing the computer program to follow the route 

he thinks it should follow. If a child-to-parent relationship 

exists then the client is likely to accept the computer's 

advice without question and not be prepared to consider that 

the computer could make a mistake.

So far attention has concentrated only on the negative 

aspects of consultancy. It is of course important to identify 

what makes a good consultant. However, before doing this it 

should be noted that there are many differences between 

statistical consultants. In fact Healy (1975) has likened 

the population of statisticians to "a single linkage cluster 

in which a good deal of chaining has taken place. Any two 

statisticians can be related by a series of quite close 

similarity links passing through other statisticians; but this 

is quite consistent with many pairs being formed by people 

having relatively little in common." Therefore, when trying 

to identify what characteristics a good consultant will 

possess one is really trying to identify the main things they 

have in common. Seme characteristics possessed by the consultant 

in an agricultural research station, for example, may not be 

entirely useful to the consultant in an industrial laboratory.

A number of articles in the literature discuss the 

training the new statistical consultant should be given before 

he embarks on his career. For example, see C.P. Cox (1968),

Boen (1972), Watts (1970), Schucany (1972) and Greenfield (1979). 

One of the important things they stress is the ability to 

communicate with the client. Other writers have made the same
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point:

Tarter and Berger (1972): "Clarity of communication is also 

the hallmark of the consultation process."

Perry (1970): "A major problem of consultancy is communication." 

Marquardt (1979): "learn the client's subject matter and lingo."

Obviously good communication means that both client and 

consultant should understand each others language, and a 

number of writers have mentioned this. For example, C.P. Cox 

(1968) suggests that consultancy problems in biology would be 

greatly reduced if the experimenter were fully trained in 

both the biological and statistical disciplines. Finney (1956) 

has said that the experimenter "and his statistical colleagues 

should have sufficient understanding of one another's 

disciplines to avoid the errors that can result from imperfect 

ccmmunication of ideas."

It is therefore essential that the computer be programmed 

so that it outputs questions and advice that can be easily 

understood by the client. Communication between colleagues 

in the same profession or business is often speeded up by 

using technical terms or jargon. To the outsider such terms 

are meaningless and seem to make communication more difficult. 

However to those familiar with it jargon can be a short-hand 

way of expressing lengthy phrases or complex ideas. If the 

computer program is used say, in a particular agricultural 

research station or industrial laboratory the experimenters 

there will probably find the program more convenient to use 

if it uses their own particular jargon rather than expressing 

things in generalities. For example, the agriculturalist will 

probably refer to his experimental units as "plots", the 

engineer to "units" and the chemist to "determinations".

Some other characteristics that a good consultant should
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possess are the following:

Daniel (1969): "A good consultant has a good scientific 

background, enjoys cooperative enterprises, a few years 

experience and some statistical training."

C.P. Cox (1968): "ability to work in a team, understanding of 

inductive scientific method."

The computer will only possess those features that can be 

programmed in advance and certainly a scientific background 

and an understanding of inductive scientific method are 

probably going to be difficult to program. The computer is 

unlikely to 'enjoy' cooperative enterprises but will possess 

a good deal of "statistical training" in the form of numerous 

computer subroutines for performing various statistical 

calculations. The computer can also learn from experience by 

keeping records of all previous encounters with clients. For 

example, the most frequently suggested design could be noted. 

The transformation of the data that is usually required after 

the experiment could be noted. Sizes of variances or 

coefficients of variation could be stored. Whether the 

experimental material was usually divided into blocks or rows 

and columns could be recorded.

Therefore, to a limited extent some of the good features 

of a consultant can be programmed and clients should be able 

to receive useful advice. However, being programmed in 

advance the computer will be less likely to have the ability 

to "talk around the problem" in order to get the client to 

explain fully all the possible complications of his problem.

What is meant by talking around the problem can be best 

explained by quoting Salsburg (1973) who says:

"I spend my time asking stupid questions. I know when 

the experiment is finished I will have to analyse the data...
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I must protect myself from impending chaos.

... I ask such questions as whether it is possible to 

observe something every fifteen minutes ... or whether the 

thing they've given a name to can in fact be measured at all.

I ask them what can go wrong ... I think of the in between 

outcomes, the two correlated variables that happen to go 

different ways, the test tube someone is bound to drop, the 

patient who revives from death's door on placebo. Practical 

experience has taught me that almost every observable 

outcome is in between."

Being programmed in advance the computer will also lack 

the versatility of the consultant. A quality Greenfield (1979), 

for example, stressed was important.

It should also be noted from the above remarks that the 

computer will have an obligation to analyse the client's data 

or be able to suggest where advice on the analysis can be 

obtained.

What is apparent from all the above remarks is that a 

computer program is only likely to be able to give sound 

advice on a limited number of problems. Safeguards must be 

introduced so that the program and the client can quickly 

realize if the problem to be solved is within the computer's 

capability. Therefore it is required that

(1) the problem be clearly defined so that the computer 

has no difficulty deciding if it can solve it or not.

(2) the language used by the program and by the 

experimenter must be understood by both.

Such requirements are likely to be satisfied for problems 

which are

(a) fairly commonplace so far as the client's particular 

organization is concerned
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(b) relatively straightforward so that an unambiguous 

solution is often possible.

Of course, if the problem was too simple there would be no need 

for a computer. A handbook of prepared solutions is all that 

would be required. The sort of problem best suited to the 

computer is one for which there are quite a few possible answers 

depending on the client's particular requirements and where 

lengthy calculations are necessary. Such a problem is considered 

below.

However, before going on to consider this problem in detail 

it must be borne in mind that the computer is much more likely 

than the human consultant to make, in the words of Kimball (1957), 

an "error of the third kind". That is, where "the right answer 

is given to the wrong problem." This happens when due to a 

breakdown in communications between the client and the 

consultant the problem that appears to require a solution is not 

the one the client brought to the consultant. Such errors can be 

avoided Kimball says "with proper preparation, sufficient 

patience and persistent questioning of the experimenter." It 

is the computer's inability to talk around the problem which is 

likely to increase its error rate. It is therefore essential 

to try and reduce such errors by including in the program 

adequate checks that the problem presented by the client is 

able to be solved by the computer and that the client has not 

unknowingly perhaps been forced to modify his problem to fit in 

with the program's pre-set repertoire of solutions. Sprent's 

(1970) "timid apologist" and experimenters with "addled statistical 

ideas" are likely to fall into the trap of believing the 

computer knows best as is Sprent's "believer in computers".

The "expert data handler" and the "statistically informed 

experimenter" are perhaps less likely to be led astray.
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It is clear that the program must by printing out a 

suitable message make it obvious what type of problem it is 

able to advise on. If the computer can advise on the problem 

it should check that any assumptions made to achieve a solution 

are satisfied by the client's particular problem.

One difficulty already mentioned is that if the program 

is going to be totally successful it must be able to advise all 

client types. Even if this were possible it would probably 

require a large and unmanageable computer program. If the 

program is written to deal with clients who have different 

amounts of statistical expertise the computer might by mistake 

pitch its questions at the wrong level and an unsatisfactory 

consultation would result. As mentioned previously, the clients 

who can be most easily catered for in advance are clients who 

either know nothing about statistical techniques or know all 

they need to solve their particular problems. The client who 

knows nothing can be offered additional explanation on almost 

every point without fear that he will find such offers tedious. 

The expert will require no additional help and will regard the 

computer as something that will do his calculations and confirm 

his ideas.

To highlight some of the particular problems that have to 

be overcane the rest of this chapter is concerned with writing 

a canputer program that will give advice on the design of an 

experiment for comparing two treatment means. This to the 

statistician is a relatively straightforward problem that has 

in most cases an unambiguous solution. This problem does 

require certain calculations to be performed and has sufficient 

variations to make it worthwhile programming a canputer to solve 

it.
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1.4 The information needed to design an experiment

The information needed to design a comparative 

experiment will depend on the peculiarities of the proposed 

experiment. However, certain basic questions have to be 

answered before an experiment can be designed and Finney (1956), 

for example, has suggested that for field experiments these 

questions can be regarded as being of five types:

1) Choice of treatments for comparison.

2) Specification of the units to which the treatments are to 

be applied.

3) Specification of the measurements to be made on each unit.

4) Pules by which units are allocated to the various treatments.

5) Number of replications of any one factor or of the whole 

experiment.

Nelder (1956) produced a similar list of questions, again 

for field experiments:

(a) Has anyone already answered the questions?

(b) What treatments are needed in the experiment?

(c) Where should the experiment be done?

(d) How should the experiment be laid out?

(e) What records should be made?

D.R. Cox (1958, p.4) speaking more generally suggested the 

following should be considered:

(i) The choice of treatments to be compared, of observations 

to be made and of the experimental units to be used.

(ii) The method of assigning treatments to experimental units 

and the decision about how many units should be used.

Jeffers (1978) considered in more detail the information 

required and produced a check list of /I questions that need 

to be answered.

The above lists emphasize the limitations of the computer.
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It is in the making of the important decisions regarding 

the choice of treatments, choice of experimental units, where 

the experiment should be carried out, and what records should 

be made, that the computer is likely to be of least assistance. 

Such questions are of too general a nature to make it easy 

for a prepared set of questions to be stored in the computer. 

These questions really need discussion and "talking around" 

before decisions can be made. Therefore, in this chapter, 

it will be assumed such questions have been answered before 

the experimenter approaches the computer for help. With only 

two treatments there is probably little that the statistician 

can advise except to bring to the attention of the experimenter 

that he should consider including a control as one of his 

treatments. With more than two treatments the statistician can 

offer more useful advice, particularly if the response to be 

observed is measured on a quantitative scale and the treatments 

are to be made up of combinations of levels of certain factors. 

The choice of the number of levels of each factor will depend, 

for example, on whether a linear or quadratic relationship is 

assumed to exist between the levels of a factor and the response. 

The choice of experimental units is also something the 

statistician could advise upon in particular experiments. For 

example, in a field experiment he may be able to decide whether 

a few large experimental plots are desirable or a large number 

of smaller plots would be preferred.

In order to decide what information the computer program 

must obtain before it can design an experiment to compare twTo 

treatment means it is necessary to first define the problem.

In this section and the following it will be assumed that 

data are to be sampled from two populations.

x^., i = 1, 2, ..., n^ will be the sample of size n^ from
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population 1, and

x2i, i = 1, 2, n2 will be the sample of size n2 from 

population 2.

Further, it will be assumed that all x-^and x ^  can 

be considered mutually independent and that

x-ĵ  is distributed normally with mean p^ and variance a2 

and x ^  is distributed normally with mean p2 and variance a2. 

The situation where some of these assumptions are not valid 

will be considered in Section 1.6.

The null hypothesis to be tested is

Ho : “ V
The alternative hypothesis will be one of the following 

depending on the experimenter's requirements

H1 : l̂ * v 2

H2 : yl " y2
H3 : p2 > pr

To test the null hypothesis the following statistic will 

be used.

t = X1 " x2
i

S- -
xr x2

where

and

xx is the mean of the x ^  values 

x2 is the mean of the x ^  values

SV x2 is an estimate of the standard deviation of

the difference (x^ - x2).

On the null hypothesis, and under the assumptions stated 

above, this statistic will follow the t-distribution on v 

degrees of freedom, where v depends on n^ and n2 and on the 

design of the experiment.

More generally it will be necessary to consider the null
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hypothesis that |ŷ  - ! - <5 where 6 is the size of difference

between the treatment means it is useful to detect in the 

experiment. To test this null hypothesis the statistic t is 

redefined as

(x, - x?) - 6
t = _ ± ----£-----.

S- -
xl"x2

The experimenter will expect the computer to design an 

experiment to test his null hypothesis and one thing he will 

want to know is how many experimental units to use. Cochran 

and Cox (1957, p.18) proposed a method of determining the 

approximate number of experimental units to be used for each 

treatment. Their argument is as follows.

If the observed difference between the treatment means 

is d then d is judged to be significantly different from zero 

at the 100a°6 significance level if

where n is the number of observations on each treatment, 

s is the standard error per unit of the observations and t̂, 

is the tabulated value of t at the 100a?o level, and will 

depend on whether a one-sided or two-sided test is required. 

The probability of this happening is required.

if and only if

Hence the probability that (1.4.1) happens is the probability 

that the value of t should exceed -£.

The flaw in the argument is the assumption that the
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value of s can be assumed equal to a, whereas s is actually a 

random variable. If the argument is carried through 

algebraically, it gives the following rule for calculating the 

approximate value of the power P.

1) Find t^ from the relation

6 = 7 ! a ( t l  + t 2) U - 4 . 2 )
where n is the number of observations to be taken on each 

treatment

t-̂ is the significant value of t in the test of significance 

(with care to distinguish between one-sided and two-sided 

tests).

2) Set P = 1 - G)P2

where p0 is the probability corresponding to in the ordinary 

(two-sided) t-table. The degrees of freedom in t^ and 

are those available for the estimate of a.

A rule is required for determining the value of n and 

this can be obtained by inverting the above rule. Given the 

value of P

n > * V 2 (1.4.3)

where t is the 2(1 - P)% point of the t-distribution on v 

degrees of freedom. The value of v will depend on the design 

of the experiment as well as n.

In order to be able to use the above formula, the 

following information must be obtained.

1) Whether a one- or two-sided hypothesis test is required.

2) A value for <5.

3) A value for a.

4) Values for the significance level and power.

5) Whether the experimental units can be paired or not.
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1.5 Obtaining information using the computer

The information is probably easy for the human 

consultant to obtain in a conversation with the client. The 

consultant can quickly see if the client does not understand 

the questions he is asked and can explain or illustrate certain 

points to clear up any difficulties. The computer, however, 

can only proceed on the assumption that the client has 

understood each question as printed. There is no way of telling 

if the client had difficulty answering a question. What the 

computer can do however, in an attempt to help the client 

answer difficult questions, is to offer help. This can be 

done as follows. The computer program first outputs a direct 

question on some aspect of 1) to 5) as listed at the end of 

the previous section. Whenever possible the valid replies to 

the question are listed at the end of the question. These 

answers will usually be yes (Y), no (N), help (H), or an 

integer (1, 2, ...,) indicating a choice from a list of 

alternatives. If the H reply is given the program outputs 

some additional text to help the client give his or her reply. 

When in the following, some examples of questions are given, 

the above convention will be used.

The computer program, it will be noted, cannot assume 

any prior information about the client's experiment unless 

that information has already been stored in the computer's 

memory. Consequently, the questions output by the program 

must be such that they cover every eventuality so that a valid 

experimental design is produced at the end of the computing 

session. There will therefore be more questions asked by the 

computer than by the human consultant. The wording of the 

questions and the order of asking them is therefore extremely 

important. The answer from one question must lead naturally
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onto the next and unlike a human consultation there can be no 

skipping back if it is realized that some particular piece of 

information is required but was not obtained earlier.

To illustrate how difficult this aspect of writing the 

program can be even for a relatively straightforward program, 

each of the five points listed at the end of the previous 

section will be considered in turn. Then the order of asking 

questions on these points will be considered. It should be 

noted that in this section all the assumptions made in the 

previous section are taken to hold. The additional 

difficulties that arise when these assumptions have to be 

checked in the program are considered in the next section.

1.5.1 One or two sided hypothesis test

This information is relatively straightforward to obtain. 

The client could be asked by the computer:

DO YOU WANT TO TEST IF TIE AVERAGE RESPONSE OF ONE 

TREATMENT IS

1) HIGHER THAN THE OTTER?

2) LOWER THAN THE OTTER?

3) HIGHER OR LOWER? (I.E. A DIFFERENCE IN EITTER

DIRECTION IS OF INTEREST)

(1, 2, 3 OR H)

In reply to H the following could be given

IF ANSV.ER 1) IS CHOSEN THEN IT MIST BE ASSUMED THAT THE 

AVERAGE RESPONSE OF THE TREATMENT CONCERNED COULD NOT, 

UNDER ANY CIRCUMSTANCES, BE LOWER THAN THE OTHER'S.

IF ANSWER 2) IS CHOSEN THEN IT MUST BE ASSUMED THAT THE 

AVERAGE RESPONSE OF TIE TREATMENT CONCERNED COtRD NOT, 

UNDER ANY CIRCUMSTANCES, BE HICIER THAN THE OTTER'S.

IF ANSWER 3) IS CHOSEN THEN EITHER SORT OF DIFFERENCE
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COULD OCCUR AND THERE IS AN EQUAL INTEREST IN BOTH.

THE CHOICE BETWEEN 1), 2) AND 3) IS IMPORTANT AS

IT AFFECTS HOW MANY EXPERIMENTAL UNITS TO USE.

WHICH REPLY TO TEE ABOVE QUESTION DO YOU WISH TO

GIVE?

(1, 2 OR 3)

1.5.2 The value of 3

Questions to determine the value of 6 are more difficult 

to phrase because the client may be familiar with expressing 6 

as a percentage of the mean of one of the treatments, or in the 

units used to measure the response, or in'some other way. 

However, as can be seen from formula (1.4.3), the absolute 

value of 6 is not needed, only its value relative to a, the 

standard deviation. If the client is likely to express 6 as a 

percentage of the mean he is quite likely to express a in a 

similar fashion. The computer program therefore needs to check 

that 6 and o have been expressed in similar ways so that a value 

of (a/6) can be obtained.

Here, however, it is assumed that the client will give a 

value for 6. Pridmore (1970), as noted earlier, pointed out 

that the question 'How big a difference do you want to detect?" 

is likely to be met by the answer "Surely that is a statistical 

matter?"

This problem could be approached as follows.

IT IS ESSENTIAL TO KNOW WHAT SIZE OF DIFFERENCE BETWEEN

THE TREATMENT LEANS THE EXPERIMENT IS REQUIRED TO DETECT.

BEFORE BEING ASKED TO SPECIFY A VALUE DO YOU WANT

FURTHER EXPLANATION?

(Y OR N)

In reply to Y the following could be printed.
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AN EXPERIMENT CAN BE DESIGNED TO DETERMINE IF ANY 

DIFFERENCE EXISTS BETWEEN TIE TOO TREATMENT MEANS.

HOWEVER, YOU MAY DECIDE THAT DIFFERENCES SMALLER THAN 

A CERTAIN VALUE ARE OF NO IMPORTANCE.

THEREFORE IF A USEFUL EXPERIMENT IS TO BE DESIGNED IT 

IS ESSENTIAL THAT YOU SPECIFY A VALUE FOR THE SIZE OF 

THE SMALLEST DIFFERENCE IT IS USEFUL TO DETECT.

IF YOU DO NOT SPECIFY A VALUE THE PROGRAM CANNOT 

CONTINUE.

The client would then be asked if a value is to be 

specified. If the answer is N then the program cannot continue. 

Perhaps the best advice that could be output by the program, 

if the answer N is given, is that suggested by Finney (1970) 

when discussing an interactive data analysis program:

GO CONSULT A STATISTICIAN.

However, even though the statistician can help explain 

at greater length why a value of 6 is needed, it is really up 

to the client to reconsider his aims. If he cannot specify a 

value it could be that his own ideas are muddled.

If a value of 6 can be specified the program could

print

IN WHICH WAY WOULD YOU PREFER TO INPUT THIS DIFFERENCE?

1) AS A PERCENTAGE OF THE MEAN OF ONE OF THE 

TREATMENTS.

2) IN THE UNITS OF MEASUREMENT USED TO MEASURE 

THE RESPONSE.

3) SOME OTHER WAY.

(1, 2 OR 3)

If reply 1) is given then the program would need to know 

which treatment the percentage is referred to, as this will 

be needed when a value of o is asked for. Peply 3) has been
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included in case, at the time of writing the program, some 

other way of specifying 6, peculiar to the clients who will 

use the program, is to be used.

1.5.3 A value for a

D.R. Cox (1958, p.165) suggested five ways of obtaining 

an estimate of a2. Three of them refer to estimates obtained 

after the data has been collected and the other two refer to 

estimates obtained before the experiment takes place. These 

last two are (i) from the results of previous similar 

experiments and (ii) from theoretical considerations. The second 

of these is no help in this section as the fact that the 

observations are normally distributed does not enable an estimate 

of a2 to be obtained. If the data were sampled from a Poisson 

distribution for example, then knowledge of the treatment mean 

gives information on the treatment variance. Consider, 

therefore, suggestion (i).

An important idea to put over to the client, who is 

assumed to have little or no knowledge of statistics, is that 

his data will show some degree of variability and that it is 

essential to have some quantitative estimate of the variability.

The computer program could therefore lead into the set 

of questions designed to obtain a value for a by printing

YOU ARE AWARE NO DOUBT THAT DIFFERENT MEASUREMENTS ON 

THE SANE TREATMENT WILL SHOW SQNE VARIABILITY. IT IS 

ESSENTIAL TO OBTAIN A NUMERICAL ESTIMATE OF THE SIZE 

OF THIS VARIABILITY.

The program would then ascertain if past data are available 

by printing

HAVE YOU IN THE PAST PERFORMED SIMILAR EXPERIMENTS 

TO TIE ONE YOU ARE PLANNING NOW?

(Y OR N)
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If the reply was Y the program could follow up by

asking

IS TIE VARIABILITY OF THE DATA ON EACH TREATMENT

COLLECTED IN THE PAST EXPERIMENTS SIMILAR TO THE

VARIABILITY OF THE DATA TO BE COLLECTED IN THE NEW

EXPERIMENT?

(Y OR N)

If the reply to this question was Y there is the 

possibility that an estimate of a can be obtained. However, 

it is desirable to know how many experiments have been done in 

the past. If only one or two have been done then the estimate 

of the error variance could be unreliable as an unusually 

high or low variance could have been obtained. If only one 

or two experiments have been done it is probably a good idea to 

ask the client to consider these estimates in the light of his 

own knowledge to decide if a representative value of the 

variance was obtained in the past.

If past data are available it is also necessary to 

consider what sort of experimental design was used, if any, in 

the past experiments. This brings up the point of whether the 

experimental units were paired or not. This is considered in 

sub-section 1.5.5.

If no estimate of a is forthcoming, either from past 

data or other considerations a different approach must be 

adopted or the computer program cannot continue.

One reason why an estimate of o is unavailable could be 

that the data from the past experiments were not kept. If, 

however, a record of treatment means or ranges or coefficients 

of variation have been kept these might be used to obtain a 

rough estimate of a.

If the range of a treatment is available along with
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the number of data on which the range is based, then the range 

could be compared with tables of (o/range) which have been 

tabulated by Pearson and Hartley (1954), for example. If the 

number of data is not available a rough estimate of a could 

be obtained by arguing that the size of the range is likely to 

be approximately equal to a 951 confidence interval for the 

mean and to take the estimate of a as range/4.

If the values of the treatment means are available, 

along with a coefficient of variation, then a rough estimate 

of o is (coefficient of variation * mean).

If no past information is available that will lead to 

an estimate of a one further approach is to ask the client 

to express an opinion on the value of a. The client is 

assumed to have little knowledge of statistics and so is 

unlikely to understand the concepts of variance and standard 

deviation. The idea of variability is therefore best put over 

by considering the treatment ranges.

A possible way for the program to do this could be as 

follows

THE VARIABILITY OF THE MEASUREMENTS ON A TREATMENT CAN 

BE THOUGH OF IN TERMS OF HIE RANGE. THE RANGE IS THE 

DIFFERENCE BETWEEN THE LARGEST MEASUREMENT AND THE 

SMALLEST.

OBVIOUSLY H E  MORE VARIABLE APE H E  DATA H E  

LARGER THE RANGE.

FOR ONE OF H E  TREATMENTS CAN YOU GIVE A VALUE 

FOR THE LIKELY SIZE OF THE RANGE?

(Y OR N)

If a range is specified a can be estimated as described

above.

If a range cannot be given the program could try yet
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another approach.

MAYBE YOU CANNOT SUGGEST A VALUE FOR THE RANGE BUT

COULD YOU SAY THE RANGE IS LIKELY TO BE ± XI OF THE

VALUE OF THE MEAN OF A TREATMENT?

(Y OR N)

If the reply is Y then a value for X would be asked for.

If the reply is N then the program cannot continue and the 

client would be advised to consult a statistician.

In the above, when discussing if past data were available, 

the possibility of having to combine estimates of the variance 

from more than one experiment was not mentioned. One way of 

combining the estimates would be to take a weighted mean of the 

estimates. The weights being inversely proportional to the 

number of data used to calculate each estimate. Doubtless 

other ways could be devised. A more difficult problem arises 

when different designs were used in the past experiments. It 

is essential to elucidate from the client the exact nature 

of the variance he has estimated. More will be said on this 

in sub-section 1.5.5 when pairing of experimental units is 

considered.

If no estimate of a can be obtained from the client 

using the approaches given above then one alternative is to 

suggest that a pilot experiment is performed to obtain an 

estimate of a. A two-stage procedure, similar to that 

suggested by Stein (1945) could be suggested. From the first 

stage experiment the total size of the experiment needed to 

achieve the desired significance level and power to detect 

a difference of a given size could then be calculated.

It might also be useful before asking about past data 

and attempting to explain the meaning of variability to ask 

a direct question first, e.g.
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HAVE YOU AN ESTIMATE OF THE VARIANCE OR STANDARD 

DEVIATION OF THE DATA TO BE COLLECTED IN THE 

EXPERIMENT?

(Y OR N)

The possibility arises here of the reply N being given 

because an estimate is available but the client does not have 

it with him. The option to stop the program and to return with 

an estimate must therefore be included.

1.5.4 The significance level and power

To the client without any statistical training the 

ideas of significance and power are probably the most difficult 

to understand. The statistican can visualize the shape of the 

frequency curve of the normal distribution for example, and is 

able to picture 2\% the area under the curve being shaded at 

either end to represent the 5°s significance level of a two- 

sided test. The layman however, has to have such ideas 

explained and this must be done by a short piece of text 

output by the computer program. Once the client has grasped 

the idea of a significance level, for example, he will not 

want a full explanation each time. One approach is therefore 

to first ask a direct question:

WHAT VALUE OF THE SIGNIFICANCE LEVEL IS APPROPRIATE?

1) 5?0

2 ) 1%

3) ONE SUGGESTED BY YOU.

(1, 2, 3 OR H)

In reply to H the program could print

AS YOU WILL KNOW TIE DATA FROM A TREATMENT WILL SHOW 

SOME DEGREE OF VARIABILITY. CONSEQUENTLY THE DATA MAY 

INDICATE A DIFFERENCE BETWEEN THE LEANS WHEN THERE IS
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NONE. THE OBSERVED DIFFERENCE BEING A CHANCE RESULT.

THE EXPERIMENT MUST HAVE ENOUGH OBSERVATIONS 

TO ENSURE THAT THE CHANCES OF MAKING THE ABOVE MISTAKE 

ARE QUITE SMALL. STATISTICIANS REFER TO THE PROBABILITY 

OF FINDING A SPURIOUS DIFFERENCE AS THE "SIGNIFICANCE 

LEVEL", IT IS OFTEN EXPRESSED AS A PERCENTAGE, FOR 

EXAMPLE, 51 REPRESENTS A 1 IN 20 CHANCE AND 11 REPRESENTS 

A 1 IN 100 CHANCE. HOW HIGH A PROBABILITY CAN YOU 

TOLERATE OF FINDING A DIFFERENCE WHERE NONE EXISTS?

USUALLY 51 IS ADEQUATE BUT IF YOU WANT TO REDUCE 

THE RISK EVEN FURTHER CHOOSE 11. IT SHOULD BE REMEMBERED 

THAT THE SMALLER THE PROBABILITY THE GREATER TEE NUMBER 

OF OBSERVATIONS THAT WILL HAVE TO BE TAKEN.

WHICH REPLY DO YOU WISH TO GIVE?

(1, 2 OR 3)

One of the client's requirements is that the experiment 

should have a good chance of detecting a difference between 

the treatment means of size 6 . That is, the power of the 

hypothesis test must be considered. Suppose earlier in the 

program a value of 6 had been decided upon. The program 

taking the same approach as for the significance level could 

ask

WHAT SIZE OF POWER IS APPROPRIATE?

1) 801

2) 901

3) A SIZE SUGGESTED BY YOU.

(1, 2, 3 OR H)

In reply to H the program could print

IN REPLY TO THE IAST QUESTION YOU CHOSE A SIGNIFICANCE 

LEVEL OF 51. WHAT YOU HAVE SAID THEREFORE IS THAT YOU 

ARE PREPARED TO TAKE A 1 IN 20 CHANCE OF DECIDING A
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DIFFERENCE EXISTS WHEN HERE IS NONE.

HOWEVER, IF A DIFFERENCE OF SIZE 6 DOES EXIST 

YOU WANT A GOOD CHANCE OF DETECTING IT. STATISTICIANS 

REFER TO THE SIZE OF THIS CHANCE AS THE POWER.

AGAIN, THE HIGHER THE POWER THE GREATER THE NUMBER 

OF OBSERVATIONS THAT WILL BE NEEDED. A VALUE OF 801 IS 

QUITE REASONABLE.

WHICH REPLY TO THE ABOVE QUESTION DO YOU WISH TO

GIVE?

C l ,  2 OR 3)
In the above replies to H the values suggested could be 

put equal to values particularly appropriate to the sort of 

experiments the computer program will be required to design.

1.5.5 Pairing the experimental units

When comparing two treatment means it is often a good 

idea to pair the experimental units so that the units in a 

pair are more similar than they are to the units as a whole.

In some situations it may also be useful to take account of 

the ordering of the units in a pair. To simplify matters a 

little in this chapter, such ordering of units will not be 

considered. The computer program then, must somehow determine 

if the experimental units should be paired or not. The aim of 

pairing is to eliminate from the treatment comparison any 

systematic variation between units. It is essential therefore 

that the client realizes that variability needs to be reduced. 

This can be done in stages as follows.

IT IS IMPORTANT TO CONSIDER TIE VARIABILITY OF THE 

MEASUREMENTS THAT WELL BE TAKEN IN THE EXPERIMENT. DO 

YOU WANT FURTHER EXPLANATION OF THE TERM VARIABILITY?

(Y OR N)
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In reply to Y the program could print

SUPPOSE ONLY ONE TREATMENT WAS USED IN THE EXPERIMENT.

IF THERE WAS ABSOLUTELY NO DIFFERNCE BETWEEN THE UNITS 

AND IN THE WAY THE MEASUREMENTS 1VERE TAKEN, AND IN THE 

CONDITIONS THAT PREVAILED DURING THE COURSE OF THE 

EXPERIMENT THEN ALL MEASUREMENTS WOULD BE IDENTICAL.

HOWEVER IN PRACTICE IT IS IMPOSSIBLE TO ENSURE 

COMPLETE UNIFORMITY OF CONDITIONS, UNITS AND METHODS OF 

MEASUREMENT AND CONSEQUENTLY THE MEASUREMENTS WILL 

EXHIBIT SOME DEGREE OF VARIABILITY.

This could then be followed by

SOME VARIABILITY CAN USUALLY BE ATTRIBUTED TO 

DIFFERENCES AMONG THE UNITS. IS PAIRING OF UNITS A 

POSSIBILITY?

(Y, N OR H)

In reply to H the program could print

IT IS SOMETIMES POSSIBLE TO GROUP THE UNITS INTO PAIRS 

IN SUCH A WAY THAT THE UNITS IN A PAIR ARE MUCH MORE 

SIMILAR TO ONE ANOTHER THAN THEY ARE TO THE GROUP OF 

UNITS AS A WHOLE. FOR EXAMPLE,

1) IF THE UNITS WERE THE KIDNEYS OF AN ANIMAL IT IS 

LIKELY THAT THE W O  KIDNEYS FROM THE SAME ANIMAL ARE 

MORE SIMILAR TO EACH OTHER THAN THEY ARE TO THE 

KIDNEYS OF THE OTHER ANIMALS IN THE EXPERIMENT.

2) THE EXPERIMENTAL CONDITIONS COULD CHANGE PROGRESSIVELY 

AS TIME GOES ON. THE LATER MEASUREMENTS BEING 

SYSTEMATICALLY DIFFERENT FROM THE EARLIER ONES. HERE 

W O  MEASURE!ENTS TAKEN CLOSE TOGETHER IN TIME WILL BE 

MORE SIMILAR THAN W O  TAKEN FAR APART.

WHICH REPLY TO THE ABOVE QIESTION DO YOU WISH TO
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GIVE?

(Y OR N)

The program would then note if pairing was possible for 

possible use later.

It will be recalled that when discussing how to obtain 

an estimate of a in sub-section 1.5.3, one method was to use 

past data. When discussing these past data with the client it 

is important to discover if pairing was used in some or all of 

the past experiments. It is important to know if the value of 

the variance or standard deviation that is quoted by the client 

refers to the variance of the paired differences or the 

variance of the data on each treatment. The appropriate 

variance for the present experiment is the one that must be 

obtained from the client. These remarks have implications on 

the order the program asks the questions. When trying to 

obtain an estimate of the variance the possibility of pairing 

will have to be explained. If pairing is possible an 

estimate of the variance of the paired differences will have 

to be somehow obtained from the client. It is necessary 

therefore to ensure the client understands the need for 

pairing before moving to questions on the variance.

If pairing is possible in the present experiment it 

will be necessary to decide if pairing is worthwhile or not.

That is, the likely increase in precision of the treatment 

comparison will have to be weighted against the loss of error 

degrees of freedom if pairing is used. At this point therefore, 

it is convenient to digress from the structure of the program 

to consider how to decide if pairing is worthwhile or not.

1.5.6 Pairing versus no pairing

The degrees of freedom for the error sum of squares in
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the analysis of variance will depend on whether pairing 

has been used or not. If pairing has been used then n pairs 

will provide (n - 1) degrees of freedom for error. If no 

pairing has been used the 2n experimental units will provide 

2(n - 1) degrees of freedom for error. Whether pairing has 

been used or not will affect the standard error of the 

difference between the treatment means when using formula

(1.4.3). In fact, if pairing is used the formula becomes

aDn * -7 (ti + tl)2, (1.5.1)

where a2 is the variance of the difference between the two 

observations in each pair, and tj and t2 are analogous values 

to t^ and t2 in formula (1.4.3) except now the degrees of 

freedom are (n - 1) instead of 2 (n - 1).

If x^ is one observation in a pair and x2 the other

then

V(x1 ~x2) = a2 = 2a2 - 2Cov(x1, x2).

If the pairing is at all useful then Cov(x^, x2) > 0. 

Therefore,

Op < 2c2.

However, even though 2o2 has been reduced to Op, the paired 

experiment is not necessarily more precise because the degrees 

of freedom are reduced.

Suppose 2o2 and o2 are known. Then given 6, the 

significance level and the power, the unpaired experiment 

would have size 2n^, where

n, > —  (t, + t2)2,
1  6 2 1  Z

and t. and t2 are on 2 (n^ - 1) degrees of freedom.

The paired experiment, on the other hand, would have
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size 2n w h e r e

ÜD
n2 - ^7 fti + tp 2»

and tj and t’ are on - 1) degrees of freedom.

The paired experiment would be preferred if < n^, 

and no pairing would be preferred if n^ c n^.

The difficulty is obtaining estimates of a2 and a2 so 

that the above calculations may be done.

If past data are available the human consultant could 

examine these with a view to deciding if pairing is likely to 

be useful. The computer program would have difficulty doing 

this because it is hard to plan a general set of questions 

in advance when the past experiments could be of quite 

different types. One approach that could be adopted that does 

not specifically ask for information on past experiments is the 

following. Of course if pairing is possible in the present 

experiment and was always used in the past an estimate of a2 

might be readily available.

