
Kahrs, Stefan (1992) Unlimp -- uniqueness as a leitmotiv for implementation.
 In: Bruynooghe, Maurice and Wirsing, Martin, eds. Programming Language
Implementation and Logic Programming 4th International Symposium.
Lecture Notes in Computer Science . Springer, Berlin, Germany, pp. 115-129.
ISBN 978-3-540-55844-6.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21036/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-55844-6_131

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21036/
https://doi.org/10.1007/3-540-55844-6_131
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

U n lim p

U n iq u e n e s s a s a L e itm o t iv fo r Im p lem e n t a t io n

Stefan Kahrs�

University of Edinburgh
Laboratory for Foundations of Computer Science

King�s Buildings� EH� �JZ
email� smk�dcs�ed�ac�uk

Abstract� When evaluation in functional programming languages is ex	
plained using �	calculus and
or term rewriting systems� expressions and
function de�nitions are often de�ned as terms� that is as trees� Similarly� the
collection of all terms is de�ned as a forest� that is a directed� acyclic graph
where every vertex has at most one incoming edge� Concrete implementa	
tions usually drop the last restriction �and sometimes acyclicity as well
� i�e�
many terms can share a common subterm� meaning that di�erent paths of
subterm edges reach the same vertex in the graph�

Any vertex in such a graph represents a term� A term is represented uniquely
in such a graph if there are no two di�erent vertices representing it� Such a
representation can be established by using hash�consing for the creation of
heap objects� We investigate the consequences of adopting uniqueness in this
sense as a leitmotiv for implementation �called Unlimp
� i�e� not allowing any
two di�erent vertices in a graph to represent the same term�

� Introduction

The de�nition of most programming languages is or can be based on some notion of
term� e�g� the abstract syntax of the language� It is convenient to express properties of
such terms as properties of tree�like objects� similarly as it is convenient to represent
�in an implementation� a collection of terms as a directed acyclic graph� allowing
the violation of the property that each vertex has an indegree of at most �� i�e� that
each vertex has at most one incoming edge�

If the language satis�es referential transparency for those terms� i�e� if the mean�
ing of �closed� terms is context�independent and if this meaning is expressible as a
term� one can moreover exploit the internal representation and destructively replace
subgraphs by their results� even if their indegree is greater than ��

Such graph reduction is the standard technique for implementing lazy languages�
see 	�
� ��� because under lazy evaluation unevaluated subterms naturally occur� For
implementing �general� term rewriting systems� graph reduction may lose con
uence
and weak normalisation� see 	��� but rewriting systems in programming languages
normally satisfy further properties that make graph reduction a correct implement�
ation�

� The research reported here was partially supported by SERC grant GR
E ������

While acyclic graphs seem to be a natural choice for the internal representation
of terms �cyclic graphs are not easily handled by a reference�counting garbage col�
lector�� one might also look at the extreme cases of this representation� There are
two of particular interest� �i� the indegree of every vertex is at most � �trees and
forests�� �ii� the function that maps vertices to the terms they represent is injective�
i�e� each represented term is represented uniquely�

The disadvantage of proper trees �i� is obviously the waste of space� but it also
has advantages� memory management becomes easy� and sharing analysis 	��� comes
for free� For example� concatenation of two lists xs and ys in a graph representation
usually works by copying xs and drawing an edge from the last vertex in the copy
to ys� i�e� ys may become a shared object� In representation �i� however� it is known
that xs and ys are uniquely used for the concatenation� hence it is not only possible
to avoid copying ys� but also to avoid copying xs� using LISP�s NCONC for list
concatenation�

At �rst glance� the advantage of unique representation �ii� seems to be compact�
ness� a further gain of space� But actually� it is more the uniqueness of representation
itself� i�e� the property that a term can be uniquely identi�ed by the root vertex of
its representation� that turns out to be the major plus� The disadvantage is the e�ort
needed to preserve this uniqueness under rewriting�

In this paper� we study this representation� how to get it and how to exploit it
under the slogan �Uniqueness as a Leitmotiv for Implementation�� short� Unlimp�

The examples are written in Haskell and in SML� Readers not familiar with these
languages may consult 	��� and 	����

� Preliminaries

Instead of considering ordinary directed graphs� we deal with directed hypergraphs�
i�e� we have directed hyperedges instead of ordinary edges� A hyperedge has in general
more than one target �and also more than one source�� we adopt a formal de�nition
from 	���

De�nition �� A hypergraph G � �VG� EG� sG� tG� lG�mG� over � consists of a �nite
set VG of vertices� a �nite set EG of hyperedges� two mappings sG � EG � V �

G and
tG � EG � V �

G� assigning a string of source vertices and a string of target vertices

to each hyperedge� and two mappings lG � VG � S and mG � EG � OP� labelling
vertices with sorts� and hyperedges with operation symbols�

The de�nition was originally intended for �rst�order signatures� � � �S�OP��
but it can also be used in the higher�order case� simply by allowing non�elementary
sorts in S� adding apply�symbols to OP� etc�

We also use some other standard graph�theoretic notions� indegreeG�v� denotes
the sum �over all e � EG� of the number of occurrences of v in tG�e�� analogously
outdegreeG�v� for the sG�e�� The subterm relation �G �on vertices� is de�ned as
follows�

v �G v
� � �e � EG �a� a�� b� b� � V

�

G � sG�e� � a � v � b � tG�e� � a
� � v� � b�

A hypergraph is acyclic if the transitive closure of �G is irre
exive� Notice that
irre
exivity of �G also implies that it is strongly normalising� as we have assumed
a �nite set of vertices�

De�nition �� A hypergraph G is a jungle� i� �i� it is acyclic� �ii� outdegreeG�v� � �
for all v � VG and �iii� for all e � EG�mG�e� � f � s� � � � sn � s implies l�G�sG�e�� � s

and l�G�tG�e�� � s� � � � sn�

l�G is the homomorphic extension of lG to strings of vertices�
Acyclicity is useful for maintaining uniqueness of representation �see below�� the

restriction for the outdegree is motivated by the analogy between addresses and
vertices� and the third condition is well�typedness�

The reason for this choice for the representation of terms is the very close corres�
pondence between a jungle� vertices and hyperedges on the one hand� and a heap�
addresses �pointers� and storage cells on the other� i�e� hypergraphs model imple�
mentations more faithfully than ordinary directed graphs� Therefore we will also
freely intermix these notions� depending on whether it is in a particular case more
intuitive or useful to talk about� say� a pointer rather than a vertex�

Given a jungle G� we de�ne a function termG � VG � Ter��� that assigns any
vertex �address� the term it represents�

termG�v� � mG�e� � term
�

G�tG�e�� where sG�e� � v �

The � again denotes homomorphic extension to strings� Note that e is unique
because of the outdegree restriction�

A jungle is a called fully collapsed� if termG is injective� Because of this one�to�one
correspondence we choose fully collapsed jungles to represent terms in Unlimp�

For any jungle there exists a �unique� fully collapsed jungle that represents the
same set of terms� For this and some other results about representing terms by
jungles and term rewriting by graph grammars� see 	�� ���

� Hash Consing

Suppose we already have a fully collapsed jungle� then we have the problem of
preserving this property each time we change the jungle� that is when we�

� create new objects
� evaluate an object
� delete an object

An object is anything represented by a vertex in a jungle� For the implement�
ation of a functional programming language� objects could be values �elementary
and composed values� functions�� expressions yet to be evaluated� even non�closed
expressions and type expressions �in an interpreter or compiler�� etc�

How do we create a composed value op�x�� ���� xn� in a fully collapsed jungle �for
some n�ary operation op�� Since we need a vertex that represents this value� there
are two cases� either there is already a vertex v in VG with termG�v� � op�x�� ���� xn��

then we have to ��nd� it� or� if there is not� then we have to create a new cell �add
a vertex and a hyperedge� and make sure that future searches can �nd it�

Typically� each xi is already represented in the jungle� i�e� there is a vertex vi
in VG with termG�vi� � xi� Because of Unlimp vi is uniquely determined� as two
vertices represent the same term i� they are identical� So any other hyperedge �in
the jungle� pointing at a vertex that represents the same term as xi� actually points
at vi�

To search for a cell op�x�� ���� xn� we could scan the entire heap� but that would
be horribly ine�cient� Since such a cell is uniquely determined by the vertices vi
and the operation op� these could give us a hint where we have to search� In other
words� we can compute a search key from them� a value which is �almost� unique
for the cell to be constructed� Because of the �almost� we still have to search� but
our search space is very restricted�

Such a method is known as �hash consing�� see 	��� ���� because CONS is the only
cell�constructing operation in LISP� It does not only apply for creating composite
values� but for any kind of composite heap object� for example terms representing
the application of a function to some other terms� also type expressions� etc� For the
implementation of op� it is only a minor di�erence whether the cell to be created is
supposed to be a value or some other heap object� We can even apply this method
for creating ��abstractions� If we lambda�lift 	�
� �� all nested abstractions �such
that any abstraction becomes a closed term� and then rename its variables� to x��
x�� etc�� then ��congruence becomes trivial �pointer comparison��

In implementations of strict languages� one usually tries to avoid to create heap
objects whenever possible� i�e� a term like length ������� would never exist as a
vertex in the jungle� For reasons which become apparent later� we do not follow this
line�

The author experimented with several ways to organize the heap� The method
�nally chosen �surely not the best one� is a combination of digital search trees and
double hashing �see 	
� ��� or some other standard book on data structures and
algorithms�� the search tree has hash tables as its leaves� searching an entry is done
by using the leading bits of the key to branch in the tree� and �nally the remaining
bits are used for double hashing at a leaf�

� Reduction

The second way to change the hypergraph is to evaluate a term�
Evaluation usually refers to the evaluation in the language itself� but we may

apply it to a more general setting� the evaluation result of a type expression is the
type expression one gets after substituting all type synonyms �e�g� in Haskell�� the
evaluation result of function de�nition is the code the compilation produces for it�

In a strict language implementation� an evaluation simply creates some new
objects and makes some other objects �probably� obsolete� For Unlimp this view is
harmless� because it reduces the problem of keeping the uniqueness to the previous
one� to the creation of new objects�

� SML and Haskell have a generalised �	abstraction �patterns instead of variables
 that
allows to abstract more than one variable in a single abstraction�

In an ordinary implementation of a lazy language the following happens� if a term
t is evaluated to u� then the subhypergraph reachable from the vertex t is deleted
and replaced by the subhypergraph reachable from u� This method is usually called
graph reduction 	���

In Unlimp� this would not work well� Firstly� we might lose the injectivity of
termG� because if t is a subterm of some C	t� then the vertex representing C	t� now
represents C	u�� but this term might already be represented by another vertex� For
the implementation the situation is worse� because even if the jungle remains fully
collapsed� the term C	u� would be located at the wrong place in the search tree
in our sketched implementation method� One could repair this mess by relocating
all those terms in the search tree that have t as a direct� subterm� but then all
�direct� superterms of t have to be found� Moreover� this method can introduce
cycles�� i�e� it may destroy our jungle structure� Allowing cycles would lead to �some
restrictions for garbage collection and� the Unlimp problem for cycles� i�e� having a
unique representation for any in�nite term that can be expressed by a cyclic graph�

For these reasons� we do not replace t by u� On the other hand� we do not
want to evaluate t a second time� staying as lazy as possible� Therefore� we draw an
additional edge from t to u� a result edge� The hypergraph containing all the edges
�hyperedges and result edges� may now be cyclic� but the result edges form a kind
of second layer for the graph and both layers are in themselves acyclic�

A very simple example�

cycle xs � xs 		 cycle xs

A one�step evaluation for cycle xs �for an arbitrary xs� leads to the hypergraph in
�gure ��

The three small circles are the vertices� the marked ellipses together with all
incoming and outgoing arrows the hyperedges� The dotted arrow from the left to
the right circle is a result edge� Looking just at the ordinary hyperedges� the picture
says� �the result of cycle xs is xs		cycle xs�� but thinking of the result edge as
an indirection pointer� we have the full result xs		xs		xs		

� These result edges
are not only a natural way to perform lazy evaluation� they are also useful for certain
debugging tasks� like tracing a function� because the unevaluated expression and the
evaluation result are available at the same time�

To allow these result edges in our hypergraph model� we add another component�
a set of result edges to it�

De�nition �� A result jungle J � �G�RJ � sJ � tJ � consists of a jungle G� a set of
result edges RJ and two mappings sJ � tJ � RJ � VG� such that sJ is injective and
�e � RJ � lG�sJ�e�� � lG�tJ �e���

Furthermore we call a result jungle loopless if the subterm relation �H of any
hypergraph H � �VG� RJ � sJ � tJ � � � is strongly normalising�

Result edges of the above form are simply partial� sort�preserving functions on
vertices� but the above encoding within the hypergraph world preserves the close

� Example� t is a direct subterm of f�t
� but not of f�f�t

�
� According to ���� theorem ���� jungle reduction cannot introduce cycles� due to the real	
isation of rewrite steps chosen there� We do not consider this here� because it violates
the Unlimp principle in a di�erent way�

����������������������������������

cy c le � �

Fig� �� Term with Result Edge

correspondence to implementations� For example� the storage cell corresponding to
a result edge could be located at the address corresponding to its source vertex�
either before or after the storage cell corresponding to the �ordinary� hyperedge
going from there�

For loopless result jungles� we have another mapping termJ from vertices to
terms� but the terms might be of in�nite size� see 	����

termJ � VG � Ter����
termJ �sJ�r�� � termJ�tJ �r��
termJ �sG�e�� � mG�e� � term

�

J�tG�e��� if 	�r � RJ � sJ�r� � sG�e�

For any vertex v� termG�v� is the ��nite� term before evaluation and termJ �v�
the �possibly in�nite� term after it� The result jungle J has to be loopless to make
the above de�nition of termJ well�de�ned� In �gure �� we have termG�v� � cycle xs

where v is top left vertex and xs the term represented by the bottom vertex� and
termJ�v� � xs�		xs�		

 where xs� is the termJ �value of the bottom vertex�

The de�nition of result jungles still allows chains of result edges� We can propag�
ate results by the following relation � between result jungles�

�G�RJ � sJ � tJ� � �G�RJ � sJ � t
�

J � i�
�r � RJ � tJ�r� � t�J �r�
 �r

� � RJ � sJ �r
�� � tJ�r� � tJ�r

�� � t�J �r�

For loopless result jungles� the irre
exive part � of � is strongly normalising�
Its �unique� normal forms are the result jungles with fully propagated result edges�
The relation � does not change termJ � i�e� if J � J �� J � �G�RJ � sJ � tJ�� then
�v � VG � termJ �v� � termJ��v��

� Memoization by Memo Tables

Memoization �sometimes called function caching� is a method to store evaluation
results such that they can be reused if the same evaluation is required again later�

The traditional approach 	��� uses memo tables� i�e� hash tables that store pairs of
argument and result for those functions that are supposed to be memoized� From the
hypergraph point of view� this method corresponds to a slightly di�erent encoding
of result edges� see 	��� a result hyperedge has then n sources �the n arguments
of the function�� one label �the function symbol� and one target� the result� One
disadvantage� which is immediately obvious from the encoding itself� is a certain
waste of space� the information the hyperedge has to carry comprises the function
symbol� all the argument vertices and the result vertex�

Hughes 	��� generalised memoization appropriately for lazy evaluation� storing
as argument the �pointer to the� unevaluated argument in such a table� Pugh and
Teitelbaum 	��� showed how to widen the application of memoization to incremental
computations �like attribute grammars� by carefully selecting the representation of
the involved data types�

Beside the mentioned disadvantage that is apparent just by looking at the hy�
pergraph encoding� memo tables have certain other drawbacks�

� they may over
ow�

� they may be nearly unused�

� entries have to be searched for�

� they are oriented towards a �rst�order programming style�

In other words� they need some administration�

The last point refers to the problem� Where do we store the result of �f � g��x��
The natural solution �in the memo table of �� seems fairly unreasonable� because it
then heavily depends on the programming style whether the memo table for a com�
binator like � is nearly empty� for programs written in �rst�order style� or totally
overcrowded� as would be typical for programs developed in the Bird�Meertens form�
alism 	���

Figure � suggests a natural place for the result edge� it is the storage cell of the
�unevaluated� expression� This means to make storage cells of expressions bigger
�space for an additional pointer�� provided the expression can have a value� This
proviso is simply the negation of �is in weak head normal form� �for the terminology�
see 	�
��� and this property is known when the cell is created�

This approach has a neat side�e�ect� Suppose� we create a cell op�t�� ���� tn�� If
a cell of this form already exists somewhere in the heap� Unlimp guarantees �and
forces� us to �nd it� and if it has already been evaluated before� we will moreover
�nd the result in this very cell� A memo table approach requires some further search�
look up the memo table for op and then search for the appropriate n�tuple�

Similarly� if we store the compiled code of a ��abstraction as its result� then
creating the same �an ��congruent� ��abstraction would �nd this compilation res�
ult� avoiding a super
uous recompilation� One could even give a pattern a value�
the code to match it� this would not only guarantee to avoid recompilation of pat�
terns� it might also ease the task of creating a decision tree	�� for pattern matching
compilation�

� Dealing with Side�E�ects

Occasionally� the e�ect of memoization is unwanted� particularly in the presence
of side�e�ects of various kinds� e�g� assignment and I�O� or in an interpreter a
change of the rule base� To allow this in an Unlimp framework� one has to distinguish
between applicative expressions� expressions that may depend on the state� and
expressions that may change the state�

Expressions that may change the state have to be re�evaluated each time their
value is required� hence we do not need a result edge for them� Expressions that may
depend on the state but do not change it �like access to variables� have to be re�
evaluated each time the state changes� hence result edges have to be time�stamped�
time being a kind of side�e�ect counter� If the considered side�e�ects include the
change of the rule base in an interpreter� every expression is state dependent and so
each result edge needs a time stamp�

The properties �may change state� and �may depend on state� can be seen as
simple syntactic properties of certain elementary operations �e�g� assignment the
former� variable access the latter�� But it is not quite obvious how they should be
inherited by other operations or composite expressions� An abstract interpretation
would probably provide a good approximation to the required information� But even
in the absence of such an analysis� one can do the following�

For each expression �except whnf�s�� space for a result edge and its time stamp
has to be provided� There are global counters for state changes and state accesses� If
the evaluation of an expression t to some result u increases neither of the counters�
we can draw an unstamped result edge� If the state change counter was increased�
we do not draw a result edge� if the state remains unchanged but was accessed� the
result edge gets the actual �time� �state change counter� as a stamp�

In the hypergraph world� we can encode this as follows�

De�nition �� A changeable jungle C � �J� T� p� consists of a result jungle J � a
number T � � �the time�� and a mapping p � RJ � � ! � �the time stamp�� such
that �r � RJ � p�r� � �
 p�r� � T �

The e�ect of the time stamp can be described by a forgetful map from changeable
jungles to result jungles� which maps ��G�RJ � sJ � tJ �� T� p� to �G�R�

J � sJ � tJ�� R
�

J

being the set fr � RJ j p�r�
 Tg� i�e� the map forgets the expired result edges� The
stamp � indicates that the result edge is not state�dependent�

Result propagation for changeable jungles is slightly trickier than for result
jungles� because instead of simply redirecting the target of certain result edges�
we may have to add further result edges�

��G�RJ � sJ � tJ�� T� p� � ��G�RJ � R�

J � sJ � s�J � t
�

J�� T� p � p�� i�
�r � R�

J � p��r� � T � �a� b � RJ � p�a� � � � p�b� � T �
s�J �r� � sJ�a� � t�J �r� � tJ�b� � sJ �b� � tJ�a�

�r � RJ � tJ�r� � t�J �r�
 p�r� � T �
�r� � RJ � p�r��
 T � sJ�r

�� � tJ �r� � tJ�r
�� � t�J�r�

What this rather lengthy formula is all about can be seen in �gure ��
If an unmarked result edge is followed by a marked one� we can propagate the

result as shown by the dotted line� but it would be a pity to overwrite the unmarked

����
����
�����
����
�����
����
������
������
������

�����
������

��� � T

T

Fig� �� Result Propagation for Changeable Jungles

edge� if there is a further change of state� the unmarked result is still valid while
the marked result information expires� Therefore we have an additional set of result
edges R�

J created in situations as above�
For the implementation this suggests the need to provide space for two result

edges� a marked and an unmarked one� but this is not really necessary� If we restrict
� to the case where R�

J is empty� then chains of �non�expired� result edges in the
normal forms of � have length at most ��

Intuitively� this means the following� Suppose we have an evaluation sequence
t� �� t� �� ��� �n tn� We draw an unstamped result edge from t� to the last ti�
such that all the �j � j � i are applicative� and mark ti as an applicative normal

form� If i � n� we draw a stamped result edge from ti to tn� provided no �l� l � n

changed the state�
Notice that this a�ects the notion of value� in addition to weak head normal

forms there are now applicative normal forms�
The concept of a monolithic state is a bit strict� because it does not re
ect locality

of variables� e�g� �in SML��

fun fac n �

let val p � ref �n�
� in

while �
��p� � �

do p �� ��
��p��
� op � ��p���

����p�

end�

The lifetime of the variable p does not exceed any call of fac and it is not access�
ible outside of fac a data
ow analysis could easily detect this� We could exploit
information of this kind for a more sophisticated concept of time and time stamp�
but this goes beyond the scope of this paper�

	 Compilation

One subtask of compiling a function de�nition in a language that supports pattern
matching is the management of a symbol table for the pattern variables� It assigns
to each variable name a relative address �relative to the stack� and can furthermore
be used to detect free variables� anonymous variables and non�linear patterns� Non�
linear patterns are forbidden in most languages �not all�� but even when they are

allowed� the second occurrence of a variable in a pattern has to be treated di�erently
from its �rst occurrence�

Under Unlimp� we can generalise the symbol table easily by treating not just
variables� but arbitrary non�ground expressions� Easily� because comparing complex
expressions is here not more di�cult or expensive than comparing variables� since it
is just the comparison of addresses�

The generalisation to non�ground expressions �nge� works as follows�

� An nge is allocated space on the stack� if and only of it occurs more than once
in the left�hand or right�hand side of the de�nition�

� If an nge occurs a second time� we do not count its subterms as second occur�
rences�

Variables are also nge�s� and in this special case the �rst point is the detection of
anonymous variables� because variables occurring only once do not need to be stored
on the stack� For composite expressions it is a common subexpression elimination�
because we put them onto the stack if they occur more than once� which corresponds
to the introduction of a let�expression� An example �in Haskell�� taken from 	����

dropWhile p �� � ��

dropWhile p �x�xs�

� p x � dropWhile p xs

� otherwise � x�xs

For the �rst rule� there are � nge�s� but none of them requires space on the stack�
p occurs only once and is hence anonymous� In the second rule� we have � nge�s and

 of them are allocated space on the stack� see table ��

Table �� Generalised Symbol Table

nge occurrences

dropWhile p �x�xs� �
dropWhile p �

p �
x�xs �
x �
xs �
p x �

dropWhile p xs �

In this example� each nge which is to be stored on the stack is a subexpression
of the left�hand side of the rule� Hence� when an expression matches the left�hand
side� each nge to be stored on the stack is a subterm of this expression and can be
stored during the matching process� One can argue about nge�s like dropWhile p�
it depends on other implementation details �representation of function application�
whether they should count or not�

Some care is necessary to treat conditional expressions properly� e�g� common
subexpressions of the then� and else�parts of a conditional expression are not really
common� It is harmless to put them onto the stack� but harmful to expect them to
be there�

 Garbage Collection

��� is a weak point of Unlimp�
The problem is that there is very little proper garbage� Deallocating an unrefer�

enced cell would also throw away its result edge and hence a bit of useful information�
so that only unreferenced weak head normal forms �have no result edge� and former
K�redexes� �result edge remains NIL under lazy evaluation� are proper garbage� Un�
fortunately� almost no weak head normal form will be unreferenced� at least there
is the result edge from some �perhaps unreferenced� vertex� and K�redexes are more
the exception than the rule� Only in the presence of side�e�ects can we expect some
unreferenced weak head normal forms� because the time stamps of the result edges
pointing to them may have expired�

For this reason� a garbage collector would need to collect improper garbage� which
is against the spirit of Unlimp� of course� Each unreferenced vertex is �im�proper
garbage� Even vertices only referenced by result edges could be treated as improper
garbage� but this would require some additional administration� e�g� the garbage
collection has to be treated as a global side�e�ect�

� Programming Style

Working with an Unlimp implementation can in
uence programming style� First let
us look at a similar in
uence of lazy evaluation�

Lazy and strict evaluation do not have the same computational power �in a
practical sense�� because lazy evaluation can deal with �conceptually� in�nite objects�
whereas strict evaluation cannot� Thus� when the natural solution of a problem
requires the intermediate creation of an object of in�nite size� solving the problem
with a strict language means looking for a less natural way�

But such an in
uence on programming style is also present when there is no such
principal di�erence in computational power� because for certain programming styles�
strict evaluation is very ine�cient� Typical for this are backtracking algorithms�
see 	���� one example is the following simpli�ed version �in Haskell� of the pairing
algorithm used for Swiss System chess tournaments�

type Entry a � �a��a��

type Pairing a � ��Entry a�Entry a��

pairing �� �Eq a� �� �Entry a� �� Pairing a

pairing table � if allpairs���� then error �no pairing�

else head allpairs

where allpairs � fullpairs table

� In �	calculus� ��x�t
u is a K	redex if x is not free in t�

fullpairs �� �Eq a� �� �Entry a� �� �Pairing a�

fullpairs �� � ����

fullpairs �x�xs� � � �x�y��zs � y �� xs� condition x y�

zs �� fullpairs �xs���y�� �

condition �� �Eq a� �� Entry a �� Entry a �� Bool

condition �x�xs��y�ys� � notElem x ys

The function pairing is applied to the actual table of the players �which is
supposed to be a list of even length� and produces a list of pairs �the pairing for the
next round�� such that each pair ful�lls the condition� Moreover� the table leader
should play �if possible� against the second� the third against the fourth� etc� The
entries in the table consist of the player and his or her opponents so far� which is
su�cient for the condition �haven�t already played against each other��

The above algorithm is expressed in terms of computing all possible pairings
and then selecting the �rst one� which because of the structure of the algorithm
 tends to pairs �rst with second etc� This is �ne for lazy evaluation� but under
strict evaluation it is very ine�cient� because the number of all possible pairings
usually �depending on condition� grows very fast� Table � shows the number of
reduction steps �successful rule applications� executed to evaluate pairing tab� for
�ve di�erent examples�� depending on whether the evaluation strategy is strict or
lazy and whether full memoization is used or not�

Table �� Reduction Steps for a Backtracking Algorithm

strategy stab mtab� mtab� ltab� ltab�

strict� nomemo ��� ������ ������ ��������� ���������
strict� memo ��� ����� ����� ������ ������
lazy� nomemo ��� ��� ��� ��� �����
lazy� memo �� ��� ��� ��� ���

Clearly� strict evaluation is inappropriate for this program� Although the al�
gorithm is correct for strict evaluation too� a programmer using a strict language is
encouraged to solve the problem on a lower level� e�g� by making the backtracking
strategy explicit�

The impact of memoization on the program is characteristic� the �better� the
algorithm is� the less is the e�ect of memoization� It cannot turn a horribly slow
program into a fast one� but it can reduce the horror drastically� The drastic im�
provement under strict evaluation� and the slight but signi�cant improvement for the
heavy backtrackers �mtab� and ltab�� under lazy evaluation are rather surprising�
as the pairing program does not appear to be a prime candidate for memoization�

Full memoization can work together with lazy as well as strict evaluation� but
it does not a�ect the computational power of either strategy� Therefore� there is no

� The chosen examples were lists of length � after � rounds �stab
� of length �� after
� rounds �mtab� and mtab�
� and of length �� after � rounds �ltab� and ltab�
� The
examples mtab� and ltab� were chosen to require a lot of backtracking� in contrast to
mtab� and ltab��

principle need to change the programming style when memoization is absent� but
we do have similar kinds of unpleasant encouragement to solve problems at a lower
level�

Some further examples �and references� can be found in 	���� We do not have to
look for examples that are contrived to support this argument the following piece
of program �in SML� to compute the nth prime number was taken from 	����

fun prime n �

let fun next�k�i� �

if n��i then k

else if divides�prime i�k� then next�k	
���

else next�k�i	
�

in

if n�� then �

else next�prime�n�
�	
���

end

It was considered there to be �rather ine�cient�� In a traditional implementation
it is indeed� but under Unlimp it turns out to be fairly reasonable� because memoizing
prime makes the algorithm behave like a �rather na"#ve� variation of the sieve of
Eratosthenes�

�� Speed�Up in the Small

Most examples people mention when they promulgate memoization are like the na"#ve
version of the Fibonacci function or the above version of prime � without memoiza�
tion terribly ine�cient and � since they are na"#ve � only na"#ve people would write the
function this way� unless it is known that the implementation supports memoization��

But memoization also has great e�ects in the small� as in the pairing program�
Sometimes they appear very unexpectedly� like the following one�

As their favoured benchmark test for functional programs� J"orn von Holten and
Richard Seifert at the University of Bremen took arithmetic on natural numbers
represented as successor terms� To make the task hard� the following version of
arithmetic was used�

data Nat � Z � S Nat

add Z x � x

add �S x� y � S �add x y�

mul Z x � Z

mul �S x� y � add �mul x y� y

pow x Z � S Z

pow x �S y� � mul �pow x y� x

This version is supposed to make arithmetic expensive� because �minor reason�
add is not tail recursive and �major reason� the right�hand sides of the last rules for

� Another less well	known example of this kind is model checking with binary decision
diagrams� see ����

mul and pow have their recursive calls in the �rst rather than the second argument
of add and mul� Note that add n m is linear in n and constant in m�

However� the response time of an Unlimp implementation turned out to be fairly
stable under switching the arguments of add and mul in the mentioned rules� The
reason is that several addition terms reappear in this process� because computing
n!m involves also the computation of k !m for all k less than m�

The following table compares the number of evaluation steps to compute ��� ���
and ��� The left �gures show the number of steps for the above de�nition� the right
�gures refer to the version obtained by switching the arguments of the mentioned
calls of add and mul�

Table �� Reduction Steps for a Successor Arithmetic

strategy �� �� ��

strict� nomemo �� �� ��� ��� ���� ���
strict� memo �� �� �� ��� ��� ���
lazy� nomemo �� ��� ������� ����� too many ������
lazy� memo �� �� ��� ��� ���� ���

The suspected bad behaviour of exponentiation does not appear under memoiza�
tion and strict evaluation� here it is even slightly better than the ordinary de�nition�
Only for lazy evaluation� memoization cannot fully compensate for the �bad� al�
gorithm�

As in the pairing example� we can again observe di�erent kinds of improvement�
depending on how �badly� the algorithm behaves� In both cases� the e�ects appeared
in the small� i�e� they had no fancy recursive structure �as the prime example�� the
functions were linear recursive�

�� Conclusion

A unique representations for expressions can a�ect compilation� execution and usage
of functional languages�

We tried to convey the spirit of thinking in unique representations and of exploit�
ing it for di�erent purposes� e�g� for compilation� The given modelling by hypergraphs
stays close to the machine level and allows several meta�observations on a rather ab�
stract level� We showed how memoization and side�e�ects can happily coexist� even
in the hypergraph modelling�

The e�ect of memoization on program execution seems to be well�known� but the
analysis of the given examples suggest that it is not well�known enough� When using
full memoization� i�e� storing every evaluation result� an important and often unex�
pected phenomenon appears� a cumulative speed�up by saving minor� but numerous
computations� This phenomenon encourages a more problem�oriented programming
style�

References

�� Marianne Baudinet and David MacQueen� Tree pattern matching for ML� In Confer�

ence on Functional Programming Languages and Computer Architecture� ����� LNCS
����

�� Richard Bird� Lectures on Constructive Functional Programming� Technical Mono	
graph PRG	��� Programming Research Group� Oxford University Computing Labor	
atory� �����

�� Reinhard Enders� Thomas Filkorn� and Dirk Taubner� Generating BDDs for symbolic
model checking in CCS� In Third Workshop on Computer Aided Veri�cation� pages
�������� Aalborg� �����

�� A� J� Field and P� G� Harrison� Functional Programming� Addison	Wesley� �����
�� G� H� Gonnet� Handbook of Algorithms and Data Structures� Addison	Wesley� �����
�� Annegret Habel� Hans	J�org Kreowski� and Detlef Plump� Jungle Evaluation� Funda�

mentae Informaticae� ����
������� �����
�� Berthold Ho�mann� Term Rewriting with Sharing and Memo��zation� ����� �to appear

in� Proceedings� Algebraic and Logic Programming ����
�
�� Berthold Ho�mann and Detlef Plump� Jungle Evaluation for E�cient Term Rewriting�

Technical Report �
��� Universit�at Bremen� Studiengang Informatik� ����� �short
version in LNCS ���
�

�� Berthold Ho�mann and Detlef Plump� Implementing Term Rewriting by Jungle Eval	
uation� Informatique th�eorique et Applications� ����
��������� �����

��� P� Hudak� S� Peyton Jones� and P� Wadler� Report on the Programming Language
Haskell� a Non	strict� Purely Functional Language� Technical report� University of
Glasgow� ����� �also in SIGPLAN Notices ����
� May ����
�

��� R� J� M� Hughes� Lazy memo functions� In Conference on Functional Programming

and Computer Architecture� pages �������� Springer� ����� LNCS ����
��� Jan Willem Klop and Roel de Vrijer� Extended Term Rewriting Systems� Technical

Report CS	R����� Centrum voor Wiskunde en Informatica� January �����
��� D� Michie� Memo functions and machine learning� Nature� ���������� �����
��� Laurence C� Paulson� ML for the Working Programmer� Cambridge University Press�

�����
��� Simon Peyton Jones� The Implementation of Functional Programming Languages�

Prentice	Hall� �����
��� William Pugh and Tim Teitelbaum� Incremental computation via function caching� In

Symposion on Principles of Programming Languages� pages �������� �����
��� Masataka Sassa and Eiichi Goto� A hashing method for fast set operations� Information

Processing Letters� ���
������� June �����
��� Robert Sedgewick� Algorithms� Addison	Wesley� �����
��� Stefan Soko�lowski� Applicative High Order Programming� Chapman � Hall Comput	

ing� �����
��� Philip Wadler� How to replace failure by a list of successes� In Functional Programming

Languages and Computer Architecture� pages �������� ����� LNCS ����
��� Ben Wegbreit and Jay M� Spitzen� Proving properties of complex data structures�

Journal of the ACM� ����
��������� �����
��� Burkhart Wol�� Sharing	Analyse in funktionalen Sprachen� Technical Report �
���

Universit�at Bremen� Studiengang Informatik� ����� �in German
�

This article was processed using the LaTEX macro package with LLNCS style

