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a b s t r a c t 

Greenhouse gases (GHG) from human activities are the main contributor to climate change since the 

mid-20th century. Reducing the release of GHG emissions is becoming a thematic research topic in many 

research disciplines. In the reliability research community, there are research papers relating to reliability 

and maintenance for systems in power generation farms such as offshore farms. Nevertheless, there is 

sparse research that aims to optimise maintenance policies for reducing the GHG emissions from sys- 

tems such as automotive vehicles or building service systems. To fill up this gap, this paper optimises 

replacement policies for systems that age and degrade and that produce GHG emissions (i.e., exhaust 

emissions) including the initial manufacturing GHG emissions produced during the manufacturing stage 

and the emissions generated during the operational stage. Both the exhaust emissions process and the 

failure process are considered as functions of two time scales (i.e., age and accumulated usage), respec- 

tively. Other factors that may affect the two processes such as ambient temperature and road conditions 

are depicted as random effects. Under these settings, the decision problem is a nonlinear programming 

problem subject to several constraints. Replacement policies are then developed. Numerical examples are 

provided to illustrate the proposed methods. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many engineering systems, including automotive vehicles and 

ulti-dwelling houses, are faced with a key problem: To balance 

he trade-off between maintenance price and the greenhouse gas 

GHG) emissions. The former ensures the system owners’ finan- 

ial sustainability, and the latter aims to achieve the environmental 

ustainability required by the society. However, the research on the 

nvironmental sustainability in the reliability community has been 

urprisingly sparse. 

In the reliability literature, most of the publications highlight 

articularly an economical aspect, chiefly through minimising the 

xpected cost, in studies such as redundancy allocation ( Reihaneh, 

rdakan & Eskandarpour, 2021 ), system configuration optimiza- 

ion ( Yan, Qiu, Peng, & Wu, 2020 ), maintenance policy optimisa- 

ion ( Gao, Peng, Qu, & Wu, 2020 ) and warranty policy optimisation 

 Wang, Li & Xie, 2020 ; Mitra, 2021 ), to name a few. A global scale

onsidering an ecological element is becoming more important in 

any other research communities. The main reason is the global 

arming is becoming a major issue and problem that requires all 
esearch communities to deal with. The nations across the world 

∗ Corresponding author. 
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ave reached some agreements such as the Kyoto Protocol and the 

aris Agreement. To reduce the GHG emissions is the aim of the 

inding targets of the Kyoto Protocol and the Paris Agreement is a 

egally binding international treaty on climate change. This moti- 

ates us to incorporate the GHG emissions in the optimisation of 

aintenance policies. 

.1. Motivating examples 

.1.1. Automotive cars 

The GHG emissions during manufacturing a product item are 

aid its ‘initial manufacturing emissions’. Once a system is manu- 

actured, its manufacturing emissions are fixed. As such, the longer 

 product item will be used, the smaller the expected amount of 

missions per unit of usage in its lifetime. For example, Berners- 

ee and Clark (2010) comment: If you make a car last to 20 0,0 0 0

iles rather than 10 0,0 0 0, then the emissions for each mile the car

oes in its lifetime may drop by as much as 50%, because of getting 

ore distance out of the initial manufacturing emissions. 

An engineering system may also produce GHG emissions dur- 

ng its operational stage and the emissions may worsen with its 

ge. Take automotive vehicles as an example, the exhaust emis- 

ions of a vehicle depend on a variety of factors including ac- 

umulated mileage, its speed (or road type), its age, engine size 

nd weight ( Ahlvik, 1997 ). Among these factors, age and accumu- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ejor.2022.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.10.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.m.wu@kent.ac.uk
https://doi.org/10.1016/j.ejor.2022.10.007
http://creativecommons.org/licenses/by/4.0/


S. Wu, D. Wu and R. Peng European Journal of Operational Research 307 (2023) 1135–1145 

l

e

(

r

a

d

a

a

(

w

c

T

.

e

m

1

t

c

b

p

t

c

s

t

A

t

E

a

m

y

m

1

1

w

m

t

s

A

m

s

t

w

c  

R

w

v

m

t

t

e

p

e

2

G

h  

D  

t

s

i

W

m

p

c

d

L

r

t

i

t

1

i

s

T

b

n

o

o

a

e

c

t

i

p

“

c

l

u  

L

j

s

t

m

w

i

i

w

t

l

s  

t

p  

p

w

e

D  

r  

f

e

l

p

g

i

t

w

p

ated mileage are recorded. Kuhns, et al. (2004) suggest that the 

missions of particulate matter, carbon monoxide, nitrogen oxide 

NO) and hydrocarbons per unit of fuel burned from in-use on- 

oad vehicles increase with vehicle age. More specifically, Chen 

nd Borken-Kleefeld (2016) find that NO x unit emissions for some 

iesel automotive vehicles increase with their age and suggest that 

 deterioration of tailpipe NO x emissions over 80,0 0 0 km of 22% 

nd 10% for two types of technologies, respectively. Zhang, et al. 

2017) concludes the trends of the GHG emissions are associated 

ith accumulated mileages. 

Noticeably, Sharma and Chung (2015) believe PM emissions in- 

rease more drastically in India than in the US with vehicle age. 

hey conclude that the vehicles in India are often poorly maintained 

 . . . We believe that this faster deteriorating also stems due to lack of 

ffective inspection and maintenance systems . Their comments stress 

aintenance plays a vital role in deterring the GHG emissions. 

.1.2. Residential buildings 

Without any doubt, there is a huge amount of initial manufac- 

uring emissions (or construction emissions) for buildings. 

In addition, residential buildings may need to be heated up or 

ooled down in hot or cold weather conditions. When a building 

ecomes older, hot or cold air may leak from it, and therefore 

roduces exhaust GHG emissions. Estiri and Zagheni (2019) find 

hat an overall increasing profile in energy consumption by age, 

ontrolling for income, local climate, and housing age, type, and 

quare footage in the U.S. residential buildings. They also show 

he growth rate in energy consumption over age is not linear. 

ksoezen, Daniel, Hassler, and Kohler (2015) suggest that construc- 

ion age be a non-linear (i.e., concave that can be modelled by 

 consumption = at 2 + bt) indicator for energy consumption. 

Apparently, GHG missions happen due to energy consumption 

nd maintenance is therefore needed. For instance, the UK govern- 

ent makes advice on ways to save energy, including, insulating 

our loft and cavity walls and upgrading your boiler ( UK Govern- 

ent 2021 ). 

.2. Related work and our methods 

.2.1. Maintenance policy optimisation and GHG emissions related 

ork 

From the aforementioned discussion, there is a need to develop 

aintenance policies for such systems. This paper therefore aims 

o optimise a maintenance policy that considers initial GHG emis- 

ions, exhaust emissions and system failures due to other reasons. 

s such, to incorporate the above three factors in optimisation of 

aintenance policies, we need to use the nonlinear programming 

ubject to constraints. The exhaust emissions will be modelled by 

he gamma process and the system failure due to other reasons 

ill be modelled by the nonhomogeneous Poisson process (NHPP). 

There is a bulk of research on optimisation of maintenance poli- 

ies. The reader is referred to De Almeida et al. (2015) ; Syan and

amsoobag (2019) ; de Jonge and Scarf (2020) for literature review, 

here de Almeida et al. (2015) and Syan and Ramsoobag (2019) re- 

iew multi-criteria models applied for solving maintenance opti- 

ization problems and de Jonge and Scarf (2020) review more 

han two hundred papers on maintenance modelling and optimiza- 

ion that are published in the period 2001 to 2018. 