In the earlier part of the program a value for the 

range of one of the treatments could be obtained. The following 

hypothetical situation could then be put to the client. Suppose 

the units are paired and one treatment is applied to all units, 

i.e. both units in a pair receive the same treatment. The 

client is then asked to consider the largest difference between 

the measurements in a pair. This is considered as a range for 

the paired differences. This range is likely to be smaller 

than the treatment range if pairing is effective. The client 

is then asked to give a figure which indicates how much the 

range of the difference is likely to be smaller than the 

treatment range. For example, is it 10% smaller? 20% smaller? etc.
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However, in practice this might be too much to ask the 

client. A better approach before writing the program might 

be to first consider the type of experiments the program is 

to advise on. If pairing is thought likely to be useful in 

these experiments then the program could be set to always 

advise a paired experiment if the client indicated that 

pairing was possible.

In the above sub-sections some details of the difficulties 

that have to be overcome have been considered. One further 

point to consider, once the questions and their wording have 

been decided, is the order in which the questions have to be 

asked. As mentioned earlier there should be a natural flow 

of questions with one answer leading naturally on to the next. 

One possible ordering is given in Table 1.5.1.

Once the size of the experiment has been calculated this 

can be put to the client. It may be that the ideal size is too 

large for the client’s resources because the client has been 

too ambitious. This in itself would be a useful outcome as 

the client, if not advised by the program, would have wasted 

valuable experimental units. A dialogue between the client 

and the program could then ensue with the aim of reaching a 

compromise. Perhaps a significance level of 51 could be used 

instead of 1$, or the power reduced from 90s to 80°s, or the 

difference to be detected made a little larger. For given 

values of a2 (or c^), significance level and power, the 

smallest value of 6 that could be detected using all the 

available units could be calculated.

If the experiment has been accepted by the client then 

a detailed randomized plan of it could be printed. The 

importance of the randomization could be emphasized and details 

of where the analysis of the data may be done could also be
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pointed out.

Even when the assumptions can be assumed to hold it is 

apparent that a large number of questions and associated text 

must be printed by the computer program. If the assumptions 

must be checked by the program then it has to be enlarged.

Some examples of the extra difficulties involved if the 

assumptions have to be checked are given in the next section.

Table 1,5.1 Order of asking questions

1) Explain the meaning of variability.

2) In particular, discuss the variability of the experimental 

units with a view to deciding if pairing is possible.

3) If pairing is possible, and pairing was always used in the 

past experiments, attempt to get a direct estimate of a^. 

If pairing is not possible and was never used in the past 

attempt to get a direct estimate of a1 2 3 4 5 6 7 8 9. If neither of 

these applies then attempt to get an estimate of a2 in 

some form or other, e.g. as a function of the range. If 

pairing is possible attempt to determine the relative 

sizes of and a2.

4) Determine 6 , the size of the smallest difference to be 

detected.

5) Decide if a one- or two-sided hypothesis test is required.

6) Determine the significance level.

7) Determine the power.

8) Decide, if necessary, if pairing is worthwhile or not.

9) Determine if the size of the design is appropriate.
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1.6 Checkin# on the assumptions

In the last section the advice printed by the computer 

program was made on the assumption that the observations to 

be taken in the experiment would be

(i) normally distributed

(ii) such that each treatment had the same variance

(iii) independent.

If these fail to hold the program is likely to give wrong 

advice. However, as Scheffe (1959, Chapter 10) concludes, the 

effects of departures from the above are likely to have little 

affect on inferences about means if the number of observations 

on each treatment is large. Further, he concludes that even if 

the number of observations on each treatment is not large the 

effects of departures from the above are not serious if each 

treatment is replicated the same number of times. However, 

if the reason for the failure of the assumptions can be 

determined then, in some circumstances, it is possible to 

remedy the situation, e.g. by a suitable transformation of 

the data.

It is important then, that the program, whenever possible, 

attempts to check the assumptions. The experienced human 

consultant quite often has no difficulty deciding on the matter. 

This may be because of previous encounters with similar data or 

because of an ability to sense that things are not what they 

seem. This skill is more a part of the consultant’s art than 

craft. However, the computer program, lacking any such skill, 

must decide the matter by asking in as systematic an order as 

possible, a set of suitably framed questions. In the following, 

some circumstances where (i) and (ii) fail to hold are 

considered in order to illustrate some of the difficulties 

encountered when devising such a list of questions. Obviously
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not every possible circumstance is covered, only enough to 

make the point. In this chapter, questions to decide on 

assumption (iii) are not considered. If a properly 

randomized experiment is used then quite often the observations 

may be considered as independent for the purpose of hypothesis 

testing, even if there is some degree of correlation between 

them.

If the data are not normally distributed then there is 

often a relationship between a treatment’s mean and its 

variance. Therefore, the failure of (i) may be accompanied by 

the failure of (ii). If the data to be collected in the 

experiment are on what is essentially a discrete variate then 

the data will not be normal but their distribution may be 

close enough for practical purposes. If the variate is not 

continuous then this may be an indication that the data will 

not be normally distributed, and this should be one of the 

first things the program enquires about. One way of doing 

this is to use the approach taken in the previous section 

where a direct question is asked first, followed, if 

necessary, by some help. For example,

IS THE UNDERLYING NATURE OF THE VARIATE YOU ARE ABOUT 

TO MEASURE IN THE EXPERIMENT

1) DISCRETE

OR
2) CONTINUOUS?

(1, 2 OR H)

In reply to H the following could be printed

IN STATISTICAL TERMINOLOGY THE MEASUREMENTS ARE MADE 

ON A 'VARIATE' OF INTEREST. THE VALUES OF THE VARIATE 

INDICATE THE EFFECT OF THE TREATMENT.

IN EXPERIMENTS ON DIETS, FOR EXAMPLE, THE VARIATE
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MIGHT BE 'CHANGE IN WEIGHT'. THIS MAY BE RECORDED TO 

ANY DEGREE OF ACCURACY TIE WEIGHING SCALE OR THE 

EXPERIMENTER PERMITS. IN A CERTAIN RANGE ALL VALUES 

OF THE VARIATE ARE POSSIBLE. 'CHANGE IN WEIGHT' IS 

THEREFORE A CONTINUOUS VARIATE. LENGTH IS ANOTHER 

CONTINUOUS VARIATE.

ON THE OTTER HAND, IF IN A DIFFERENT EXPERIMENT,

THE VARIATE WAS 'THE NUMBER OF PETALS ON A FLOWER' THEN 

NOT ALL POSSIBLE VALUES IN A CERTAIN RANGE ARE POSSIBLE.

THE ONLY VALUES THAT CAN OCCUR ARE 0, 1, 2, ..., ETC.

VALUES SUCH AS 3.126, FOR EXAMPLE, CANNOT OCCUR. SUCH 

VARIATES ARE CALLED DISCRETE. THE 'AVERAGE NUMBER OF 

DOTS' APPEARING ON TWO DICE IS ALSO A DISRETE VARIATE 

BECAUSE THE ONLY VALUES THAT CAN OCCUR ARE 1, 1.5, 2,

..., 5.5, 6.

WHICH REPLY TO THE ABOVE QUESTION DO YOU WISH TO

GIVE?

(1 OR 2)

However, even the above question is not totally satisfactory. 

For example, even though the variate is strictly continuous it 

may be measured in large steps and could be better considered 

as discrete for the purposes of the analysis. A better approach 

might therefore be to first ask what range of values the 

observations on a treatment are likely to take. Then to ask to 

what degree of accuracy the observations will be recorded, e.g. 

to the nearest 10 units of measurement, 1 unit, \o unit. If 

only a relatively small number of different values are possible 

the variate could be treated as discrete even if it was 

continuous. If a large number of different values are possible 

then the variate could be treated as continuous even if it 

was discrete. The difficulty with this approach, however, is



- 43
how best to decide what is "relatively small" and what is

"relatively large". A reasonable way of approaching this

is to consider the "correction" for grouped data suggested by

Sheppard (1898). If data are grouped using a grouping interval

of size h units, and the variance of the grouped data is

calculated then a2g = a2 + hf\ Here a2g is the variance of12
the grouped data and a2 is the variance of the ungrouped data.

If the ratio h2 is small then little information on a2 is 
12a2

lost by grouping the data. By analogy, h and a2 could be

determined from the experimenter and if h2 was small the
12a2

data could be considered as continuous. Otherwise, they would

be considered as discrete. However, an estimate of a2 may be

difficult to obtain. Therefore, as done earlier the value R,
T

where R is the range of the data, could be taken as an estimate

of a. Then if h2/[12(R/4)2] was small the data could be

considered as continuous. The difficulty left to resolve is

how small h2 should be in order that the data can be 
12a2

considered as continuous. Snedecor and Cochran (1967, p.81)

considered the number of classes into which data should be

grouped. They give an example where 12 classes are used and

the range of the data is taken as 6a. That is, h is a/2. The

relative increase in a2 due to grouping is then 1 or 2'i. If
4$

the range is taken as 4a then h will be a/3 and the increase

due to grouping is 1 or approximately 1%. If a 10% increase
108

in variance is tolerated then, if the range is taken as 4a, the 

number of classes should be at least 4.

By considering the different sorts of data the program
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is likely to encounter in any particular experimental set-up,

the value that h2 must take before the data are considered 
12a2

as continuous could, perhaps, be decided upon.

Suppose it can be determined if the data are to be 

treated as discrete or continuous. The program must then decide 

if the method of analysis used in the previous section, i.e. 

Student's t-test can be applied to the data from the experiment. 

To simplify the following the two types of data are considered 

separately, discrete data being considered first.

1.6.1 Discrete data

Before going on to consider discrete data per se, it is 

important to be aware that an essentially discrete variate is 

sometimes recorded as a proportion or a percentage. The client 

may have been misled by the explanation of discrete and 

continuous variates and indicated that his proportion or 

percentage is a continuous variate. Clark and Leonard (1939) 

discussed the analysis of data expressed as percentages and 

distinguished three types:

(a) Continuous data may be expressed as percentages when each 

variate is divided by an arbitrary constant value, whereby 

each variate becomes a percentage of some standard value.

(b) Continuous data expressed in percentages to show 

concentrations, because a comparison of concentrations is 

the principle objective.

(c) Discrete data expressed as percentages, for example where 

the variate is the percentage of items out of a pre­

determined number that possess a characteristic of interest 

after treatment.

An example of type (c) is an insecticide trial where the 

number of diseased plants on each plot after treatment is
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counted and expressed as a percentage of the total number 

of plants on the plot.

Clark and Leonard suggest that percentages of type (a) 

should be treated as if the data were in their untransformed 

state; percentages of type (b) should not as a rule be 

subjected to transformation; percentages of type (c) should 

be transformed before analysis.

Attention to percentages of type (c) will be drawn a 

little later on in this section. For the moment however, 

attention is centered on simpler forms of discrete data. Of 

great importance in the following is the fact that unless 

otherwise stated an unpaired experiment is considered. The 

paired experiment will be considered in due course.

The simplest discrete variate is the one that takes 

only two values, e.g. 0 and 1, Yes and No, Success and Failure, 

etc. If this is the case the properties of the Binomial 

distribution may be used. The computer program could first 

ask

DOES THIS DISCRETE VARIATE TAKE ONLY TOO VALUES?

E.G. 0 AND 1, YES AND NO, SUCCESS AND FAILURE, ETC.

(Y OR N)

If the variate is of the Binomial type then the client is 

probably interested in comparing the proportion or percentage of 

experimental units that possess some attribute after treatment. 

The program would therefore ask

IT IS USUAL WHEN THE VARIATE IS AS YOU DESCRIBE TO 

COMPARE THE PROPORTIONS OR PERCENTAGES POSSESSING 

ONE OF TOE W O  VALUES AFTER APPLYING EACH TREATMENT.

DO YOU INTEND COMPARING PROPORTIONS OR 

PERCENTAGES?

(Y OR N)
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Suppose that proportions are to be compared and this has 

been determined by the program. That is, 2n experimental 

units are used and n of them receive one treatment and n the 

other. Further, all observations taken in the experiment can 

be assumed independent. If the true probability of a 'Success' 

with one treatment is p^ for treatment 1 and p2 for treatment 

2 then

Prob(r successes out of n are observed for treatment 1)
_ nr rr, ^ .n-r

V V 1 " pr

Prob(r successes out of n are observed for treatment 2) 
m  Tri ->n-r= cr p 2 ( i  -  p 2) .

If p^ is the observed proportion of successes for treatment i, 

i = 1 or 2, then

E(Pi) = Pi»
and

vCp±D = Pi(i - Pi)# 
n

The null hypothesis is now 

Ho : pl = P 2

and the alternative hypothesis is one of 

H1 : pi 56 p 2 

H2 : Pi > p2 

H3 ; p2 > pr
A

It can be assumed that as n increases the distribution of p^ 

approaches the normal distribution with mean pi and variance

Pi(l " Pi)* To test the null hypothesis 
n

A A

- P 1 ' P 2 
Z "(P^ 1 - i>i)2/n)i

would be calculated, where
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v (Pi - p 2) - v c p1) + V(p2) = - p1) + p2(i - p2)

n n

= 2p1(l - Px)
on the null hypothesis.n

On the null hypothesis the distribution of z is approximately 

normal.

However, as in the case where two treatment means were 

compared, the client may require that the experiment be 

capable of detecting a difference as small as 6 between the 

two proportions.

If 6 = p2 - and a2 = (p^l - p.) + p2(l - p2)}, and 

a value a for the significance level and a value P for the 

power are specified, as done in the previous section, the 

number of observations that must be made on each treatment is 

n where

Here the variance of the difference between one observation 

on treatment 1 and one observation on treatment 2 is

The value z^ is the 100a°i point of the normal 

distribution and z9 is the 2(1 - P)% point of the normal 

distribution. Here the P value is considered as a two-sided 

probability.

To use the formula estimates of p^ and p2 are needed. At 

this stage it is easier to talk about percentages rather than 

proportions and so for the purpose of illustration it will be 

assumed in the following that percentages are being compared.

An example of the situation that can he dealt with by the 

program using the above formula is the following. Suppose 

one treatment is a standard and known to give a 501 ’success

(1. 6 . 1)

V(x1 - x2) = V(x1) + V(x2) = px(l - P-l) + P2(i - P2).
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rate’. A treatment is available and seems likely to be 

superior. In comparing the new treatment with the standard 

the experimenter wants a probability of 0.9 of finding a 

significant difference in a one-tailed test at the 5% level 

if the new treatment gives a success rate of 80% or more.

The appropriate value of (z1 + z2)2 is 8.6 and so the number 

of observations to be taken on each treatment is n, where 

n > {(50)(50) + (80)(20)}/(30)2 x 8.6 

= 39.2.

That is 40 experimental units should be used for each treatment.

The sort of questions needed to determine the significance 

level, the power, and whether a one-sided or two-sided test 

is to be used have already been discussed in the previous 

section. The new questions are those needed to determine an 

estimate of p^ (or p2) and 6 = (p^ - p2).

This could be done as follows.

TO DESIGN THE EXPERIMENT IT IS ESSENTIAL TO SPECIFY THE

LIKELY VALUE OF THE PERCENTAGE (OR PROPORTION) OF

SUCCESSES TO BE OBTAINED USING ONE OF THE TREATMENTS.

CAN SUCH A VALUE BE SPECIFIED?

(Y OR N)

If the answer is N the program can either stop or advise 

the client to take a number of 'pilot' observations so that 

estimates of p^ and or p2 can be determined.

If the answer is Y the estimate is input. Following this 

the program would ask:

WHAT SORT OF DIFFERENCE BETWEEN THE PERCENTAGES IS IT

IMPORTANT FOR YOU TO DETECT IN THE EXPERIMENT?

This is then a similar question to that considered in the 

previous section when discussing treatment means.

Paulson and Wallis (1947) pointed out that the problem
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with using the normal approximation discussed above is that 

(1) the proportions are not normally distributed when the 

true proportion is small and (2) the standard deviation 

depends on the true proportion. They also suggested that 

these problems can be overcome by using 

0 = 2arc sin/"jT

instead of the proportion p, as long as n is not too small. 

Then 0 may be regarded as a normally distributed random 

variable with standard deviation l//n when 0 is measured in 

radians and 57.3//n when 0 is measured in degrees. The sample 

size n is then given by

n > K-
k + kQ a 8

arc sin/p^ - arc sin/"^ 

if angles are measured in radians, or by

n > 1641.60-
k + kQ a 8 -)

arc sin/p^ - arc sin /p^
\

if angles are measured in degrees.

Here, k£ is defined by

2ir

00 _ x
e T  dx = £,

k

a is the significance level and 1 - 8 is the power of the test, 

The value 8 is the probability of rejecting the alternative 

hypothesis when the true probabilities are p^ for treatment 1 

and P2 for treatment 2.

Similar expressions for percentages could be given.

Suppose now that the data are of Clark and Leonard's 

type (c), i.e. discrete data expressed as a percentage or 

proportion. If each experimental unit is made up of n items 

and the measurements are a ^ , where a^j is the number of 

successes out of n obtained on the jth replicate of treatment
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i, then the variate that is analysed is usually p „  = a^/n. 

This variate has variance (1 - p^)/n, i.e. depends on

n and the treatment mean.

To eliminate this dependency the transformed variate

= arc sin (/Pjj) should be analysed.

Bliss (1938) seems to have been the first to publish

this transformation, following a suggestion by R.A. Fisher.

With n less than 50, Bartlett (1947) suggested that a zero

proportion should be counted as J_ before transforming to
4n

angles, and a proportion of one to n - Anscombe (1948)
n

suggested using the transformation

a.. + i ,
0- • = arc sin (— ^ --- )2
1J n + 1

for improving the equality of the variance in the angles.

However Cochran (1938) stated that "For percentages 

between 0 and 20 the variance increases roughly as the mean so 

that a square root transformation can be used. For percentages 

between 30 and 70, on the other hand, the variance is more or 

less independent of the mean, so that the analysis can be 

performed on the original data without transformation. For 

percentages [p] between 80 and 100, the square root of 

(100 - p) may be used."

Therefore, if the data are continuous the program would 

check with the experimenter if he really means they are 

percentages or proportions. If they are the program would 

check if they are of Clark and Leonard's type (c) or not.

Apart from explaining the above sorts of percentages, 

proportions or counts to the client the program could tackle 

it another way.

The client would be asked if his data are such that
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they cannot take values below a fixed number or above a fixed 

number. Most of the data the program is likely to be 

concerned with will be bounded below’ by zero, e.g. yields or 

counts. If, however, the data are bounded above in the same 

way as percentages and proportions, for example, then the data 

will not be normally distributed. A difficulty with this 

approach however, is explaining the nature of the upper bound 

to the client. An upper hound to most types of data could be 

stated. For example, no crop of wheat has yielded more than 

100 tons per acre. However, such crop yields are often 

analysed as if they were normally distributed. The type of 

upper bound that causes difficulty is the sharp cut-off as 

in the case of a percentage or proportion.

Consider now the situation inhere a paired design is used. 

If the experimental units are paired then the analysis of the 

data is not as described above. Noŵ  the data are expressed 

as a two-way table as follows,

1 0 Total

1

Y 1
Z11 710 Z1

0 Z01 zoo N- Z]_

Total Z2 N - z 2 N

where 1 represents success and 0 failure, N is the total 

number of pairs in the experiment and is the number of 

pairs w’ith response i for treatment 1 and j for treatment 2.

Miettinen (1968) considered the power and sample size 

of such experiments in terms of asymptotic theory. In his 

approach it is assumed the pairing is based on some matching
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variate M which may be multidimensional. The k^h pair show 

some realization m^ for M. The probability of a success is 

then = pi(M) for treatment i. The values observed in the 

k^h pair are y ^  and and these are taken as observations 

on the response vector (Yp , where Y. = 0 or 1, i = 1, 2.

The object of the statistical inference is

« = 0! - e2,

where Oj = E O p  = E ^ / M )  - E ^ C M ) ]  = EfP^, i = 1, 2.

The null hypothesis is Hq : 6 = 0. A large sample test can 

be based on *

T = £ 1 0

(210
and referring

its value to a table of the standard normal distribution. This 

statistic is the square root of the customary McNemar (1947) 

statistic, without the correction for non-continuity.

The way this test is set up implies the effective sample 

size is s = Zq  ̂ + z^q , the observed number of pairs with 

discordant responses. It is a realization of the random 

variable S = ZQ1 + Z1Q. The asymptotic distribution of (T/s) 

is normal with expectation 

s20 io ~ x01)

(X10 + W

and variance

4X01X10

(xio + xo p 2

where the X's are the parameters of the quadrinomial distribution 

of (YpY^. The quantity X1Q - XQ1 can be shown to equal 6. 

Furthermore, letting T = X01 + X1Q, it can be shown that the 

asymptotic power function for a one-sided test is
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n(<$/s) = $

-u ? + s2!a 1
( ¥ 2 - 6 2)«1T~2

where ® denotes the distribution function of a standard 

normal variate and ua is the 100(1 - a) percentile of the 

standard normal distribution. A similar expression can be 

given for the two-sided test.

However, the power unconditional on s is required in order 

that the sample size can be determined before the experiment and 

Miettinen (1968) gives approximations to this unconditional 

power function. Given a, 6 and an estimate of ¥, the sample 

size required to achieve a power of 1 - 8 in the case of the 

one-sided test is

N = Tu ¥ + u0 (¥2 - 62)h2/ys2.• a p

Miettinen adds that, as far as the two-sided test is concerned,

in most practical situations a and 0 are small enough to make

the size of any second terms in his approximation negligible,

and the two-sided case can be treated using the above formula

with u replaced by u .
7

A difficulty with using Miettinen's results is that a 

value of ¥ needs to be specified. However, Miettinen shows 

that

¥ = ei + e2 - 29102 - 2Cov(P1, P2).

In practice, it is usual to assume Cov(P^, P2)  ̂0 i.e.

¥ < e1 + e2 - 2e1e2.

Further, it can be shown that

! 6 1 < ¥ < 0 1  + 0 2 -  2 0 ], 0 2 .

Therefore, to use this approach some estimates of 0^ and 02 

are needed.

Tamhane (1980) took a different approach and considered
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the situation where the client wants an experiment which 

guarantees that the probability of choosing the treatment 

which has the higher probability of success is P*, whenever 

P[2] “ P[i] = <S ^ 6*, and tt10 + ttq1 = tt < tt*. Here 

P[2] - denote the ordered values of and P^, the 

probabilities of a success, tt̂  is the true probability that 

a paired observation on treatment 1 and treatment 2 , respectively, 

has outcome (i, j), and tt* is an upper limit on tt; 0 < tt* < 1,

0 < 6* < tt* and \ < P* < 1. The client must specify values 

of tt*, 6* and P* in order that the size of the experiment can 

be calculated.

The corresponding treatment of this problem where 

independent samples are compared (i.e. pairing not used) was 

given by Sobel and Huyett (1957).

Therefore depending on the purpose of the experiment, 

suitable questions will have to be devised to obtain the 

information required to use the above formulae.

Having given some insight into the problems that present 

themselves when binary data are to be collected in the 

experiment, the situation when another form of discrete data is 

to be collected is now considered.

If the variate to be measured is discrete but not binary 

it may be that it is a count, i.e. a whole number which can 

take any of the integers 0, 1, 2, ..., etc. If this is the 

case the Poisson distribution may be applicable. However, it 

should be noted that although the following remarks are made in 

terms of the Poisson distribution there may be instances in 

practice where a treatment's mean is proportional to or 

approximately proportional to its variance and the data are 

not Poisson distributed.

Cochran (1938) suggested that if the whole numbers are
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likely to be 100 or less then the square root of the numbers 

should be analysed. If, however, the numbers are less than 

10 a half should be added to the numbers before taking 

square roots. If the square root transformation is used then 

the variance of the transformed data is a J. The transformation 

assumes the data are from a Poisson distribution. In this case 

the variance equals the mean. Cochran has suggested that in 

practice variates with large means rarely follow a Poisson 

distribution and consequently a transformation is not usually 

needed. However, if the whole numbers are likely to vary 

over a wide range e.g. 0 to 72,000 then a logarithmic 

transformation is appropriate.

The transformations suggested above can be derived if it 

is known what function relates the variance of the data to 

their mean. Bartlett (1947) showed that if the variance, 

o2, of the data is related to the mean, y, by a function

°x = f 1̂  ’
then for any function of the data, g(x), it is approximately 

true that

If ag 00
is to be a constant c2, say, then

g(vO = 9yc-—Æ 6Ô
For example, in the Poisson distribution,

a2 = y

and so

g 00 = c - §ja.
yÿ

That is, a square root transformation is needed.
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If °x ~ ^  ’ t̂ ien a logarithmic transformation is needed, 

and if a2 = p4, then a reciprocal transformation is needed.X

Hoyle (1973) reviewed the reasons for using transformations 

and has described those that have been found useful.

Therefore, if the program can detect that a particular 

transformation is likely to be needed the client could be 

warned about it. The difficulty that occurs when a 

transformation is required is that to calculate the size of the 

experiment using the formulae given in the previous section the 

variance of the transformed variate and the size of difference 

to be detected on the transformed scale are required. These 

are likely to be difficult to obtain unless the client has 

used a similar transformation in previous analyses. Of course, 

in cases like the Poisson where the variance of the 

transformed variate is known for theoretical reasons some of 

the difficulties can be overcome. Cochran (1938), for example, 

has noted the variance of the transformed data for some of the 

more common transformations. This problem will be considered 

again when continuous data are discussed in the next sub­

section.

One way out of these difficulties is to suggest that the 

client perform some pilot experiments to discover the variance 

of the transformed variate and to estimate the means of the 

treatments on the transformed scale. The pilot experiment 

could be planned to provide, as D.R. Cox (1958, p.167) suggests, 

at least six degrees of freedom for error.

1.6.2 Continuous data

When the client states his data are on a continuous 

variate the assumptions (i) and (ii) may be more difficult to 

check. For example, there were some clear instances when the 

variance of a discrete variate was related to its mean, and
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direct questions on the relationship were not needed. When the 

variate is continuous it will again be necessary to determine 

if the mean and variance are related and suitable questions will 

have to be devised. One approach is to ask the client if he 

has analysed similar data before and then to question him on 

these past data. He may be able to state that he suspects the 

variance is related to the mean and might be able to specify 

the approximate or exact form of the relationship. However, 

with only two treatments it may be difficult for the client to 

detect the exact relationship, if any, between the mean and 

variance. The sort of question on his past data that he might 

be able to answer is the following

IS THERE ANY REASON TO SUSPECT THAT THE VARIABILITY OF 

THE DATA ON ONE TREATMENT WAS A LOT LARGER (OR SMALLER)

THAN THE VARIABILITY OF THE DATA ON THE OTHER TREATMENT?

(Y, N OR H)

In reply to H the program could print 

FOR EXAMPLE DID THE SIZE OF VARIABILITY DEPEND ON THE 

SIZE OF THE MEAN OF THE TREATMENT? SOMETIMES AS THE 

SIZE OF THE MEAN INCREASES THE VARIABILITY INCREASES.

WHICH REPLY TO THE ABOVE QUESTION DO YOU WISH 

TO GIVE?

(Y OR N)

If the variance did depend on the mean the client might then 

be asked about the particular form of the relationship. For 

example, he could be asked if the range of the data on a 

treatment varied in proportion to the mean. If it did then as 

Bartlett's (1947) procedure indicates a logarithmic transformation 

is appropriate. If the range was proportional to the square of 

the mean then a reciprocal transformation would be appropriate. 

However, even if the nature of the transformation could be
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determined it is still necessary to check that such a 

transformation could be applied. For example, although the 

client's replies indicate a square root transformation is 

necessary it may be that some of the data can take negative 

values. Or a logarithmic transformation seems called for but 

zero data values are possible. Therefore, at some point in 

the program the client should be asked if it is possible for 

his data to take negative or zero values.

The distributions which are such that the mean is related 

to the variance are in general skewed distributions. That is, 

the frequency distribution of the observations is not 

symmetrical about the mean, but has a long tail either to the 

right or left. As well as questioning the client about the 

probable size of the variance of each treatment it is also wise 

to question him on the likely shape of the frequency distribution 

of the measurements on each treatment. Again if past data are 

available he could be questioned on these. If they are not 

available the question could be put to the client, as for 

example, in the following.

CONSIDER THE MEASUREMENTS ON ONLY ONE OF THE TREATMENTS 

FOR A MOMENT. AS YOU KNOW THEY WILL EXHIBIT SOME DEGREE 

OF VARIABILITY ABOUT THEIR MEAN VALUE. IS THERE ANY 

REASON TO EXPECT THAT THE MEASUREMENTS WILL NOT BE 

DISTRIBUTED SYMMETRICALLY ABOUT THEIR MEAN?

(Y, N OR H)

In reply to H the program could print 

FOR EXAMPLE, THE MEASUREMENTS COULD BE SUCH THAT THERE 

WERE A LOT OF SMALL VALUES BELOW THE MEAN BALANCED BY A 

FEW LARGE VALUES ABOVE THE MEAN, OR VICE VERSA.

WHICH REPLY DO YOU WISH TO GIVE TO H E  ABOVE QUESTION?

(Y OR N)
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If the reply indicated the observations were likely to 

be skewed and it had previously been established that the 

variances were unequal then a transformation of the data, as 

described above will most likely be required. If, however, 

the client replies that the distribution is skewed but variances 

are equal or vice versa then there is some ambiguity as to what 

to suggest. In this situation it is probably best to suggest 

that the client consult a statistician.

The above consideration of what to do if the treatment 

variances are unequal is necessary only if a combined estimate 

of the variance of a treatment is to be used. This would be 

the case if two independent sets of observations were to be 

compared. If, however, a paired comparison design is to be 

used then the variance of the differences between pairs will be 

used in the test of hypothesis. If pairing is used the above 

transformations may not be required. However, it is necessary 

to check that the values of the paired differences satisfy the 

assumptions.

If the client knows enough about the treatments to be 

able to say the variances are likely to be different he may 

have some idea of the size of these variances. If he can give 

these values they can be used to give an upper bound on the 

variance of a paired difference. For example, suppose the 

variance of treatment 1 is and treatment 2 is c?2 then the 

variance of a paired difference, (x^ - x2), say, is

V(x1 - x2) = + a 2 ~ 2Cov(xi> x2  ̂*

The difficulty remaining is to determine Cov(x^, x^). If the 

client can also give a value for the correlation between x^ 

and x? then
L Cov(x^, x2)

Correlation (x^, x2) = 9
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Cov(x̂ , x̂ ) = cx-jCT2 Correlation (x^).

If such information is likely to be difficult to obtain 

then the program could take V(x1 - x2) = cr2 + a2 by default or 

suggest a pilot experiment.

Consider, once again, the problem of calculating the 

size of an unpaired experiment assuming a transformation has 

been suggested. To use formula 1.4.3 given in section 1.4 the 

variance of the transformed data and a value for the size of 

difference to be detected on the transformed scale are 

required. As an example of how this problem may be dealt 

with consider the logarithmic transformation. Here it is 

assumed that after taking logarithms to base e the data on 

each treatment are normally distributed with equal variance a2. 

Assume further that on the transformed scale the mean of 

treatment 1 is y^ and the mean of treatment 2 is y2. The 

untransformed variate will be denoted by x and the transformed 

variate by y. That is y = log^x^ is normally distributed as 

N(y^, a2), if x^ is an observation on treatment i, i = 1, 2.

The distribution of the x variate is log normal. This 

distribution has been described in detail by Aitchison and 

Brown (1966), for example. Assuming this distribution

E(x^) = e ^  + 2° (1.6.1)

and

V(xi) = e2yi + a (ea - 1). (1.6.2)

The quantiles £ of the log noimal distribution are related 
4

to the quantiles v^ of the normal distribution by the 

relationship

K = ey + V .q
Therefore, if the quantiles of the normal distribution of the

i . e .
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y ’s corresponding to a 95°a confidence interval are such that 

-Vq = v1_q then the corresponding quantiles of the distribution 

of the x^’s are e^i °̂ and e^i + .

If the range of treatment i can be specified as the 

difference between two values, i.e. range = Xy - x^, then taking 

a2 as a quarter of the range, the estimate of a is 

S - Cloggy - lo^xp/4.

Further, if the smallest difference to be detected in the 

experiment can also be specified as a difference between 

two mean values, i.e. 6 = m2 - m^ then

êm. 1 phi + l°2

and

m, = e^2 +

Also as

logeC^1) = hi + lo2 
loggOn̂ ) = h2 + l ° Z

then

v2' U1 ’ i ' W  ' logeCml)'

That is, the smallest difference to be detected on the 

transformed scale is

<$’ = loge(m2) - loge (m1).

In the last resort, it is not unreasonable to base the 

calculation of the size of the experiment on estimates of a 
and 6 , if available, that are given in terms of the untransformed 

data. The aim of the transformation is to enable a more precise 

experiment to be performed. Therefore, the worse that can happen 

is that a larger experiment than necessary will be suggested 

by the program.

From the points considered in this and the previous
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section it is clear that the program must obtain information 

from the client on eight main areas.

(1) Whether or not the observations to be taken in the 

experiment can be considered to be normally distributed. 

(Implicit here is the assumption that the observations are 

on a continuous variate.)

(2) If the variance of the observations is the same for each 

treatment.

(3) An estimate of the variance of each treatment.

(4) The size of difference between the means the experiment 

must be capable of detecting.

(5) Whether a one-sided or two-sided hypothesis is to be tested.

(6) The significance level of the test.

(7) The power of the test. •

(8) Whether pairing of the units is possible.

Often in a real consultation the human consultant is able 

to take for granted the answers to some of the above questions 

because he is familiar with the client's work. The computer 

however can assume nothing and must ask questions on every 

point before it can make an unambiguous decision. It is clear 

from what has been said previously that the fact the sort of 

questions that must be asked have been identified does not 

mean it is necessarily a simple matter to incorporate them into 

an interactive computer program. If the user of the program 

is a statistically informed experimenter then most probably a 

set of direct questions to determine (1) to (8) above are all 

that will be required. However, the statistical layman will 

not understand such direct questions. He will require 

additional explanation of unfamiliar words or phrases and 

illustrative examples to help illuminate difficult points. It 

is in the writing of a program for the layman that most problems



- 63 -
arise. A strategy for obtaining the information in an indirect 

manner must be devised. At the time of writing the program all 

the necessary questions must be thought of and be such that 

they cover all eventualities. The program must be written in 

a way that ensures that the answer from one question leads 

naturally on to the next. The order of asking the questions 

is very important. A sensible order of obtaining the 

information specified in (1) to (8) above is as follows.

It is first explained that the experimental units will 

exhibit some degree of variability and this will be reflected 

in the observations on each treatment. Having introduced the 

idea of variability the client is asked if it is possible to 

pair the units so that the units in a pair are more similar to 

one another than they are to the units as a whole. If pairing 

is possible this is noted. Whether or not the observations 

can be considered as continuous or discrete for the purposes 

of the analysis is decided next. One way of doing this is to 

ask what range of values is expected for one of the treatments 

and then to ask to what degree of accuracy the data will be 

recorded, e.g. to the nearest 10 units of measurement, 1 unit, 

unit. If only a relatively small number of values is 

possible the data would be considered as discrete and the program 

may have to state that it cannot advise on such an experiment.

For the purposes of the analysis discrete data like counts may 

be considered as continuous. If the data are counts the 

Poisson distribution may apply and the square roots of the 

observations should be analysed. If the observations are from 

a Binomial distribution a normal approximation may be appropriate. 

Whether or not the data can take zero or negative values is 

determined next. Such information may prove useful later in the

program.
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Still on the subject of variability the client is asked 

if the degree of variability is the same for each treatment.

If it is not the program takes a special route described below. 

If it is then it is explained to the client that it is essential 

to have a numerical value for the degree of variability. If 

similar experiments have been done in the past there is the 

possibility that the variance of the past data is likely to be 

a good estimate of the variance of the data about to be 

obtained. Asking for such information will of course involve 

explaining the meaning of a variance to the layman. If the 

client is unlikely to understand such an explanation he could 

at least be given instructions on how to calculate it and to 

return to the program with his calculated value. If pairing was 

used in the past experiment and it is to be used in the new 

experiment then an estimate of the difference of the paired 

observations may be available. If an estimate of any of these 

variances is not forthcoming the value of the range of each 

treatment, if available, can be used to provide an estimate of 

the standard deviation. Information on the range may have 

already been obtained in the earlier questions to determine if 

the observations are discrete or continuous. The client may 

be more familiar with expressing variability as a coefficient 

of variation. If he is then questions to obtain an estimate of 

it must be included. If all else fails the client can be 

advised to perform a pilot experiment to estimate the required 

variance.

If the data on each treatment are normally distributed 

the frequency distribution of the data should not be markedly 

skew. The client is asked if he thinks extremely small or 

extremely large data values are equally likely to occur. If 

they are not then this could be taken as evidence of skewness.
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If the data are such that the treatment variances are likely 

to be equal, skewness seems unlikely and the data can be 

considered as continuous then the program is unlikely to be far 

wrong if it assumes the data are normally distributed.

If the treatment variances are unequal and extreme 

skewness seems likely it could be that the variance is related 

to the mean of each treatment. If it is and the relationship 

can be determined then a transformation may eliminate the 

dependency of the variance on the mean. For example, if the 

variance is proportional to the mean a square root 

transformation is called for. An estimate of the variance of 

the square rooted data would then be required. If however the 

client had stated in an earlier reply that the data can take 

negative values a square root transformation cannot be applied 

and the computer is unable to continue. The advice of the 

human consultant must be sought to clear up this apparent 

contradiction. Similarly if a logarithmic transformation seemed 

appropriate and many zero data values are possible then this 

transformation is inappropriate. If pairing of experimental 

units is possible then the heterogeneity of variance can be 

overcome by analysing the differences between the paired 

observations. An estimate of the variance of these paired 

differences would then be required, and this may be difficult 

to obtain without performing a pilot experiment.

Having obtained an estimate of the variance in some form 

the client is asked what size of difference between the treatment 

means it is essential for the experiment to detect. Again the 

client would be advised that the program cannot continue 

without such a value. If the data are to be transformed an 

estimate of the difference on the transformed scale is required. 

The way of expressing the difference must be tire same as that



-  66 -

used to express the variance. For example, if a coefficient 

of variation has been given the size of difference must be 

expressed as a proportion or percentage of the mean. Once 

the size of difference to be detected is decided upon the 

client is asked if he wants to test a one-sided or two-sided 

hypothesis, with suitable explanations of these terms being 

provided.

Next the client is asked what significance level is 

required. The significance level will probably be an unfamiliar 

concept and so must be explained to the client. This will 

involve explaining the type I error. If the client is unable 

to decide on a significance level then default values of 51 

or 1% can be taken.

Following on from this is a question on the size of 

power of the hypothesis test. It is highly likely that the 

client will not understand this concept and so a full 

explanation must be given. Again default values can be taken 

if all else fails.

Having obtained the necessary information the computer 

calculates the size of the experiment. If this is too large 

then, if the experiment is to be undertaken at all, the client 

will have to limit his objectives. A dialogue can then take 

place in which various modifications can be tried. For 

example, planning to detect a larger difference than was first 

suggested, reducing the significance level from 1°6 to 5%, 

reducing the power and considering whether the estimates of 

the variance are realistic. A useful outcome of the consultation 

could be that the client is being too ambitious and needs to

limit his aims.
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1.7 Computer programming difficulties

The only way the suggestions made in the previous 

sections can be put to a realistic test is if a computer 

program is written and used by experimenters. With this 

aim in mind a program based on some of the more easily 

programmable suggestions made in the previous sections was 

written for the ICL 4130 computer. This was the computer 

possessed by the University of Kent at the time the work 

described in this chapter was begun. At that time the only 

interactive computing language was BASIC, and this only 

existed in a limited form suitable for teaching purposes. With 

such limited resources the writing of a suitable program was 

made more difficult. The main problem was the limited resources 

of the computer which permitted only small BASIC programs to be 

held in core at one time. The interactive program that was 

written was too large and so two ways were used to enable it 

to run. The first way was to divide the program into small 

sections with information obtained in one section being passed 

onto the next. One section is held in core at a time and this 

is overwritten by the next section as the client moves through 

the program. The second way was to keep all the text that is 

printed by the program stored on a separate disc file. Each 

separate question, help statement and other pieces of text were 

each given a label and stored on the disc in the order they 

were to be printed. Stored directly beneath each piece of text 

was a list of labels which indicated the next piece of text to 

print depending on the client's reply. For example, the 

following piece of text might have label N on the disc file. 

Beneath it are three labels (P, Q, R).

N) IS THE UNDERLYING NATURE OF THE VARIATE YOU ARE 

ABOUT TO MEASURE IN THE EXPERIMENT
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1) DISCRETE 

OR

2) CONTINUOUS?

(1, 2 OR H)

P, Q, R

If the user’s reply is 1 then the text labelled as P is 

printed next, if the reply is 2 then the text labelled as Q is 

printed next, etc. The program moves to the appropriate place 

on the disc file and prints the text.

A brief summary of this and the previous sections was 

given by Jones (1980a).

1.8 Some extra difficulties when more than two treatments

are to be compared

In this section some of the difficulties peculiar to the 

situation where more than two treatments are to be compared are 

noted. Such things as checking the assumptions of normality, 

equality of variance and independence will be essentially the 

same and therefore will not be considered further. The major 

difference comes from the possibility of structure among the 

treatments, i.e. there may be a choice of treatment contrasts 

to be tested and it may be that not all contrasts are of equal 

importance. For example, in an experiment to compare four 

treatments, one might be a standard and the other three new 

varieties. The aim of the experiment being to decide if any 

or all of the new varieties are superior to the standard. The 

contrasts among the new varieties would be of no interest. In 

a different experiment the four treatments might be the four 

treatment combinations of a 2 * 2 factorial experiment. The 

contrasts of interest will then be the main effects and 

interactions. It could be that the client requires more 

precise estimates of the main effects than of the interaction.
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An experimental design that satisfies this objective will then 

be required. It is also possible that the client knows about 

the main effects and only wants information on the interaction.

Therefore, it is essential that the computer program 

enquires about the treatment structure, the treatment contrasts 

of interest, and the relative importance of these contrasts.

If treatments are to be compared in a factorial set it 

may be necessary to enquire about the likely size and 

importance of high order interactions, in case confounding 

and or fractional replication are needed.

The problem of getting the computer to provide 

experimental designs, optimal for the client's requirements 

must also be considered. The client's experimental material 

may not fit neatly into the "text-book" set of block sizes, 

nor will the treatments necessarily be equally replicated.

At the inception of this research programme, computer 

algorithms for constructing optimal designs, that were of a 

sufficiently general nature for use in an interactive computer 

program such as that envisaged here, did not exist. Therefore, 

the rest of the chapters in this thesis are devoted to the 

development of such algorithms. Of course, such algorithms 

are useful in their own right, and not only as a useful 

addition to an interactive program. They are useful aids to 

the experienced statistician as well as the statistically 

informed experimenter. They represent yet another way in which 

computers can assist in the design of comparative experiments.

Therefore, before leaving the study of the difficulties 

involved in writing an interactive computer program that 

gives advice on the design of a comparative experiment, some 

general conclusions are drawn in the next section.
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1.9 Some general conclusions

1) There are certain qualities possessed by the human consultant 

that make it difficult to transfer his skills to a computer 

program. Not the least of these are his experience, 

versatility and ability to "talk around" the proposed 

experiment.

2) The good consultant is able to modify his approach to 

satisfy the needs of clients with quite different levels of 

knowledge about statistics. A computer program intended to 

be used by a wide variety of clients is likely, however, to 

be large and unmanageable. The clients that can be most 

easily catered for in a computer program are those with

no knowledge of statistics and those who are expert in 

statistics.

3) The types of experiment that can be most easily advised 

upon by a computer program are those that are so familiar 

and well defined that it is not difficult to decide in 

advance what information must be obtained by the program.

4) A major aspect of writing the program is to divide up the 

total amount of information required to design the 

experiment into smaller parts that can be structured in 

an ordered sequence.

5) The way the questions are phrased is very important. It is 

essential that they be easily understood, unambiguous, and 

if possible, short and to the point. It will be necessary 

for the client to have the option of obtaining extra text 

to help answer some of the more difficult questions.

6) Having broken down the total amount of information required 

as described in 4) and devised suitable questions as 

described in 5), it is important that the order of asking 

the questions be such that there is a natural flow through
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the program. The answer from one question should lead 

naturally on to the next.

7) The most important questions such as those on the choice 

of treatments, experimental units, type of measurement to 

take, and choice of experimental site are likely to be 

too difficult to incorporate into a computer program. It 

will have to be assumed that these questions have been 

answered before the client uses the computer program.

8) Even for relatively simple experiments, quite a large 

number of questions and related pieces of text may have 

to be printed by the program. Efficient computer 

programming techniques will therefore be required to store 

and print this text.

9) The size of the program is likely to increase considerably 

when it is enlarged to cater for more complicated 

experimental situations.

10) When more than two treatments are to be compared, computer 

algorithms that search for designs that are optimal for 

the client’s requirements will be required.

The remainder of this thesis, as mentioned earlier, is 

devoted to the development of computer algorithms that search 

for optimal designs. These algorithms are developed for use in 

their own right, and not specifically for use in an interactive 

computer program such as that considered in this chapter.
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Chapter 2. Construction of optimal block designs

2.1 Introduction

The final aim of the interactive computer program described 

in the previous chapter is to present the user with a design that 

is best suited to his requirements. The concept of an optimal 

design is therefore a natural one to consider in this context, but 

this presents the problem of what is meant by optimality. In 

this chapter the different criteria in the literature are reviewed 

and a new approach is described. This new approach is particularly 

suited to the needs of an experimenter who requires a block design 

for studying certain contrasts among the treatments.

The review begins by looking at the theory of optimal 

designs for the general linear model and then concentrates on 

the theory for block designs.

2.2 Optimality criteria for the general linear model 

The general linear model may be defined as

EQO = XB, (2.2.1)

where Y’ is the vector of n data (y-̂ , y2, ..., yn), assumed to 

be normally distributed randan variables with variance a2, X is 

a n x p  design matrix of elements (x — ), and B is a vector of 

P unknown parameters (Bp 62» •••» £p)*

The normal equations for the least squares estimate of B 

are then

X'XB = X'Y . (2.2.2)

The power of the F-test for the analysis of variance of the 

hypothesis that all elements of B are zero depends only on the 

non-centrality parameter y, where

y = (B'X’XB)/2a2 . (2.2.3)

As y increases the power of the F-test increases and therefore 

by an appropriate choice of the values of x —  the power can be
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maximized. Also, if X has full rank, the same minimize 

the variance of g which is a2(X'X) .

However, for p >1 it is not possible to maximize y for 

all values of g and Wald (1943) suggested as a compromise to 

maximize the minimum value of y subject to g'g = 1. This is 

equivalent to maximizing the minimum eigenvalue of X'X. However, 

for certain mathematical simplifications Wald further proposed 

that the product of the non-zero eigenvalues of X'X should be 

maximized. If X has full rank this is equivalent to the 

maximization of the determinant of X'X. This criterion, 

which is known as D (for determinant) - optimality has been 

investigated in detail in regression situations. The former 

criterion is known as E-optimality and has been investigated 

further by Ehrenfeld (1955). He showed that when X has full 

rank the E-optimal design minimizes the variance of any linear 

combination of the parameters g^, B2, ..., Bp, scaled so that the 

sum of squared coefficients is unity.

Kiefer (1958) considered the properties of a number of 

optimality criteria, including D- and E-optimality, in terms of 

the power function of a test of hypothesis.

Moriguti (1954) considered the design that minimizes the 

maximum variance of the unbiased linear estimates of g as optimal.

Elfving (1952) and Chernoff (1953) minimized the trace of 

(X'X) \  where X has full rank, to obtain optimal regression designs. 

That is, they minimized the average variance of the parameters 

gp, $2» ..., Bp. Box and Draper (1971) considered the D-optimality 

of factorial designs.

Kiefer (1959, 1961a, 1961b, 1962) and Kiefer and Wolfowitz 

(1959, 1960) considered a design as a mass distribution of points 

over a general space equivalent to a probability measure. In this
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approach the linear model (2.2.1) is redefined as

E(yi) = 6 ’£(xi), (2-2.4)

where the variables y^, i = 1, 2, ..., n, are as before, each y^ 

corresponding to a value x^ of the independent variable, and 

f'(x) = [fjCx), f2(x), ..., fp (x)] is a vector of functions 

evaluated at x.

It is further assumed that the functions f(x) are 

linearly independent on the space x of x, which is continuous 

in a topology in which x is compact, and usually x will be 

a closed compact set in a Euclidean space of a particular 

dimension.

An exact or discrete design d is then a choice of n 

points x^, X2* ..., xn in x*

Using the model (2.2.4), let £¿00 be the proportion 

of points X p  i=l, 2, ...» n, which are equal to x in the 

design d. Then £¿00 may be regarded as a probability 

measure on x* For any probability measure £ on x define

f± (x) f - (x)£(dx), 
.X

(2.2.5)

and let M(£) be the matrix of elements m — . The information 

matrix of the design is then

Ad =nM(£d). (2.2.6)

In this setting a discrete design is a probability measure 

which takes only integer multiples of ^n.

The main difficulties associated with discrete designs 

are that they often exhibit a fine structural dependence 

on n, necessitating a lengthy table of optimum designs for a 

given problem, and that their construction often presents 

a difficult combinatorial problem admitting no simple method

of solution.
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Therefore, to overcome these problems the concept of 

a continuous or approximate design has been developed.

This development is again contained in the works of Kiefer 

and of Kiefer and Wolfowitz, referred to earlier.

To obtain continuous designs it is assumed that there 

is an optimality criterion which maximizes some function Q 

of the information matrix and that there exists a 

probability measure Z* which maximizes Q[M(£)] over all 

probability measures Z on x* It will be recalled that in 

the discrete theory Z only takes on integer multiples of 

■^n. The main advantages of continuous designs are that 

they are independent of n and are optimal to within order 

■^n. Also they can yield designs that are discrete for 

many n.

In this setting a design is D-optimal if

det[M(£*)] = sup det [M(£)3, (2.2.7)
Z

where detCM] is the determinant of M.

Kiefer and Wolfowitz investigated the equivalence of

several types of optimality. Defining

d(x, 0  = f'(x)M_1 (?)f(x), (2.2.8)

i.e. d(x,£) is the variance function obtained using the

model (2.2.4), Kiefer and Wolfowitz (1960), showed that the

D-optimality of Z* as defined in (2.2.7) is equivalent to

inf sup d(x,£) = sup d(x,£*) (2.2.9)
Z x x

and also to

sup d(x,£*) = p (2.2.10)
x

where p is the dimension of f(x).
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The equivalence of (2.2.7), (2.2.9) and (2.2.10) is 

referred to as the General Equivalence Theorem. The criterion 

(2.2.9) is known as G-optimality, and if x is a compact 

space on which the functions f^ are linearly independent, 

then for continuous £* a design is D-optimal for 6 if and 

only if it is G-optimal.

Kiefer (1961a) gave a generalization of the General 

Equivalence Theorem for deriving D-optimal designs for a 

subset s(<p) of the parameters (Bp •••» Bp).

White (1973) considered the D-optimality of non­

linear models and gave a result analogous to the General 

Equivalence Theorem.

Wynn (1970) considered the sequential generation of 

of D-optimal designs and later (Wynn,1972) showed that 

designs that are D-optimal for a given subset s of the 

parameters (Bp •••» Bp) can be generated sequentially. 

Dykstra (1971) also considered the sequential generation of 

D-optimal designs.

Kiefer (1974) gave further equivalence results between 

D-optimality and other criteria.

A geometric approach to D-optimality was given by 

Silvey and Titterington (1973). In this approach a unified 

treatment of the General Equivalence Theorem is given in 

the form of duality theorems established by means of Strong 

Lagrangian Theory.

Consideration of the optimal properties of regression 

experiments can be traced back to Smith (1918), who 

determined the G-optimal designs for polynomials of order 

p<6. Guest (1958) characterized the G-optimum design for 

polynomials of arbitrary order p in terms of the zeros of
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the derivative of the Legendre polynomial. Hoel (1958) 

computed the D-optimal design for the polynomial and noted 

that the D-optimal design coincided with Guest's G-optimal 

design.

The book by Fedorov (1972) contains much of the work 

done by the author on continuous and discrete designs.

A review of the theory of D-optimality when applied 

to regression situations was given by St. John and Draper 

(1975a), and St. John and Draper (1975b) reviewed the 

application of D-optimality to regression experiments with 

mixtures.

More recently, Herzberg and Andrews (1975) have 

considered the effect of missing observations on D-optimal 

and G-optimal designs for simple regression situations, and 

Tsay (1976) has given a general procedure for the construction 

of D-optimal designs, which includes Wynn's procedure as a 

special case.

Published algorithms are mainly for the construction 

of continuous D-optimal designs for regression experiments. 

These designs are of interest primarily because the D-optimal 

continuous design provides a reference against which the 

discrete designs can be evaluated and often the continuous 

design corresponds to a discrete design.

Kiefer and Wolfowitz (1959) suggested a game theoretic 

approach to constructing designs and Kiefer (1961a, 1961b) 

gave examples of constructing D-optimal designs, but his 

methods did not lead to a general algorithm. Fedorov (1969a, 

1969b, 1972) and Fedorov and Dubova (1968) seem to have been 

the first to develop a general algorithm for obtaining 

D-optimal designs.

Wynn (1970) proved the convergence of an algorithm
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similar to that of Fedorov (1972) and Dykstra (1971). Hebble 

and Mitchell (1972) and Covey-Crump and Silvey (1970) 

suggested algorithms similar to that of Wynn but did not 

give convergence proofs.

Atwood (1973) offered some improvements to Fedorov's 

algorithm and St. John (1973) modified one of Atwood's 

suggestions. Silvey and Titterington (1973) outlined an 

algorithm for obtaining a D-optimal design measure on the 

space spanned by the response function specified by (2.2.4).

Wynn extended his algorithm for constructing D-optimal 

designs for a subset s<p parameters. Further refinements of 

this algorithm were given by Wynn (1973).

Despite the algorithms given above, D-optimality is 

not always an easy criterion to implement and Nalimov et al. 

(1970) and Box and Draper (1971) pointed out that creating 

a discrete design from the probability measure may require 

an extremely large number of points.

One approach to this difficulty is to consider the 

size n, of the experiment, as fixed beforehand, and to 

maximize the determinant of nM[£(n)], where this matrix is 

expressed as X'X, and £(n) denotes the discrete design with 

n points. The design that maximizes the determinant of X'X 

(X'X non-singular) is referred to as Dn-optimal.

Several authors obtained D^-optimal designs using 

mathematical programming methods. Designs using this 

approach were given by Box and Draper (1971) , Atkinson (1969), 

Bloom, Pfaffenberger and Kochenberger (1972), Box (1966), 

Hartley and Rudd (1969), Mahoney (1970) and Neuhardt and 

Bradley (1971).

As no General Equivalence Theorem exists for discrete 

designs,the algorithms for obtaining Dn~optimal designs are
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somewhat different from those for obtaining D-optimal designs. 

The first algorithm for constructing Dn~optimal designs was 

given by Fedorov (1969b, 1972) and Van Schalkwyk (1971).

The second was given by Wynn (1972) and Mitchell and Miller 

(1970). Mitchell (1974) proposed a variation on this latter 

algorithm.

The main disadvantage of these algorithms for 

obtaining Dn~optimal designs is that there is no guarantee 

that they will converge to the true optimum. Often they 

converge to local optima and to overcome this Mitchell (1973) 

suggested using a number of different starting points, 

sometimes as many as fifty.

2.3 Optimality of block designs

In order to consider the optimality of block designs 

it is necessary to introduce some notation. It will be 

assumed that the data from a block experiment can be 

expressed as

y = la + D'B + A'y + n, (2.3.1)

where y is a column vector of n data; 1 is a column vector 

with unit elements; D' is an n*b design matrix for blocks, 

b being the number of blocks, and A' is an n*v design matrix 

for treatments, v being the number of treatments; also a is a 

general parameter, 6 a vector of block parameters, y a vector 

of treatment parameters and n a vector of n uncorrelated 

residuals distributed about zero with variance a2.

If G, B, and T represent the grand total of the data, 

the vector of block totals and the vector of treatment totals 

respectively, the least squares normal equations for 

estimating the parameters are

G = l'y = n& + r'y (2.3.2)
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B = Dy = ka + k6B + N'y (2.3.3)

T = Ay = ra + N§ + r^y (2.3.4)

where a, B and y are the least squares estimates of a, B and 

y respectively, and N = AD' is the incidence matrix.

By writing

Q = T - Nk~6B (2.3.5)

we have

Q = (r6 - Nk“6N')y, (2.3.6)

that is

Q = Cy (2.3.7)

The matrix C is singular however, and so either a 

generalized inverse C is used to give 

Y = C"Q,

or constraints on the treatment parameters are imposed.

On the assumption that C had only one zero eigenvalue, 

Tocher (1952) applied the constraint r'y = 0 and wrote 

equation (2.3.6) as

Q = (r^ - Nk ^N' + rr'/n)y.

He wrote ft  ̂= r^ - Nk ^N' + rr'/ii (2.3.8)
A

and y = ftQ.

The matrix ft is one possible generalized inverse. 

Another can be obtained from the eigensystem of C. Writing 

the non-zero eigenvalues of C as X p  ...» and the 

corresponding eigenvectors as u^, u2, ..., uv_-̂ a second

generalized inverse is
+ v_1l

c = I t  uiu - •
i=lAi~1*'1

The coefficients matrix C has played an important 

part in the development of criteria for block designs, 

particularly incomplete block designs. That is where all 

kj = k<v, j = 1, 2, ..., b.
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Kempthome (1956), showed that when all r^ = r, 

i = 1, 2, v, the efficiency factor of a design is r

times the harmonic mean of the non-zero eigenvalues of C. 

Here the efficiency factor is the ratio of (a) the mean 

variance of simple treatment differences in a complete block 

design to (b) the mean variance of the intrablock estimates 

of simple treatment differences in the incomplete block 

design. The optimum design suggested by this approach would 

be the one that maximizes the harmonic mean just defined.

Masuyama (1957, 1958) suggested minimizing trace 

(C2), subject to trace (C) being constant, and showed that 

the balanced incomplete block design was optimal.

Kshirsagar (1958) considered the same problem as 

Kempthome (1956) but expressed his results in terms of the 

average variance of v-1 orthogonal normalized treatment 

contrasts. He showed that the generalised variance of these 

contrasts is proportional to the geometric mean of the 

non-zero eigenvalues of C. He further proved that the 

balanced incomplete block design, if it exists, optimizes 

both of these means.

Ktote (1958) showed that the balanced incomplete 

block design maximizes the minimum non-zero eigenvalue of 

C.

Kiefer (1958) showed that the design which maximizes 

trace (C) has all diagonal elements of C equal and is A-, D- 

and E-optimal.

Shah (1960) reviewed the above criteria. The three
v-1

criteria are (a) minimize £ A.\ (b) minimize E l 1
i=l 1 i=l 1 ’

(c) maximize (minimum A^). Shah noted that the balanced 

incomplete block design, if it exists, is optimal on all 

these criteria, and that Kempthome's and Kshirsagar's

v-1 -1
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results were valid for the case of unequal replications.

As Shah pointed out, if a balanced incomplete block design

does not exist, the criteria given above need not agree on

the optimal design. Further, as all the non-zero eigenvalues

are equal for a balanced incomplete block design he suggested
v-1 v-1

the criterion (d) minimize £ (A. - X)2/v-l, with £ A-
i-1 1 i=l

Constant. That is, among designs of a given size, minimize

Eccleston and Hedayat (1974) following on from the 

work of Shah (1960) suggested choosing the design as optimal 

by (i) forming a class of designs which maximize trace (C) 

and then (ii) selecting from this class the design which 

minimizes trace (C2). They refer to this criterion as 

(M,S)-optimality. Although they allow different treatment 

replications they remark that the (M,S)-optimality of designs 

with unequal block sizes remains unsolved.

More recently, Mitchell and John (1976) considered

optimality criteria for incomplete block designs, based on

the eigenvalues of

1 = C + r2J,
~ B P

where r- = r is the replication of treatment i; i=l, 2, ..., v; 

kj = k is the size of block j; j = 1, 2, ..., b; and J is a 

v * v matrix of ones.

The three criteria considered by Mitchell and John (1976)

were

(i) Maximize the product of the eigenvalues of fi , i.e. 

D-optimality.

(ii) Maximize the harmonic mean of the eigenvalues of ii \  

i.e. A-optimality.

(iii) Maximize the smallest eigenvalue of fì i.e. E-optimality.
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It is important to note that in all the above 

considerations of optimality the block sizes are kept equal, 

the replications are sometimes kept equal and, most 

importantly of all, the criteria assume an equal interest in 

all possible comparisons among the treatments.

Few algorithms for constructing optimal block designs 

have appeared in the literature. Mitchell (1974) used his 

algorithm DEIMAX to search for small D-optimal incomplete 

block designs. Mitchell and John (1976) mention a computer 

program they used to search for "regular graph" designs that 

optimize the criteria (i) - (iii) given above. Regular graph 

designs are either in balanced incomplete blocks or are such 

that every pair of treatments occurs in a^ or blocks, 

where a^ = a^ + 1. John and Turner (1977) describe an 

application of a computer program that searches for the incidence 

matrix of an incomplete block design, given the matrix of 

treatment concurrences.

As already mentioned, all the criteria considered so far 

assume an equal interest in all treatment contrasts. Pearce 

(1975a) remarked that it is more usual for an experimenter to 

be interested in a particular set of treatment contrasts and to 

require a design that estimates these contrasts as efficiently 

as possible. He therefore considered certain "basic" 

contrasts, previously put forward by Calihski (1971), and 

suggested choosing as optimal the design that maximizes 

particular weighted functions of the efficiency factors of 

these contrasts. It is assumed that the i^ 1 basic contrast 

has been assigned a weight (0<u)̂ <l) and has an efficiency 

factor e^(0<£^<l). He proposed three criteria:

(a) Maximize the arithmetic mean of the efficiency

factors.
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(b) Maximize the harmonic mean of the efficiency 

factors.

(c) Maximize the geometric mean of the efficiency 

factors.

Both (a) and (b) are easily generalized to deal with weighted 

efficiency factors but Pearce (1975a) preferred the weighted 

arithmetic mean because then an efficiency factor could take 

the value zero without calling for a modification of the 

criterion.

Although weighting of contrasts was considered by Pearce 

(1975a), the contrasts of interest had to be "basic".

If weighting is required then criterion (c) cannot be 

used because the weights get merged. The choice between (a) 

and (b) depends on how contrasts that get confounded are to be 

treated. If a contrast is totally confounded then its efficiency 

factor is zero. If criterion (a) is used and a contrast of 

interest is confounded then the value of the criterion can 

still be calculated. The only effect is that its value is - 

reduced by the confounding. If criterion (b) is used however, 

and a contrast of interest is confounded the criterion takes 

an infinite value and the corresponding design must be 

withdrawn from consideration. A design which confounds a 

contrast with a low weighting might still be preferred under 

criterion (a) because the efficiencies of the other contrasts 

are high. Criterion (b) however does not admit this possibility.

It is clear therefore that before the work described in 

this chapter was begun there was no criterion available that 

could be used to choose a design that satisfied the following 

requirements:

(a) block sizes chosen by the experimenter (not 

necessarily all equal)
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(b) certain contrasts to be estimated as efficiently as 

possible (not necessarily an orthogonal set).

(c) contrast weights can be specified that indicate 

which contrasts are the more important

Further, an algorithm that searched for designs that satisfy 

the above was needed.

A new criterion was therefore proposed by the present 

author. While it was being evaluated however, Freeman (1976) 

independently described the same one. However, Freeman did not 

describe any algorithm to obtain optimal designs, but only 

illustrated how the criterion could be used to decide among a set 

of competing designs.

The criterion and an algorithm that searches for designs 

that optimize it are described in the next section.

2.4 An algorithm for deriving optimal block designs

In Section 2.3 it was noted that one possible generalized 

inverse of the matrix C was ft as defined in equation (2.3.8).
For calculating the variances of unconfounded contrasts it can be

shown that the variance-covariance matrix of the estimates y is

V(y) = £to2.

If a set of treatment contrasts are specified and held 

columnwise in a matrix L then 

V(L'y) = L'ftLa2.

A sensible criterion for discriminating between designs is to 

choose the design that minimizes the sum of the weighted 

variances of the contrasts. That is, if w is a diagonal

matrix of contrast weights, the criterion is
6Minimize trace (L'ftLw ). (2.4.1)

The aim here is to obtain a design in which the most important 

contrasts are estimated with the highest precision.

Weighting is necessary because, as Pearce (1975a) pointed
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out, any criterion that regards all treatment contrasts as 

equally important must give equal status to all treatments and 

therefore will evolve a design in which their replications are 

as nearly equal as possible and their concurrences also.

The differences between this criterion and that suggested 

by Pearce (1975a) are that Pearce's contrasts are what he termed 

'basic'. Here the contrasts L, are not necessarily 'basic' or 

orthogonal,although orthogonal contrasts are usually specified as 

they lead to a full partitioning of the treatments sum of squares. 

Further, working with the weighted mean of the efficiencies as 

suggested by Pearce means that if a contrast of interest is 

confounded with blocks then the efficiency of the contrast is 

zero and Pearce's criterion can still be calculated. The 

variance of the confounded contrast however would be infinite 

and the criteria also.

It could be argued that it would be simpler to consider 

criteria based on ft  ̂and to avoid the matrix inversion.

However, as the direct inversion of SI-1 can be avoided and only 

connected designs are considered in this chapter, only criteria 

based on £7 will be considered in the following.

To use the criterion given in equation (2.4.1) however,

the matrix ft  ̂must be inverted. Fortunately, the direct

inversion of this matrix can be avoided by using an iterative

formula given by Califiski (1971) and developed by Pearce,

Califiski and Marshall (1974) as
00

ft = r"6 - l (11'/n - (r"6Nk"6N')hr_(S), (2.4.2)
~ ~ h=l ~~ ~ ~~ ~ ~

where ft  ̂ is assumed to be non-singular.

If only connected designs are considered, ft-  ̂will be 

as defined in equation (2.3.8) and equation (2.4.2) can be applied. 

The definition of a connected design adopted here is the one 

given by John (1971, p.233). He considered a block and a treatment
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to be associated if the treatment occurred in the block.

Two treatments A and B are then said to be connected if a

chain of treatments and blocks can be formed as treatment-

block-treatment -block-* • «-treatment beginning with A and

ending with B, such that every block is associated with both

treatments adjacent to it. A design is connected if every

pair of treatments is connected.

The formula (2.4.2) allows ft to be approximated by 
H ~

nH = f 6 -  l  ( l l '/ n  -  (r_6Nk"6N ' ) V 6) , (2.4.3)
- ~ ~ h=l

where H is some finite positive integer.

The criterion (2.4.1) can then be re-defined as

Minimize trace (L’f̂ Lo) ), (2.4.4)

for some pre-determined value of H.

Now that the direct inversion of ft  ̂can be avoided, and

if necessary an approximate inverse can be calculated

using a small value for H, it is convenient to consider using

the criterion given in (2.4.4) in an algorithm to search

for optimal designs. Such an algorithm is given below. The

algorithm requires an initial design and the matrices L and

co to be specified. Improvements to this design are then

searched for by interchanging treatments between blocks.

After the description of the algorithm a method of obtaining

a starting design is given.

The Algorithm

Step 1. Evaluation of the starting design.

Calculate T = trace (L'ft̂ Lcô ) = trace (Lcô L'ft̂ ) for some 

pre-determined value of H. The value of H will be considered 

below.

Step 2. Order the blocks on their degree of non-orthogonality.

Let N.^ be the number of times treatment j occurs in block i,



88 -
the size of block i, and r j the replication of treatment

j. In an orthogonal design N^/k^ is proportional to r^/n.

If the allocation of treatments to blocks in an arbitrary 

design is to be improved by considering blocks individually 

those that should be amended first are those which, on 

aggregate, differ most from the ideal treatment allocation 

given by an orthogonal design. In the present algorithm 

the deviation of a block i from the ideal is measured by

M = I lNii/ki " r-j/n l- 
j=l 1 3

The blocks with the largest values of M are considered first.

Suppose that when ordered in decreasing magnitude of M 

the blocks are b p  b2> ..., b^.

Step 3. Evaluate the effect of interchanging treatments 

between blocks.

For blocks b-̂  and b2 calculate the change in T that would 

occur if treatment i in block b^ was interchanged with treatment 

m in block b2* Repeat this for all possible different 

interchanges of treatments between these blocks. Any interchange 

that would lead to a disconnected design is excluded.

Select that pair of treatments, if any, that when 

interchanged leads to a design that gives the largest reduction 

in T and proceed to Step 4. If there is a tie the first pair 

found are interchanged.

If no interchange causes a reduction in T consider 

blocks b-̂ and b^ and perform the interchanges as above. If 

after all blocks have been paired with b^ and no interchange 

that reduces T has been found then blocks b2 and b^ are 

considered and so on. If w'hen all possible pairs of blocks 

have been considered no reduction in T has been obtained by 

an interchange then stop and regard the current design as
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optimal.

The alteration in caused by interchanging say, 

treatment £ in block b with treatment m in block b is
P q

most easily made by noting that only certain elements of 
"5Nk N' are altered by the interchange. If represents 

the ijjth element of Nk ^N' and N^. the i,jth element of N, 

the only elements altered by the interchange are those given 

below (where AA^ represents the value of an element A^. 

before the interchange less its value after).

“ u  - (2%  - « / kp - ( 2 %  *

* - ( 2 %  * « A p  + (2Nmq - D / k q,“ an * * V  * W kp + C %  * Nmq +
“ tj = ~“ mj = >,ip'/kP ‘ Njq/kq> 0  * I * «0

Step 4. Update the design.

Interchange the treatment pair found in Step 3 to give a 

new design with its associated and T. Return to Step 2.

2.5 Choice of starting design

The number of interchanges required is obviously 

minimized by a good choice of starting design. Two 

considerations apply. The first concerns the relative 

replications of the treatments and the following rule derived 

from the paper of Pearce (1975a) has proved satisfactory.