In the literature, optimisation of maintenance policies consid- 

ring the GHG emissions has been indirectly investigated. Authors 

redominately focus on development of maintenance policies for 

nergy production systems such as wind turbines ( Li & Coolen 

019 , Koukoura, Scheu, & Kolios, 2021 ) and solar systems ( Choe, 

uo, Byon, Jin, & Li, 2016 , Sayed, EL-Shimy, El-Metwally, & Elsha- 

ed, 2020 ) and for second hand products ( Park, Jung, & Park, 2020 ,
1136 
ai, Wei, Wang, He, & He, 2021 ). It is noted that planning main-

enance policies for second hand products can certainly save re- 

ources and hence the initial GHG emissions as manufacturing an 

tem inevitably needs energy ( Park, Jung, & Park, 2020 , Dai, Wei, 

ang, He, & He, 2021 ). 

There is some work using different stochastic processes to 

odel the failure process of a system in the literature. For exam- 

le, Caballe, Castro, Perez, and Lanza-Gutierrez (2015) propose a 

ondition-based maintenance strategy for a system subject to two 

ependent causes of failure: degradation and sudden shocks. Dong, 

iu, Cao, and Bae (2020) optimises maintenance policies for a non- 

epairable item suffering from both an internal stochastic degrada- 

ion process and external random shocks, where the deterioration 

s modelled by the gamma process and the arrival number of ex- 

ernal shocks is counted with a NHPP. 

.2.2. Incorporating multiple time scales 

For a system such as an automotive car or a residential build- 

ng, it would be desirable to take into consideration all three time 

cales: chronological age, operating time, and cumulated usage. 

he chronological age or chronological time since its last repair can 

e easily obtained. The operating time of a system, however, may 

ot be available. For example, the accumulated usage or mileage 

f an automotive vehicle is normally recorded and shown on its 

dometer. It should be noted that the operating time is not equiv- 

lent to the mileage, which is a function of the car speed and op- 

rating time. 

We regard the accumulated usage as an external time-varying 

ovariate, which is non-decreasing in chronological age t . An ex- 

ernal covariate (see Section 1.3.4 in Cook and Lawless (2007) ) 

s one whose values are determined independently of the failure 

rocess for that unit, such as an environmental or usage factor. 

Non-decreasing” implies that the accumulated usage may stay un- 

hanged during a period when a car is not driven. 

In the literature, there are three approaches to analysing the re- 

iability of a system with two time scales: age and accumulated 

sage ( Wu 2012 ). These approaches are bivariate ( Wu, 2014 ; Yera,

illo, Nielsen, Ram_rez-Cobo, & Ruggeri, 2021 ; Gupta & de Chatter- 

ee, 2017 ), marginal ( Zhu, Lu & Zhang, 2021 ), and composite time 

cale approaches ( Gertsbakh & Kordonsky, 1998 ). It is worth men- 

ioning that the bivariate approach proposed by Wu (2014) may 

odel the asymmetric phenomenon between the age and usage, 

here the asymmetric phenomenon means that: if an item’s age 

s small, its accumulated usage is normally small; however, if an 

tem’s age is large, its accumulated usage may not be large. Mean- 

hile, regarding the marginal approach, it is interesting to note 

hat Boulter (2009) fitted real datasets and concluded that the re- 

ationship between the accumulated vehicle mileage and age is de- 

cribed by a quadratic equation u = at 2 + bt with a < 0 , where u is

he accumulated usage and t is the chronological age. For exam- 

le, a = −452 . 02 and b = 15 , 274 for petrol cars with engine ca-

acity < 1400cc ( Boulter (2009) ; p. 21). In the research area of 

arranty management, many authors assume that there is a lin- 

ar relationship between the age and the accumulated usage, see 

ai et al. (2021) , for example. This can be true for the early pe-

iods of systems as u = at 2 + bt can be approximated by a linear

unction u = ct ( c > 0 ) when t is small. 

Regarding the gamma process, Singpurwalla (1995) incorporate 

nvironmental stresses in degradation modelling and assume the 

evel of stresses is constant. Lawless and Crowder (2004) further 

ropose that the scale parameter in a gamma process follows the 

amma distribution, which can capture the difference between 

tems under study. Other methods on the scale parameter include 

hat the scale parameter is assumed to be a function of covariates, 

hich can be variables such as environmental stresses. The scale 

arameter can also be regarded as a function of the accelerated 
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tress and the shape parameter is constant ( Lawless & Crowder, 

0 04 ; Wang, 20 09 ) or a function of environmental covariates 

 Wang, 2009 ). Additionally, the gamma prorcess has been used in 

ondition-based maintenance from time to time (see Liu, Pandey, 

ang & Zhao, 2021 ; Andersen, Andersen, Kulahci & Nielsen, 

022 ; Bautista, Castro & Landesa, 2022 , for example) or modelling 

egradation processes with random effects ( Wang, Wang, Hong & 

iang, 2021 ). 

.2.3. Our methods and novelty 

As above discussed, the operational age of an item is not nor- 

ally recorded. This paper therefore considers the chronologi- 

al age and accumulated usage, but not the operational age. The 

arginal and composite time scale approaches will be considered, 

s elaborated in the following. 

We consider a method that estimates the accumulated usage 

s a function of the chronological age. It then regards the magni- 

ude of the degradation, and the failure intensity function are the 

unctions of linear combinations of the chronological age and ac- 

umulated usage, respectively. Since there is a need to use histori- 

al data to estimate the relationship between the chronological age 

nd accumulated usage, the drawback of using this method is that 

he estimated accumulated usage may be biased with a large es- 

imation error. Its strength is that a maintenance policy based on 

his approach can be determined simply by the chronological time. 

We assumes a linear combination of the chronological age and 

ccumulated usage as the moderated time scale, based on which 

odels are developed. The drawback of using this method is its 

ifficulty in management as both the chronological age and accu- 

ulated usage must be recorded and monitored, based on which 

oth the chronological age and accumulated usage need to be 

hecked when implementing the maintenance policy. Its strength 

s that the models may be more accurate as real data are used 

n modelling and that there is no need to estimate a distribution 

epicting the joint distribution between the chronological age and 

ccumulated usage. 

It is apparent that the composite time scale approach may lead 

o a parsimonious model as it has fewer parameters than the 

arginal method. 

The paper will use the gamma process to model the degrada- 

ion process of the exhaust GHG emissions and use the nonhomo- 

eneous Poisson process to model the failure process of the sys- 

em. It will then incorporate other factors such as the amount of 

he initial GHG emissions. 

Following on the above-discussion, this paper aims to develop 

 maintenance policy for an item with three factors: 

(a) it generates GHG emissions at the operational stage; 

(b) it may fail due to other reasons such as ageing or deteriora- 

tion; and 

(c) its initial GHG emissions must be considered in modelling. 

To the best of our knowledge, there is little existing research 

hat optimises maintenance policies subject to the constraints 

f initial GHG emissions and exhaust emissions. Furthermore, as 

forementioned, methods of incorporating time varying covariates 

n the gamma process has rarely been documented in the litera- 

ure. In addition, the three methods—composite, marginal and bi- 

ariate methods—were developed for non-repairable systems, in 

hich only lifetime distributions need to be developed. With these 

onsiderations, this paper creates novelty. 

.3. Overview 

The remainder of this paper is structured as follows. 

ection 2 provides assumptions and notations that will be used in 

he paper. Section 3 develops models for the deterioration process 
1137 
f the GHG emissions and the model of the failure process of the 

ystem. Section 4 presents the method to optimise the preventive 

aintenance policies. Section 5 extends the two time-scale scenar- 

os to multiple cases and discusses relevant maintenance policies. 

ection 6 provides numerical examples to illustrate the proposed 

ethods. Section 7 concludes the paper and suggests future 

esearch. 

. Notations and assumptions 

This section makes assumptions and lists notations that will be 

sed in the paper. 

.1. Assumptions 

This paper makes the following assumptions. 

(A1) The system starts working at time t = 0 . 

(A2) The particulate matter, carbon monoxide, NO and hydrocar- 

bons are referred to as the GHG. 

(A3) The system has two failure modes: Modes I and II, both of 

which deteriorate over two scales: chronological age and ac- 

cumulated usage. Mode I is the level of its exhaust GHG 

emissions exceeding a pre-specified threshold, and Mode II 

is the failure mode due to other reasons. The two failure 

modes are assumed statistically independent. Both failure 

processes start from time t = 0 . 

(A4) The degradation progression of Mode I is observable, but it 

is not repairable. The level of the GHG emissions per unit 

of time or per unit of usage increases over time and accu- 

mulated usage and can be modelled by a gamma process. It 

is assumed that there are two scenarios. In scenario 1, the 

level of the GHG emissions is denoted by X( t, u ) , which is 

the level of the GHG emissions at chronological age t and 

accumulated usage u and is the sum of X 1 (t) and X 2 (u ) , i.e.,

X( t, u ) = X 1 (t) + X 2 (u ) , where X 1 (t) is the level of deterio-

ration at chronological age t and X 2 (u ) is the level of dete- 

rioration at accumulated usage u . X 1 (t) and X 2 (u ) are sta-

tistically independent. Neither X 1 (t) nor X 2 (u ) can be ob- 

served. X( t, u ) , however, is observable. Both { X 1 (t) : t > 0 }
and { X 2 (u ) : u > 0 } are gamma processes. In scenario 2, the

level of deterioration is observed at a composite time scale 
� 

t = a 1 t + b 1 u and { X( 
� 

t ) : 
� 

t > 0 } is a gamma process. 

(A5) The failure progression of Mode II is unobservable. Mode II 

may experience failures, which can be fixed by repair with 

its effectiveness assumed to be minimal. It is assumed that 

there are two scenarios as well. In scenario 1, the failure in- 

tensity λ( t, u ) of Mode II is the sum of λ1 (t) and λ2 (u ) , i.e.,

λ0 ( t, u ) = λ1 (t) + λ2 (u ) , where λ1 (t) is the failure intensity 

due to ageing and λ2 (u ) is the failure intensity due to usage. 

In scenario 2, the failure intensity λ( ̃ t ) of Mode II is an in-

creasing function with respect of a moderated time ˜ t , which 

is a linear combination of the chronological age t and accu- 

mulated usage, i.e., ˜ t = a 2 t + b 2 u , for modelling the failure of

items. We assume a 2 and b 2 may differ from a 1 and b 1 , re-

spectively, as the mechanisms of the degradation processes 

of modes I and II may be different. 

(A6) The system has the initial manufacturing GHG emissions, 

which is denoted by E I and is produced during the system’s 

manufacturing stage. 

(A7) For the sake of convenience in calculation, the system is in- 

spected every τ0 units of time or every υ
0 

units of usage. 

That is, the inspection is block-based: for example, an in- 

spection is conducted recently because the time approaches 

τ0 , another one may be carried out because the accumu- 

lated usage approaches ν . If the system is down (or failed) 
0 
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Table 1 

Notation table. 

i index of the failure mode; i = 1 for failure mode I and i = 2 for failure mode II; 

T age of the item under consideration, it is a random variable; 

U accumulated usage of the item, it is a random variable; 
� 

T composite time scale of failure mode I, it is a random variable; 
˜ T composite time scale of failure mode II, it is a random variable; 

t, u, 
� 

t , ̃ t representing observations of T, U, 
� 

T and ˜ T , respectively; 
˙ t a middle variable, which can be t or u ; 

Z random effect; 

H(z) cumulative distribution function (cdf) of Z; 

τ0 time interval between two consecutive inspections; 

ν0 accumulated usage between two consecutive inspections; 

E I initial manufacturing emissions; 

c 
R 
, c 

r 
, and c 

m 
cost of replacement (i.e., major PM), minor PM, and minimal repair, respectively 

(
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Fig. 1. Relationship between chronological time and accumulated usage. 
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due to Mode II, minimal repair is carried out. If the system 

is working at the inspection time, the level of GHG emis- 

sions of Mode I is checked. Replacement is performed once 

the optimal replacement time interval is reached, and sev- 

eral other conditions are met. These conditions include the 

level of the GHG emissions should not be larger than a given 

threshold, the initial manufacturing GHG emissions per unit 

of time and per unit of usage should not be larger than given 

thresholds, respectively. 

(A8) The accumulated usage U is non-decreasing over time t . 

(A9) The cost of repair is c m and the cost of a replacement (or, 

major PM) is c 
R 
, where c 

R 
> c m . 

A10) The time on repair or replacement is negligible. 

.2. Notations 

For the sake of convenience, some frequently used notations are 

isted in Table 1 . 

. The process of the GHG emissions and the lifetime 

istribution of the system 

This section aims to derive degradation models for Mode I and 

he failure process models for Mode II. 

.1. Deterioration of the level of exhaust emissions for Mode I 

Let X i ( ̇ t ) be the deterioration level at chronological time ˙ t = t

for i = 1 ) and accumulated usage ˙ t = u (for i = 2 ), respectively. As-

ume that X i ( ̇ t ) ( i = 1 , 2 ) has the following properties: 

(a) X i (0) = 0 , 

(b) the increments �X i ( ̇ t ) = X i ( ̇ t + � ˙ t ) − X i ( ̇ t ) are independent

of ˙ t , 

(c) �X i ( ̇ t ) follows a gamma distribution Gamma ( α
i 
( � ˙ t ) , βi ) 

with shape parameter αi ( � ˙ t ) and scale parameter βi , where 

αi ( ̇ t ) is a given monotone increasing function in 

˙ t (for i = 1 )

and u (for i = 2 ), and αi (0) = 0 . 

X( ̇ t ) follows the gamma distribution Gamma ( αi ( ̇ t ) , βi ) with 

ean αi ( ̇ t ) βi and variance αi ( ̇ t ) β
2 
i 

, and its probability density 

unction is given by 

f 
(
x ;αi 

(
˙ t 
)
, βi 

)
= 

β
αi ( ̇ t ) 
i 



(
αi 

(
˙ t 
))x αi ( ̇ t ) −1 e −βi x 1 { x> 0 } , (1) 

here 
(·) is the gamma function: 
(z) = 

∫ ∞ 

0 v z−1 e −v dv . 

.1.1. Marginal approach 

Since only the chronological age of the system is available, it is 

ore realistic to assume that the system does not operate uninter- 

uptedly over time, instead, it operates in an on and off mode. This 
1138 
s true for vehicle cars: our cars are not always driven on roads. As 

uch, the system alternates between successive on (i.e., driving) in- 

ervals and off (i.e., idle intervals), which are denoted by 1 and 0 

suppose the system starts in state 1), where 1 represents that the 

ystem is at the on state and 0 at the off state. As such, the usage

rocess of a car can be modelled by an alternating renewal pro- 

ess. This is very similar to boilers in buildings: a boiler may be 

witched on in cold weather time in a year but it does not work 

ninterruptedly. 

The degradation process is affected by both the chronological 

ime and the accumulated usage. That is 

 ( t, u ) = X 1 ( t ) + X 2 ( u ) = X 1 ( t ) + X 

′ 
2 ( t ) (2) 

Note that { X 2 (u ) , u > 0 } is a gamma process. But the degrada-

ion process X ′ 2 (t) due to usage is not a gamma process in chrono- 

ogical time as the system may at the off state, during which no 

egradation is caused. As shown in Fig. 1 , during the off periods, 

he system is not operating and does not cause the system to de- 

rade. The top line in Fig. 1 shows the chronological time and the 

ottom line shows the accumulated usage. 

We assume the alternating renewal process composed of two 

rocesses: the process of on times { U n : n ≥ 1 } and the process of 

ff times { O n : n ≥ 1 } are independent sequences of i.i.d. nonneg- 

tive random variables. It is also reasonable to assume that the 

equences of pairs { ( U n , O n ) : n ≥ 1 } be i.i.d. non-negative random 

ectors. 