This rule which assumes that the optimal design has high 

efficiency requires choosing the replications to minimize 

the sum of weighted treatment variances. In particular the 

replications are taken in the ratio of the quantities 

(|coj£?j)2, where W  is the element of the jth contrast

vector corresponding to the it 1̂ treatment, all contrasts

W i n g  been scaled to make ££?. = 1, and <*>. is the weight
i J 1
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assigned to that contrast. If as a result of using this rule 

a treatment is given zero replication then that treatment 

should be dropped from the design. The vector r of replications 

is Invariant over the interchanges and therefore if the rule 

gives non-integral replications various different replications 

may be used to give different starting designs.

The other consideration is to disperse each treatment 

as much as possible over blocks. A good method of doing this, 

which can be programed onto a computer, is the following 

which constructs the incidence matrix N.

The treatments are allocated to one block at a time. 

Suppose the block to be considered first has size k^ and 

the second has size k  ̂and so on.

The elements Nj^, j = 1, 2, ..., v are assigned integer 

values that are as closely as possible equal to 

Zj = r. x kj/n, j = 1, 2, ..., v, 

subject of course to the constraint that = k^. When

each plot in this block has been allocated a treatment the

values Tj are reduced to r^ - and the value of n is

reduced to n - k^. The values of Zj are then recalculated

using k^ and the adjusted values of rj and n.

The elements N-? are then assigned integer values that

are as nearly equal as possible to the new ẑ  values, with

7n .0 = k~. The values of r. and n are then reduced further by j  J 2 2 J

Nj2 and k2 respectively.

This procedure is repeated for the remaining blocks 

using the appropriate block size and the values of r̂  and n 

that result frcm allocating treatments to the previous block. 

If, however, the block sizes are all equal and the

number of treatments is a multiple of the block size the above 

procedure will produce a disconnected design. Accordingly
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the procedure should be modified as follows.

Allocate the treatments to one block at a time including 

as many different treatments in a block as possible. Having 

done this for the first block repeat this for the second block 

ensuring that a treatment iron the first block occurs in the 

second. Repeat this for each successive block ensuring that 

at least one treatment in the current block occurs in the 

previous block until all treatments have occurred at least once. 

The remaining treatment replications are then allocated using 

the dispersal procedure described above beginning with the 

remaining replications in place of the r^ and the remaining 

number of plots in place of n.

2.6 An alternative form of the optimality criterion

The optimality criterion trace (L'iî Lco ) is only an 

approximation to trace (L'i2Lw ). To be useful in practice 

the value of H should be small to avoid wasting valuable 

computing time. It is important therefore to consider if an 

alternative approximation can be found that is more sensitive 

to the effect of interchanging treatments between blocks.

In this section such an alternative is advanced and in the 

remaining sections the two approximations are compared. The 

performance of the algorithm is also discussed.

Consider now the alternative approximation. It is clear 

that in a comparative experiment the number of times treatments 

concur, i.e. occur together in the same block, is very important. 

The more often two treatments concur the more precisely will 

the difference between them be estimated. Pearce (1976) 

therefore proposed judging the extent to which a treatment 

participates in an experiment, not by its replication, but by 

the sum of its weighted concurrences. He defined these
“6weighted concurrences as the off-diagonal elements of Nk N',
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the weights being the reciprocals of the block sizes. In 

particular he wrote

Nk'6N' = p6 + W,

where W is a matrix with all diagonal elements equal to zero 

and p is a diagonal matrix. The matrix W is called the 

matrix of weighted concurrences.

Further, we have

r = Nk"fiN'l = p + Wl.

Pearce (1976) also defined the vector q of quasi­

replications, where

q = r - p = Wl,

and wrote

u = q'l.

Using these he obtained an alternative generalized inverse

of C by writing equation (2.3.6) as

Then

Q = (q -  W)Y .
= (q6 - W + qq'/u)“1

(2. 6. 1)

( 2 . 6 . 2 )

is as legitimate a generalized inverse of C as ft.
A

Therefore as V(y) = Ha2 we have that 

L'-Loo6 = L'ftLu)6

If a formula for z that is analogous to that given in

(2.4.2) for ft can be derived then an alternative way of 

approximating the optimality criterion given in the previous 

section can be obtained. Let us consider deriving such a 

formula. Using the same approach as that adopted by Pearce, 

Calihski and Marshall (1974) to obtain a formula for ft, we 

write equation (2.6.1) as 

Q = q Fq Y, (2.6.3)
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where

\6 16 q2 q2

and

F = I - q-^Wq'S6, (2.6.4)

with I, the identity matrix.

The equation (2.6.3) does not, however, provide a

solution for y, because F is singular as can be seen from 

the relation

F(q^l) = q ^ 6(q6 - W)1 = 0. (2.6.5)

Since F is symmetric it has a complete set of orthogonal

eigenvectors, though they will not be uniquely determined if

there are multiplicities among the eigenvalues. It will be

convenient to order the eigenvectors so that those with zero

eigenvalues come at the end, the eigenvector given by (2.6.5)

coming last of all. It is now possible to write
h

i=leiPiPi’
( 2. 6 . 6)

where is the eigenvalue corresponding to the eigenvector

p., and h<v. It will also be convenient to order so that(.i
those, g of them, with unit eigenvalues, 0 < g < h, come at 

the beginning.

Writing

J  . M i  1=1
(g>0)

■ 0 (g=0)

h
l W i

i=g+l
(g<h)

• 0 Cg=h)

- h
l ViV[/ei 

i=g+r1"1 1
(g<h)

■ 0 
V
l M i .

(g=h)

(2.6.7)

(2 . 6 . 8 )

(2.6.9)

( 2 . 6 . 10)
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and noting from the orthonormality of the eigenvectors that

we have that
EiPi = p’.p. = 0 (i*j),

h

(2.6.11)

XX = X, Y+Y = YY+ = l PiPl 
i=g+l

(g<h)

and ZZ = Z.
(2.6.12)

Apart iron those in (2.6.12) and YY and YY+ all pairwise 

products of X, Y, Y+ and Z are zero matrices. Also

I = 1 PiPj = X + YY+ + Z,
~ i K T 1-1 ~ ~~

(2.6.13)

and (2.6.6) may be written as

F = X + Y, (2.6.14)

so that

Q = q^6(X + Y)q^6Y. (2.6.15)
“T ~ 6 "6 —IIf now E = q2 (X + Y + Z)q2 , then E is a generalization

of the matrix proposed by Pearce (1976) and equals it when 

there are no zero eigenvalues apart from that in (2.6.5).

Fran (2.6.12) and (2.6.13)

S = q"^(X + Y+ + Z)q~*6. (2.6.16)

The importance of E is that it is a generalized inverse of
!6 *6q2 Fq2 and so although y cannot be estimated it is possible 

to estimate
~ _ i<5„ UY = £q Fq2 y

= Y " 3 ^ % ^ 6y . (2.6.17)

To estimate y constraints may be imposed as follows. Put

ai = ¿ S  (2.6.18)

and it is required that

ai = 0 (i>h), (2.6.19)

which may be written alternatively as

Zq^Y = 0. (2.6.20)

One such constraint arises from (2.6.5),

Pv (2. 6. 21)
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hence

av = = 0
i.e.

q 'y = 0. (2.6.22)

When Pearce, Calinski and Marshall (1974) employed this 

method of estimating y using ft, the constraint they found 

that is analogous to (2.6.22) was

r'Y = 0,

the more usual constraint.

From (2.6.17), because E is a generalized inverse 
16 16of q2 Fq2 , it is permissible to write

Y = 5Q, (2.6.23)

and it can be shown that the variance-covariance matrix of
A

Y may be written as

V(Ç) = (5 - q"i6Zq"^)a2. (2.6.24)

An iterative formula for E may be obtained as follows.

Let

tx = q 2U(I - Z)q

= q 2°(X + YY )q 2°,

and

tj = q'^j-i» i^2-
Consider first

q_6W = q"^6(q"2<5Wq'26)q2<S
_! X I,?

= q 20(I - F)q20
■Ï6(YY - Y + Z)qH

where

= q_20( l (1 -  e j p . p !  + Z)q 
i-g+1

-16 16 = q 2 (Yn + Z)q2° ,
i o = . i j 1 -i=g+l
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Then

h  = 94 6 Q:o + + ^ 3 4 6
2<5v w +„46= q 2“Y YY q ~ ~o—

„ 4 6 v -56
9 lo3 *

Therefore, if it is assumed that
1- - 4 6l j  = 3  2 %  q 2

then

tj+1 = q"5V 0 * z)31V iSi o " V 1S

- 9'16& ' is.
Therefore by induction, it must be true that

Writing

and then

But

therefore

tj = q 2<M  ^q 2  ̂ for all j>2.

YY+ = Y° = l p.p! 
~° i-g+r1*1
-4 6 r\r . 26Ì1 = 9_:1 CX + Y“)q2

l ti - q"5V  ♦ l Vj’^ q ' 10. 
j-l"0 ' ' j-l '

•j “lì „46

Tfj - I {(1 -
0 i-g+1 1 ~1~1

l i'1 - l H a -  c1)-’-1pip;)=1 0 i=g+li=l 1 ~1~1
j-l

j=l~° i=g+lj

if

= . I PiP'/^i = Y+
i=g+l 1 1 1

| (1 - €^) | < 1 for all i, g+1 < i s h.

For some designs this does not hold as will be seen in Section

2.8. However, where it does hold
00 1*
1 ti = q 2V  ♦

j-1"0 -
46,w . „+)r4 6  

46, 4 6

Y')q 2

= E - q 2UZq 2

Provided no effects are totally confounded in the design the
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matrix 5 can be calculated as follows.

Let

tx = q"6 - ll'/u

and

tj = q^wtj.p j-2

then
00

5 = Z t. + ll'/u,~ j = r j ~~
i.e.

00

5 = q"6 - l (ll'/u - (q"6W ) V 6). (2.6.25)
~ ~ h=l ~~ ~ ~ ~

This enables H to be approximated by
pj

5 = q"6 - l (ll'/u - (q'VlV5), (2.6.26)~ h=l ~ ~ ~
for some finite positive integer H.

Therefore, a different approximation to the optimality

criterion defined in Section 2.4 is

T = trace (L'S^rn6). (2.6.27)

2.7 Testing the algorithm and comparing the criteria

In this section both approximations to the criterion 

will be used to test the algorithm and the results compared.

It will be recalled that the two approximations are 

T = trace (L'ft̂ Lŵ ) and T = trace (L'E^Lco^).

Test 1

A design is required in three blocks of sizes 6, 12 

and 18, respectively, where treatment 1 is to be compared 

as precisely as possible with the other four treatments.

The problem was presented to the algorithm in the 

following form.
1-1 0 0 0 

1 0 - 1 0 0  

1 0  0 - 1 0  

1 0 0 0 -1

r' = (12, 6, 6, 6, 6), L ' - U ) *
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and w' = (1, 1, 1, 1).

The procedure described in Section 2.4 for generating a 

starting design did in this instance give the optimal design 

and so no interchanges were needed. Therefore, to test the 

algorithm the following deliberately perverse starting 

design was used:

Block

1 233353

2 344444455555

3 111111111111222225.

With H set equal to 4 the algorithm gave the following 

design using each of the approximations.

Block

1 112345

2 111122334455

3 111111222333444555.

This design is orthogonal and is the best possible with the

given replications. A computer program that executes the 

algorithm took 0.336 CP seconds on the University of London 

CDC 7600 computer.

Test 2

Pearce (1975a) gives an example where a design is required 

in four blocks of five plots each and there are three 

treatments representing equally spaced doses of some chemical. 

The treatments are labelled here as 1, 2, and 3. Interest 

centres on the linear and curvilinear effects which are 

allocated weights of 1 - w^ and W p  respectively.

The values of L' and co for this example are

l ' = a y 1 0 -l" and oj = "i - wr
i i
(e)2 1-2 1

wi



The optimal design will depend on the value of w^ and 

Freeman (1976) using his criterion, showed analytically 

that the designs given in Table 2.7.1 are optimal for the 

ranges of w^ indicated.

Table 2.7.1. Freeman's optimal designs for Test 2.

Design Replication w^ in the range

A) 11223 
11223 
12233 
12233

(6, 8, 6) (0.531, 1)

B) 11223 
12233 
11233 
11233

(7, 6, 7) (0.346, 0.531)

C) 11233 
11233 
11233 
11233

(8, 4, 8) (0.052, 0.346)

D) 11233 
11233 
11133 
11333

(9, 2, 9) (0, 0.052)

If the dispersal procedure given in Section 2.5 is used with 

treatment replications (6, 8, 6) then depending on how the 

non-integral values of Zj are dealt with alternative starting 

designs are possible. One of these is design A as given in 

Table 2.7.1. Similarly, using the dispersal rule with 

treatment replications of (7, 6, 7), (8, 4, 8) and (9, 2, 9) 

the designs B, C, D respectively, as given in Table 2.7.1 

are obtained. Therefore, to test the algorithm the slightly 

perverse starting designs given in Table 2.7.2 were used 

for all values of w^ in the range 0, (0.01), 1.0.
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Table 2.7.2. Starting designs for Test 2.

W)

Y)

11233 X) 12223
11233 11233
12223 11233
12223 11233

11133 Z) 13333
11233 11233
11223 11233
12333 11113

Using the starting designs given in Table 2.7.2 the 

algorithm, with H equal to 4, gave the designs A, B, C and D, 

respectively, as optimal for the ranges of w^ given in 

Table 2.7.3, when both approximations of the criterion were 

used.

Table 2.7.5. Optimal designs obtained by the present 

algorithm for Test 2.

Starting Design Optimal Design w^ in the range

W A (0.34, 1.0)

X B (0.13, 1.0)

Y C (0, 1.0)

Z D (0, 1.0)

If the values of T are compared for the designs A, B, C 

and D, respectively, throughout the range of w^ it is found 

that these designs are optimal for the ranges of w^ given in 

Table 2.7.1.

This example illustrates the point that when there is 

some doubt about which replications to use with a particular 

weighting, the alternative optimal designs produced by the 

algorithm using the different replications should be compared 

using their respective T values. The design with the
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smallest value of T for a particular weighting is optimal.

To determine how well the algorithm performs, the 

designs considered by Mitchell (1973) were used. He used 

his computer algorithm DETMAX (1974) to obtain incomplete 

block designs with n<44 and v + b - 1 < 30. He excluded 

designs where all block sizes and all treatment replications 

equalled two.

The major differences between DETMAX and the present 

algorithm are:

(i) DETMAX is based on the maximization of a 

determinant, i.e. D-optimality is sought,

(ii) equal interest in-all treatment contrasts is 

assumed, i.e. weighting is not possible,

(hi) Mitchell recommends using different starting 

designs, sometimes as many as fifty, in his 

search for the optimum design,

(iv) "candidate" points are successively exchanged 

for points already in the design in an attempt 

to improve the value of the criterion.

Before comparing the designs found by DETMAX with those 

obtained by the algorithm described in Section 2.4, the 

designs obtained by the algorithm using each approximation

approximation based on E^ was that it might lead to a better 

approximation of the true value of the criterion. Further, 

it was thought that E^ might be more sensitive to interchanges, 

as it is based explicity on treatment concurrences, and so 

result in the algorithm requiring fewer interchanges to reach 

the optimum design.

Test 3

of the trace criterion will be compared.

It will be recalled that one reason for using the
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Therefore, in the following a comparison will be made 

not only of the properties of the final designs but also 

the number of interchanges attempted during the course of the 

algorithm. The contrasts and weights used were chosen to 

specify an equal interest in all treatment contrasts. The 

results of this comparison are summarized below.

For 31 sets of values of (v, k, r) the algorithm 

found the same design using 0^ and E^ and attempted the 

same number of interchanges.

For 4 sets of values of (v, k, r) the algorithm found 

the same design using and but attempted different 

numbers of interchanges. These sets are given in Table 2.7.4.

Table 2.7.4. Designs where and E^ gave the same design but 

different numbers of interchanges were attempted.

(V, k, r) No. of ints. No. of ints

(5, 2, 6) 499 510

(6, 2, 6) 1417 1432

(6, 2, 7) 1909 1836

(8, 2, 5) 1178 1691

It can be seen that for only one of the designs in

Table 2.7.4 the algorithm took a shorter route using E^.

Therefore, there is some preference for the ^  

approximation. Further, for six of the sets of values, the 

criterion led to a better design. These sets are given 

in Table 2.7.5 along with the efficiencies of the final 

designs found by each approximation. The efficiency is 

defined as the ratio of (a) the variance of any treatment 

difference in a randomized complete block design to (b) the

[I] i
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average variance of all treatment differences for the 

given design.

Table 2.7.5. Designs where 0^ and gave different final 

designs.

Si
(V, k, r) No. of ints . Efficiency No. of ints. Efficiency

(6, 2, 3) 170 0.555556 138 0.531915

(7, 2, 4) 538 0.544987 510 0.541667

•V
CsJ•\
oo 4) 890 0.538462 599 0.516944

(9, 2, 4) 885 0.511140 854 0.506061

(IQ 2, 4) 1540 0.500000 1178 0.489400

For all of the sets of values of (v, k , r) given in

Table 2.7.5 the took a shorter route but a less efficient 

design was obtained. One reason for this was that the series 

formula (2.6.25) did not converge. This difficulty will be 

examined in more detail later.

A description of the algorithm and a summary of the 

results obtained using were given by Jones (1976). At 

that time the performance of the algorithm using 0^ had not 

been assessed. Some examples of using the algorithm were 

given by Jones (1978).

It is clear from the above tests that the 0^ approximation 

to the criterion is to be preferred, although it will be later 

shown that the difficulties associated with can be overcome.

It is important now to compare the final designs 

obtained using the approximation to the criterion with the 

final designs obtained by Mitchell. Mitchell compared his 

final designs with the best he could find in the literature. 

These best designs will be referred to as "assumed optima".
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The results of the comparison of the final designs found by 

Mitchell and the present algorithm are summarized below.

To aid the comparison values of T, D and E are given for 

some (v, k, r) in Tables 2.7.6 to 2.7.9. Here T is the 

trace criterion based on with H equal to 4, D is 

Mitchell's determinant and E is the efficiency. The 

subscripts p, m and a are used to distinguish between the 

values of T, D and E appropriate to the present algorithm, 

Mitchell's algorithm and the assumed optima, respectively.

For twenty sets of values of (v, k, r) the present 

algorithm found the same designs as Mitchell's, which were 

the assumed optima. These sets of values were (4, 2, 4),

(4, 2, 5), (4, 2, 7), (4, 2, 8), (4, 2, 10), (5, 2, 6),

(5, 3, 3), (6, 2, 3), (6, 2, 4), (6, 2, 6), (6, 3, 3),

(6, 3, 4), (6, 3, 6), (6, 3, 7), (6, 4, 4), (7, 5, 5),

(8, 2, 3), (8, 2, 4), (8, 4, 4) and (8, 5, 5).

For five sets of values of (v, k, r) the present 

algorithm found the assumed optima where Mitchell's failed.

These were (6, 4, 6), (8, 3, 3), (9, 3, 3), (10, 2, 3) and 

(10, 2, 4).

For two sets of values of (v, k, r) the present 

algorithm failed to match Mitchell's which found the 

assumed optima. These sets are given in Table 2.7.6.

Table 2.7.6. Designs where the present algorithm failed to

find the assumed optima where Mitchell's succeeded.

(v, k, r) T = T T D = Do D Em = Eo Ev ' m a p m a  p m a  p

(8, 4, 5) 1.6386 1.6441 0.34399E10 0.339739E10 0.8542 0.8514

(1Q 4, 4) 2.7317 2.7336 0.50388E10 0.503733E10 0.8232 0.8231

For three sets of values of (v, k, r) the present
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algorithm and Mitchell1's failed to find the assumed optima. 

These sets are given in Table 2.7.7.

Table 2.7.7. Designs where both the present algorithm and 

Mitchell's failed to find the assumed optima.

(v, k, r) T T D D E Ea P a P a P

(9, 4, 4) 2.3970 2.3976 0.46760E09 0.467251E09 0.8340 0.8338

(11,4, 4) 3.0624 3.0661 0.55479E11 0.548561E11 0.8165 0.8147

(12, 3, 3) 5.3292 5.3360 0.16200E09 0.160161E09 0.6801 0.6777

For seven sets of values Mitchell's improved on the 

assumed optima and the present algorithm matched Mitchell's. 

These sets were (4, 2, 11), (6, 2, 7), (7, 2, 4), (8, 2, 5), 

(9, 2, 4), (10, 3, 3) and (11, 3, 3).

For one set of values of (v, k, r) Mitchell's failed to 

improve on the assumed optimum but the present algorithm 

improved on it. These values are given in Table 2.7.8.

Table 2.7.8. The design where Mitchell's failed to improve on

the optimum but the present algorithm improved on it.

(v, k, r) T T* ' a p D. D
P

Ea EP

( U  3, 3) 5.9043 5.8895 0.81202E09 0.825044E09 0.6667 0.6688

For two sets of values of (v, k, r) Mitchell's improved 

on the assumed optimum and the present algorithm improved on 

Mitchell's. These values are given in Table 2.7.9.

The above comparison reveals that for thirteen sets of 

values of (v, k, r) the present algorithm found a different 

design from Mitchell's. As Mitchell did not give details of 

his failures it is impossible to know if the present algorithm 

matched the three sets given in Table 2.7.7. Of the remaining
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Table 2.7.9. Designs where Mitchell's improved on the assumed 

optima and the present algorithm improved on 

Mitchell's.

(v, k, r) T T D D E Em p m P m P

(12, 2, 3) 7.4630 0.12247E07 0.125440E07 0.4205 0.4241

(14, 3, 3) 6.4371 0.41998E10 0.431594E10 0.6587 0.6630

ten sets however, there were eight where Mitchell was bettered 

and two where he was not. Therefore, overall, the present 

algorithm based on the 0^ approximation was better than 

Mitchell's, and as already mentioned, Mitchell's algorithm 

does not permit contrasts to be weighted.

It is apparent that for any given design the larger 

the value of H in equations (2.4.4) and (2.6.27) the better 

will be the approximation to the true value of the trace 

criterion. Therefore, to determine if a value of H larger 

than four would have led to any better designs Test 3 

as described above was repeated using a value of H equal 

to ten. The result for the 0^ approximation of the criterion 

was that one improved design was found. This was for 

(10, 4, 4) and the design found matched the assumed optimum 

which Mitchell's also found. For the approximation 

improved designs for five sets of values of (v, k, r) were 

obtained. These sets are given in Table 2.7.10.

Of these five the design found for (7, 2, 4) matched 

Mitchell's which was an improvement on the assumed optimum, 

the designs found for (8, 2, 4) and (9, 2, 4) were not as 

good as those found by Mitchell's, the design found for 

(10, 2, 4) matched the assumed optimum which Mitchell's 

failed to obtain, and finally the design found for (10, 4, 4)
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Table 2.7.10. Designs improved upon using the £h approximation 

with H = 10 instead of 4.

(v, k, r) D E
P P

(7, 2, 4) 0.30720E06 0.5450

(8, 2, 4) 0.19661E07 0.5250

(9, 2, 4) 0.12617E08 0.5092

(IQ 2, 4) 0 .83886E08 0.5000

(IQ 4, 4) 0 .50388E10 0.8232

matched the assumed optimum which was also found by Mitchell's. 

Further tests showed that a value of H equal to six was 

sufficient to obtain the design found when H equalled ten 

for (8, 2, 4), (9, 2, 4), (10, 2, 4) and (10, 4, 4), using 

the E^ approximation.

Therefore even when an increased value of H is used 

with the Epj approximation it still fails to match the 

approximation for (6, 2, 3), (8, 2, 4) and (9, 2, 4). The 

^  approximation is therefore to be preferred. It is 

important however, to discover why the E^ approximation 

does worse. One factor is that the series (2.6.25) fails 

to converge for some designs and so the approximation to 

the trace criterion is not a good one. In fact the series 

failed to converge for all the starting designs obtained 

when k equalled two, except for (5, 2, 6).

The reasons why the series formula for E fails to 

converge are considered in the next section.

2.8 Some results concerning E^

The E^ approximation to the criterion was developed 

because it was based directly on treatment concurrences and 

so might possibly be more sensitive to treatment interchanges.
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It was therefore surprising that it fared so badly when

compared with the 0^ approximation. One reason why did

so badly was that the series formula (2.6.25) did not

converge for some designs. Therefore some consideration

was given to determine why the series did not converge.

In this section some results are given for the case

where all quasi replications are equal, i.e. q = ql. This

is an important case to consider because it corresponds to

an equal interest in all treatment comparisons. Then 
—6 1q W = ±W, a real synmetric matrix, has a complete set of 

orthogonal eigenvectors. Let X p  X2 , ...» Xy  be the 
eigenvalues of ¿W, with corresponding orthogonal 

eigenvectors X p  x2, ..., x^, which have been scaled so 

that x!x^ =1, i = 1, 2, ...,v.

If q = ql then u = q*l = ql’l = qv, and therefore

1*1 = -.

from

One eigenvector of ¿ W  is always 1 as can be seen

¿ W 1  = -q = iq l  = 11. q~~ q~ q ~
In order that this eigenvector satisfies the scaling

1 u 1
requirement that xjx^ = 1, 1 must be divided by v5 = (̂ ) • 

Therefore always has one eigenvector equal to l(jj)2, 

with eigenvalue equal to 1.

In what follows it will be assumed that

and (2.8.1)

X1 = 1
Experience has shown that the series fails to converge when 

one other eigenvalue takes the value -1. In the following 

if -1 is an eigenvalue it will be labelled as X2*
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Further, it will be noted that because

1 v
- W  = Iq~ ¿=1

(2.8.2)

then
vq ~ i=i

(2.8.3)

Theorem 2.8.1 If q = ql and the eigenvalues of (— W) are~ q~
such that A-̂ = 1, A£ = -1 and 0 < Aj <1, for j * 1, 

j * 2, then for H even

I ~ Ih = ‘ 7qi2ir

Proof
H

-H = ^ 1 “ l C H ’/ii - ¿ W ) h I], n ^ h=i — ' q~ q

iron equation (2.6.26). 

That is,

q:H = J ‘

which may be written as
v H H v ,

qs = Ix̂c; - i A i r  ♦ £ [ i * V x n ,  ~h h=1 u ~~ h=1 l=1 *~£~£
V

where I has been expressed as £ x^x^.
£=1

Now

- iiii-
and

H v , H , FI v ,
l l = ^ixi + I (_1)' *2*2 + l l X? c£x£’h=l£=l ~ h=l ~ h=l£=3

therefore if H is even and chosen so large that, given any 

e > 0,

|A„|H < e, l > 3,

then
£

H v
l l xoxaxl = + 1 C Y 1 - A(?̂x pxr^ — 2  A"*« Ay~ A/ ~  JL~ ^ ^  A- A/ ~  A/~ A/
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Therefore,

v
<£h = I

v
ë h = ¿ ï i ï i  - + % * ;  *

(2.8.4)

Consider now

5  ̂= ql - W + q2llVu, 

from equation (2.6.2).

That is,

i-H -1 = I - — W + (3)11'q - q ~ u'
V V

= l xox 'o - l Xnx ox 'o + xlxiA/*vA/v A/ ~ i.
V

■ J / 1 - h h t ï i . + ïiïl
v

îlîi + X̂2X2 + I Cl “ ^¿)X£X£* (2.8.5)

Therefore,
1 v 

qt = ïiïi + 7 x 2?2 + I C1/1 " A£^£?£»

and consequently, using (2.8.4),
v 1

V  -  ’ Eh '  £y i A  -  h ^ e i  *  ï i ï i  * 2Ï2Ï2
V V

- I xox0 - 1 ( V 1 " Ap)xfx{£ ^ ~ A/ ~ A/ <v A/ ~ A/~ A
V

= I [(1/1 - Xp) - 1 - (Ap/1 - X£)]x£x£
£=3

Î1ÎÎ - Î2Î2 + îlîi + IÏ2Î2

x~xl.

That is,

Ititi

x~xl.= tH 2q~2~2*

Therefore, when q = ql and the conditions of Theorem 2.8.1 

hold, it is possible to calculate E using the series 

(2.6.26) by adjusting 5^ by a factor of - i x^x^, where H
His even and large enough for |iJ < e.
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Theorem 2.8.2 If the conditions of Theorem 2.8.1 hold,

then

Proof

_-l
tH: = l + ~2~2'

v

“Hr q ¿=1* ^  + X£')~£~*]

x q[ £ (1 -  X£)x £x^ + XjXj + 2x 2x ;̂

using equation (2.8.4) and (2.8.5) 

That is,
v v

Eh! " 1 = * i i i i  + 2i 2i2 ]
V V

+ I ( V 1 - x,)x,x'[ l (1 - A£)x£x|
£=3

+ ilii + Z?2i2]-

£=3

Recalling that x£x£= 1 and x£x̂  =0, i * j,

„ _-l
rHr '  J j C 1 - x*> i*5 i * i l ? i  * 2i2?2 * ¿ h i l i *

v
■ * ilil + 2i2i2

V

■ l xiit + i2i2i=r

= l + ?2?2

Theorem 2.8.3 If q = ql and A^ = 1, A2 = -1, 0 < Aj < 1, 

j * 1, j * 2, then
H

h  = i i " „ L ^ V 1 - + J J - V  *2*2^’

H
q ~ £=3 * * h=l

pj
where H is such that, given e > 0, |A£ | < e for all £.

Proof
H
J / i i ' / u  - (i w)h \i

 ̂ H H v u .
= i  1 - I H ’/u + l  l [ A x i  
q h=l h=lji=i £~£~£ q

PJ

■ q i - H11'/u + * ? (-1)hi2i2|
H v , -I

+ I c l Xjx^x^i.
h=l ¿=3 £ q
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Recalling that

ï i ï i  -  $ ï ï '
and

H v v
I I l * X x J ]  = l (X Jl - x )x xj + Hx x-

h i n 7  Ay~ « *7 A/ A/ ~  A-~ A/ ~  -1-=1 Jt=3 £=3
it can be seen that

1 H h
“H qî" Hii,//u + ^ i S / q  + I ?2?2/q^~ ~ h=l

H
r- " n>2i2+ Hll'/u * l (-l)hx,xVq * l (X./1 ->■»)x.xli 

h=l ~ 1=3 ~I ^ V 1 -  ♦ j _ ( - l ) hx2x ' / q .
£=3

Corollary 2.8.3 For H even
v

q c£~£ h^ ’

Hh  = ¿ 1  + l  ( X p / 1  -  X j i x . x J  .3H qi ' T q i «

Theorem 2.8.4 If q = ql and v = 2, then

X^ = -1 and x^ = " 1 ( \ 
£

_-l_ u«/
Proof

If v = 2 then W is of the form

W = 0 B
L e  q

where 3 is the weighted concurrence of the two treatments. 

Therefore,

q = W1 3 = 31

and " f 1 0  3" " 1 - f = ( - D ” f-1_ " 3 _e _-i_ _ i_ _-i_
That is, X2 = -1 and scaling X2 so that *2X2 =  ̂ imPlies 

that

x.

This last Theorem therefore states that for any block 

design with two treatments the series (2.6.26) for E^
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will not converge.

To illustrate some of the above Theorems consider

the following design which has 6 treatments, each equally

replicated, in 9 blocks of size 2. 

Block

I 1 2
II 2 3
III 3 4
IV 4 5
V 5 6
VI 6 1
VII 1 4
Vili 2 5
IX 3 6

For this design

q = 1.5

and

f  
0 
1
0 .
1
0

= 0 j * 1, j * 2, 

and the eigenvectors x^ and are

- W  = r o
1
0
1
0
1

0
1
0
1
0
1

The eigenvalues of — W are

x| = 0.408248 1'

and

Then,
_-l

x£ = 0.408248 [1, -1, 1, -1, 1, -1].

1.75 -0.25
-0.25 1.75
0.25 -0.25
-0.25 0.25
0.25 -0.25
-0.25 0.25

0.25 -0.25 
-0.25 0.25 
1.75 -0.25 

-0.25 1.75
0.25 -0.25 
-0.25 0.25

0.25 -0.25" 
-0.25 0.25 
0.25 -0.25 
-0.25 0.25 , 
1.75 -0.25 
-0.25 1.75

0.6111 0.0556 -0.0556 0.0556 -0.0556 0.0556
0.0556 0.6111 0.0556 -0.0556 0.0556 -0.0556
-0.0556 0.0556 0.6111 0.0556 -0.0556 0.0556
0.0556 -0.0556 0.0556 0.6111 0.0556 -0.0556
-0.0556 0.0556 -0.0556 0.0556 0.6111 0.0556
0.0556 -0.0556 0.0556 -0.0556 0.0556 0.6111
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and

0.6667
0.6667

0.6667
0.6667

0.6667
0.6667

for H even.

To illustrate Theorem 2.8.1, it can be seen that

z " :h -0.0556 0.0556 -0.0556 0.0556 -0.0556 0.0556"
0.0556 -0.0556 0.0556 -0.0556 0.0556 -0.0556
-0.0556 0.0556 -0.0556 0.0556 -0.0556 0.0556
0.0556 -0.0556 0.0556 -0.0556 0.0556 -0.0556
-0.0556 0.0556 -0.0556 0.0556 -0.0556 0.0556
0.0556 -0.0556 0.0556 -0.0556 0.0556 -0.0556

and

- x0xl =2q~2~2
1 (0.408248) 2 I" 1 -1 1-1

2x1.5 -1 1-1 1
1-1 1-1 

-1 1-1 1 
1-1 1-1 

-1 1 - 1 1

where
1 (0.408248)2 = 0.0556.

2x1.5

To illustrate Theorem 2.8.2 it can be seen that

1.1667 -0.1667 0.1667 -0.1667 0.1667 -0.1667
-0.1667 1.1667 -0.1667 0.1667 -0.1667 0.1667
0.1667 -0.1667 1.1667 -0.1667 0.1667 -0.1667
-0.1667 0.1667 -0.1667 1.1667 -0.1667 0.1667
0.1667 -0.1667 0.1667 -0.1667 1.1667 -0.1667
-0.1667 0.1667 -0.1667 0.1667 -0.1667 1.1667

and a typical element of *2X2

+ (0.408248)2 = + (0.1667).

To illustrate Theorem 2.8.3 it can be seen that for H even

"u = — I = I = 0.6667 I. tH q~ 1.5~

Therefore whenever the series (2.6.25) does not converge 

and = 1, ^2 = -1 and 0 < A j < l , j * l , j * 2 , ~  can 

still be calculated by ensuring H is even and then

1 -f 
-1 1 
1 -1 
-1 1 » 
1 -1 
-1 1

calculating *2X2 from the relationship
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: h z =  1 +  x 2?2

and then putting

: rH
In the above example,

_ _-l
"Hr

■7T X~X' .2q~2~2

1.1667 -0.1667 0.1667 -0.1667 0.1667 -0.1667
-0.1667 1.1667 -0.1667 0.1667 -0.1667 0.1667
0.1667 -0.1667 1.1667 -0.1667 0.1667 -0.1667
-0.1667 0.1667 -0.1667 1.1667 -0.1667 0.1667
0.1667 -0.1667 0.1667 -0.1667 1.1667 -0.1667
-0.1667 0.1667 -0.1667 0.1667 -0.1667 1.1667

which implies that

x2x^ = 0.1667 1-1 1-1 1-1
-1 1-1 1-1 1
1-1 1- 1  1-1
-1 1-1 1-1 1
1-1 1-1 1-1
-1 1-1 1-1 1

and so E can be found from E^.

When deriving the expression for as given in (2.6.26) 

use was made of the eigensystem of F as defined in (2.6.6).

It was noted that Ê  will not converge to E if F has an 
eigenvalue such that |l - > 1  for g + 1 < i < h. In

fact, in the above example the eigenvalues are = 1, 

i = 1, 2, 3 and 4, = 2 and = 0. Therefore because

|l - 6cj| = 1 the series (2.6.25) fails to converge.

After seeing the above Theorems, Dr. E. A. Catchpole

in a private communication and later (Catchpole, 1980)

confirmed that in the general case (i.e. q not necessarily 

equal to ql) at most one eigenvalue of q W could take the 

value -1, and derived a necessary and sufficient condition 

for the series formula for E to fail to converge. This 

condition is that the treatments fall into two groups, such

that no two treatments from the same group ever occur 

together in the same block. In other words each block must 

contain only two different treatments, one from each group.
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(There may also be an arbitrary disconnected part of the 

design.) Catchpole further showed that the series can be 

made to always converge by using 

cq in place of q,

and

W + (c - l)q^ in place of W, 

for some constant c such that c > 1.

Catchpole also showed that c = 3/2 was an optimal 

choice. Obviously with c = 1 the formula is as given in 

(2.6.25).

The algorithm was therefore used to search for the 

designs where the criteria based on 5^ and differed in 

the tests described in the previous section, but this time 

the series for Eu was modified as above. These designs~n
were for the sets (6, 2, 3), (7, 2, 4), (8, 2, 4), (9, 2, 4) 

and (10, 2, 4). The algorithm with H = 4 gave the same 

designs and attempted the same number of interchanges as 

when the 0^ approximation with H = 4 was used.

The major difference between the two approximations 

and

However, both approximations can lead to a local optimum.

Further, both are only approximations, all be it good ones.

It might be possible to obtain better approximations but

really the objective should be to derive an algorithm which
6 6can work directly with the criterion L'fiLw = L'HLo) 

without resorting to an approximation. This is done in 

Chapter 4. However, the performance of the algorithm using 

the approximations was good enough to warrant considering 

if it could be extended to search for optimal row-and- 

column designs. This is done in the next chapter.

L'î Lco seems therefore to have been eliminated.
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Chapter 3. Construction of optimal row-and-column designs

3.1 Introduction

In many experiments the plots form a rectangular grid, 

for example, agricultural plots on a rectangular field or 

potted plants on a shelf. In this situation the experimenter 

may wish to use tvo blocking systems, one based on the rows of 

the grid and the other on its columns, to eliminate heterogeneity 

of plots in both directions. A formally similar situation arises 

when a block experiment has been concluded, each treatment 

having been applied once in each block, and a further set of 

treatments is applied, the assumption being made that the 

effects of the second set and the residual effects of the first 

do not interact.

In Chapter 2 an algorithn that searched for optimal 

connected block designs was described. In this chapter it 

is shown that this algorithm can be modified to search for 

the component designs of an optimal row-and-column design.

A row-and-column design is a design for v treatments in b^ 

rows and b  ̂columns. The rows of the design can be considered 

as a block design with b^ blocks of size b  ̂and is known as 

the row component, and the columns can be considered as a 

block design with b  ̂blocks of size b^ and is known as the 

column component. The optimality criterion used is similar 

to that given in the previous chapter.

The algorithm however, only searches for the component

designs and these have to be combined to form a row-and-column

design. By "combining" the components is meant the arranging

of the v treatments as a b, x h grid in such a way that the
1 z

rows of the grid are equal to the row component and the 

columns of the grid are equal to the column component. Three
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alternative algorithms for combining the components are 

described and compared.

To simplify the presentation of the material considered 

in this chapter the problem of searching for the optimal 

components and the problem of deriving ways of combining the 

components are considered separately. Sections 3.2 to 3.7 

are concerned with the development of an algorithm to search 

for optimal components and sections 3.8 to 3.11 are concerned 

with the development of an algorithm to combine the components. 

The remainder of the chapter is concerned with further 

evaluations of the performance of the algorithm to search for 

optimal components and an improvement to the algorithm is 

described.

3.2 Optimality criteria for row-and-column designs

The observations from a row-and-column design for v 

treatments in b^ rows and b  ̂columns may be formally expressed 

as

where y is a column vector of n = b^ x b^ observations, a a 

general parameter, 1 a vector with unit elements, 8^ and 

are vectors respectively, of the parameters of the two 

blocking systems and y is a vector of treatment parameters.

The design matrices for the two blocking systems and the 

allocation of treatments are D^, and A, respectively.

The vector n contains the n uncorrelated residuals which are 

distributed about zero with variance a2.

Minimizing q'ri in (3.2.1) and assuming that 8|1 = 8-?l = 0, 

the reduced normal equations for the treatment parameters y are

y = la + + + A'y + q (3.2.1)

Q = Cy (3.2.2)

where

(3.2.3)
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C = r'5 - N,N'/b9 - NLN'/b, + rr'/n, (3.2.4)

6r denotes the vector of treatment replications, r is the 

vector r written as a diagonal matrix, is the v x 

incidence matrix for rowrs, is the v x incidence matrix 

for columns, T is the vector of treatment totals, is the 

vector of row totals and B? is the vector of column totals.

The matrix C however, is singular and so equation 

(3.2.2) cannot be solved directly.

A unique solution to equation (3.2.2) can be obtained 

however, by applying the constraint r'y = 0. Then

Q = ft y, (3.2.5)

where

ft  ̂= C + rr'/n 

and

Y = ftQ. (3. 2. 6)
A

The variance-covariance matrix of y, for the purposes of 

calculating the variances of unconfounded contrasts, is as 

Pearce (1975b) noted

V(y) = fta2. (3.2.7)

If L is a set of treatment contrasts, held columnwise then

V(L'y) = L'ftLa2. (3.2.8)

As was the case with block designs the matrix C played 

an important part in the early suggestions for optimality 

criteria for row-and-column designs. Before mentioning these 

however, it should be noted that the approximate and continuous 

theory for the general linear model described in Section 2.2 

of Chapter 2 can be used to search for optimal designs. Although 

compared to the search for optimal block designs the row-and- 

column design has received very little attention.

Wald (1943) and Nandi (1950) showed that the Latin 

Square design was D-optimal and Ehrenfeld (1955) showed it
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was E-optimal. Masuyama and Okuno (1957) showed that Latin 

Squares and Youden Squares were optimal in the sense that 

they minimized trace (C2) subject to trace (C) being constant. 

Kshirsagar (1958) showed that the Youden Square was optimal 

in the sense that it maximized the harmonic mean and geometric 

mean of the non-zero eigenvalues of C. Kiefer (1958) also 

showed that Latin Squares were D- and E-optimal and also 

considered the D- and E-optimality of what he termed 

Generalized Youden Designs (GYD's). A GYD is a row-and- 

column design such that the row component is a balanced block 

design (BBD) and the column component is a BBD. In a BBD all 

replications are equal to r, all block sizes are equal to k, 

all off-diagonal elements of NN', where N is the incidence 

matrix of the block design, are equal, and |fh . - k/r| < 1 

for all i and j, where isLj is (i,j) element of N. Kiefer 

(1975) considered the optimality of GYD's further and indicated 

ways of constructing them. Kurotchka and Dwyer (1974) 

considered the G-, D- and A-optimality of three-way layouts 

without interactions and Shah, Raghavarao and Khatri (1976) 

considered the A-, D- and E-optimality of three factor designs.

Therefore, before the work described in this chapter was 

begun there was no algorithm to search for general row-and- 

column designs.

As done in the previous chapter it will be assumed that 

the experimenter is interested in treatment contrasts held 

column-wise in a matrix L, which have been assigned weights
r

held in a diagonal matrix w . For the rest of this chapter 

the optimal row-and-column design will be considered to be the 

one that minimizes

T = trace (L'DLw6). (3.2.9)

However, if this criterion is to be used in a computerised
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algorithm it is desirable to avoid the direct inversion of 

SI . Therefore in the next section an iterative formula for 

ft is derived.

3.3 An iterative formula for ft

Following the methods of Pearce, Calinski and Marshall 

(1974), as done in Chapter 2, an iterative formula for ft can be 

obtained as follows.

Equation (3.2.2) can be re-written as
1A

Q - r2°Fr2 y , (3.3.1)

where
_ i  a; _ i  x  _  I  x  1 a: u

F = I - r 2°N1NJr 2 - r 2 N ^ r  26 + r20ll'r2Vn,

b Vz 1 (3.3.2)
6 ¡6 ¡6 , -16. r J6r = r2 r2 , and r 2 is the inverse of r2 .

However, (3.3.1) does not provide a unique solution for 

Y because F is singular as can be seen from the relation
1 a ; 1 A  _ 1 A  _  1 A  ’ A

F(r2 1) = r2 1 - r 2 - r 2 N ^ l  + r2 ll'r/n

b2 bl
¿6. -16 -56 . 36. n= r 2 l - r 2 r - r 2 r + r 2 l = 0 ,  (3.3.3)

recalling that N|1 = lb^, N^l = lb^, and N^l = r = N01.

However, since F is symmetric it has a complete set of 

orthogonal eigenvectors, though they will not be uniquely 

determined if there are multiplicities among the eigenvalues. 

It will be convenient to order the eigenvectors so that those 

with zero eigenvalues come at the end, the eigenvector given 

by (3.3.3) coming last of all. It is now possible to write

(3.5.4)

where is the eigenvalue corresponding to the eigenvector 

p^, and h < v. It will also be convenient to order so that 

any eigenvectors with unit eigenvalues, should any exist,
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g in number, where 0 < g < h, ccxne at the beginning.

In exactly the same way as done in Section 2.6 of 

Chapter 2, matrices X, Y, Y+ and Z may be defined. Then

(3.3.4) may be written as

F = X + Y, (3.3.5)

and

Q = r^6(X + Y) r . (3.3.6)

“1 - 6 - 6 “1If now £2 = r2 (X + Y + Z)r2 , then 12 is a generalization

of the matrix proposed by Pearce (1975b) and equals it when

there are no zero eigenvalues apart from that in (3.3.3).

Further,

12 = r"^6(X + Y+ + Z)r‘^6. (3.3.7)

The importance of £2 is that it is a generalized inverse of
-  6 -  6r2 Fr2 and so although it is not possible to estimate y it

is possible to estimate
~ _ ¡6^ ¡6y = Or2 Fr2 y

_! f. i *
= y - r 2 ¿r2 Y> (3.3.8)

To estimate y constraints may be imposed as follows. 

Put

a . = p ! r2 yi hi-. -L 

and it is required that

ai = 0 (i > h), 

which may be written alternatively as

Zr2<5Y = 0.

One such constraint arises from (3.3.3),

hence

i.e.

ia i 
pv = r20l/n2,

av = = °»

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

r*Y = 0.
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From (3.3.6), because ft is a generalized inverse of

16 5 6r2 Fr2 , it is permissible to write

Y = ftQ, (3.3.13)
A

and it can be shown that the covariance matrix of y may 

be written as

Co v (y) = (ft - r"^6Zr"^)a2.

An iterative formula for ft may be obtained as follows.

Let

and

where

= r~*6(X + YY+)r~^6

ij = f  16CY0 + P ^ V i
(3.3.14)

j * 2

+ nY = YY - Y = l (1 - e .)p.p!.
~0 ~~ ~ i 4 +i

(3.3.15)

(3.3.16)

It may be noted that

r ^ 6(Yo + Z)r^6 = r ' ^ N ’/ ^  + r"6! ^ / ^  - lr'/n,

and that t̂  and t̂  have been defined in an analogous manner 

to that of Section 2.6.

Then

t2 = r~*6(Yo + Z)r^6r'*6(X + YY+)r"2<S

= r~^6(Y YY+)r"^6 ~ Vo~~ ~

- r ^ Y  r ^ 6.~o~

Therefore, if it is assumed that
«. 6vj-1 -ISt . = r 2 Y" r 2 ,~o ~

then

t. , = r"^5(Y + Z)r^(Sr~^6Y;j"1r~j+l ~ ~o ~ ~ ~ ~o ~
i fij-i <5= r 2 YJr ~o~

Therefore, by induction, it must be true that
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tj = r 2<̂ Y^ z£ for all j >2.

Writing

and

then

. o h 
YY = Y = T p.p!,~0 .„¿Klti'l=g+l

0 -l <stx = r 2"(X + Yo)r 2<\- 1 6 ,

°° _ 1 X °° -j -I 1
I t. - r 26(X + l Y^-1)r 2' 

j=l~J ~ ~ j =1~° ~

But

l i '1 - l  H a  - £i)-,-1piPp
j=r° i=g+i j=i 1 ~1~1

= . I PiPi/ei = I+> 
i=g+1 1

if |l - e^| < 1 for all i, g ♦ 1 < i < h.

It will be shown that 11 - e - | <1 for all g + 1  ̂i^ h, 

therefore,

l t = r'1£(X + Y+)r"2<5, 
j = r j ~ ~ ~ ~

j-1

i.e.

i h  -j = r j
n -16- -16 - r 2 ¿t 2 , (3.3.17)

16
5i = i2 Pi-

To see that |l - e^| <1 for all g + 1 ^ i < h consider

(3.3.18)
+YL

Then if S is the matrix such that the l column is s. and~i
P is the matrix such that the i ^  column is p^

S'r~£S = P'P = I
i x i

Since from (3.3.12), p^ = r2 1/n2 we have that 

s!l = 0  (i * v)

For this reason s^ (i * v) are contrasts and the estimates of
/N

these contrasts are given by S'y which has variance-covariance

matrix
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S' (ft - r“*6Zr~^6)S = P'(X + Y+)Pa2 = e ^ a 2 (3.3.19)

“5 1Here e* is a diagonal matrix with elements — _ for 1 < i < h.

If the design had been orthogonal (3.3.19) would have 

been S'r So2 = la2 and so e^, 1 < i < h are efficiency factors, 

i.e. 0 < e. < 1  for 1 < i < h. Therefore,l
|l - ê | < 1  for g + 1 < i < h.

Provided no effects are totally confounded in the 

design (2 can be found as follows.

Set

t. = r"*6(I - Z)r"^6

n  2<5ln I 16-, -56 = r 2 (I - r2 ll'r2 )r 2
n

r'6 - 11'/n

and
t. = [r“6N1N^/b2 + ~ lr'/n]tj_1, j > 2.

Using equation (3.3.17)
00

fl = l t. + 11'/n
~ j=r3 ~~

= r‘6 + y Cr^N.N'/b- + r̂ N-Nl/b-, - lr'/nb*~ ~I~! 2 ~ ~L~L 1

X [r~6 - ll'/n].
However,

[r'<5N1N^/b2 + r'^N'/^ - lr'/n][ll'/n]

= ll'/n + ll'/n - ll'/n = ll'/n.

Therefore,
ii = r~6 - l [11 '/n - (r"6N1N^/b2 + r ^ N J / b j -  lr'/nfr-6] 

h=l
(3.3.20)

This formula enables 0 to be approximated by
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Oh

, H
= r 6- l [ll’/n - 

~ h = l  ~~
(r H / V w v lr'/n)r 6],

(3.3.21)

for some finite positive integer H.

Therefore, the criterion (3.2.9) can be approximated by

T = trace (Lg/ l ' ft̂ ), (3.3.22)

an analagous approximation to that used in Section 2.4 of 

Chapter 2.

As in Chapter 2 it will be seen that H does not need to 

be large.

3.4 An algorithm to search for the components of an optimal 

row-and-column design

The algorithm described in Section 2.5 of Chapter 2

searched for optimal block designs. This algorithm can be

modified to search for the component designs of an optimal

row-and-cclumn design if the amalgamated design is considered.

The amalgamated design consists of the two component designs

taken together as a block design. The treatment replications

are therefore doubled and blocks may be of two sizes. Pearce

(1975b), for example, has noted the usefulness of the

amalgamated design. Further, it is important to note that

given the incidence matrices and for the row component

and the column component, respectively, the matrix ft can be

obtained even though the components have not been combined

to give a rowr-and-column design. In fact ft can be obtained

even though it may be impossible to combine the components.

Further Califiski (1971) considered the contrasts that

satisfy the following matrix equation 
-1 -6ft r c = ec

as worthy of special interest and called them basic contrasts.
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Here Q  ̂ is as defined in equation (2.3.8) of Chapter 2, 

and e is the efficiency factor of the contrast.

Pearce (1975b) showed that if the efficiency factor of 

a basic contrast was in the row component and t îe

column component, then its efficiency factor in the row-and- 

column design is + e, - 1. That is, if - 1 that

contrast is totally confounded in the row-and-column design. 

Also if = 0, (i * j) then = 1 and again ~ 1 = 0.

The components found by the algorithm described below 

may therefore be such that there is a complete loss of 

information on a contrast of interest. However, by ensuring 

that each component forms a connected block design, as 

defined in Section 2.4 of Chapter 2 the extreme cases of = 0 

or = 0 will be avoided.

The steps in the algorithm are as follows.

Step 1. Construct the initial row component and column 

component

Using the procedure described in Section 2.5 determine 

the optimal treatment replications and construct a connected 

starting design for the row7 component. Using the same 

treatment replications construct a starting design for the 

column component.

As in the algorithm described in Section 2.4 the 

treatment replications, once chosen, remain fixed throughout 

the remainder of the algorithm.

Step 2. Evaluation of the starting components

Using the components found in Step 1 calculate
r

T = trace(Lto LT^),

for some predetermined value of H, using equation (3.3.21).
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Step 3. Order the blocks on their degree of non-orthogonality 

Using the two component designs found in Step 1 form 

the amalgamated design, i.e. form a block design consisting 

of the blocks of the row component and the blocks of the 

column component. Order these blocks on their degree of 

non-orthogonality as done in Step 2 of the algorithm described 

in Section 2.4 of Chapter 2.

Step 4. Evaluate the effect of interchanging treatments 

between the blocks of the amalgamated design 

In exactly the same way as done in Step 3 of the 

algorithm described in Section 2.4, evaluate the effect on 

the criterion T as defined in Step 1 above, by interchanging 

treatments between the blocks of the amalgamated design. 

However, ensuring that no interchange is made between a block 

of the row component and a block of the column component 

and that no interchange leads to a disconnected component.

Having found the interchange that leads to the largest 

reduction in T proceed to step 5.

Step 5. Update the design

Interchange the treatment pair to give a new 

component. Calculate T using the two components and 

return to Step 3.

In order to illustrate the algorithm consider the 

following example.

Example 5.4.1

A design is required for four treatments in six rows 

and six columns and there is an equal interest in all 

treatment differences.

Therefore,
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L ’ = ( D 1 1 -1 0 0 and ^  = 1 0 6

( I ) 1 1 1 -2 0 0 1 0

1 1 1 -3_ 0 0 i_

Using the procedure described in Section 2.5 the starting 

design for each component is found to be 

Block

I 2 2 3 3 4 4
II 1 1 1 2 3 4
III 2 2 3 3 4 4
IV 1 1 1 2  3 4
V 2 2 3 3 4 4
VI 1 1 1 2 3 4

which has a vector of treatment replications equal to

r' = (9, 9, 9, 9) .

The starting design is the same for each component 

because they have the same block sizes.

The starting design for Step 3 of the algorithm 

therefore consists of the six blocks corresponding to the 

row component plus the six blocks corresponding to the 

column component.

The value of the criterion T, with H equal to 4, 

for this starting design is 0.5117.

Using this starting design the algorithm gave as 

optimal the amalgamated design in Table 3.4.1.

Table 3.4.1. Optimal amalgamated design 

Block

I 1 2 3 3 4 4 ì
ii 2 1 1 2 3 4
in 2 2 1 3 4 4
IV 2 1 1 2 3 4
V 1 2 3 3 4 4
VI 1 3 1 2 3 4 J
VII 1 2 3 3 2 41Vili 4 1 1 2 3 4
IX 2 2 1 3 4 4
X 2 3 1 2 3 4
XI 1 2 1 5 4 4
XII 1 3 1 2 3 4J

row component

column component
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These components when combined give the following 

row-and-column design,

1 2 3 3 4 4
4 1 1 2  3 2
2 4 2 3 4 1
3 4 2 1 2 1
2 3 4 4 1 3
3 1 4 2 1 3 ,

for which

5

" 0.1178 

- 0.0022 
- 0.0022 
- 0.0022

- 0.0022
0.1178

- 0.0022
- 0.0022

- 0.0022
- 0.0022
0.1178

- 0.0022
-0.0022“

- 0.0022
- 0.0022
0.1178

In each row and column of this design there is a 

complete replicate of the four treatments 1, 2, 3 and 4 

with two excesses. The excesses consist of the six

possible pairs of the four treatments. It would have been 

neater if the six possible pairs of excesses had occurred in 

each component. However, although its components are not 

balanced, this design is totally balanced and has the same 

value of the criterion T as, for example, the totally 

balanced design

1 4 3 2 1 4
2 2 4 1 3 3
4 3 2 3 4 1
3 1 4  1 2  2
3 3 2 4 1 1
2 4 1 4 2 3

which is of type 0:TT in the notation of Pearce (1963). 

Therefore because a design of type 0:TT is an optimal 

row-and-column, so is the design obtained by the algorithm.

It should be noted that in this section and the 

next two the problem of how to combine the components is 

not considered. It will be assumed that the components 

can be combined somehow. The performance of the algorithm 

is considered in the next section.
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3.5 The performance of the algorithm

To test the algorithm described in Section 3.4 the 

37 designs given in Table 13.2 of Cochran and Cox (1957) 

for which v < 11 and  ̂ 22 were used. These

designs were all based on either incomplete Latin Squares 

or extended Youden Squares. For each design H was set 

equal to 4 and L and w were chosen to specify an equal 

interest in all treatment differences. The present 

algorithm failed to match three of the designs given by 

Cochran and Cox. These designs are given in Table 3.5.1, 

v,here T refers to the trace criterion with H equal to 4 

and E is the efficiency factor of the design. This 

efficiency factor is defined as the ratio of (a) the 

variance of any treatment difference in a Latin Square 

design to (b) the average variance of all treatment 

differences for the given design.

Table 3.5.1. Designs where the present algorithm failed 

to match Cochran and Cox

v b^ b^ Present Algorithm Cochran and Cox

T E T E

9 18 4 1.1867 0.8426 1.1851 0.8437

11 11 5 2.2820 0.8764 2.2727 0.8800

11 11 6 1.8208 0.9153 1.8182 0.9167

These tests reveal that the algorithm can get trapped 

at local optima. However, none of the local optima found 

were much worse than the designs given by Cochran and Cox. 

Increasing H to ten did not lead to any improvement.

In the next section a different approximation to the 

optimality criterion is defined in a way similar to that
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used in Chapter 2. This is done in an attempt to obtain 

a more sensitive approximation to the true value of the 

criterion

3.6 A second approximation to the optimality criterion 

for row-and-column designs

In Chapter 2 when the optimality of block designs was 

considered the optimality criterion was expressed in terms 

of 5pj rather than in an attempt to obtain a more 

sensitive approximation. The reason for doing this was 

that it was thought that as E^ was constructed from the 

treatment concurrences, it would be more sensitive to 

treatment interchanges. Here a similar approach is adopted 

for row-and-column designs.

The normal equations for the estimation of the 

treatment parameters y, for a row-and-column design were 

given in equation (3.2.2) as

Q = (r6 - N1N{ / b2 " h2̂ 2/^i + rr'/ n )y .

If r5 - N-^N^/b2 ~ ^NA/b^ + rr'/n is set equal to q5 - W,

6where q is a diagonal matrix and W is a matrix with zero
A

diagonal elements then the normal equation for y, can be 

written as

Q = (q6 " W)Y, (3.6.1)

which is analogous to equation (2.6.1) in Chapter 2.
6However in (3.6.1) W and q do not depend solely on the 

treatment concurrences.
6 -1If q = q 1 and u = q'l, then a matrix E may be

defined as

E  ̂= q° - W + qq'/u. (3.6.2)

The matrix E  ̂satisfies the relation

E_1 1 = q - q + q = q, (3.6.3)
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because W1 = q as can be seen from

(r5 - NjNJ/^ - N^N^/b^ + rr'/n)l = 0,

i.e.

(q6 - W}1 = 0.

Equation (3.6.1) can be written as
n 26-c 2*5̂Q = q Fq2 Y

where
r , -¿6,, -J6F = I - q 2 hq 2 .

The matrix F is singular, as can be seen from the relation 

Fq2 C1 = q2°l - q 2°W1

= q^6l - q^6l = 0. (3.6.4)

Having now defined matrices q , W and F in this way 

an iterative formula for E can be derived by following 

exactly the steps given in Section 2.6, where an iterative 

formula for the block design case was derived.

That is,H = q~6 - l  (11'/u - (q~ V)h q 6) . (3 .6 .5)
~ ~ h=l ~~ ~ ~ ~

This enables E to be approximated by

E = q"£ - l (11'/u - (q"6W)hq 6), (3.6.6)
- h=l ~~ ~ ~ ~

for some finite positive integer H.

The criterion given in (3.2.9) can therefore be

approximated by

T = trace(L'E^Lco^). (3.6.7)

It should be noted that the comments made in Section

2.6 concerning the iterative formula also apply here. That 

is, the constraint on the treatment parameters is q'y = 0 

and the series formula may not converge.

The formula (3.6.5) will fail to converge if any 

eigenvalue of F fails to satisfy the condition |l - e^| < 1, 

g + 1 < i < h.
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This condition will not hold, for example, for a Latin

Square design for two treatments. 

In this case

c = l - l w = 0 1

_-i i_
9

_ 1 0_

q 6= '  l 0" and F = '  1 - f

0 1
9

- 1 1

One eigenvalue of F is 1 and the other is -1.

However, this is the only design known to the author 

for which the series (3.6.5) fails to converge.

As the matrix E is a completely new generalized 

inverse for C some examples of it are given in the next 

section. Also included in the next section is a comparison 

of and Ê j, for small H, based on the examples used to 

illustrate E.

3.7 Examples of the matrix E 

Example 3,7.1

A Youden Square design for seven treatments in seven

rows and three columns.

7 1 3 
1 2  4
2 3 5
3 4 6
4 5 7
5 6 1
6 7 2

For this design all diagonal elements of E are equal to 

0.4388 and all off-diagonal elements are equal to 0.0102. 

Example 3.7.2

Three treatments in six rows and five columns.

1 2 2 3 3 
1 1 2  3 3
2 3 1 2  1
2 3 3 2 1
3 1 3  1 2  
3 2 1 1 2
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For this design all diagonal elements of E are equal to 

0.1215 and all off-diagonal elements are equal to 0.0174.

For Example 3.7.1 the matrix 0 has all diagonal 

elements equal to 0.4150 and all off-diagonal elements 

equal to -0.0136. For Example 3.7.2 the matrix 0 has 

all diagonal elements equal to 0.1028 and all off-diagonal 

elements equal to -0.0014.

Of particular interest is whether Ejj and ft̂ , with 

H equal to 4, are good approximations to E and ft, 

respectively. For Example 3.7.1 all elements of E are 

equal to the elements of E^ to four decimal places, but 

the diagonal elements of ft differ from the diagonal elements 

of ft. by 0.0002 to four decimal places, with all off- 

diagonal elements of ft being equal to those of ft̂ So in 

this case E^ is better than ft̂ .

However, for Example 3.7.2 the reverse is the case. 

Here all elements of ft are equal to all elements of ft̂ to 

four decimal places, but the diagonal elements of E differ 

from those of E^ by 0.0022 and the off-diagonal elements of 

E differ from those of E^ by 0.0011.

It appears therefore, that for some designs L'E^L may 

be a closer approximation to L'ftL than L'ft̂ L, but for 

other designs L'ft.L may be closer.

The relationship between E^ and ftj_, is not investigated 

further in this thesis, as the main aim is to obtain a 

successful algorithm to search for optimal row-and-column 

designs.

To check if using E^ in place of ft̂  in the algorithm 

described in Section 3.4 led to any improvement, the 

algorithm with E^ was used to search for the 37 designs 

described in the previous section. The results of this



136 -
test are given below.

3.8 Performance of the algorithm using

The algorithm using E^ gave designs that were the 

same as those obtained when was used. In particular, 

designs that were local optima were found for (9, 18, 4), 

(11, 11, 5) and (11, 11, 6) as before. Increasing H to 

ten did not lead to any improvement on these designs.

Therefore, for the rest of this chapter, only the 

algorithm based on will be considered further.

Additional tests of the performance of the algorithm are 

given in Sections 3.12 to 3.14. In the next three sections 

the problem of how to combine two component designs to 

give a row-and-column design will be considered.

3.9 An algorithm for combining two component designs

In the next three sections three different algorithms 

for combining two component designs are described. The 

reason three different algorithms are given is that they 

could be considered as of increasing complexity. The 

algorithms were developed in the order presented. To 

test each algorithm a large number of pairs of components 

were required and to obtain these the design problem given 

below was considered. This new problem was also introduced 

as a further test of the performance of the algorithm 

that searches for the components of an optimal design, the 

problem requiring contrasts to receive different weights.

The design problem is as follows. There are nine 

treatments to be arranged in six rows and six columns.

The nine treatments are the nine treatment combinations 

corresponding to two factors each at three levels. The 

factors are labelled here as "letters", L and "numbers",

N. The eight treatment contrasts were taken to be those



given in Table 3.9.1. For use in the algorithm that 

searches for the components and for calculating variances 

and covariances, each contrast was scaled so that the sum 

of squares of its coefficients was one.

Table 3.9.1, The eight treatment contrasts

Contrast T reatment No. 1 2 3 4 5 6 7 8 9 Explanation
No.

Treatment Label A1 A2 A3 B1 B2 B3 C1 C2 C3

1 1 1 1 -1 -1 -1 0 0 0 L£
2 1 1 1 1 1 1 -2 -2 -2 Lq
3 1 -1 0 1 -1 0 1 -1 0 N£
4 1 1 -2 1 1 -2 1 1 -2 Nq
5 1 -1 0 -1 1 0 0 0 0 L£ * N£
6 1 1 -2 -1 -1 2 0 0 0 L£ * Nq
7 1 -1 0 1 -1 0 -2 2 0 Lq * N£
8 1 1 -2 1 1 -2 -2 -2 4 L x Nq q

Here the subscripts £ and q refer to the linear effect and 

quadratic effect, respectively, and refers to the

linear by linear interaction etc.

Pearce (1963) gave two examples of designs for nine 

treatments in six rows and six columns. The first was of 

type 0:GG(F) and is given in Table 3.9.2. In this design, 

which is in factorial balance, the groups of treatments in 

the rows are (Ap A-,, A^), (Bp B2, B~) and (Cp C2, C^) 

and the groups in the columns are (Ap B p  C-̂ ), (A2, B7, C7) 

and (A,, B p  C_). The second design was of type 0:FF(T) 

and is given in Table 3.9.3. This design is in total 

balance. The variance-covariance matrix for the design 

in Table 3.9.2 is given in Table 3.9.4 and the variance- 

covariance matrix for the design in Table 3.9.5 is given

in Table 3.9.5.
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Table 5.9.2. Pearce's design of type 0:(F)

A1 A2 A3 B1 B2 B3

B1 C3 B3 B2 C2 C1

A2 C2 C1 A1 C3 A3

C1 A3 C3 C2 A2 A1

C2 B2 B1 C1 B- C3

B2 B3 A1 A2 A5 B1

Table 3.9.5. Pearce's design of type 0:(T)

A2 B1 A1 A3 B,0 B2

C2 B2 B3 B1 C3 C1

B3 C3 C1 A1 B1 A3

C1 A3 C3 c2 A2 A1

B1 C1 A2 B2 A1 C2

A3 A2 B2 C-0 C2 B3

Table 3.9.4. Variance-covariance matrix for 0:(F) design

0.33
0.33

0.33
0.33

0.25
0.25

0.25
0.25

Table 3.9.5. Variance-covariance matrix for 0:(T) design

0.2857
0.2857

0.2857
0.2857

0.2857
0.2857

0.2857
0.2857

From the variance-covariance matrices it can be seen that
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the 0:(F) design would be appropriate for the situation 

where the interactions were more important than the main 

effects, and the 0:(T) design would be appropriate for 

the situation where all treatment contrasts were of 

equal importance.

To obtain different sets of components three sets of 

weights were used. The main effects of L were each given 

a weight of W,, the main effects of N were each given a 

weight of and the interactions were each given a weight 

of W-. In all, nineteen different combinations of weights 

made up of the values 1, \ and 0 were used. Here a weight 

of 1 was intended to indicate that a contrast was to be 

estimated with as small a variance as possible and a 

weight of 0 was intended to indicate that a contrast was 

of no importance and its variance need not be kept 

small. A weight of a 1 was intended to indicate that a 

contrast was not as important as a contrast with weight 

1 and its variance need not be made as small as a contrast 

with weight 1, but even so should be made as small as 

possible. For all sets of weights the method of constructing 

the starting design gave the design given in Table 3.9.6.

This design is of type 0:GG(G) and the groups of treatments 

in the rows (and columns) are (A^, A^, A^), (B^, B0, B^) 

and (C-̂ , C^, C-). The variance-covariance matrix of the 

contrasts, obtained using this design, is given in Table 

3.9.7. This design would be appropriate for the situation 

where the main effects of L were of less importance 

than those of the other main effects and interactions.
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Table 3.9.6. The starting design produced by the algorithm

C3 C1 B2 B3 C2 B 

C1 C3 A2 C2 A3 A 

B1 A1 A3 B2 A2 B 

B3 C2 B1 C1 C3 B 

C2 A2 A1 C3 C1 A 

B2 A3 B3 B1 A i A

1

1

3

2

3

2

Table 3.9.7. Variance-covariance matrix for the starting 

design

0.5
0.5

0.25
0.25

0.25
0.25

0.25
0.25_

To obtain different pairs of components three 

different starting designs were used. The first, 

labelled here as PI (Pearce's first design), was the 

0:(F) design given in Table 3.9.2, the second, labelled 

here as P2 (Pearce's second design), was the 0:(T) design 

given in Table 3.9.3, and the third, labelled here as C 

(Computer generated), was the 0:(G) design given in Table 

3.9.6. In each run of the algorithm to search for the 

components H was set equal to 4.

Consider now an algorithm for combining two 

component designs. To illustrate the steps in this 

algorithm the two components found in Example 3.4.1 will 

be used for simplicity.

For the purpose of writing a computer algorithm, 

the task of combining two components can be considered as 

finding some arrangement of the treatments in each block
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of the row component that satisfies the following.

The set of treatments that occupies the first position 

in each block of the row component satisfies the first 

column of the incidence matrix of the column component, 

the set of treatments in the second position of each block 

satisfies the second column of N~, and so on.

For Example 3.4.1 the column component found by 

the algorithm had incidence matrix

~2 1 2  1 1 2  2 
2 1 2  2 1 1  
2 1 1 2  1 2  
1 2  2 1 2  1

Any treatment in the first block of the row component 

found by the algorithm may occur in any column therefore 

a suitable first row would be 

1 2 3 3 4 4.