Let Y on and Y off denote the time of the system sojourning at the 

n state and at the off state, respectively. Denote the CDF of Y on 

nd that of Y off are W on (x ) and W off (x ) , respectively. Note that the

rst bullet in Section 2.1 assumes the system is on at time t = 0 .

or a fixed t , let νon (t) and νoff (t) denote the total amount of time 

he system is on and the total amount of time the system is off

uring ( 0 , t ) , respectively. Apparently, 0 ≤ νoff (t) ≤ t , 0 ≤ νon (t) ≤
, and νoff (t) + νon (t) = t . 

Takacs (1957) showed that the distribution function, G off (x | t) , 
or the amount of time spent in the off state is 

 off ( x | t ) = P (νoff ( t ) < x ) = 

+ ∞ ∑ 

n =0 

W 

( n ) 
off ( x ) [

W 

( n ) 
on ( t − x ) − W 

( n +1 ) 
on ( t − x ) 

]
, (3) 
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here W 

(n ) 
off 

(x ) and W 

(n ) 
on (x ) denote the n -times iterated convolu-

ion of the distribution function W off (x ) and W on (x ) , respectively,

 

(0) 
on (x ) = 1 and W 

(0) 
off 

(x ) = 1 for x ≥ 0 . 

Then the distribution function, G on (x | t) , for the amount of time

pent in the on state is 

 on ( x | t ) = P (νon ( t ) < x ) = P ( t − νoff ( t ) < x ) 

= 1 −
+ ∞ ∑ 

n =0 

W 

( n ) 
off ( t − x ) 

[
W 

( n ) 
on ( x ) − W 

( n +1 ) 
on ( x ) 

]
. (4) 

The marginal approach in dealing with modelling on the 

wo time scales in the existing literature normally approximates 

 on ( x | t )( = 

dG on ( x | t ) 
dx 

) by assuming that g on ( x | t ) = p, where p is a

onstant with 0 ≤ p ≤ 1 . See Wang and Su (2016) for example. Ap-

arently, g on (x | t) derived from Eq. (4) provides a more accurate 

xpression than the assumption of g on (x | t) = p. The downside of

q. (4) is its complexity in expression, which makes it difficult to 

erive an explicit closed-form expression. Nevertheless, in prac- 

ice, thanks to the well-established computational mathematics, it 

s not difficult to develop numerical algorithms when needed. 

As can be seen, the expression of G on (x ) is complicating. For 

xample, Barlow and Hunter (1961) give the exact expression of 

 off (x ) when W on (x ) and W off (x ) are both exponentials: W on (x ) =
 − e −δ1 x and W off (x ) = 1 − e −δ2 x , then, we can derive G on (x | t) : 

 on ( x | t ) = 1 − e −δ1 x 

[
1 + 

√ 

δ1 δ2 x 

∫ t−x 

0 

e −δ2 y y −1 / 2 I 1 (
2 

√ 

δ1 δ2 xy 

)
dy 

] 
= 1 − e −δ1 x 

[
1 + 

∑ ∞ 

j=0 

(δ1 x ) 
j+1 

j! ( j + 1 ) ! 
γ ( j + 1 , δ2 ( t − x ) ) 

]
, (5) 

here I 1 (x ) is the Bessel function of order 1 for the imaginary ar-

ument defined by I 1 (x ) = 

∑ ∞ 

j=0 
(0 . 5 x ) 2 j+1 

j !( j +1 )! 
. Then we can obtain the 

df (probability density function) of G on (x | t) as follows, 

 on (x | t) = 

dG on (x | t) 
dx 

= e −δ1 x 

{ 

δ1 −
∞ ∑ 

j=0 

δ j+1 
1 

x j 

j! ( j + 1 ) ! 

[ ( j + 1 ) γ ( j + 1 , δ2 ( t − x ) ) 

−δ2 x (δ2 ( t − x ) ) 
j 
e −δ2 ( t−x ) 

] } 

, (6) 

here γ ( s, x ) = 

∫ x 
0 t 

s −1 e −t dt is the lower incomplete gamma func- 

ion. 

In this subsection, we assume that the level of the GHG emis- 

ions is observed on the chronological time and follows a gamma 

rocess. 

Then the distribution function of X 1 (t) is given by 

 (X 1 ( t ) < x ) = F 1 ( x ;α 1 ( t ) , β1 ) 

= 

∫ x 

0 

f ( v ;α 1 ( t ) , β1 ) dv = 

γ ( α 1 ( t ) , xβ1 ) 


( α 1 ( t ) ) 
. (7) 

The distribution function of X 2 (u ) in the chronological age t ′ 
iven by 

 (X 2 ′ ( t ) < x ) = F 2 ( x ;α 2 ( t ) , β2 ) 

= 

∫ x 

0 

∫ x 

0 

f ( v ;α 2 ( u ) , β2 ) g on ( u | t ) d ud v . (8) 

Let T L be the chronological time at which the level of the GHG 

missions exceeds L . That is, 

 L = inf { t ( ≥ 0 ) | X 1 ( t ) + X 2 ′ ( t ) ≥ L } . (9) 

Note that the right hand side of the above equation is X 1 (t) +
 2 ′ (t) ≥ L , instead of X 1 (t) + X 2 (u ) ≥ L . The value X 1 (t) + X 2 ′ (t) ≥ L
1139
as already mapped the accumulated usage onto the chronological 

ime. 

Based on the monotonicity of the gamma process, the distribu- 

ion of T L can be obtained by 

 T L ( t ) P (T L < t) = P ( X 1 ( t ) + X 2 ′ ( t ) > L ) 

= 1 −
∫ L 

0 

F 1 ( L −x ;α
1 ( t ) , β1 ) f 2 ( x ;α 2 ( t ) , β2 ) dx, 

(10) 

here is a compound symbol for making definitions, and 

f 2 ( x ;α 2 ( u ) , β2 ) = 

dF 2 ( x ;α 2 ( t ) , β2 ) 

dx 

= 

∫ t 

0 

f ( x ;α 2 ( u ) , β2 ) g on ( u | t ) du. 

.1.2. Composite time scale approach 

Gertsbakh and Kordonsky (1998) propose a method to aggre- 

ate both t and u to create a single composite time scale. Although 

hey use the composite scale to model the probability of failure of 

n item, we borrow this method to model the deterioration level 

f the exhaust GHG emissions. 

In this method, we regard the single composite time scale as a 

inear combination of the chronological age and the accumulated 

sage of the system. That is, 

� 

 = a 1 T + b 1 U. (11) 

Assume that the level of the GHG emissions is a gamma pro- 

ess in the single composite time scale 
� 

t ( = a 1 t + b 1 u ) , which 

s denoted by { X( 
� 

t ) : 
� 

t ≥ 0 } That is, X( 
� 

t ) follows the gamma 

istribution Gamma ( α
3 
( 

� 

t ) , β3 ) with mean α
3 
( 

� 

t ) β3 and vari- 

nce α
3 
( 

� 

t ) β2 
3 , and its probability density function is given by 

f ( x ;α
3 
( 

� 

t ) , β3 ) . 

Suppose that the system needs to be replaced if the level of the 

HG emissions exceeds a pre-specified L . Let 
� 

T L be the moderated 

ime at which the level of the GHG emissions exceeds L . That is 
 

 L = inf { t( > 0 ) X| ( � 

t ) = L } . 
Then the distribution function of X( 

� 

t ) is given by 

 

(
� 

T L < x 

)
= F 3 

(
x ;α3 

(
� 

t 

)
, β3 

)

= 

∫ x 

0 

f 

(
v ;α3 

(
� 

t 

)
, β3 

)
dv = 

γ
(
α3 

(
� 

t 

)
, xβ3 

)


(
α3 

(
� 

t 

)) . (12) 

The expected value of X( 
� 

t ) are E[ X( 
� 

t ) ] = α3 ( 
� 

t ) β and 

[ X( 
� 

t ) ] = α3 ( 
� 

t ) β2 , respectively. 

Denote 

 σL 

(
� 

t 

)
P 

(
� 

T L < L 

)
= 

γ
(
α3 

(
� 

t 

)
, Lβ3 

)


(
α3 

(
� 

t 

)) . (13) 

The above assumes that 
� 

T = a 1 T + b 1 U , one may also consider

ther functions such as 
� 

T = α0 T U . 