The choice of arrangement for the first row may affect

the choice of arrangement for the second row. The effect
thcan be determined by subtracting 1 from the (i,j) 

element of if treatment i occurred in position j of 

the first row. For Example 3.4.1 the adjusted incidence 

matrix after choosing the first row as above is

adjusted N9 = 0 2 1 1 2  2 2 0 2 2 1 1 
2 1 0  1 1 2  
1 2  2 1 1 0

From this adjusted incidence matrix, lists S^, 

i = 1, 2, ..., b9 can be formed that indicate which 

treatments may occur in column i. These lists will be 

useful in the computer algorithm described below. For 

Example 3.4.1, if the second block of the row component 

( 2 1 1 2 3 4 )  is considered as the second row, the 

lists are = (2, 0, 0, 2, 3, 4), = (0, 1, 1, 0, 3, 4),
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S3 = (2, 1, 1, 2, 0, 4), S4 = (2, 1, 1, 2, 3, 4),

S5 = (2, 1, 1, 2, 3, 4) and S6 = (2, 1, 1, 2, 3, 0).

The lists are constructed by writing in the list S^, 

i = l ,  2, the treatments that occur in the block

and then replacing those treatments that cannot occur 

in column i by zero.

Therefore the arrangement 

1 1 2 2 3 4

is not suitable because 1 cannot occur in column 1; a 

suitable arrangement is 

4 1 1 2 3 2 .

A procedure for combining the two components is therefore 

as follows. Construct the column incidence matrix 

and from it the lists S^, i = 1, 2, ..., b f o r  the 

first block of the row component. Attempt to find an 

arrangement of the treatments in the first block to 

satisfy these lists. If a suitable arrangement can be 

found then take this as the first row. Adjust N? to 

take into account this choice and form new lists for 

the treatments in the second block of the row component. 

Attempt to find a suitable arrangement of these treatments 

to satisfy the lists. If an arrangement can be found 

take this as the second row and adjust further to take 

account of the choice of second row. Form lists for 

the third block of the row component and so on until all 

rows have been formed or no suitable arrangement for a 

particular row can be found.

The procedure as described leaves two difficulties 

to be resolved. The first is that of deciding if a 

suitable arrangement can be found and the second is that 

of deciding what to do if not.
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Consider first the problem of choosing a suitable

arrangement of the treatments in a block to satisfy the

lists S.. For each block the lists S. are formed as 1 1

Si (El> E2* Eb2'1,
where Ê  is the treatment in position j of the block if

that treatment can occur in column i, or = 0  otherwise.

The problem of choosing a suitable arrangement is

therefore that of choosing from the lists an element

E. such that no E. is zero and no E. is chosen from more 
J J J
than one list. The elements E. and E, are considered

1 K
distinct if j * k, e.g. E^ and E^ in list S^, given 

above for the first row, are distinct even though E^ = 2 

and E^ = 2.

When framed in this way the problem reduces to the 

familiar one of choosing from the lists S^, S2, • 

a set of distinct representatives. The lists are so 

constructed to take into account the choice of arrangements 

of any previous rowr. Hall (1935) gave a theorem which 

states that a necessary and sufficient condition for a 

set of distinct representatives to exist is that for 

every value ofk, 1 < k < b-,, any k lists have in their 

union at least k different members. Anderson (1974, p.26) 

gave a different formulation of this theorem and a 

constructive proof. This theorem and its proof are given

below.

The Marriage Theorem (Anderson, 1974).

Given a set of n men and a set of n women, each 

man makes a list of women he is willing to marry. Then 

each man can be married off to a woman on his list if and 

only if,
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(*) for every value of k, any k lists 

• contain in their union at least 

k names.

Anderson's Proof of the Marriage Theorem.

It is shown how, on the assumption that r < n 

men have been paired off with suitable women, to increase 

this to (r + 1) men.

Suppose r men have been paired off. If there is a 

man left who has on his list a woman who is still 

unattached, an (r + 1)^  pairing is immediate. So suppose 

that all women on remaining lists are already attached. 

Figure 3.5.1.

.A

.B- .Bs-1

V l

• B„

Choose any unmarried man Aq (see Figure 3.5.1). By (*)

with k = 1, there is a woman B^ on his list. B^ is

married to A^, say. By (*) with k = 2, the combined lists

of A and A, contain the name of at least one more woman o 1
B^. If B^ is unmarried, stop. If is married to A0,

then by (*) with k = 3, the combined lists of Aq , A^ and

A ? contain a third name, say B^. If B- is unmarried, stop.

If B- is married to A^, repeat the process, and continue

until an unmarried woman Bg is reached. (This must happen

eventually since not all women are married, and no B^

occurs twice in the process.) Note that by construction,

each B. is on the list of at least one A. with j < i. 
i  J

This is very important. Consider now Bs< Pair her off 

with an A^ on whose list she appears (i < s). This frees 

B.. Next pair off B. with some A. (j < i) on whose list
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she appears. This frees . Repeat until some woman is 

freed and re-paired with A . This must eventually happen. 

Then take all the new pairings and all the original ones 

which have not been tampered with. Now (r + 1) pairs have 

been obtained. Repeat the process if r + 1 < n.

Anderson (1974) notes that this proof has the 

advantage that the condition (*) need not be checked 

before the construction is attempted. If (*) does not 

hold, this will become clear when the method breaks down.

On the other hand, if (*) holds, the method will not break 

down.

The proof given by Anderson can be considered as 

an algorithm for finding a set of distinct representatives. 

In the following the references to finding a set of 

distinct representatives refer to the application of a 

computerised version of the above algorithm written by the 

present author.

Consider now the second problem of deciding what to 

do \\hen a set of distinct representatives cannot be found 

for a particular block of the row component. If this is 

the first block of the row component a row-and-column 

design cannot be constructed. For the remaining blocks 

either a row-and-column design cannot be constructed or 

the choice of arrangements for the previous rows has made it 

impossible to find a set of distinct representatives. In 

this second possibility a choice of different sets of 

distinct representatives for the previous rows may make it 

possible to find a set for the block under consideration.

A possible method is as follows. Label the blocks as 

1, 2, ..., L with L the block under consideration and 

1, 2, ..., L-l the blocks that have already been arranged
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as rows of the design. Then if a set of distinct 

representatives for block L cannot be found attempt to 

find a new set of distinct representatives for row L-l 

that will allow row L to be formed. If such a set 

cannot be found for row L-l, attempt to find a new set 

for row L-2 that will allow row L-l and row L to be 

formed, and so on, each time keeping a record of the 

rows that do not allow row L to be formed. The procedure 

is repeated until either a suitable arrangement of rows 

1, 2, ..., L can be found or no arrangement is possible.

If the second possibility occurs then a row-and-column 

design cannot be constructed from the components using 

the above algorithm.

When deciding if a new set of distinct representatives 

can be found for a block £, 1 < £ < L-l, the lists are 

constructed in the following way. The adjusted incidence 

matrix is restored to the state it had prior to fitting 

row £, i.e. adjusted only for the present choice of rows 

1, 2, ..., £-1. The lists are then formed in the usual 

way. These lists are then adjusted further to take into 

account all arrangements of block £ that have followed the 

present row £-1 and did not permit rows £+1, £+2, ..., L 

to be formed. This is done, for each list by setting 

Ej = 0 if Ej is an element in the list i corresponding to 

a treatment that occurred in column i of any of the previous 

choices for row £.

When this algorithm is applied to the two components 

found for Example 3.4.1 the row-and-column design is found

to be
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1 2 3 3 4 4
4 1 1 2  3 2
2 4 2 3 4 1
3 4 2 1 2 1
2 3 4 4 1 3
3 1 4  2 13.

Return now to the fifty-seven pairs of components 

found for the design for nine treatment combinations in 

six rows and six columns. It will be convenient to refer 

to the pairs of components using a combination of the 

letters PI, P2, and C, and a set of weights (W^, W2, W^).

So, for example, the components obtained using starting 

design C, as given in Table 3.9.6 and set of weights 

(0, 1, 1), will be identified by the code C(0, 1, 1).

Out of the fifty-seven pairs of components, the 

pairs found for C(0, 1, 1), C(0, 1, 0), C(0, 0, 1),

C(0, 1, 5) and C(0, 1) were equal to the starting

design given in Table 3.9.6. The pairs found for 

P1(0, 0, 1) and P1Q, |, 1) were equal to the starting 

design given in Table 3.9.2. The pair found for P2(l, 1, 1) 

was equal to the starting design given in Table 3.9.3. 

Therefore, of the forty-nine pairs found, seventeen could 

not be combined by the above algorithm. If the three 

starting designs, the components of which could be combined, 

are also considered the failure rate for the above 

algorithm is 17/52.

The reason the algorithm failed was that not all 

possible arrangements of the rows of the design were 

considered at each step. After a row had been rejected 

the procedure for choosing an alternative row eliminated 

a number of possible choices. The task of enumerating all 

possible sets of distinct representatives for a given row, 

storing them in the computer and successively trying each
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one if necessary would have meant an unwieldy and time 

consuming computer program!. Therefore, some alternative 

approaches were considered.

The failures of the algorithm were not all because 

it was impossible to combine the components, but because 

of the above flaw in the algorithm.

Consider therefore a second algorithm.

3.10 A second algorithm for combining the component designs

In the algorithm described in the previous section 

the components were combined by arranging a row of the 

design at a time. The arrangement of the treatments in 

each row was such that the incidence matrix for the columns 

was A s noted above the algorithm sometimes failed to 

combine the components when in fact, as will be seen in the 

following, some of them could be combined. A second 

algorithm that arranges a row and a column at each step was 

therefore developed.

The idea for this second algorithm stemmed from the

following theorems given by Freeman (1957).

Theorem 1. For two block designs to combine into a

row-and-column design, a necessary condition is that the

matrix formed by multiplying the matrix into the matrix

N_ shall have no zeros.~ z

Theorem 2. For two block designs to combine into a row- 

and-column design, a necessary condition is that, given any 

block of the row design, a matrix M w'ith v row's and b9 

columns can be obtained with the following properties:

(i) the totals in successive rows of M shall be a vector 

corresponding to the given block of the row' design, (ii) in 

each column of M there shall be one value of unity and the 

rest zeros, (iii) it shall be possible to subtract
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M from without the occurrence of any negative numbers.

Theorem 5. For two block designs to combine into a 

row-and-column design, a necessary condition is that if 

a matrix with the same first row as the matrix and 

values in the other rows corresponding to positions in the 

first column of the matrix N~ is subtracted from the matrix 

NJ to form a reduced row-treatment matrix (n|) and a 

reduced treatment-column matrix (n?) is obtained similarly, 

then there shall be no zeros, except in the first row and 

column, in the matrix formed by multiplying the matrix 

nj into the matrix n?.

He further states that the process of construction 

of row-and-column designs can be likened to fitting a 

nest of boxes of ever decreasing size into one another, 

any of the theorems corresponding to a condition that a 

particular box shall fit into the preceding one.

As Freeman pointed out in Theorem 1 there must 

be no zero values in the matrix and therefore 

before beginning the algorithm described below this is 

assumed.

Obviously the treatments in the blocks of the row 

component must be arranged as rows of the design so that 

the incidence matrix for columns is N9, and the treatments 

in the blocks of the column component must be arranged as 

columns of the design so that the incidence matrix for 

rows is N,. In the following a "suitable arrangement" 

will mean an arrangement that satisfies one of these 

conditions.

For convenience, the blocks of the row component 

are numbered as 1, 2, ..., b-̂ and the blocks of the 

column component as 1, 2, ..., b^. At each step in the
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algorithm the treatments in block j, say, of the row 

component and block j of the column component are 

arranged as row and column j of the design. Obviously, 

the treatment assigned to plot (j, j) of the design 

{j =1, 2, ..., min(bp } must be one of the treatments 

common to block j of each component. Therefore, before 

arranging row and column j a list is compiled which 

gives the treatments common to block j of the row component 

and block j of the column component. However, not all 

treatments in block j of each component are considered, 

because unless j = 1 some of them will have been assigned 

to plots in rows 1, 2, ..., j-1 and columns 1, 2, ..., j-1. 

Therefore, in the folloving, contains only those 

treatments common to block j of each component that are 

eligible to be assigned to plot (j, j). It is possible 

that list Lj will contain more than one element and so 

there may be a choice of treatment to assign to plot 

(j, j). Further, it may be that some of the treatments 

in list Lj when assigned to plot (j, j) make it impossible 

for the remaining plots in row and column j to be assigned 

a suitable arrangement of treatments. Therefore, in the 

algorithm the elements in list Lj are considered successively 

until one is found that enables a suitable arrangement of 

row and column j to be found.

If no element in list (j > 1), when assigned to 

plot (j, j), enables row and column j to be suitably 

arranged then all record of Lj is deleted and a new 

arrangement sought for row and column j-1. Ifj = 1  

(i.e. j-1 = 0) then the algorithm has failed to combine 

the components. In order to find a new arrangement of 

row and column j-1 that will enable row and column j to



151
be arranged, the next treatment in list that has

not yet been assigned to plot (j-1, j-1) is assigned 

to that plot. If no treatment in list Lj_-̂  when assigned 

to plot (j-1, j-1) enables row and column j-1 to be 

suitably arranged then all record of list Lj_^ is deleted 

and a new arrangement sought for row and column j—2, and 

so on. Eventually either a new arrangement of some or all 

of rows and columns 1, 2, ..., j-1 is found that enables 

row and column j to be suitably arranged, or all arrangements 

of the treatments common to each pair of row and column 

blocks will have been tried on plots (1, 1), (2, 2), ...,

(j-1, j-1) without a suitable arrangement being found.

Even if the latter happens it is not certain that it is 

impossible to combine the components because in the 

algorithm not all possible arrangements of rows and columns 

are considered, as will be explained below.

As in the algorithm described in Section 3.9 a 

suitable arrangement is found by compiling lists of 

treatments that may occur on a given set of plots and 

finding one set of distinct representatives for these 

lists. Consequently as not all sets of distinct representatives 

are obtained it is possible that the one chosen may make it 

impossible to arrange a row or column later in the algorithm. 

However, in this algorithm there is usually a choice of 

treatment to assign to plot (j , j) , {j =1, 2, ..., min(b-^, b^) } 

and so a number of sets of distinct representatives for row 

or column j can be sought by assigning successively to plot 

(j, j) every treatment in list Lj that is eligible to be 

assigned to that plot.

Having outlined the main steps in the algorithm it is 

necessary to fill in the details. After a treatment from
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list has been assigned to plot (1, 1) the remaining 

b9 - 1 treatments (not all necessarily distinct) in block 

1 of the row component need to be assigned to plots 2, 3, 

b2 of row 1 of the design. These treatments must be 

arranged in such a way that in the final design the 

incidence matrix for columns is N9. Therefore, in a similar 

way to that described in Section 3.9, columns 2, 3, ..., b2 

of are used to compile lists S 

give respectively, the treatments that can be assigned to 

plots 2, 3, ..., b2 of row 1. A set of distinct representatives, 

if one exists, is found using the Marriage Theorem algorithm 

given by Anderson (1974) and this defines the arrangement 

of row 1. The remaining b^ - 1 treatments in block 1 of 

the column component are similarly assigned to plots 2, 3,

..., b^ of column 1 by compiling lists based on columns 

2, 3, ..., b^ of and finding a set of distinct 

representatives for these lists.

A suitable arrangement of row and column 1 having been 

found the incidence matrices and are adjusted to take 

account of these arrangements. That is, if treatment l, say,

(£ = 1, 2, ..., v) was assigned to plot p, (p = 2, 3, ..., b2) 

of row 1 then a 1 is subtracted from element (£, p) of 

Similarly, a 1 is subtracted from element (m, q) of if 

treatment m, (m = 1, 2, ..., v) was assigned to plot 

q, (q = 2, 3, ..., b^) of column 1.

Making these adjustments makes the compilation of 

list L2 quite easy. The treatments common to block 2 of 

each component can be determined from column 2 of each of 

the adjusted matrices N, and N~. If the product of element 

i, (i = 1, 2, ..., v) in column 2 of and element i in 

column 2 of N9 is zero then treatment i is not common to

2, Sj, ..., which
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block 2 of each component. Further, if there is a zero 

element in row or column k, (k = 2, 3, . or b^) of 

the matrix N-jN̂  then as Freeman pointed out in Theorem 2, 

the remaining treatments in blocks 2, 3, b^ of the

row component and blocks 2, 3, ..., b^ of the column 

component cannot be arranged as rows and columns of the 

design. If this happens a new arrangement of row and column 

1 must be sought.

After rows and columns 1, 2, ..., j-1 have been

suitably arranged there will exist matrices and ^

suitably adjusted for these arrangements. From and

it can be determined if the remaining treatments in blocks

j, j+1, ..., b^ of the row component and blocks j, j+1, ...,

b? of the column component can be arranged as rows and

columns of the design. If they cannot, a new arrangement

of rows and columns 1, 2, ..., j-1 must be sought. If they

can, then Lj is compiled. After a treatment has been

assigned to plot (j, j) lists S . . , S. -, ..., S. arej+i j z
compiled using columns j+1, j+2, ..., b^ of and lists 

Sj+p  Sj+2» •••> using columns j+1, j+2, ..., b^ of N^.

If no arrangement for row and column j can be found 

then a new arrangement for row and column j-1 is sought. 

However, before looking for this new arrangement the matrices 

and are restored to the state they had immediately 

after being adjusted for the present arrangement of row and 

column j-2.

Obviously if no suitable arrangement for plots j+1, 

j+2, ..., b? of row j can be found there is no point in 

looking for a suitable arrangement for plots j+1, j+2, ..., 

b^ of column j. Therefore, if this happens the next 

treatment, if any, in list is assigned to plot (j, j)
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and a new arrangement for row and column j is sought.

After rows and columns {1, 2, min(b^, b2)l

have been suitably arranged, two possibilities are left.

If b^ = b-, then the design has been completed and no more 

arranging is required. If b^ * b2 then if b^ > b2 plots 

b9 + 1, b? + 2, ..., b^ of column b2 still need to be 

assigned treatments and if by > b, plots b. +1, b, +2,

..., b2 need to be assigned treatments.

If b^ > b^, this is done by compiling lists + ^ ,

+ 2> •••» using columns b2 + 1, b9 + 2, ..., b^ 

of and finding a set of distinct representatives for plots 

b2 + 1, b2 + 2, ..., b^ of column b7. If b2 > b^ lists 

^  + + 2 » •••» are compiled using columns b^ + 1,

b^ + 2, ..., b9 of N7 and finding a set of distinct 

representatives for plots b^ + 1, b-̂ + 2, ..., b^ of row b^.

If no suitable arrangement can be found then a new 

arrangement for row and column (min(b b2) - 1) is sought 

and so on.

To illustrate the steps in the algorithm consider 

again Example 3.4.1 for four treatments in six rows and six 

columns. Here

S i  - 1 2  1 2  12" ~2 =
and

1 2  1 1 2  2"
1 2 2 2 1 1 
2 1 1 1 2  2

2 1 2  2 1 1  
2 1 1 2  1 2

2 1 2  1 2  1 1 2  2 1 2  1

No element of N'N- is zero so the algorithm can be applied.

List = (1, 2, 3, 4) and so treatment 1 is initially 

assigned to plot (1,1). An arrangement of treatments 

(2, 3, 3, 4, 4) is now required that will give a suitable 

first row. Using columns 2, 3, ..., 6 of N7 each of the 

lists , S0, ..., S6 is found to be equal to (2, 3, 3, 4, 4) 

and a set of distinct representatives is (2, 3, 3, 4, 4).
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Therefore the arrangement of the first row is

(1, 2, 3, 3, 4, 4). To find the arrangement of the first

column we must find an arrangement of (2, 3, 3, 2, 4).

Using columns 2, 3, ..., 6 of N, each of the lists

S0, S,, Sg is found to be equal to (2, 3, 3, 2, 4)

and a set of distinct representatives is (2, 2, 3, 3, 4).

The arrangement of the first column is therefore

(1, 2, 2, 3, 3, 4). At this stage the design has the form

1 2 3 3 4 4
2 
2 
3 
5

0 2 1 2 1 2 N = 0 2 1 1 2 2
0 1 1 2 1 1 ~ z 

and 0 0 2 2 1 1
0 1 1 0 1 2 0 1 0 1 1 2
0 1 2 1 2 0 0 2 2 1 1 0

The matrix has no zero elements except in the first 

row and column and so the next step in the algorithm is 

considered.

The list L0 = (1, 3, 4) and so initially treatment 1 

is assigned to plot (2, 2). This leaves treatments 

(1, 2, 3, 4) to be assigned to plots 3, 4, 5, 6 of row 2 

and treatments (1, 3, 4, 4) to be assigned to plots 

3, 4, 5, 6 of column 2. Using N?, the lists for row 2 are

S- = (1, 2, 0, 4), S4 = S5 = (1, 2, 3, 4) and S6 = (1, 2, 3, 0).

A set of distinct representatives is (4, 2, 3, 1) and so a 

suitable second row would be (2, 1, 4, 2, 3, 1). Using N p  

the lists for column 2 are S_ = (1, 3, 4, 4), = (1, 0, 4, 4),

S- = (1, 3, 4, 4) and = (1, 5, 0, 0). A set of distinct

representatives is (4, 4, 3, 1) and so a suitable second 

column would be (2, 1, 4, 4, 3, 1). At this stage the design 

has the form
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1 2 3 3 4 4
2 1 4 2 3 1
2 4
3 4
3 3
4 1

Continuing in this way the algorithm gives the combined 

design as

1 2 3 3 4 4
2 1 4 2 3 1
2 4 1 2 4 3
3 4 2 1 1 2
3 3 4 4 2 1
4 1 2 3 1 3 .

The above algorithm was applied to the three starting 

designs and the forty-nine different pairs of components.

This new algorithm failed to combine twelve pairs of 

components, i.e. a failure rate of 12/52. This is slightly 

lower than the failure rate of 17/52 for the algorithm 

described in Section 3.9. So for the fifty-two pairs of 

components considered here the new algorithm has been more 

successful. However, as will be seen in the next section 

most of these pairs of components can be combined and so 

this second algorithm also suffers from the disadvantage 

of not being able to determine all possible arrangements of 

each row and column. A failure rate of 12/52 is still too 

high and so a more successful algorithm must be devised.

This is done in the next section.

3.11 A third algorithm for combining components

In the previous algorithms for combining components not 

all possible arrangements of each row and column were 

considered. This meant some components were not combined 

when in fact it was possible to combine them. However, 

unless all possible arrangements are considered these failures 

are bound to occur. The previous algorithms could probably
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be modified to search for all arrangements but this would 

require a very efficient procedure for generating them if 

the algorithm is to run quickly on the computer. Therefore, 

rather than modify the algorithms a new approach is adopted. 

In this approach a treatment is assigned to a plot at a 

time, and an algorithm to search for sets of distinct 

representatives is not needed.

Initially for each plot a list of possible treatments 

is prepared. Thus, if plot j is in row p and column q, it 

is a question of listing those treatments common to block 

p of the row component and block q of the column component. 

If any list is empty then as Freeman's first theorem points 

out, the two components cannot be combined. It will 

however be assumed that plot j has S- possible treatments, 

E p  E-,, ..., Eg , where S- > 1 for all j, the list being
j J

called L..J
A treatment is then allocated to each plot in turn, 

working along the rows. The treatment allocated to plot j 

is the first eligible treatment in list L_.; a treatment may 

have become ineligible because of an allocation already 

made. If treatment E^ say, is allocated to plot j then
j

E^ is replaced by -E. in list L., the minus sign acting
j J J

as an indicator for possible use later. Further, a one is

subtracted from element (E. ) of N, , where p is the rowxj , p ~i
in which plot j occurs, and a one is subtracted from 

element (E ) of N~, where q is the column in which plot
a ,- , q

j occurs. These adjustments to and N? ensure that a

treatment does not occur too many times in any row or column.

Therefore, treatment E. from list L, , k > j, mav become
\  K

ineligible for plot k because element (E„ ) of N, is zero,. > P
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where p is the row in which plot k occurs, or because 

element (E ) of N? is zero, where q is the column in
V  q

which plot k occurs. If this happens, treatment E. is

replaced by -E^ in list and the next treatment in list 
k

Lj. is considered.

Of course, list may contain no treatment eligible 

for plot k because of the way the treatments have been 

allocated to the previous plots. When this happens, a new 

arrangement of treatments must, if possible, be found that 

will allow a treatment from list to be allocated to plot

k. This is done as follows. Any minus sign is removed from 

list Lj, and then plot k - 1 is reconsidered. The matrices

and are readjusted to the state they had after the 

present assignment of treatments had been made to plots

l, 2, ..., k - 2. The first treatment in list  ̂that

does not have a minus sign is then considered for possible 

allocation to plot k - 1. If this treatment is ineligible 

for plot k - 1 then a minus sign is added to it and the 

next treatment in list considered and so on. If a 

treatment in list  ̂can be allocated to plot k - 1

then this is done, and a minus sign added to that treatment 

in list Lj, _ p  and the matrices and adjusted to take 

into account the allocation of this treatment to plot k - 1. 

Plot k is then reconsidered. If no treatment in list

 ̂ is eligible for plot k - 1 then the procedure 

described for plots k and k - 1 is repeated for plots 

k - 1 and k - 2, and so on until either an arrangement can 

be found that allows a treatment from list to be allocated 

to plot k or no such arrangement can be found. In the latter 

case the components cannot be combined to give a row-and- 

column design.
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In the above algorithm the labelling of treatments 

with a minus sign ensures that no arrangement is considered 

more than once. Further, different arrangements are 

considered successively until a suitable one is found.

This algorithm also has the advantage of not requiring sets 

of distinct representatives to be obtained at each step.

For Example 3.4.1 the lists for all thirty-six plots 

are = (1, 2, 3, 4), i =1, 2, ..., 36, and the algorithm 

described above gives the following design

1 2 3 3 4 4
2 1 1 2  4 3
2 1 4 4 2 3
3 4 2 1 1 2
3 4 4 2 3 1
4 3 2 3 1 1 .

The above algorithm failed to combine three of the 

fifty-two pairs of components. These were the final designs 

found for Pl(l, 0, 0), C(l, 0, 0) and C(l, 0, ¿). As the 

algorithm considers every possible arrangement these 

failures occurred because the components could not be 

combined. Therefore, the success rate of the algorithm is 

obviously a 100% whenever the components can be combined, 

and it is usually very quick in its execution. For example, 

it took 0.411 CP seconds on the University of London 

CDC 7600 computer to combine the components of the design 

for 21 treatments in 21 rows and 5 columns given by Youden 

(1937). The failure rate of the algorithm that fits a row 

and a column at each step, and described in Section 3.10, 

was therefore 9/49 and the failure rate for the algorithm 

that fits a row at a time and described in Section 3.9 

was therefore 14/49.

Khat is also apparent is that the algorithm that 

finds the components can find a pair that cannot be
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combined. A failure rate of 3/52 does appear to be high 

but these three pairs are the only ones that have 

occurred in over one hundred runs of the algorithm.

Having now developed an efficient algorithm for 

combining the components the properties of the forty-nine 

different designs obtained by the algorithm that searches 

for the components can be considered. This is done in the 

next section.

A description of the algorithm that searches for the 

components and of the third algorithm for combining them 

was given by Jones (1979). A computerised version of the 

third algorithm for combining the components (Jones, 1980b) 

has been accepted for publication in Applied Statistics.

3.12 Properties of the designs found by the optimality

algorithm

When considering the properties of the designs found 

by the algorithm that searches for components it should 

be borne in mind that the optimality criterion uses only 

the weighted variances of the estimates of the contrasts. 

The covariances between the estimates are not considered. 

Obviously, a desirable property of a design is that the 

estimates of the contrasts of interest are mutually 

orthogonal, if that is possible, and also that these 

estimates are orthogonal to the estimates of any other 

contrasts that taken together with the contrasts of 

interest account for all the degrees of freedom for 

treatments. Hie partitioning of the treatment sums of 

squares into orthogonal components in an analysis of 

variance is then made possible.

It will be convenient to make use of the following

definition.
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Definition 5.12.1.

Given a complete set of orthogonal contrasts, L, 

a design for which L'OL has some non-zero off-diagonal 

elements will be referred to as being of type NOEC 

(i.e. Non-Orthogonal Estimates of Contrasts).

A design of type NOEC is not necessarily a bad one 

because the non-zero covariances could all be between 

estimates of contrasts for which no interest has been 

expressed. This point will become clear in the following.

Table 3.12.1 gives a summary* of the properties of 

the fifty-seven designs obtained in the tests of the 

algorithm. It will be recalled that there were eight 

treatment contrasts. The two main effects of "letters"

(L) were each given a weight of , the two main effects 

of "numbers" (N) were each given a weight of and the 

remaining four interactions were each given a weight of 

W,. The * in the table indicates that the two component 

designs found for that set of weights could not be 

combined. These designs will be considered again in the 

next section. Also indicated in the table are those 

designs that were equal to the starting design.

For convenience the designs will be considered in 

groups depending on the nature of their weights. As in 

each design the replication of each treatment is four 

the estimate of a contrast cannot have a variance smaller 

than 0.25.

Consider first the designs with weights (1, 1, 1). 

The P2(l, 1, 1) design was equal to the starting design 

and so was optimal, being of type 0:(T). The other two 

designs, however, were of type NOEC and were not optimal. 

The variance-covariance matrix for the estimates of the
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T a b le  5 . 1 2 . 1 .  Types o f  d e s ig n
W eights S t a r t i n g  Type o f  f i n a l  W eigh ts S t a r t i n g  Type o f  f i n a l
K1 U2 W3 design design W1 W2 K3 design design

1 1 1 PI NOEC 12 12 1 PI 0:(F)t
1 1 1 P2 0:(T)t 12 12 1 P2 0: (F)
1 1 1 C NOEC 12 12 1 C 0: (F)

1 1 0 PI NOEC 1 12 0 PI NOEC
1 1 0 P2 NOEC 1 12 0 P2 NOEC
1 1 0 C NOEC 1 12 0 C NOEC

1 0 1 PI 0: (G) 1 0 12 PI 0: (G)
1 0 1 P2 0: (G) 1 0 12 P2 0: (G)
1 0 1 C 0: (G) 1 0 12 C ★
0 1 1 PI 0: (G) 12 1 0 PI NOEC
0 1 1 P2 0: (G) 12 1 0 P2 NOEC
0 1 1 C 0:(G)t 12 1 0 C NOEC

1 0 0 PI ★ 12 0 1 PI 0: (F)1 0 0 P2 NOEC 12 0 1 P2 0: (F)
1 0 0 C ★ 12 0 1 C 0: (F)

0 1 0 PI NOEC 0 1 12 PI 0: (G)
0 1 0 P2 NOEC 0 1 12 P2 0: (G)
0 1 0 C 0 : (G)t 0 1 12 C 0: (G) t

0 0 1 PI 0: (F)t 0 12 1 PI 0: (F)
0 0 1 P2 NOEC 0 12 1 P2 0: (F)
0 0 1 C 0:(G)t 0 12 1 C 0:(G)t

1 1 12 PI 0: (F)
1 1 12 P2 0: (F)1 1 12 C 0: (F)1 12 1 PI 0: (F)1 12 1 P2 0: (F)1 12 1 C NOEC12 1 1 PI 0: (F)12 1 1 P2 0: (F)12 1 1 C NOEC1 12 12 PI NOEC
1 12 12 P2 NOEC1 12 12 C NOEC12 1 12 PI 0: (F)12 1 12 P2 NOEC12 1 12 C 0: (F)

t  Here th e  f i n a l  d e s ig n  e q u a lle d  th e  s t a r t i n g  d e s ig n .
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treatment contrasts, L'fiL, for design Pl(l, 1, 1), is 

given in Table 3.12.2. The matrix L'ftL for C(l, 1, 1) 

was identical to this except some of the signs of the 

covariances were reversed. The variances are quite 

close to the optimal value of 0.2857 and all covariances 

are quite small. Therefore this design is near optimal.

A method of improving these designs is described in the 

next section.

Table 3.12.2. L'OL for the Pl(l, 1, 1) design

"0.3066 -0.0183 -0.0065 0.0065

0.2857

-0.0183 0.2742 -0.0023 0.0094

0.2733 0.0088 -0.0088

0.0088 0.2795 0.0062

-0.0065 -0.0023 0.2887 0.0121

0.0065 0.0094 0.0121 0.3087

-0.0088 0.0062 0.2795_

Consider now the next eighteen designs in Table 3.12.1 

which have weights made up of both l's and 0's, but no ¿'s. 

The designs labelled as 0:(G) or 0:(F) were such that all 

eight contrasts had mutually orthogonal estimates and the 

estimates of the contrasts with weight 1 had the minimum 

variance of 0.25. The designs labelled as NOEC were such 

that all contrasts with weight 1 had mutually orthogonal 

estimates and the estimates had the minimum variance of 

0.25. In addition, all the estimates of the contrasts 

with weight 1 were orthogonal to the estimates of the 

contrasts with weight 0, the contrasts of no interest. All 

these NOEC designs were therefore optimal as they satisfied
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the requirements set at the start of the algorithm and 

had the additional feature of orthogonality. To illustrate 

this point the L'fiL matrix for design Pl(l, 1, 0) is given 

in Table 3.12.3. Here the non-zero covariances are 

labelled by an x.

Table 3.12.3. L'QL for the Pl(l, 1, 0) design

0.2500

0.2500

0.2500

0.2500

(all zeros)

(all zeros)
0.8274 X X X

X 0.8487 X X

X X 0.4886 X

X X X 0.5524

Consider now the designs with weights that include 

a l• Deriving designs for these sets of weights is more 

difficult because there is less opportunity to reduce 

the variance of one contrast at the expense of the other. 

The designs found for weights (1, 1, ¿), (1, 1) and

Q, 1, 1) that were of type 0:(F) were such that all 

contrasts had estimates that were mutually orthogonal.

For the designs with weights (1, 1, \) The estimates of 

the contrasts with weight 1 had variance 0.25 and all 

those with weight \ had variance 0.3333. The designs \vlth 

weights (1, l, 1) and (¿, 1, 1) were such that the 

estimates of the main effects with weight 1 had variance 

0.2857, the estimates of the main effects with weight \ 
had variance 0.40, and the estimates of the interactions 

had variance 0.25. Overall, a most satisfactory outcome.
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The designs C(l, \, 1] and CQ, 1, 1) were of type NOEC 

and so were less satisfactory. They were however, near 

optimal. The matrix L'QL for each of these designs is 

given in Tables 3.12.4 and 3.12.5, respectively.

Table 3.12.4. L'fiL for design C(l, 1)

"0.2540 -0.0097 -0.0056

0.2857

0.4000

0.4000

-0.0097 0.2738 0.0137

-0.0056 0.0137 0.2579

0.2500

0.2500_

Table 3.12.5. L'OL for the design C(|, 1, 1) 

"0.4000

0.4000

0.2659 0.0049 0.0084 0.0028 -0.0146

0.2500

0.0049 0.2560 0.0103 -0.0069

0.0084 0.0103 0.2679 -0.0119

0.0028 -0.0069 -0.0019 0.2639 -0.0103

-0.0146 -0.0103 0.2679_

The designs found for weights (1, ¿) were all NOEC

and the matrix L'OL for each of these designs is given in 

Tables 3.12.6 to 3.12.8, respectively. One good feature 

of these designs is that the contrasts with weight 1 have 

minimum variance estimates which are mutually orthogonal, 

and orthogonal to the estimates of the other contrasts.
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Table 3.12.6. L'SIL for the Pl(l, \) design

0.2500 •

0.2500

0.5182 0.0262

0.0262 0.2879

0.2932 -0.0130 

-0.0130 0.3083

0.2932 -0.0130 

-0.0130 0.3083_

Table 3.12.7. L'QL for the P2(l, \> i) design 

'0.2500

0.2500

0.2960 0.0083 0.0063 0.0002 -0.0031 -0.0121

0.0083 0.2864 0.0104 -0.0004 0.0054 -0.0002

0.0063 0.0104 0.3087 0.0007 0.0090 0.0079

0.0002 -0.0004 0.0007 0.3095 -0.0231 0.0007

-0.0031 0.0054 -0.0090 -0.0231 0.2999 0.0090

-0.0121 -0.0002 0.0079 0.0007 -0.0090 0.3087

Table 3.12.8. L'OL for the C(l, \) design 

"0.2500

0.2500

0.2960 0.0005 -0.0126 0.0106 -0.0059 0.0003

0.0005 0.3166 -0.0113 -0.0007 -0.0101

-0.0126 -0.0113 0.3099 0.0179 -0.006S

0.0106 0.3083 0.0075

-0.0059 -0.0007 0.0179 0.0075 0.2988 -0.0004

0.0003 -0.0101 -0.0068 -0.0004 0.2796
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The designs for P1Q, 1, 1) and CQ, 1, 1) were 

such that all contrasts had mutually orthogonal estimates. 

The variance of the estimates of the main effects of L 

was 0.5333, the variance of the estimates of the main 

effects of N was 0.25 and the variance of the estimates 

of the interactions was 0.2857. The NOEC designs for 

P2Q, 1, l) had the matrix L'OL given in Table 3.12.9.

A pleasing feature of this design is that the estimates 

of the contrasts with weight 1 have minimum variance and 

are mutually orthogonal to the estimates of the other 

contrasts.

Table 3.12.9. L'fiL for the P2ÇJ, 1, \) design

"0.5277 0.0097 0.0029 0.0017 -0.0051 -0.0029"

0.3166 -0.0051 -0.0029 0.0088 0.0051

0.2500

0.2500

0.0029 -0.0051 0.2861 -0.0041 -0.0006 0.0072

0.0017 -0.0029 -0.0041 0.2908 0.0072 -0.0089

-0.0051 0.0088 -0.0006 0.0072 0.2867 -0.0124

_-0.0029 0.0051 0.0072 -0.0089 -0.0124 0.3011_

All three designs for weights 1) were such that

the estimates of all the contrasts were mutually orthogonal. 

The variance of the estimates of the contrasts with weight 

l was 0.5333 and the variance of the estimates of the 

contrasts with weight 1 was 0.25.

Consider now the designs with weights that are made 

up of a 1, a l and a 0. All three NOEC designs for weights 

(1, l, 0) had estimates of the contrasts with non-zero 

weights that were all mutually orthogonal and had minimum
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variance. Further, these estimates were orthogonal to 

the estimates of the contrasts that had weight 0. That 

is, the design was optimal as it satisfied the requirements 

set at the start of the algorithm.

The designs Pl(l, 0, and P2(l, 0, ¿) had estimates 

of the contrasts that were all mutually orthogonal. The 

variance of the estimates of the contrasts with non-zero 

weights was 0.25 and those with zero weights was 0.50.

All three NOEC designs for weights Q , 1, 0) were 

such that the estimates of the contrasts with non-zero 

weights had minimum variance and were mutually orthogonal. 

Further these estimates were orthogonal to the contrasts 

with weight 0. Therefore these designs are optimal for the 

requirements set.

All nine of the designs remaining in Table 3.12.1 

were such that the estimates of all eight contrasts were 

mutually orthogonal. The three designs for weights 

Q, 0, 1) were such that the estimates of the contrasts 

with weight \ had variance 0.2857, the estimates of the 

contrasts with weight 0 had variance 0.40, and the 

estimates of the contrasts with weight 1 had variance 0.25.

The designs for weights (0, 1, were similar to 

those just described except the estimates of the contrasts 

with zero weight had variance 0.5 and all other contrasts 

had estimates with variance 0.25.

The designs P1(0, 1) and P2(0, 1) were also

similar to those just described except the estimates of 

the contrasts with weight 0 had variance 0.4, the estimates 

of the contrasts with weight  ̂had variance 0.2857 and the 

estimates of the contrasts with weight 1 had variance 0.25. 

The design C(0, 1) was equal to the starting design
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and as such the estimates of the contrasts with non-zero 

weights had variance 0.25 and those with weight zero had 

variance 0.50.

Whether or not the above designs are truely optimal 

for the requirements stated will be considered further in 

Section 3.14. What is apparent however, is that those 

designs which are of type NOEC and have no zero weights 

are not optimal as a design which is not of type NOEC exists 

that would satisfy the requirements. It would be an 

improvement to the algorithm that searches for optimal 

components if less designs of type NOEC occurred. A way of 

doing this is considered in the next section.

3.13 A modification of the optimality algorithm to improve

designs of type NOEC

In the previous section it was noted that some designs 

found by the optimality algorithm for sets of non-zero 

weights were of type NOEC. These designs are less desirable 

because their analysis of variance is more difficult as the 

treatment sum of squares cannot be partitioned into a full 

set of orthogonal components. It would be useful therefore 

if such designs could be modified so that all off-diagonal 

elements of the matrix L'PL were zero. The algorithm 

described in Section 3.4 can be easily altered for this

purpose by changing the optimality criterion. Instead of
6searching for interchanges that minimize trace(L' PjjLto ), 

the algorithm is altered to search for interchanges that 

minimize the sum of the absolute values of the off-diagonal 

elements of L'O^L, where is as defined in formula (3.3.21).

The modified algorithm with H equal to four was 

applied to all twenty-one NOEC designs described in the 

previous section and the three designs labelled as * in
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Table 3.15.1. Types of design and values of the new criterion 

before and after the second minimization

Design Criterion value 
before

Criterion value 
after

Type of design 
found

P I  C 1,  1 ,  1) 0 . 1 5 7 4 0 . 0 OEC

C ( 1 ,  1 ,  1) 0 . 1 5 7 4 0 . 0 OEC

P l ( l ,  1 ,  0) 1 . 4 6 0 0 0 . 0 OEC

P 2 ( l ,  1 ,  0) 0 . 2 4 8 8 0 . 2 2 1 4 NOEC

C ( 1 ,  1 ,  0) 0 . 5 5 2 0 0 . 0 OEC

P l ( l ,  0 ,  0) 1 . 6 6 3 4 0 . 50 66 NOEC

P 2 U ,  0 ,  0) 0 . 6 1 8 8 0 . 1 8 6 0 NOEC

C C l ,  0 ,  o) 2 . 0 1 6 8 0 . 0 OEC

Pico, l ,  o) 0 .6 4 86 0 . 0 9 1 6 NOEC

P 2 ( 0 ,  1 ,  0) 0 . 4 8 0 0 0 . 1 1 6 6 NOEC

P2C0,  o ,  1 ) 0 . 1 9 2 2 0 . 1 9 2 2 NOEC

C C l ,  l ,  1) 0 .0 5 82 0 . 0 OEC

c G, 1 ,  1) 0 . 1 4 0 0 0 . 0 7 1 4 NOEC

P l ( l ,  1, i ) 0 . 1 0 4 0 0 . 1 0 4 0 NOEC

P 2 ( 1 ,  l, i ) 0 . 1 9 2 8 0 . 0 8 60 NOEC

c C l ,  2 ,  1) 0 . 1 6 4 4 0 . 0 7 7 4 NOEC

P 2 G ,  1 ,  D 0 . 1 6 8 4 0 . 0 OEC

P I G ,  2 ,  o) 1 . 4 6 0 0 0 . 0 OEC

P 2 ( l ,  l ,  0) 0 . 2 4 8 8 0 . 2 2 1 4 NOEC

C C l ,  1, 0) 0 . 5 5 2 0 0 . 0 OEC

C C l ,  0 ,  | ) 0 .4998 0 . 0 OEC

PIG, i, o) 1 . 4 6 0 0 0 . 0 OEC

P2G, 1, 0) 0 . 3 3 2 4 0. 325 8 NOEC

C G, 1 ,  0) 0 . 55 20 0 . 0 OEC
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Table 3.12.1, which had components that could not be 

combined. It will be noted however, that not all of these 

twenty-one designs needs modification because the designs 

with zero weights, Pl(l, 1, 0) for example, were optimal for 

the requirements set at the start of the algorithm. It is 

designs such as C(l, 1, 1) for example, that need modification. 

All twenty-four designs were included however, to test the 

performance of the modified algorithm. The results of this 

test are summarized in Table 3.13.1. There the new code 

OEC (Orthogonal Estimates of all Contrasts) is used to indicate 

the designs that were no longer of type NOEC after modification 

by the new' algorithm.

Out of the twenty-one NOEC designs, ten were modified to 

be of type OEC and all except two of the remaining eleven had 

values of the non-zero covariances that were smaller. Also, 

and quite importantly, the three designs that had components 

that could not be combined were modified so that the combining 

of their components was possible. These designs it will be 

recalled were Pl(l, 0, 0), C (1, 0, 0) and C(l, 0, \). Further, 

these designs were now optimal for the requirements set at 

the start of the algorithm as the estimates of the contrasts 

with non-zero weights had minimum variance, were mutually 

orthogonal and ware orthogonal to the estimates of the contrasts 

with zero weights.

One unfortunate outcome was that the modified design for 

Pl(l, 1, 0) was no longer optimal. The estimate of the linear 

main effect of N no longer had minimum variance, and this 

estimate was no longer orthogonal to the estimates of all the 

other contrasts. However, this design did not need modification 

as it was already optimal and so in practice this outcome would 

not have occurred. It does serve as a warning however, that it
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is not always a good thing to tamper with a satisfactory 

design.

Before the second minimization procedure was employed 

there were eight NOEC designs that had no zero weights and 

were therefore the ones that actually needed modification.

Of these eight the designs Pl(l, 1, 1), C(l, 1, 1), C (1, 1)

and P2Q, 1, |) were now of type OEC. Of the remaining four,

C(J, 1, 1), P2(l, l, ¿) and C(l, had reduced values of

the non-zero covariances, but Pl(l, \, was not improved.

Therefore, overall, it appears that the modified version 

of the algorithm has been successful and is a useful addition 

to the procedure for searching for the components of the optimal 

design.

Those designs described above that had some zero weights 

and were such that the estimates of the contrasts wTith non-zero 

weights had minimum variance and were mutually orthogonal to 

all the other estimates of the contrasts were in fact optimal 

designs. These designs satisfied the requirements set at the 

start of the algorithm and had the additional feature of 

orthogonality. Most of the designs described above that had 

all non-zero weights looked as if they were optimal as the 

pattern of L'fiL satisfied the requirements set at the start of 

the algorithm. It is important, however, to try and determine 

if better designs exist so that it can be established whether 

or not these designs are in fact optimal. This is done in the 

next section.

3.14 Optimality of the designs described in the previous section

Here we consider the best designs found for each set of 

weights, having applied the modified version of the algorithm, 

as described in the previous section, where necessary. There 

were thirty-one designs which wrere certainly optimal as the
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estimates of the contrasts with non-zero weights had minimum 

variance and were orthogonal to each other and the estimates 

of the contrasts with zero weights. These designs were 

PICI, 1, 0), P2(1, 1, 0), C (1, 1, 0), Pl(l, 0, 1), P2(1, 0, 1), 

c (1, o, 1), PICO, 1, 1), P2(0, 1, 1), C (0, 1, 1), PICI, 0, 0), 

P2(l, 0, 0), C(l, 0, 0), PI (0, 1, 0), P2 (0, 1, 0), e c o ,  1, 0), 

PI(0, 0, 1), P2(0, 0, 1), C (0, 0, 1), PICI, 0), P2(l, i, 0), 

cCl, i, 0), PICI, 0, I), P2(1, 0, 2), C(l, 0, i), PIG, 1, 0), 

P2G, 1, 0), CG, 1, 0), PICO, 1, 2), P2(0, 1, I), C(0, 1, l)

and C(0, \, 1)•

The remaining designs however may or may not be optimal. 

It depends if a better design can be found for a particular 

set of weights. As there is no theoretical method of deciding 

which design is certainly optimal for a given set of weights 

the following approach was adopted. An attempt was made to 

build up a design appropriate to a given set of weights 

using "bricks" made up of smaller block designs.

For the particular example of 9 treatments in 6 rows 

and 6 columns it is possible to suggest pairs of components 

for which the variances of the estimates have a pattern that 

reflects the pattern of the weights. Further, the designs so 

found are all of type OEC.

This is possible because the nine treatment combinations 

can be written as an array

A1 A2 A3 

B1 B2 B3

C1 C2 C3'
The contrasts between rows represent the main effects of 

"letters" and the contrasts between columns represent the 

main effects of "numbers". Of the eight degrees of freedom
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four are left and correspond to the degrees of freedom for 

interactions. These can be divided into two sets of two.

The first corresponding to the contrasts between (A^ B2, C^), 

(A.,, B,, C^) and (Â , B^, C2) and the second corresponding to 

the contrasts between (A_, B0, C^), (A2, B^, C-) and 

(Â , B_, C2). As defined, the rows, columns and interactions 

contrasts are all mutually orthogonal.

Consider the following four block designs for 9 treatments 

in 3 blocks of 6.

1)

2)

I A, A- a 7 B, Bo b t1 2 3 1 2 3
II A, A0 A. C, C0 C,1 2 3 1 2 3
III B, B, C, Co c,
I I B1 c i A2 B2 C2
II Ai B1 ci A3 B3 C3
III A2 B2 C2 A3 B3 C,0

I A, Bo c, Ao B-, C,1 2 3 2 3 1
II A, Bo CT A, B, Co1 2 3 3 1 2
III Ao B, c, A, B̂ Co2 3 1 3 1 2

I A, Bo c. Ao B, Co3 2 1 2 1 3
II A3 B2 C1 A i B3 C2
III A2 B1 C3 Ai B3 C2

In design 1) the linear and quadratic contrasts between the 

letters as defined in Table 3.9.1 are estimated with less 

than full efficiency. In design 2) the linear and quadratic 

effects between the numbers are estimated with less than 

full efficiency. When designs 3) and 4) are taken together 

the four interaction contrasts are estimated with less than 

full efficiency. Therefore, for convenience the four designs 

are labelled respectively, as L, N, 1^ and I2, where the 

letters indicate which contrasts are estimated with less than 

full efficiency. The label L, for example, refers to the 

fact that the main effects of letters are estimated with less 

than full efficiency. The subscripts are used to differentiate 

between designs 3) and 4).

These four "bricks" can now be used to build up the
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components of a row-and-column design. As the efficiency 

loss of a contrast in the row-and-column design can be 

calculated by adding the efficiency losses of the contrast 

over the bricks, it is relatively easy to decide which bricks 

to use to obtain a particular pattern of L'OL in the row- 

and -column design. For example, to estimate the main effects 

of letters and all four interactions more efficiently than 

the main effects of numbers, a row-and-column design with 

each component made up of two type N bricks is required. In 

all, nine different pairs of components that lead to different 

patterns in L'QL can be chosen. These are given in Table 

3.14.1, along with the type of each design so formed. The 

codes L^, Lq etc. are as defined in Table 3.9.1.

Table 3.14.1. The nine different pairs of components and 

corresponding contrast variances

Components Type
L„ and L Z q

Contrast
N. and N Z q

variances
All four interactions

NL/I-^2 0:FF(T) 0.2857 0.2857 0.2857

LL/LL 0:GG(G) 0.5000 0.2500 0.2500

NN/NN 0:GG(G) 0.2500 0.5000 0.2500

NL/NL 0:FF(F) 0.3333 0.3333 0.2500

h h ' h h 0:FF(F) 0.2500 0.2500 0.3333

LL/ipj 0:GF(F) 0.3333 0.2500 0.2857

w q q 0:GF(F) 0.2500 0.3333 0.2857

LL/LN 0:GF(F) 0.4000 0.2857 0.2500

NN/NL 0:GF(F) 0.2857 0.4000 0.2500

If each of the nineteen different sets of weights is

considered in turn and the design in Table 3.14.1 that gives
*

the minimum value of trace (L'OLco) is determined, then the 

optimal design for that set of weights is obtained. The
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results of doing this are suirmarized in Table 3.14.2, where 

for each set of weights the optimal design is given. For 

seme sets of weights more than one of the designs given in 

Table 3.14.1 gives the same minimum value for the trace.

For convenience only one of them has been included in Table 

3.14.2.

Table 3.14.2. Optimal designs for each set of weights 

Weights Components
and L

1 1 1  NL/I,I2 0.2857 

1 1 0  I1I2/I1I2 0.2500 

1 0 1  NN/NN 0.2500 

O i l  LL/LL 0.5000 

1 0 0  NN/NN 0.2500 

0 1 0  LL/LL 0.5000 

0 0 1  LL/LL 0.5000 

1 1 l l.ljL  I- 0.2500 

1 i 1 NN/NL 0.2857 

| 1 1 LL/LN 0.4000 

1 l l N N / I ^  0.2500 

l 1 i L L / I ^  0.3333 

l l 1 NL/NL 0.3333

1 l 0 IiI2/Ii I2 0.2500

1 0 i NN/NN 0.2500 

i 1 0 I1I2/i1i2 0.2500 

i 0 1 NN/NN 0.2500 

0 1 i LL/LL 0.5000 

0 i 1 LL/LL 0.5000

Consider now the designs

Contrast variances
N. and N All four interactions q £ q

0.2857 0.2857

0.2500 0.3333

0.5000 0.2500

0.2500 0.2500

0.5000 0.2500

0.2500 0.2500

0.2500 0.2500

0.2500 0.3333

0.4000 0.2500

0.2857 0.2500

0.3333 0.2857

0.2500 0.2857

0.3333 0.2500

0.2500 0.3333

0.5000 0.2500

0.2500 0.3333

0.5000 0.2500

0.2500 0.2500

0.2500 0.2500

obtained by the algorithm.

There were twenty-six designs for which it was not certain
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Table 3.14.3• Variances of the designs obtained by the algorithm

Starting Design Contrast variances
L„ and L N. and N All four interactionsl q Z q

PICI, 1, 1)
P2(l, 1, 1) ■ 0.2857 0.2857 0.2857
C (1, 1, 1)
Pl(l, 1, 1)
P2 (1, 1, i) » 0.2500 0.2500 0.3333
C (1, 1, i)

Pi(i, 1
2 9 1)

P2(l, 1
2 9 1) • 0.2857 0.4000 0.2500

C (1, 1
2 9 1) j

PIG, 1, 1) y

» 0.4000 0.2857 0.2500
P2G, 1, 1) J
PIG, 1, 1)
P2G, 1, D • 0.3333 0.2500 0.2857
c g , 1, V)

p m ,
1
2 9 i)

P2G, 1
2 9 i) • 0.3333 0.3333 0.2500

c G, 1
2 9 i) é

PIG, 0, 1)
P2G, o, i) 0.2857 0.4000 0.2500
C G, 0, i)
Pico, 1

2 9 i)
0.4000 0.2857 0.2500

P2 (0, 1
2 9 i) >
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Table 3.14.4. L'ftL £or CQ, 1, 1)

0.4000

0.4000

0.2500

0.2500

0.2679

0.2679 -0.0179 

-0.0179 0.2679

0.0179

Table 3.14.5. L'OL for P2(l, \)

"0.2500

0.2500

0.3529

0.2857

0.2806

0.3094 -0.0216 

-0.0216 0.2806

0.0216

Table 3.14.6. L'ÌiL for C(l,

0.2500

0.2500

0.3014 -0.0194

0.3014

0.3333

0.3333

-0.0194 0.2740

0.0179

0.2679

0.0216

0.3094

.0194

-0.0194 0.2740
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if they were optimal. The values of the estimates of the 

eight treatment contrasts obtained using each of the 

twenty-two OEC designs out of these twenty-six are given 

in Table 3.14.3. The remaining four designs CQ, 1, 1),

PI Cl, l, 1), P2(l, l, l) and C(l, were not optimal

because the matrix L'iJL for each of these designs had some 

non-zero off-diagonal elements. However, these designs 

were near optimal. The matrix L'OL for each of designs 

CQ, 1, 1), P2(l, 1, 1) and C(l, \, \) is given in 

Tables 3.14.4 to 3.14.6, respectively. The matrix L ’fiL 

for Pl(l, l, 1) was given in Table 3.12.6.

Comparing Tables 3.14.2 and 3.14.3 indicates that 

only five designs were sub-optimal. These designs,

PIG, 0, 1), P2Q, 0, 1), CG, 0, 1), PICO, i ,  1) and
P2(0, 2, 1), were however only slightly sub-optimal.

£
The value of trace CL ’ftLoo ) for all five designs was 

1.2857 as compared with the optimum value of 1.2500.

The final conclusion of this chapter is therefore 

that the algorithm described in Section 3.4 that searches 

for the components, supplemented when necessary by the 

modified algorithm described in Section 3.13, usually leads 

to optimum designs. Those local optima that are found are 

only slightly worse than the true optima.

It is clear that the algorithms that search for optimal 

designs, that were described in this chapter and the previous 

one, give very satisfactory results. On the relatively few 

occasions that the algorithms get trapped at a local optimum, 

the design obtained is only slightly worse than the true 

optimum. One slight disadvantage of these algorithms, however, 

is that the treatment replications have to be chosen before 

the algorithms can be applied and remain fixed throughout the
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course of the algorithms. Two new algorithms that permit 

the replications to vary are described in the next 

chapter.
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Chapter 4. Exchange and interchange procedures to search 

for optimal designs.

4.1 Introduction

Two disadvantages of the algorithms described in 

Chapters 2 and 3 are that the treatment replications have to 

be chosen first and remain fixed, and an approximation to 

L T2L is used. A further disadvantage of the algorithm that 

searches for row-and-column designs is the need to combine the 

row and column components. In this chapter a more general 

algorithm that can be applied to both block designs and row- 

and-column designs is described. The treatment replications 

are allowed to vary, the true value of L'ftL is used and for 

row-and-column designs the need to combine components is 

eliminated.

The initial idea for this new algorithm stems from 

"exchange" algorithms such as Mitchell's DETMAX (1974) that 

search for D^-optimal designs. In DETMAX, for example, the 

design points eligible for inclusion in the design are 

specified in advance as a set of "candidates". An initial 

design of the required size is then chosen as a starting 

point. Mitchell (1974), for example, suggested choosing a 

random selection of candidate points for inclusion in the 

starting design. Once an initial design has been chosen 

attempts are made to improve it by removing one point from 

the design and replacing it by a point from the set of 

candidates. When searching for Dn-optimal designs the best 

point to remove and the best point to replace it can be 

determined quite easily. This exchanging of points continues 

until no further improvement in the design can be made.

Part of the work done in this chapter was done in 

collaboration with Dr. J.A. Eccleston of the University of
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New South Wales who was visiting the University of Kent during 

the academic year 1978-1979. The basic structure of the new 

algorithm was conceived independently by each of us. The main 

contribution of Dr. Eccleston is a set of theorems (Eccleston, 

1979), which he proved before his visit, with a different 

purpose in mind. These theorems are necessary for the "exchange 

procedure" described below. After testing this procedure, joint 

discussion led to the "interchange procedure" also described 

below.

Before describing the algorithm it is necessary to describe 

some recursive formulae. This is done in the next section.

4.2 Recursive formulae

The recursive formulae given here will first be 

described for the general linear model and then for the block 

design and the row-and-column design.

The linear model (2.2.1) as defined in Chapter 2 is 

written as

yi = XjB + £i, i = 1, 2, ..., (4.2.1)

where y^ is the i 1 observation, x. is a p x l vector of known 

values and is an independent random variable with mean zero 

and variance a2. Further, = (y , y , ..., y.),

£i = (Ej, e2, •••> Ej) and = (x^ x2, ..., x^. It is

assumed that there are q < p estimable functions between the 

elements of R, that is the model does not have full rank.

For convenience let xj, j = 1, 2, ..., q be chosen so that X^ 

has rank q and hence the remaining x!, i = q+1, q+2, ... are 

in the row space of X^. Eccleston (1979) gave the following 

theorems, where (Xpb) is a generalized inverse of (XpC).

That is, (Xjxp (X!Xp (X!X^) = (XpL). These theorems relate 

values obtained after the (i + 1)^ observation has been added 

to the design to the values obtained from the design containing



183 -

i observations. 

Theorem 4.2.1

- C X & )  -
(X!X.) x.,,x!,,(X!X.) 

~ 1~1  ~ 1 + 1~ 1+1  ~ 1~ 1 ^

1 + x! - (X!X.) X  •~ 1+1  ~ 1~1  ~ 1+1
If interest only centres on a subset of the parameters

the model (4.2.1) can be partitioned as follows.

8 =
a
T

i
, x! = (a! i b!) and X. = (A. , B.).’ ~ i  ~ i  | ~ i J ~ i  ~ i  1' i

Here a is an s x 1 vector of parameters of interest, and not 

all of which are estimable. The vector a! is s x 1 and 

A! = (a,, a„, ..., a.), b! and B. are therefore also defined. 

Let the partition be such that a!+-̂ and b ! ^  are in the row 

spaces of A^ and B^, i = q, q+1, ..., respectively. This will 

be true for block designs and row-and-column designs.

For the first i observations the reduced normal equations 

for the effect of a adjusted for the effect of 8 are

where

and

~i2i = 2i» 1 = <i» H+1>

C. = A!A. - A!B. (B.'B.) B!A.~i ~i~i ~i~i ~i~3/ ~i~i

Q. = A!y. - A!B.(BIB.) Bly.. ~l ~l~l ~l~l ~l~l ~l4l

(4.2.2)

A solution to (4.2.2) is ou = CLQ^, where CL is a 

generalized inverse of Ch.

Theorem 4.2.2 * i

C • -i = C. + c. ,c!x1 ~i+l ~i ~i+l~i+l,
wher e

~i+l 2 i = q, q+l,
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Theorem 4.2.3

C.c..,c! -C. ~ i~ i+ l~ i+ l~ i
(1 + c! ,C7c. .,)v ~i+l~i~i+l'

i q, q+1, ...

Similar theorems to the above can be given for the case 

where an observation is removed from a design.

In the next section an algorithm to search for optimal 

block designs will be described. The results quoted in the 

above theorems will be used in the algorithm.

4.3 Exchange and interchange procedures to search for optimal 

block designs

As defined in Chapter 2 the block design has size 
b v

n = I k. = Jr.. The incidence matrix for this design is N , 
j=l J i=l 1 ~n

£
the diagonal matrix of treatment replications is r^ and the

r
diagonal matrix of block sizes is k°. The subscript (n) refers

to the size of the design. Then,

C = r6 - N k“6N \  ~n ~n ~n~n ~n

If an observation is removed iron the design then, using 

a slightly simplified notation to that used in the previous 

section,

c c 1~i~r
where

Si
a, - N ..k^b, -1 ~n-l~n-l~l

♦(1
T*2

The a^ is a v « 1 vector of zeros except for a one in the

position corresponding to the deleted treatment and b^ is a

b x 1 vector of zeros except for a one in the position

corresponding to the block from which the treatment has been

deleted. The depleted block design of n - 1 observations has
*~6new incidence matrix N , and a new matrix of block sizes k .~n-l ~n-l
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If an observation is added to the depleted design a new Cn

is obtained as

new C = C , + c0cl,~n ~n-l ~2~2’
where

c, =
a9 - N ,k-<̂ ,b,. ~2 ~n-l~n-l~2

~2 t * 1 *

and a? and b0 characterize the new observation in the same way 

that a^ and b^ did the deleted observation. As the number of 

blocks and their sizes are kept fixed the vectors b1 and b^ are 

the same.

The generalized inverses of the above matrices can also 

be specified as

C , = C + ~n-l ~n
C c,c’C ~n~l~l~n
1 - c'C"c, ~l~n~l

and

new C = C , ~n ~n-l
C tC-c 'C , ~n-I~2~2~n-l <
1 + clC .c- ~2~n-l~2

Consider nowT an algorithm to search for optimal block 

designs. The criterion used to decide if a design is optimal 

will be that used in Chapter 2, except that rather than specify 

any particular generalized inverse of C^ the criterion is 

written as
_  ^

minimize trace (L’C Lw ).~ ~n—  J

Taking up the ideas of the exchange algorithms that search 

for Dn-optimal designs mentioned in Section 4.1, the weakest 

observation in a block design is defined to be that one for 

which

trace (Lw^L'C - trace (Lw^L'C )

is a minimum for all possible Cn  ̂ (i.e. all c^). This means 

that the observation which is of "least importance" is termed
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the weakest. This observation is deleted and replaced by the 

strongest which is defined to be the one for which

trace (Ltô L'C ,) - trace {Ixo*L ’ (new C )"} 

is positive and a maximum for all possible c^.

These operations are relatively straightforward for a 

block design. For instance, if treatment i in block j is 

exchanged for treatment £ then

C-, =
[k.(k. - 1)]

’nli

-n.. + k. 
i l  J

-n . vi

and

c„ =
[V kj - 1J]

where n.. is the i,jij
-th

-n.
Ij

-nn■ + k.ij j

-n.. + 1ij

-n .vi

element of N .~n

In the following, the exchanging of treatments in the 

above manner will be referred to as the exchange procedure (EP). 

A simple algorithm based on the exchange procedure is at each 

step to exchange the weakest observation for the strongest. If 

at any step the exchange procedure does not lead to an improved

design, that is a smaller trace (Lw L'Cn), then the next

weakest observation is considered and so on. \The procedure 

continues until no further improvement in the design can be 

obtained. At this point any alteration in the current 

replication schene does not improve the design. The EP has
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produced what might be termed the "correct" replications.

However, for some tests of the EP where the optimal design 

was known it was found that although the correct replications 

were found the final design could still be improved upon. 

Therefore, it was necessary to rearrange the treatments between 

blocks to obtain the optimal set of treatment concurrences. A 

good way of doing this is the interchange procedure (IP) 

described below.

The IP interchanges a pair of observations by first 

exchanging the weakest observation, a replicate of treatment £ 

say, with the strongest, a replicate of treatment m say. 

Secondly, to maintain the "correct" replications, the weakest 

observation involving an m is replaced by an £ and so on. When 

an improvement is achieved that interchange is made and the IP 

restarts. If there is no improvement for all m then the 

procedure restarts with the next weakest observation other 

than the particular £ and so on. The procedure terminates when 

no interchange can be found that improves the design.

The recursive formulae given above are used to determine 

the change in Cn effected by an exchange or interchange. It 

is worth noting that Cn is calculated directly only once and all 

other Cn’s and C~ ^'s are obtained by using the recursive 

formulaeo

The initial design can be determined using the methods 

described in Section 2.5 of Chapter 2, and the formula (2.4.2) 

for i2 can be used to give the initial generalized inverse C .

A new algorithm to search for optimal block designs is 

therefore to first apply the EP to a given starting design to 

search for the "correct" replications. Then apply the IP to 

search for optimal treatment concurrences.

Some tests of the performance of the above algorithms
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are given below. When running a computer program, rounding 

errors may make it difficult to decide precisely if one trace 

is smaller than another. Therefore, in the computerised 

version of the EP and IP, a pre-set tolerance value, e, is 

used. An improved design is deemed to have been obtained if 

T ld> the value of the trace before an exchange or interchange 

is made is such that (T , ,-T ) > e, where T is the value

of the trace after the exchange or interchange. Experience 

has shown that the choice of e affects the value of the trace 

of the final design.

Test 1

Here v = 5, b = 6, k^ = = 4 and k^ = k^ = k^ = k^ = 2

and there is an equal interest in all treatment differences. 

The value of e was 0.00001.

The procedure for generating the starting design gave

)

Block

I 2 3 4 5
II 1 3 4 5
III 2 5
IV 1 5  »
V 3 4
VI 1 2

which has r' = (3, 3, 3, 3, 4) and T = trace ( h A ’C") = 1.7278. 

The EP gave the following design

Block

I 2 3 4 5
II 1 3 4 5
III 2 5
IV 1 3
V 1 4
VI 1 2

which has r 1 = (4, 3, 3, 3, 3) and T = 1.6602.
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The IP gave the following design

Block

I 2 3 4 5
II 2 3 4 5
III 1 2
IV 1 3
V 1 5
VI 1 4

which has T = 1.6000.

This design is totally balanced and therefore optimal.

To test if the correct replications would be determined 

by the EP, the following deliberately perverse starting design 

was used.

Block

I 5 5 5 5
II 5 5 5 5
III 5 4
IV 5 3
V 5 2
VI 5 1

This design has replications r' = (1, 1, 1, 1, 12) and T = 6.4000. 

The EP gave the optimal design given above with T = 1.600Q.

Test 2

This was a repetition of a test used in Chapter 2. Here

v 5, b = 3,

L'

kx = 6 k2 = 12, k3 = 18,

= Ü P “ 1 -1 0 0 o" and m6 = “ 1 0 o'

1 0 -1 0 0 0 1 0

1 0 0 -1 0 _0 0 1

1 0 0 0 -1

The value of e was 0.00001, and the starting design generated 

by the procedure described in Chapter 2 was

Block

I 1 1 2 3 4 5
II 1 1 1 1 2 2 3 3 4 4 5 5
III 1 1 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 .

This design is optimal as noted in Chapter 2.



Therefore, as done in Chapter 2, the deliberately perverse

starting design given below was used.

Block

I 2 3 3 3 3 3
I I  3 4 4 4 4 4 4 5 5 5 5 5
III 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5 .

The EP followed by the IP gave the optimal design noted

above.

To test again the ability of the EP to determine the 

correct replications, the following perverse starting design 

was used, which has r ' = (1, 1, 1, 1, 32).

Block

I 1 4 5 5 5 5
II 2 5 5 5 5 5 5 5 5 5 5 5
III 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 .

The EP gave the correct replications, i.e. 

r' = (12, 6, 6, 6, 6) and the optimal design.

Test 3

This was also a repetition of a test used in Chapter 2. 

The designs considered were those described by Freeman (1976). 

Here v = 3, b = 4, k^ = 5, i = 1, 2, 3 and 4,

"l 0 -f and m6 = ‘ l-wx 0 ‘

_-l 2 -1_ 0 w^

In the test described in Chapter 2 the replications were 

fixed at either (6, 8, 6), (7, 6, 7), (8, 4, 8) or (9, 2, 9) 

and slightly perverse starting designs, labelled as W, X, Y and 

Z, respectively, were used to search for designs for all values 

of w. in the range 0, (0.01), 1. The final designs found 

there agreed with those obtained analytically by Freeman. The 

design labelled as A in Chapter 2 was optimal for w^ in the 

range (0.531, 1), the design B for w-̂ in the range (0.346, 0.531),
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the design C for w^ in the range (0*052, 0.346) and the design 

D for w^ in the range (0, 0.052).