.2. Failure process of the system due to Mode II 

Failure mode II is a failure mode due to other causes of failures. 

 real system is usually composed of many components. For such 

 system, its failures can be due to the failures of different com- 

onents. The failure process of the system can be modelled by a 

HPP, as proved by Drenick (1960) and discussed in Wu (2021) 
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.2.1. Marginal approach 

The marginal approach regards that the scale parameter is a 

unction of the accelerated stress, while the shape parameter stays 

onstant, and the degradation process is affected by both the op- 

rational age and the accumulated usage. Unfortunately, the oper- 

tional age may not be available for analysis. We therefore use the 

hronological age as a covariate. We assume that the failure inten- 

ity is given by 

( t, u ) = λ1 ( t ) + λ2 ( u ) . (14) 

Then the cdf is given by 

 ( t ) = 1 − exp 

{
−

∫ t 

0 
( λ1 ( x ) + λ2 ( x ) g on (x | t) ) dx 

}
. (15) 

.2.2. Composite time scale approach 

With the composite time scale approach, the moderated life 

ime ˜ T 2 is expressed by 

˜ 
 2 = a 2 T + b 2 U. (16) 

Denote λ3 ( ̃ t ) as the failure intensity function in respect to ˜ t . 

hen the cdf is given by 

 

(
˜ t 
)

= 1 − exp 

{
−

∫ ˜ t 

0 

λ3 ( x ) dx 

}
, (17) 

here ˜ t = a 2 t + b 2 u . 

.3. Incorporating other external covariates 

Ahlvik et al. (1997) suggest that accumulated mileage, ambi- 

nt temperature, and road conditions are relevant to exhaust emis- 

ions. That is, in addition to the accumulated mileage, the level of 

xhaust emissions of a vehicle also depends on other factors in- 

luding its speed (or road type), its age, engine size and weight 

 Ahlvik, 1997 ). Since it is not easy to record the ambient temper-

ture and road conditions that a vehicle has experienced or will 

xperience, we will add these factors as random effect. These data 

ay not be recorded. As such, we assume a variable Z , which rep-

esents the random effect. Denote the probability density function 

f Z by h (z)( = 

∂H(z) 
∂z 

) . H(z) is usually assumed a gamma distribu- 

ion function. 

.3.1. Marginal approach 

When the marginal approach is applied, the distribution of T L 
an be obtained by 

 (T L < t) = P (X 1 ( t ) + X 

′ 
2 ( t ) > L ) 

= 1 −
∫ L 

0 

F 1 ( L − x ;α1 ( t ) , β1 ) f 2 ( x ;α2 ( t ) , zβ2 ) h ( z ) d xd z. 

(18) 

.3.2. Composite time scale approach 

When the composite time scale approach is adopted, we use 

he following model to incorporate the random effect: 

 (X z 

(
˙ t 
)

> L ) = F σL ,z 

(
˙ t 
)

= 

∫ ∞ 

0 

∫ ∞ 

L 

f 
(
x ; zα

(
˙ t 
)
, β

)
d xd H ( z ) 

= 

∫ ∞ 

0 

γ
(
zα

(
˙ t 
)
, Lβ

)


(
zα

(
˙ t 
)) h ( z ) dz . (19) 
1140 
. Maintenance policies 

For systems such as automotive cars and boilers in buildings, 

e will adopt the block replacement policy, with which the system 

s always at some scheduled time periodically and repaired upon 

ailure between replacements. The block replacement policy is easy 

o be implemented and widely used in government regulations. 

We assume that the repair upon failures between replacements 

re minimal. That is, such a repair will restore the failure system 

o the time exactly before the failure occurred. 

.1. Marginal approach 

Then for the marginal approach, we aim to find the PM interval 

o minimise the expected cost, given by 

 c ( T 0 ) = 

c R + c m 

E [ N 0 ( T 0 ) ] 

T 0 
. (20) 

here E[ N 0 ( T 0 ) ] = 

∫ T 0 
0 

( λ0 ( x ) + λ1 (x ) g on (x | T 0 ) ) dx . 

We also need to consider minimising the GHG emissions during 

he operational stage and the amount of the initial manufacturing 

missions. Hence, we set the following optimisation objective and 

onstraints: 

min 

T 0 
E c ( T 0 ) 

s.t. F T L ( T 0 ) ≥ g 0 , 

E I 
T 0 

≤ c t , (21) 

here F T L (. ) is from Eq. (10) , g 0 may be set to 95% , that is, the

robability that the amount of GHG emissions will be smaller than 

he given limit L is 95%. The second constraint 
E I 
T 0 

≤ c t aims to en- 

ure that the initial emissions per unit of time is smaller than a 

iven value. 

emma 1. Corresponding to the constrained optimization problem 

ne can find that the optimum T ∗
0 

satisfying the following condi- 

ions 

 R + c m 

∫ T ∗0 

0 
[ λ0 ( x ) + λ1 ( x ) g on (x | T ∗0 ) ] dx 

= c m 

T ∗0 
(
λ0 ( T 

∗
0 ) + δ1 λ1 ( T 

∗
0 ) e 

−δ1 T 
∗

0 

)
, (22) 

 T L ( T 
∗

0 ) ≥ g 0 , (23) 

E I 
T ∗

0 

≤ c t , (24) 

1 ( F T L ( T 
∗

0 ) − g 0 ) = 0 , (25) 

2 

(
E I 
T ∗

0 

− c t 

)
= 0 , (26) 

1 , μ2 ≥ 0 . (27) 

Proof. According to the Karush–Kuhn–Tucker theorem ( Lange, 

013 ), the optimisation problem shown in Eq. (21) needs to sat- 

sfy the condition 

∂E c ( T 0 ) 
∂T 0 

| T 0 = T ∗0 = 0 and conditions from Eq. (23) to 

 27 ). Since g on (T ∗
0 
| T ∗

0 
) = δ1 e 

−δ1 T 
∗
0 , 

∂E c ( T 0 ) 
∂T 0 

| T 0 = T ∗0 = 0 can be rewritten

s 

 R + c m 

∫ T ∗0 

0 
[ λ0 ( x ) + λ1 ( x ) g on (x | T ∗0 ) ] dx 

= c m 

T ∗0 
(
λ0 ( T 

∗
0 ) + δ1 λ1 ( T 

∗
0 ) e 

−δ1 T 
∗

0 

)
. (28) 
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This establishes the lemma. 

A government regulation normally requires system owners to 

reventively maintain their systems on a fixed time period, every 

 months, 12 months, etc, but rarely on a period of a floating point

umber such as every 1.323 years. Hence, one may consider the 

ollowing optimisation objective and constraints: 

in 

n 
E c ( nτ

0 ) , 

.t. F T L ( ( n − 1 ) τ 0 ) ≥ g 0 , 
E I 

nτ
0 

≤ c t . 

(29) 

The objective is to seek n to minimise the expected 

unction E c ( nτ
0 
) . The first two constraints are equivalent to 

 σL 
( ( n − 1 ) τ

0 
) ≥ g 0 , which constrains the level of the exhaust 

missions within the pre-specified value with a given probabil- 

ty g 0 ; the third constraint 
E I 

nτ0 
≤ c t aims to ensure that the initial 

missions per unit of time is smaller than a given value. 

.2. Composite time scale approach 

Then for the composite time scale approach, we obtain the ex- 

ected cost rate due to the failure of Mode II as follows: 

 c 

(
˜ T 
)

= 

c 
R 
+ c 

m 
E 
[
N 

(
˜ T 
)]

˜ T 
, (30) 

here E[ N( ̃  T ) ] = 

∫ ˜ t 
0 λ3 (x ) dx . 