To test the EP and IP the five different starting designs 

were used with all weights in the range 0, (0.1), 1.0. The 

starting designs were the ones obtained using the procedure 

described in Chapter 2, and designs W, X, Y and Z respectively, 

as defined in Test 2 in Chapter 2. For each value of the 

weight w^ all five different starting designs gave equivalent 

final designs, although the treatment replications of the final 

design sometimes differed for w^ = 1.0. Here two different 

sets of treatment replications, (5, 10, 5) and (6, 8, 6), gave 

equivalent designs. When w^ = 0 the EP indicated that 

treatment 2 should have zero replication. A summary of the 

final designs obtained using all five different starting designs 

and all weights in the range 0.1, (0.1), 1.0 are given in 

Table 4.3.1. When w^ = 0 the computer program stopped after the 

EP because at the start of the EP there were three treatments 

but at the end there were only tvro. As the program still 

assumed there were three treatments it had to be stopped.

When restarted with only two treatments the optimal design was 

obtained. Here again e vas set equal to 0.00001.

Table 4.3.1. Final designs found using the five different 

starting designs

w^ Final replications Final trace

1.0 (5, 10, 5) or (6, 8, 6) 0.1389
0.9 (6, 8, 6) 0.1429
0.8 (6, 8 , 6) 0.1468
0.7 (6, 8 , 6) 0.1508
0.6 (6, 8 , 6) 0.1548
0.5 (7, 6, 7) or (6, 7, 7) 0.1569
0.4 (7, 6, 7) 0.1549
0.3 (8, 4 , 8) 0.1500
0.2 (8, 4 , 8) 0.1417
0.1 (8, 4 , 8) 0.1333
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All the designs were optimal and it is interesting to 

note that a design with replication (5, 10, 5) was obtained 

that was equivalent to Freeman's design A which had replication 

(6, 8, 6) .

To determine if the EP and IP would determine the 

optimal designs close to the boundary values of the weights, 

i.e. w^ = 0.531, 0.346 and 0.052, the above tests were 

repeated for the following values of w^: 0.04, 0.05, 0.06,

0.33, 0.34, 0.35, 0.52, 0.53 and 0.54. The final designs 

obtained are summarized in Table 4.3.2, where all five starting 

designs led to equivalent designs for each value of w^.

Table 4.3.2. Final designs found for weights near the 

boundaries

w. Final replications Final trace Freeman's
optimal trace

0.54 (7, 7, 6) or (6, 7, 7) 0.1565 0.1572
0.53 (7, 7, 6) or (6, 7, 7) 0.1566 0.1575
0.52 (7, 7, 6) or (6, 7, 7) 0.1567 0.1573
0.35 (8, 5, 7) or (7, 5, 8) 0.1531 0.1539
0.54 (8, 5, 7) or (7, 5, 8) 0.1526 0.1533
Oo33 (8, 5, 7) or (7, 5, 8) 0.1521 0.1525
0.06 (9, 3, 8) 0.1286 0.1300
0.05 (9, 3, 8) or (8, 3, 9) 0.1270 0.1288
0.04 (9, 3, 8) or (8, 3, 9) 0.1254 0.1258

It is apparent that near the boundary values of w^ the 

design obtained is usually a mixture of the two designs either 

side of the boundary. Perhaps this is not surprising. It 

would be very unusual for an experimenter to give the value of 

a weight correct to two decimal places. It will be noted that 

all the designs found by the EP and IP have a smaller trace 

than the 'optimal' designs given by Freeman, and so are to be 

preferred on the trace criterion. The designs considered by 

Freeman, however, w’ere constrained so that the replications of
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treatments 1 and 3 were equal. It is seen from the above that 

if this condition is relaxed better designs in terms of the 

trace criterion are obtained. However, most of the designs 

obtained by the EP and IP were such that the off-diagonal 

elements of L'C L were equal to -0.01 or 0.01.

Test 4

Here an attempt was made to generate the 209 optimal 

block designs given by Mitchell and John (1976), (henceforth 

referred to as M. and J.), which have equal treatment 

replications and equal block sizes. In these designs the 

number of treatments varies from two to twelve, and the block 

size varies from two to ten. When e was set equal to 0.00001 

161 of the 209 optimal designs were found. When e was 

decreased to 0.00000001 21 further optimal designs were found, 

and when e was decreased to zero a further 10 optimal designs 

were found. In fact the efficiencies differed by 0.0015 or less, 

except for (v, k, r) = (11, 2, 6) which had an efficiency 0.003 

less than the M. and J. design. The efficiency is the average 

variance of all pairs of treatment differences, divided into 

the minimum which vrould be achieved by a randomized block 

design if it existed.

The efficiency can be expressed as the ratio

2a2
Efficiency = ---------------

2a2 " 1 1
(v-1) _ c ^nax_

v - 1

r(I-x X ]max
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where

v-1 1 -1
«=■ u  r.) ■. , x. -  1=1 i

,-iX^ are the non-zero eigenvalues of ft , as defined in 

equation 2.3.8, in Chapter 2, and X^ ^  is the maximum non­

zero eigenvalue of

When this definition is adopted it is found that the 

EP and IP yielded designs with higher efficiencies than those 

of M. and J., but with unequal replications. Table 4.3.3 

gives the replications and efficiencies of the M. and J. 

designs and those generated by the EP and IP. These designs 

are identified by their treatment number v = 10, 11 or 12.

Table 4.3.3. Designs with unequal replications

M. and J. EP and IP

V replication efficiency efficiency

10 2 0.273 (S,2,2,2,1,1,1,1,1,1) 0.291

11 ■ 2 0.250 (9,2,2,2,1,1,1,1,1,1,1) 0.285

12 2 0.231 (10,2,2,2,1,1,1,1,1,1,1,1) 0.281

Also for these three particular cases the M. and J. 

design is better with respect to D-optimality, but the reverse 

is true for E- and A-optimality.

When the replications were fixed at 2 and only the IP 

employed the optimal designs given by M. and J. were obtained.

There were seven parameter sets (v, k, r) = (12, 2, 5), 

(12, 2, 6), (12, 3, 3), (12, 3, 8), (12, 4, 9), (12, 6, 10) 

and (12, 9, 9) which M. and J. were unable to handle. For 

these (v, k, r) the EP and IP generated designs which had 

equal or greater efficiency than those given by Clatworthy 

(1973). Except for (12, 6, 10) for which the design found by 

the EP and IP had an efficiency 0.00005 less than that of the
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most efficient found by Clatworthy.

A description of the EP and IP and some of the above 

tests was given by Jones and Eccleston (1980).

The 209 designs considered in the above test included 

all but four of the forty designs considered by Mitchell (1973) 

that were used to test the algorithm described in Chapter 2.

The designs not included were for (v, k, r) = (4, 2, 11),

(12, 3, 3), (13, 3, 3) and (14, 3, 3). When the EP and IP were 

used to obtain designs for these sets of values of (v, k, r) 

the overall result was that optimal designs were found for 

thirty-nine sets. The only local optimum obtained was for 

(12, 3, 3). This local optimum equalled the design found for 

(12, 3, 3) in Chapter 2. The algorithm based on and 

described in Chapter 2 only managed to obtain thirty-six 

optimal designs out of the forty. Therefore, the EP and IP 

has done better on this test than either Mitchell or the 

algorithm described in Chapter 2.

4.4 Exchange and interchange procedures to search for 

optimal row-and-column designs

As noted in Chapter 3, the expected values of the n 

observations from an experiment in b-̂ row's and b^ columns can 

be expressed asEqj = Pi * 5iSl + 2̂ 2 + “in-
If the parameters of the above model are partitioned as

i
[y i °^> then the notation introduced in Section 4.2

after Theorem 4.2.1 may be used. That is,

A = A 1~n
and Bn " [?i- BP in]-

r
Then A1A = r^ is the v x v diagonal matrix of treatment
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replications and

A'B = [M , N , ~n~n ~n’ ~n’

where M is the v x b^ incidence matrix for the row component,

N is the v x incidence matrix for the column component

and rn is the v x 1 vector of treatment replications. It

will be recalled that Mn was referred to as in Chapter 3, and

N as N,.~n ~2
The matrix Cn of the coefficients of the equations for 

estimating the treatment effects adjusted for rows and columns 

is therefore

C = r^ - —  M M' - — N N' + r r'/rt. ~n ~n , ~n~n , ~n~n ~n~n'b2 bp
(4.4.1)

As done in the previous section, a generalized inverse 

of Cn will be denoted by C . For a connected design a 

convenient generalized inverse of Cn is SI as defined in Chapter 3.

Suppose in the experimental design treatment i, 

i - 1, 2, ...,v, is removed from the plot in the p 1 row and 

the column. Then

C , ~n-l = C - ~n SiSi
and

where

C . = C + ~n-l ~n
C c-,c,'C ~n~l~l~n
1 - c'C"c, ~l~n~l

Si =
ai - ^  ̂  h

[1 - ycüwVi31

Here a^ is a v x l vector of zeros except for a one in position 

i, b^ is a vector of zeros except for a one in positions p, 

b^ + q, and (b̂  + + 1),
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(B'B ) = ~n~n r V n2~bi b2Ìb1

L K
~b2~bl h i b 2 h i b 2

b21i 1 b,vubj n

(B'B )“= ~n~n' -  Ib 
b2 1

0 0

0 - Ib 0
b;fb2

0 0 _ 1_
n

I, is the identity matrix of order b, and 0 is a matrix of 
~bl 1
appropriate site with all elements equal to zero.

In fact c^ reduces to

Si
1 1P,rHi S . rl

1 - 1 + M b2 bl n

bl b2 r? ••
M. N. r.

1 - _ + X
b2 bl

•
n

M N : r
_ + V

b2 bi n

.. th l) element of M~n’ N. . is ij
the (i j)th

element of N and r. is the itb element of r .~n l ~n
, thIf treatment j is now placed on the (p, q) plot in 

place of i, then

new C = C . + c0cl ~n ~n-l ~2~2
and

(new C ) = C .~n' ~n-l
C .c-clC , ~n-l~2~2~n-l
1 + clC ,c, ~2~n-l~2
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where

S2
i7 - (A' ,B ,) (B' -B ,) b7 -2 ~n-l~n-l -n-l-n-l7 -2

(1 + bI(B' ,B .) b7) v -2 -n-l-n-l^ ~2J

and â  and b7 characterize the new observation in the same 

way that a^ and b-̂  did the deleted observation.

Further,

and

(A' ,B 0  = (A'B ) - a.b’ v-n-l~n-l' v~n~n' -1-1 (4.4.2)

CB’ ,B .)' = (B'B )' ~n-l~n-l' v-n-ny
(B'B )_b,b'(B'B ) (4.4.3)-n~n' ~1~1 ~n~n^ v 1
1 - b' (B'B ) b, -1 ~n~n' -1

It is worth noting that the second matrix on the right 

hand side of (4.4.2) has only three non-zero elements and 

the second matrix on the right hand side of (4.4.3) has only 

nine non-zero elements. All these non-zero elements can be 

calculated directly without the need for numerous matrix 

multiplications.

The criterion used to search for optimal designs is, as

before,
_ 6

minimize trace (L'C Lai ),

where is a generalized inverse of Cn as defined in 

equation (4.4.1).

An algorithm to search for optimal row-and-column 

designs is then similar to that described in the previous 

section. Given a connected starting design the EP is 

employed to obtain the "correct" replications. That is, at 

each step the weakest observation is exchanged for the strongest.

In the IP the weakest observation, a replicate of 

treatment £ say, is exchanged for the strongest, a replicate 

of treatment m say. Secondly, to maintain the correct 

replications, the weakest observation involving an m is replaced 

by an £. If this does not improve the design the last



mentioned observation is replaced and the next weakest 

observation involving an m is replaced by an £ and so on.

If there is no improvement for all m then the procedure 

restarts with the next weakest observation instead of the 

particular one involving £ and so on. The procedure terminates 

when no interchange can be found that improves the design.

The recursive formulae given above in this section are 

used to determine the change in effected by an exchange or 

interchange. It should be noted that C~ and (B'B )- are 

only calculated directly once and all other generalized 

inverses are obtained using the recursive formulae.

Some tests of the performance of the above algorithm 

are given below.

A description of the EP and IP applied to row-and-column 

designs was given by Eccleston and Jones (1980).

Test 1

Here an attempt was made to obtain the 37 designs given 

in Table 13.2 of Cochran and Cox (1957) for which v < 11 and 

bi +  ̂22. It will be recalled that these designs were

used in Chapter 3 to test the performance of the algorithms 

described there.

The starting designs were generated using the procedure 

described in Section 3.4 of Chapter 3. With e set equal to 

0.00001 the EP and IP did not find the optimal designs for six 

sets of values of (v, b-̂ , b2) • These sets were (4, 8, 5),

(7, 7, 4), (7, 14, 4), (9, 18, 4), (11, 11, 5) and (11, 11, 6). 

The algorithm described in Chapter 3 did better in that it 

found all but three of the optimal designs, and these three 

were for sets (9, 18, 4), (11, 11, 5) and (11, 11, 6). The 

results were therefore disappointing in view of the performance 

of the EP and IP for block designs.
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The most surprising result was that the design obtained 

by the EP for (4, 8, 5) had unequal treatment replications.

The reason why this happened, however, was clearly seen. The 

incidence matrices and N for rows and columns, respectively, 

of the optimal design are

M~n 2 1 1 1  
1 2  1 1  
1 1 2  1 
1 1 1 2

2 1 1 1 "  
1 2  1 1  
1 1 2  1 
1 1 1 2

and N ~n 2 2 2 2 2 
2 2 2 2 2 
2 2 2 2 2 ’ 

2 2 2 2 2

The incidence matrices for the starting design were

M~n 2 1 1 1  
1 2  1 1  
1 1 2  1 
1 1 1 2

2 1 1 1 “ 1 2  0 2 
1 1 2  1 
1 1 2  1

and N ~n 2 2 2 2 2 
2 2 2 2 2 
2 2 2 2 2 * 

2 2 2 2 2

The first obvious improvement to be made to the starting design

is to increase the zero value in column seven of M . The EP~n
does this by removing treatment four from plot (7, 1) and 

replacing it by treatment two. This results in column seven 

of M having one entry equal to two and the rest equal to one. 

That is, a pattern more similar to that of the optimal design. 

Once the EP has produced the wrong treatment replications it 

is impossible for the IP to find the optimal design. When 

the IP only was applied to the starting design the optimal 

design was found. Therefore, a more selective use of the EP 

and IP has produced the optimum.

The optimal design for (7, 7, 4) was found by applying 

the EP and IP to the starting design with e = 0.0 instead of 

e = 0.00001. The disadvantage of always using e = 0.0 is 

that rounding errors in the calculation of the trace sometimes 

cause the design to make an interchange and then interchange 

back the same pair of treatments. The consequence of this is 

that valuable computer time can be lost.

The optimal design found for (7, 14, 4) could not be



unproved upon using e = 0.0 and so the possibility of rounding 

errors affecting the calculations was considered more 

seriously. For the larger designs, the number of times the 

original is updated when determining the effect of an 

exchange or interchange is quite large.

The first way of overcoming this difficulty was to take 

advantage of the fact that if the original C is fi as defined 

in equation (3. 3. 20) then it must satisfy the constraint

fir = 1— n

where r^ is the vector of treatment replications and 1 is an 

n x 1 vector of ones.

In the updating formula

fie.c*fi
C . = fi + ■ ,
~n_1 ~ 1 - cjfi^

and so

as

c'l = 0.

Further as,

(new C ) = C .v ~nJ ~n-l
C .c-ciC . ~n-l~2~2~n-l
1 + c’C* .c7 ~2~n-l~2

then

(new cn) rn = i
as

C21 = °*
Hie EP and IP were therefore modified so that whenever 

a plot was removed the resulting was altered, if

necessary, so that (f^r^ = 1, and whenever a plot was added 

the resulting (new C ) was altered, if necessary, so that
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(new C ) r = 1.

For example, suppose that when a plot is removed, the

first row of C , is such that its elements c,, c~, ..., c , ~n-l 1’ 2 v
say, satisfy

v

where r^, i = 1, 2, ..., v are the elements of r^ and a is a 

non-zero constant. To restore this row so that C ,r = 1

The fact that a constant may have been added to the elements

calculations needed in the computer program that executes the 

EP and IP.

The second way was to recalculate directly after the

With these modifications the optimal design was obtained 

for (7, 14, 4) when the EP and IP were applied to the starting 

design and e was set equal to 0.00001.

Even with these improvements the optimal designs for 

(9, 18, 4), (11, 11, 5) and (11, 11, 6) were not found by 

the EP and IP. The efficiency factors of these designs and 

those of the optimal design are given in Table 4.4.1. It 

can be seen that the designs found are not much worse than

Table 4.4.1 Efficiencies of designs 

(v, b^, b^) Design found by EP and IP Optimal design

~n-l~n
the elements c. are altered to (c. - — ). Then, i i n 7 ’

of each row of C , does not affect any of the other ~n-l '

EP so that the IP begins with an accurate matrix Cn .

( 9, 18, 4) 

(11, 11, 5) 

(11 , 11 , 6)

0.8426 0.8437

0.8757 0.8800

0.9137 0.9167
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the optimal designs. However, it would be useful to determine

if they can be improved upon. The method adopted in Chapter 3

was to repeat the interchanging of treatments in an attempt

to minimize the sum of the absolute values of the off-diagonal

elements of L'OL. Therefore, to see if this would lead to any

improvement the EP and IP were applied to the three final

designs found above for (9, 18, 4), (11, 11, 5) and (11, 11, 6),

respectively, using this time the criterion

minimize the sum of the absolute values of

the off-diagonal elements of L’C^L.

The results were disappointing in that although the value of

the above criterion wras reduced in all three cases, the value 
— 6of trace (L'C Lto ) was increased. Further, none of these final ~ ~n—

designs had all off-diagonal elements of L’C^L equal to zero, 

and the design found for (11, 11, 5) had unequal treatment 

replications. When only the IP was applied to the final design 

found for (11, 11, 5), i.e. the design noted in Table 4.4.1, 

using the new criterion, a design with a larger value of
rRtrace (L'Ĉ Loo ) was obtained and not all off-diagonal elements

of L’C L were zero.-  ~n~
To determine if changing the value of e might result in 

better final designs the design for (11, 11, 5) was considered
— rRfurther. Using only the trace (L'C^w ) criterion and the 

original starting design, the EP and IP were applied using 

values of e = 0.001 and e = 0.0 respectively. The design found 

when e = 0.001 was worse than that obtained previously and the 

design found for e = 0.0 was the same as that found previously. 

Then the IP was applied to each of these two final designs, 

in an attempt to minimize the covariance criterion defined 

earlier, the optimal design was still not found. In fact the 

designs found were worse on the original trace criterion.
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In one last attempt to overcome this problem of 

obtaining local optima the IP was extended slightly. In the 

original version, treatment £, say was removed and replaced 

by treatment m, say. Then the weakest m was removed and 

replaced by £. If this led to a smaller trace the interchange 

was kept and the design updated. If not, the next weakest m 

was considered for replacement by £, and so on. In the 

extended version all the m's in the second part of the 

interchange are considered in turn, in order of the weakest, 

and replaced by an £. After all the m ’s have been considered 

the one that when replaced by £ gives the largest reduction, 

if any, in the trace is chosen and the interchange completed. 

However, this did not lead to the optimal design for (11, 11, 5) 

being found and so this extended IP was not considered further. 

Test 2

The aim of this test was to check if the EP and IP would 

give the correct design, when applied to a very perverse 

starting design. The example chosen was a design for four 

treatments in six rows and six columns and for which there was 

an equal interest in all treatment contrasts. The starting 

design was

1 2 3 4 1 1
2 1 1 1 1 1  
3 1 1 1 1 1  
4 1 1 1 1 1 *1 1 1 1 1 1
1 1 1 1 1 1

The EP produced the optimal design, that is, an equi-replicated 

design in total balance.

In fact, when the EP and IP were applied to the design 

generated by the method described in Section 3.4 of Chapter 3, 

the optimal design was also obtained.

Test 3

Here the aim was to determine how well the EP and IP
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would be at finding designs for estimating contrasts with 

unequal weights. As in the previous tests an example used 

in Chapter 3 is used. There are nine treatment combinations of 

a 3 x 3 factorial experiment to be assigned to six rows and 

six columns. The contrasts of interest are those given in 

Table 3.9.1 of Chapter 3. The weights are defined, as in 

Chapter 3, by a vector (w^, w2, w^). Here w^ is the weight 

of each main effect of the first factor, w^ is the weight of 

each main effect of the second factor, and w^ is the weight 

of each of the four interactions. As computer time was limited, 

only four different sets of weights were used. These were 

C l ,  1» 1)» (1» 1, l), (!, 1, 1) and (1, 0 , 0). With e set 

equal to 0.00001 and using the starting design generated by 

the method described in Section 3.4 of Chapter 3, the EP and 

IP were employed using each set of weights. All four final 

designs did not have all off-diagonal elements of L’CnL equal 

to zero, although the design found for weights (1 , 0 , 0) was 

optimal for the requirements set. It will be recalled that 

when the algorithm described in Chapter 3 was applied using 

these four sets of weights the optimal design was found for 

weights (1, 1, 5) and (1, 0, 0). As done previously the IP 

was applied to the final designs found for weights (1, 1 , 1),

(1, 1, l) and (2, 1 , 1) in an attempt to minimize the sum of 

the absolute values of the off-diagonal elements of L'CnL, 

using e = 0.00001. However, the final designs, although 

improved in terms of the second criterion, still had seme 

non zero off-diagonal elements of L'^L.

The algorithm described in Chapter 3 was therefore more 

successful in obtaining designs for these sets of weights.

Overall, the conclusions to be drawn from the above tests 

are that the EP and IP when applied to row-and-column designs
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are likely to get trapped more often at local optima than 

when they are applied to block designs. The EP and IP are 

more sensitive to changes in the value of c and to the effect 

of rounding errors. The interchange algorithm described in 

Chapter 3 was more successful at locating optimal row-and- 

column designs.

However, none of the local optima found were much worse 

than the true optima. A general conclusion is that the local 

optima are so near the true optima that to improve them a 

radical change is needed that cannot be achieved by simple 

interchanges.

For example, the local optimum found for (11, 11, 5) 

was the following row-and-column design.

1 10 3 7 5
6 7 1 2 11
2 8 5 6 10
4 6 7 8 9
5 2 4 3 7
7 9 8 11 3
9 5 6 1 4
8 3 2 9 1
10 11 9 5 2
3 4 11 10 6
11 1 10 4 8.

Here the column component is optimal but not the row 

component. Here no sequence of simple interchanges can 

improve the design unless the design is allowed to get worse 

first.

Howrever, one major advantage of the EP and IP is that 

they are quicker to execute on the computer than the algorithms 

described in Chapters 2 and 3. For example, the algorithm 

described in Chapter 3 took 684 CP seconds on the University 

of London CDC 7600 computer to search for the design for 

(11, 11, 6), whereas the EP and IP took approximately 100 

CP seconds. The algorithm described in Chapter 2 took just
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over 31 CP seconds to search for the design for 14 treatments 

in 14 blocks of 3, whereas the EP and IP took just over 11

CP seconds.
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Seminary and conclusions

In this thesis I have considered how the computer can 

be used to assist the experimenter at the design stage of an 

experiment. The computer can provide advice on the design of 

an experiment through an interactive computer program. It 

can also be programmed to search for optimal designs.

In Chapter 1 the problem was that of formalizing the 

conversation that takes place between an experimenter and a 

statistical consultant, so as to write an interactive computer 

program to advise on the design. Experiments to compare two 

treatment means wore considered by way of illustration.

Although seme aspects of the consultant's role could be 

programmed, e.g. asking a set of questions to obtain the 

necessary infoimation and performing calculations on this, it 

was found that some aspects were difficult to incorporate into 

a computer program. It appeared that the consultant's 

versatility, experience, ability to talk around a problem and 

his ability to modify his approach to suit his client were 

very difficult to simulate. If a program is to be written, 

however, one difficulty that must be overcome is that of 

deciding in advance all the information that will be required 

to design the experiment. If that can be done, then the total 

amount of information must be divided up into smaller parts 

so that an ordered set of simple questions can be planned. It 

was apparent that it was not always an easy matter to devise 

questions that could be easily understood by different 

experimenters. The fact that it was desirable that the replies 

should be simple 'Yes', 'No' type answers also added to the 

difficulty. The way a question was phrased was very important. 

It was also important to plan carefully the order so that one 

reply led naturally on to the next. It was apparent that a
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program to suit all client types would be large and difficult 

to write. The two types of client that could most easily be 

catered for were found to be those without any statistical 

expertise and those who were statistical experts. Sane aspects 

of the design that were difficult to program concerned the 

choice of treatments, choice of experimental units and choice of 

experimental site. The types of experiment about which the 

computer could most easily advise were those that were familiar 

and required same numerical calculations. The number of 

questions and related pieces of text that could be printed by 

the program was very large and efficient ways of organising the 

printing were required. One way was suggested in Chapter 1.

If advice is to be given about more complicated experiments 

the size of the program is likely to increase considerably.

For example, when more than two treatments are to be conpared, 

questions to determine the treatment structure, if any, will be 

required, as well as questions on the treatment contrasts of 

interest and their relative importance. If optimal experimental 

designs are to be provided by the program then suitable computer 

algorithms that search for them would be needed. Such algorithms 

were considered in the remainder of this thesis.

In Chapter 2 a review was made of the literature on 

' methods of constructing optimal designs for the general linear 

model and for the case where the experimental units are 

arranged as blocks. It was discovered that the available 

algorithms wrere not general enough to deal with the situation 

when there is special interest in a certain set of treatment 

contrasts. Further, blocks may be of unequal size. To remedy 

this deficiency an algorithm was devised based on interchanging 

treatments between blocks, with the aim of improving an 

appropriate optimality criterion. The criterion was to minimize
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the sum of the weighted variances of the contrasts of interest. 

The calculation of this criterion involved inverting a matrix 

"*■. To avoid that an approximation to fi, denoted by 0^ wras 

used. The approximation was iterative, H being the number of 

cycles used. To decide if this approximation to the true value 

of the criterion could be improved, an alternative matrix to 

flpj was devised, namely It was based solely on treatment

concurrences. Tests of the performance of the interchange 

algorithm resulted in a preference for flpp, although it was 

noted that some of the disadvantages of E^ could be overcome. 

Some theoretical results concerning Epp were given. A value 

of H was found to be sufficient for use in the interchange 

algorithm. A starting design was required and a way of 

obtaining one was described. When the performance of the 

interchange algorithm was compared with another which was 

considered to be among the best in the literature, it was 

found to be superior. It was noted that the other algorithm 

did not permit treatment contrasts to be weighted. One 

disadvantage of the interchange algorithm, in common with 

others that have been suggested, was its getting trapped at a 

local optimum. However, in tests none of the local optima 

found were much inferior to the true optima. The performance 

of the interchange algorithm was indeed good.

Chapter 3 began by giving a review of the literature on 

methods of constructing optimal row-and-column designs. It 

wras noted that the row-and-column case had received less 

attention than the block case. Since no suitable algorithm 

was available in the literature, the interchange algorithm 

described in Chapter 2 was modified to search for the component 

designs that make up an optimal rowr-and-column design. This 

modification was made possible by making use of the amalgamated
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design. The interchange algorithm used a criterion similar 

to that in Chapter 2, and two approximations to the true value 

of the criterion, based on new matrices and were devised. 

The roles of and 5^ were similar to those of the corresponding 

matrices used in Chapter 2. Tests of the interchange algorithm 

resulted again, in a preference for the approximation based on 

As before, a value of H equal to four was found to be 

sufficient. The interchange algorithm, however, only provided 

the component designs and a further algorithm was required to 

arrange them as a row-and-column design. Three alternative 

algorithms were devised. In the first of these a row of the 

row-and-column design was arranged at each step, in the second 

a row and a column were arranged at each step and in the third 

a plot was arranged at each step. The first two of these 

algorithms, however, suffered from the disadvantage of not 

being able to consider every possible arrangement and so 

sometimes failed to combine a pair of components when in fact 

it was possible. The failure rate of the first algorithm was 

a little higher than that of the second. The third algorithm, 

however, did consider every possible arrangement and so was 

guaranteed to combine a pair if it was at all possible. To 

test these three algorithms and to test further the performance 

of the interchange algorithm a particular set of designs was 

used. It was noted that the interchange algorithm could provide 

a pair of components that could not be combined, although in 

tests that happened on only three occasions out of fifty-two.

With a few of the designs obtained in the tests there were 

some that had orthogonal contrasts that were not estimated 

orthogonally. To overcome that a modified form of the 

interchange algorithm was applied to the offending designs.

The optimality criterion was the minimization of the sum of
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the absolute values of the off-diagonal elements of an 

appropriate approximation to the variance-covariance matrix 

for contrasts. This modification led to improvements in most 

cases and had the additional advantage of altering the three 

pairs of components that could not be combined so that they 

could be. It was found that in nearly all cases the design 

found was optimal. However, even though the interchange 

algorithm did sometimes get trapped at a local optimum, the 

local optimum was nevertheless nearly as good as the true 

optimum.

One disadvantage of the interchange algorithms described 

in Chapters 2 and 3 was that the treatment replications once 

chosen, remain fixed. To overcome that a different approach 

was described in Chapter 4. There given a suitable starting 

design, an exchange procedure (EP) and an interchange procedure 

(IP) were used to search for optimal block designs and optimal 

row-and-column designs. The EP and IP made use of recursive 

formulae that enabled the true value of the optimality criteria 

used in Chapters 2 and 3 to be calculated for the design 

obtained by deleting a treatment and for the design obtained 

by adding a different treatment to the depleted design. During 

the EP the treatment replications were modified, if necessary, 

as the design was improved. The IP was then used, if necessary, 

to search for an optimal set of treatment concurrences. As the 

EP and IP worked directly wdth the row-and-column design, a 

further algorithm to combine components was not needed. The 

performance of the EP and IP when applied to block designs was 

very good and was better than that of the interchange algorithm 

described in Chapter 2. As before, howover, the procedures 

could get trapped at a local optimum, although the local optimum 

found was nearly always as good as the true optimum. The
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performance of the EP and IP when applied to row-and-column 

designs, however, was worse than that of the interchange 

algorithm described in Chapter 3, more local optima being 

located. No modification was found to improve the procedures. 

However, as before, the local optima were nearly as good as 

the true optima. An important advantage of the EP and IP 

vns that they were quicker to execute on the computer than 

the interchange algorithms described in Chapters 2 and 3.
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GLOSSARY OI; NOTATION

*a

h
\

V  116

h

3

z2
? 2

P2

S

s

s

significance level of hypothesis test

probability of accepting the null hypothesis when it is false, 
i.e. (1- 3) is the power of the hypothesis test.

lOO(l-a) percentage point of the standard n o m a i  distribution 
(Paulson and Wallis's notation, used on page 49)

as above but with a replaced by 3.

as for k and kg, respectively (Miettinea's notation, used on 
page 53)?

value of the standard normal deviate corresponding to a two- 
tailed significance level of a (Sncdecor and Cochran's notation, 
used on page 47).

value of the standard normal deviate corresponding to a two- 
tailed significance level of 2(1-P), where P is the power of 
the hypothesis test (Sncdecor and Cochran's notation, used on 
page 47).

equal to 2(1-1) where P is the power of the hypothesis test 
(as used on page 22).

probability of success with treatment 2 (as used on pages 46 
to 48).

random variable whose values equal the number of pairs with 
discordant responses in a paired Binomial trial (as used on 
page 52).

observed value of S as defined above (as used on pages 52 and 
53).

observed standard deviation of the data (as used on page 21).

n

P
X

A-optimality

D-optimality

E-optimality

G-optimality

v

Y
r

A
b

k

D

N

C

C"
n ,  S and C+&  and “H 
W

q
u

Chapter 2

number of plots in the experiment.

the number of parameters in linear model.

n x p design matrix.

maximize trace of X'X.

maximize determinant of X'X.

maximize minimum eigenvalue of X'X.

minimize the maximum variance of a predicted observation.

a diagonal matrix whose diagonal elements equal the elements 
of the vector x raised to the power t.

number of treatments in the design.

v x 1 vector of treatment parameters.

v x 1 vector of treatment replications.

v x n design matrix for treatments.

number of blocks in the design.

b x l  vector of block sizes.

b x n design matrix for blocks .

v x b incidence matrix for the design.

equals r^ - Nk”?\|'.

a generalized inverse of C, i.e. C C ~ C = C.

alternative generalized inverses of C.

approximations to W and E, respectively.

a v x y  matrix with zero diagonal elements and off-diagonal 
elements equal to those of Kk"°N'.

a v x 1 vector of quasi-replications; q = Wl.

equals q'l.



bi

b2

Chapter 3

number of rows in row-and-column design, 

number of columns in row-and-column design.

n number of plots in design.

b ^ x n  design matrix for rows

h b2 x n design matrix for columns

Pi v * bj incidence matrix for rows

P2
Ç

v x b2 incidence matrix for columns

equals rfi - NjNj/b-, - + rr'/n, where r is a v  * 1 
vector of treatment replicationsT'

ft and S alternative generalized inverses of C. 

' Chapter 4.

Ji i x l vector of data.

B p x 1 vector of parameters in linear model.

?i
For pages 183

i x p design matrix that relates 8 to Y^. 

- 188

6i
i

i x v  design matrix for v treatments in a block design with 
i plots.

5i i x b design matrix for b blocks in a block design with i plots.

rn - in’ Pn> 
9n and 9n

are for a block design and are as defined in Chapter 2 
except that now there is a subscript to indicate the 
size of the design.

For pages 195-207

t n
n x v design matrix for v treatments in a row-and-column design.

?n nx(b,+b?+l) matrix equal t o ’tD-j, Di, 1 3 ,  where and
D2 are as defined in Chapter 3 and 1^ is a n x  1 vector of ones.

Pn

Pn

v x b, incidence matrix for the rows of a row-and-column design 
with n plots.

v x b2 incidence matrix for the columns of a row-and-column 
dc°ign with n plots.

in 311(1 9n are for a row-and-column design and are as defined in Chapter 3 
except that now there is a subscript to indicate the size of the 
design.

Pb a generalized inverse of Cn>a generalized inverse of Cn>



Chapter 1 - Corrigenda

Page 30 line 13 remove the word ’inversely'.

Page 49 line 17 replace * 2tt ' by '/2tF '

Page 72 line 28

Page 102 line 23
1

Page 111 line 19 

Page 112 line 7

Page 118 line 6 

Page 118 line 8 

Page 123 line 20 

Page 127 line 1 

Page 134 line 6

Page 182 line 22

Page 193 lines 23 
and 24

Page 194 line 2

Page 194 lines 4 & 5

Page 194 lines 15,16 
and 17

Chapter 2 -- Corrigenda

replace 'y' by 'y'.

replace 'six' by 'five'.

replace first sign by ' + ' .
H h

reoKwe ' +Hll'/u + i (-1) x9x9/q ' .
h=l

Chapter 3 - Corrigenda 

replace '3.7' by '3.8'. 

replace '3.8' by '3.9'. 

replace 't9' by ^ 2 ' • 

replace 'iT^' by 'Q--*-' 

replace '1' by 'zero' and '-1' by '2'.

Chapter 4 - Corrigenda

replace 'ê ' by ' fd 1.

replace 'i- ' b y  ' l'fill' . 
max v

replace 'v-1' by 'v'.

delete all reference to ' y ' from these lines .
Amax

replace '0.291, 0.285 and 0.281' by 
'0.304, 0.297 and 0.292', respectively.

Page 197 line 3 replace 'b̂ l'b̂ ' by 'b̂ l̂  ' .