We can therefore set the following objective and constraints: 

in 

T 0 ,U 0 
E c ( a 1 T 0 + a 2 U 0 ) , 

.t. F σL ( a 1 T 0 + a 2 U 0 ) ≥ g 0 , 
E I 
T 0 

≤ c t , 
E I 
U 0 

≤ c u , 

(31) 

here F σL 
(. ) is from Eq. (13) , g 0 may be set to 95% ; the second

onstraint 
E I 
T 0 

≤ c t and the third constraint 
E I 
U 0 

≤ c u aims to ensure 

hat the initial emissions per unit of time and that per unit of us- 

ge are smaller than given values, respectively. 

Then we have 

emma 2. The optimum T ∗0 and U 

∗
0 satisfy the following condi- 

ions: 

 

R 
+ c 

m 
�2 ( a 1 T 

∗
0 + a 2 U 

∗
0 ) = c 

m ( a 1 T 
∗

0 + a 2 U 

∗
0 ) λ2 ( a 1 T 

∗
0 + a 2 U 

∗
0 ) , 

(32) 

 σL ( a 1 T 
∗

0 + a 2 U 

∗
0 ) ≥ g 0 , (33) 

E I 
T ∗

0 

≤ c t , (34) 

E I 
U 

∗
0 

≤ c u , (35) 

1 , μ2 , μ3 ≥ 0 , (36) 

1 ( F σL ( a 1 T 
∗

0 + a 2 U 

∗
0 ) − g 0 ) = 0 , (37) 

2 

(
E I 
T ∗

0 

− c t 

)
= 0 , (38) 

3 

(
E I 
U 

∗
0 

− c u 

)
= 0 , (39) 
1141 
Noting that Eq. (32) is obtained from 

E c ( a 1 T 0 + a 2 U 0 ) 
∂T 0 

= 0 and 

E c ( a 1 T 0 + a 2 U 0 ) 
∂U 0 

= 0 , we can establish a similar proof as that in the 

roof for Lemma 1 . 

Similar to the optimisation problem discussed in Section 4.1 on 

he government regulation requirement, we consider discrete 

aintenance intervals such as 6 months or 12 months. We can 

hen minimise the GHG emissions during the operational stage and 

he initial manufacturing emission. Hence, we set the following op- 

imisation problem: 

in 

n,m 

E c ( nw 1 τ 0 
+ mw 2 υ 0 ) , 

.t. F σL ( ( n − 1 ) w 1 τ 0 
+ mw 2 υ 0 ) ≥ g 0 , 

F σL ( nw 1 τ 0 
+ ( m − 1 ) w 2 υ 0 ) ≥ g 0 , 

E I 
nτ

0 

≤ c t , 
E I 

mυ
0 

≤ c u , 

(40) 

here F σL 
(. ) is from Eq. (13) , ˜ T = nw 1 τ 0 

+ mw 2 υ 0 
, w 1 and

 2 are weights and w 1 + w 2 = 1 . g 0 may be set to 95% ,

hat is, the probability that the amount of emissions will be 

maller than the given limit L is 95%. The objective is to min- 

mise the expected function mi n n,m 

E c ( nw 1 τ 0 
+ mw 2 υ 0 

) . The first 

wo inequality constraints: F σL 
( ( n − 1 ) w 1 τ 0 

+ mw 2 υ 0 
) ≥ g 0 and 

 σL 
( nw 1 τ 0 

+ ( m − 1 ) w 2 υ 0 
) ≥ g 0 ) , aim to seek optimal m to con- 

ne the level of the exhaust emissions with a given probability g 0 ; 

he inequality constraint 
E I 

nτ0 
≤ c t aims to ensure that the initial 

missions per unit of time is smaller than a given value and the 

hird constrain 

E I 
mν0 

≤ c u aims to ensure that the initial emissions 

er unit of usage is less than a given value. 

.3. When Mode I is repairable 

Assumption A4) in Section 2.1 assumes that Mode I is not re- 

airable. This section relaxes this assumption and assume that the 

ailures due to Mode I is repairable. To this end, we make the fol- 

owing assumptions. 

(A11) Suppose there are two types of preventive maintenance 

(PM): major and minor, where a major PM is a replacement, 

after which the item is restored to a good-as-new status. The 

effectiveness of a minor PM is assumed in the following as- 

sumptions, i.e., A12), A13) and A14). 

A12) The minor PM actions are executed at fixed intervals kT 1 
with k = 1 , 2 , . . . , N − 1 and the item is replaced at the NT 1 .

That is, the system undergoes minor PM at successive times 

T 1 , 2 T 1 , . . . , ( N − 1 ) T 1 . A major PM, which is a replacement, is

conducted at NT 1 . Minimal repair is conducted between mi- 

nor PMs. After either a minor PM or a major PM, the time 

in the corresponding hazard function or intensity function 

returns to zero. 

A13) The effectiveness of a minor PM on Mode I is depicted by 

the geometric process, which is introduced by Lam (1988) . 

- When the marginal approach is used, the distribution of 

T L after the k th minor PM becomes F T L ( η
k −1 
1 

t ) with η1 > 

1 , where F T L (t) can be obtained by Eq. (10) . 

- When the composite time scale approach is used, the 

distribution of 
� 

T L after the k th minor PM becomes 

F σL 
( ηk −1 

2 

� 

t ) with η2 > 1 , where F σL 
( 

� 

t ) can be obtained by

Eq. (13) . 

A14) The effectiveness of a minor PM on Mode II is depicted by 

the model proposed by Nakagawa (1988) . 

- When the marginal approach is used, the failure intensity 

λk ( t, u ) of Mode II after the k th minor PM is the sum 

of λ1 ,k (t) and λ2 ,k (u ) , i.e., λk ( t, u ) = λ1 ,k (t) + λ2 ,k (u ) ,

where λ1 ,k (t) = λ1 (t) ρk is the failure intensity due to 

1 
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ageing and λ2 (u ) = λ2 (u ) ρk 
2 

is the failure intensity due 

to usage, where ρ1 , ρ2 ∈ ( 1 , + ∞ ) . 

- When the composite time scale is used, the failure in- 

tensity λ( ̃ t ) of Mode II after the k th minor PM is ρk 
3 
λ( ̃ t ) ,

where ρ3 ∈ ( 1 , + ∞ ) . 

A15) The cost of a minor PM is c r with c 
R 

> c m > c r . 

.3.1. Marginal approach 

For the marginal approach, we aim to find the minor PM inter- 

al to minimise the expected cost, given by 

 c ( T 1 ) = 

c R + ( N − 1 ) c r + c m 
∫ T 1 

0 

∑ N 
k =1 

(
λ1 ( t ) ρ

k 
1 + λ2 ( t ) ρ

k 
2 g on (x | T 1 ) 

)
dx 

NT 1 

= 

c R + ( N − 1 ) c r + c m 
∫ T 1 

0 

(
ρ1 −ρN+1 

1 
1 −ρ1 

λ1 ( t ) + 

ρ2 −ρN+1 
2 

1 −ρ2 
λ2 ( t ) g on (x | T 1 ) 

)
dx 

NT 1 

(41) 

here, in the numerator, the first term c R is the cost of the major

M at time NT 1 , the second term, ( N − 1 ) c r , is the sum of the cost

f the minor PM at kT 1 with k = 1 , 2 , ..., N − 1 , and the third term

s the sum of the cost on the minimal repair. 

Similar to Eq. (21) , we set the following optimisation objective 

nd constraints: 

in 

T 1 
E c ( T 1 ) 

.t. F T L ( T 1 ) ∗F T L ( η1 T 1 ) ∗ . . . ∗F T L 
(
ηN−1 

1 
T 1 

)
≥ g 0 , 

E I 
NT 1 

≤ c t , 

(42) 

here F T L ( T 1 ) ∗F T L ( η1 T 1 ) ∗ . . . ∗F T L ( η
N−1 
1 

T 1 ) , which is the convolution

f the cdf’s F T L ( T 1 ) , F T L ( η1 T 1 ) , . . . , and F T L ( η
N−1 
1 

T 1 ) , is the probabil-

ty that the sum of the levels of the GHG emissions immediately 

efore the N minor PMs is smaller than L . 

.3.2. Composite time scale approach 

For the composite time scale approach, we aim to find the in- 

erval of the minor PMs to minimise the expected cost, given by 

 c 

(
˜ T 
)

= 

c R + ( N − 1 ) c r + c m 

∑ N 
k =1 

∫ ˜ T 1 
0 ρk 

3 λ3 ( x ) dx 

N ̃

 T 1 

= c R + ( N − 1 ) c r + 

c m 

(
ρ3 − ρN+1 

3 

) ∫ ˜ T 1 
0 λ3 ( x ) dx 

1 − ρ3 

, (43) 

The three terms in the numerator in Eq. (43) have similar 

eanings as those the numerator in Eq. (41) . 

Similar to Eqs. (31) and ( 42 ), we obtain: 

in 

T 1 ,U 1 
E c ( a 1 T 1 + a 2 U 1 ) , 

s.t. F σL ( a 1 T 1 + a 2 U 1 ) ∗F σL ( η2 ( a 1 T 1 + a 2 U 1 ) ) ∗
. . . ∗F σL 

(
ηN−1 

2 ( a 1 T 1 + a 2 U 1 ) 
)

≥ g 0 , 

E I 
NT 1 

≤ c t , 

E I 
NU 1 

≤ c u . (44) 

. Discussion: generalizations 

The above content discussed the scenario when there are two 

cales, time, and accumulated usage, both of which can affect the 

eterioration process of a failure mode with observable failure pro- 

ression and the failure of the one with unobservable failure pro- 

ression. A natural extension is to assume that there are n + 1 fail-

re modes, in which the first n failure modes are due to n dete-

ioration processes and the last one is the one with unobservable 
1142 
ailure progression. Under this setting, we can obtain the following 

bjective function and constraints: 

in 

T,U 
E c ( T , U 1 , U 2 , . . . , U n ) , 

s.t. G ( T , U 1 , U 2 , . . . , U n ) ≥ g 0 , 

E I 
T 

≤ c t , 

E I 
U i 

≤ c i ( i = 1 , 2 , . . . , n ) , (45) 

here E c ( T , U 1 , U 2 , . . . , U n ) is the objective function with n + 1 in- 

ervals (i.e., T , U i with i ∈ { 1 , 2 , . . . , n } ) that needs optimising and

 ( T , U 1 , U 2 , . . . , U n ) is the quantities with interval constraints, and 

 ∈ { 1 , 2 , . . . , n } . 

. Numerical examples 

In this section, we assume λ0 (x ) = ξ01 ξ02 x 
ξ02 −1 and λ1 (x ) = 

11 ξ12 x 
ξ12 −1 . Specifically, we denote ξ01 = ξ11 = 0 . 08 , ξ02 = ξ12 = 2 ,

1 = 0 . 65 , δ2 = 0 . 35 first in the numerical example and conduct

ome comparative analysis later. Let c 
R 

= 100 , c m = 50 , c p = 20 ,

nd c t = c u = 10 . 

.1. Marginal approach 

Under the marginal approach, we have, 

E [ N 0 ( t ) ] 

= 

∫ t 

0 
( λ1 ( x ) + λ2 ( x ) g on (x | t) ) dx 

= ξ01 t 
ξ02 + ξ11 ξ12 δ

1 −ξ12 

1 
γ ( ξ12 , δ1 t ) 

−
∫ t 

0 

ξ11 ξ12 e 
−δ1 x 

∞ ∑ 

j=0 

δ j+1 
1 

x j+ ξ12 −1 

j! ( j + 1 ) ! 
[ ( j + 1 ) γ ( j + 1 , δ2 ( t − x ) ) 

− δ2 x (δ2 ( t − x ) ) 
j 
e −δ2 ( t−x ) 

] 
dx. (46) 

Substituting E[ N 0 (t) ] from the above equation into Eq. (20) , 

e can obtain E c (T ) . The objective function is E c ( nτ0 ) and the

ystem owner chooses the optimal n ∗ to minimize the expected 

ost rate. As for the constraints in Eq. (29) , we further assume 

 = 20 , E I = 20 , α1 = α2 = 2 , β1 = β2 = 0 . 5 and τ0 = 0 . 5 . As men-

ioned, the probability that the amount of emissions is greater than 

he limit L is 95%. In effect, we can refine n from the constraints

o several numbers, where n = 8 resulting in the lowest expected 

ost rate, i.e., E c ( n = 8 ) = 42 . 05 < min ( E c ( n = i ) ) , where i satisfies

 T L 
( T 0 ) ≥ g 0 . In other words, we have the optimal n ∗ = 8 and the

orresponding objective function as E c ( n ∗ = 8 ) = 42 . 05 , two deci-

al places. 

We first alter τ from 0.5 to 0.25, 1, and 2 to check the impact of

on the optimal n ∗. The results are shown in Fig. 2 . Note that we

se the abbreviation ECR to denote the expected cost rate. It can be 

asily shown in Fig. 2 a that n ∗ decreases with τ . This is because 

ith a higher τ and a fixed n and w 1 , F T L ( nτ0 ) increases, which

akes the probability exceeds the given threshold g 0 . Additionally, 

e will obtain ECR with the same nτ0 , as shown in Fig. 2 . 

We proceed the analysis by conducting comparative analysis on 

ther parameters. When E I increases, it is harder for the system 

wner to find a value n to minimize the objective function due to 

he g 0 constraint. Nonetheless, if we could accept a higher g 0 , n ∗

ill increase, leading to the reduction in the expected cost rate. 

or instance, if we alter g 0 to 97% while retaining all other pa- 

ameters the same (e.g., τ0 = 0 . 5 ), the optimal n ∗ can be obtained

y setting n ∗ = 9 and ECR ( n ∗ = 9 ) = 39 . 69 , which is 5.61% lower

han the original expected cost rate. In contrast, if we only accept 

 lower g , e.g., 90%, the original solution cannot be employed any 
0 
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Fig. 2. Optimal n ∗ and corresponding Expected Cost Rate with respect to τ0 . 
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ore since F T L ( n 
∗τ0 ) exceeds the altered threshold. The optimal so- 

ution thereby goes to n ∗ = 5 and the corresponding ECR equals 

o ECR ( n ∗ = 5 ) = 53 . 35 , which is 26.87% higher than the original

alue. 

Similarly, if we increase δ2 and decrease δ1 while all other pa- 

ameters remain the same, it will be harder for the system owner 

o find a value n to meet the constraints. In contrast, if we increase

1 or decrease δ2 , i.e., updating δ1 = 0 . 5 and δ2 = 0 . 5 , n ∗ can be

hosen to n ∗ = 7 and the corresponding expected cost rate can be 

btained as ECR ( n ∗ = 7 ) = 46 . 55 , which is 10.7% higher than the

riginal one. 

Besides the previous parameters, the adjustment of shape pa- 

ameters in the gamma function has impact on the choice of n ∗ as 

ell. For instance, if we increase α2 , it will be harder for the sys-

em owner to find such n ∗ to satisfy the requirement. Specifically, 

f we update α2 = 4 , the system owner is not able to find a feasi-

le n . On the contrary, a higher α1 , i.e., α1 = 4 triggers to n ∗ = 6

nd ECR ( n ∗ = 6 ) = 48 . 36 , which is 15.01% higher than the original

xpected cost rate. Additionally, an augment in L will also make it 

asy to find n ∗ while a reduction in L , e.g., L = 10 makes it only

ossible to choose n ∗ = 6 , resulting in ECR ( n ∗ = 6 ) = 48 . 36 , which

s also 15.01% higher than the original case since the alteration of 

 has no impact on the expected cost rate. 

Having checked the parameters that have impacts on the con- 

traints, we now conduct comparative analysis on the objective 

unction. It can be easily derived from the objective function 

q. (29) that c 
R 

and c m positively impact the expected cost rate, 

imilar to the parameters ξ01 and ξ02 . As for ξ11 and ξ12 , we show 

hat both of ξ11 and ξ12 positively impact it. Specifically, if we in- 

rease ξ11 to 0.5, n ∗ remains the same since the constraint is not 

hanged and ECR equals to 47.59, which is 13.15% higher than the 

riginal expected cost rate. Similarly, if we increase ξ12 to 3, ECR 

ill change to 63.17, which is 50.23% higher than the original one. 

.2. Composite time scale approach 

Under the composite time scale approach, we have, 

 [ N ( t ) ] = 

∫ t 

0 

λ1 ( x ) dx = ξ11 t 
ξ12 . (47) 

Substituting E[ N(t) ] from the above equation into Eq. (30) , 

e can obtain E c (T ) . In effect, the objective function is 

 c ( nw 1 τ0 + mw 2 v 0 ) and the system owner chooses the optimal n ∗

nd m 

∗ to minimize the expected cost rate. As for the constraints 

n Eq. (40) , similar to the analysis on marginal approach, we as- 

ume τ0 = v 0 = 1 and E I = 20 . Since w 1 and w 2 are weights and

 1 + w 2 = 1 , we solve the optimization problem with a changing

 and show the result in Fig. 3 . 
1 
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The figure is symmetric since we assume τ0 = v 0 . If w 1 is lager

smaller) than 0.5, i.e., the choice of n (m ) takes more weight, we 

ave n ∗ > m 

∗(n ∗ < m 

∗) and vice versa. Additionally, if we increase 

0 ( v 0 ) while remaining all other parameters unchanged, the opti- 

al n ∗ ( m 

∗) decreases and vice versa. We should further note that 

here are two empty points in Fig. 3 . When w 1 = 0( w 1 = 1 ) , the

hoice of n (m ) has no impact on the optimal solution as well as

he expected cost rate. Additionally, we should note that different 

ombination of ( n ∗, m 

∗) may result in the same ECR with the same 

w 1 τ0 + mw 2 v 0 . 
Now we take w 1 = 0 . 8 and w 2 = 0 . 2 as a benchmark and con-

uct comparative analysis on other parameters. Note that under 

he given weights, we have n ∗ = 5 , m 

∗ = 1 , and ECR ( n ∗, m 

∗) =
0 . 61 . When L increases to 30, the updated optimal solution can be

iven by n ∗ = 6 and m 

∗ = 4 , where the expected cost rate is 40.23

nd 0.94% smaller than the original one. In contrast, when L de- 

reases to 10, the updated optimal solution can be given by n ∗ = 3

nd m 

∗ = 1 , where the expected cost rate is 48.86 and 20.32%

igher than the original one. Similarly, the analysis on the objec- 

ive function shows that c R , c m 

, ξ11 and ξ12 all positively impact 

he expected cost rate. 

.3. When Mode I is repairable 

We have shown the numerical example when Mode I is not 

epairable. In this subsection, we proceed our analysis by assum- 

ng Mode I is repairable. Following previous assumption, we have 

 R > c m 

> c r = 10 since the cost of minor PM is usually small. Ad-

itionally, we assign ρ1 = 1 . 5 for tractability while all other pa- 

ameters remain the same as those in the previous subsection. As 

or η1 , we consider two scenario where η1 = 1 . 1 and η1 = 1 . 5 re-

pectively. Using the same methodology to solve the optimization 

roblem in Eq. (42) with different constraints, we obtain the opti- 

al n ∗ and corresponding expected cost rate in Fig. 4 . 

Intuitively, Fig. 4 shares the same pattern as Fig. 2 where the 

ptimal n ∗ gradually decreases in τ0 . The difference between red 

ine and blue dashed line can be ascribed to the impact of η1 . With

 higher η1 (indicated by the blue dashed line), the constraint on 

 0 is more binding, suppressing the possible range for n ∗, decreas- 

ng the optimal n ∗. However, with η1 , ECR increases as there is ad- 

itional cost that is relevant to Mode I repair. On the contrary, with 

 lower η1 (indicated by the red line), a higher n ∗ can be chosen 

ue to a more flexible constraint. As such, a higher n ∗ is feasible 

nd the ECR increases as well. 

The impacts of other parameters on the optimal n ∗ and ECR 

emains the same as that when Mode I is non-repairable, e.g., a 

ower E I or g 0 increases the optimal n ∗ and leads to the decrease 

n ECR. Furthermore, c r positively impacts the ECR as a higher cost 

n minor PM will lead to the increase in the expected cost rate. 
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Fig. 3. Optimal n ∗ , m 

∗ and corresponding Expected Cost Rate with respect to w 1 . 

Fig. 4. Optimal n ∗ and corresponding Expected Cost Rate when Mode I is repairable when Mode I is repairable. 

Fig. 5. Optimal n ∗ , m 

∗ and corresponding Expected Cost Rate when Mode I is repairable. 

F  

τ  

c

i  

f

 

W  

n  

o

w  

7  

c

c  

D

i

p

o

e

b

c

b

7

s

or instance, if we increase c r from 10 to 15 when η1 = 1 . 1 and

0 = 0 . 5 , ECR increases from 75.07 to 75.47. Differently, if we de-

rease c r from 10 to 5, ECR decreases to 73.47. 

We continue the analyse by solving the optimization problem 

n Eq. (44) . Similarly, we assign ρ2 = ρ3 = 1 . 5 and c r = 10 and per-

orm the results when η2 = 1 . 1 and η2 = 1 . 5 respectively in Fig. 5 . 

It is not surprising that Fig. 5 shares the same pattern as Fig. 3 .

e should further note that when w 1 = 0 or w 2 = 0 , the optimal

 

∗ = 0 or m 

∗ = 0 since the selection of them will have no impact

n the ECR. Similarly, when we increase c r from 10 to 15 (while 

 1 = 0 . 8 , w 2 = 0 . 2 , η2 = 1 . 1 and τ0 = v 0 = 1 ), ECR increases from

8.88 to 79.75. And when we decrease c r from 10 to 5, ECR de-

reases to 78.01. Similarly, a relative small η2 indicates a flexible 

onstraint on g , making the possible range for n ∗ and m 

∗ enlarges.
0 
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ifferently, a high η2 makes the constraint more binding, restrict- 

ng the selection on n ∗ and m 

∗. 

Our numerical results illustrate that the proposed model is ap- 

licable in reality and is able to provide guidance to the system 

wner in choosing the optimal PM time period and minimizing the 

xpected cost rate, considering not only the cost related to failure 

ut also cost related to GHG emissions. Specifically, all parameters 

an be assessed from historical data or other official data released 

y companies in the same field. 

. Conclusions 

This paper incorporated greenhouse gas (GHG) emissions in 

cheduling maintenance policies. It took the GHG emissions of au- 
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omotive vehicles as the subject of the research. Aside from rele- 

ant costs, three factors were considered: the ageing and deterio- 

ation of the system, the increasing exhaust GHG emissions of the 

ystem, and the initial manufacturing emissions. 

This paper then derived maintenance policies for the situations 

hen the level of the GHG emissions is the total amount of the 

articulate matter, carbon monoxide, nitrogen oxide and hydrocar- 

ons. Other consideration includes that the minimum amount of 

hose GHG emissions exceeds a pre-specified value. Another ex- 

ension can be to consider the combination between the chrono- 

ogical time with a non-parametric method such as the kernel 

ethod or the spline function method. Alternatively, the non- 

arametric regression will be on the scale parameter. Time-varying 

ccelerated lifetime models can be applied to the scale parame- 

er of the gamma process. This paper assumed that the two failure 

odes were statistically independent, which is for the convenience 

f derivation of the relevant quantities. Our future work will in- 

estigate the possibility of relaxing this assumption, use copulas 

o measure the correlationship, derive relevant quantities such as 

he first hitting time distributions, and then optimise maintenance 

olicies. 
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