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U n lim p

U n iq u e n e s s a s a L e itm o t iv fo r Im p lem e n t a t io n

Stefan Kahrs�

University of Edinburgh
Laboratory for Foundations of Computer Science

King�s Buildings� EH� �JZ
email� smk�dcs�ed�ac�uk

Abstract� When evaluation in functional programming languages is ex	
plained using �	calculus and
or term rewriting systems� expressions and
function de�nitions are often de�ned as terms� that is as trees� Similarly� the
collection of all terms is de�ned as a forest� that is a directed� acyclic graph
where every vertex has at most one incoming edge� Concrete implementa	
tions usually drop the last restriction �and sometimes acyclicity as well
� i�e�
many terms can share a common subterm� meaning that di�erent paths of
subterm edges reach the same vertex in the graph�

Any vertex in such a graph represents a term� A term is represented uniquely
in such a graph if there are no two di�erent vertices representing it� Such a
representation can be established by using hash�consing for the creation of
heap objects� We investigate the consequences of adopting uniqueness in this
sense as a leitmotiv for implementation �called Unlimp
� i�e� not allowing any
two di�erent vertices in a graph to represent the same term�

� Introduction

The de�nition of most programming languages is or can be based on some notion of
term� e�g� the abstract syntax of the language� It is convenient to express properties of
such terms as properties of tree�like objects� similarly as it is convenient to represent
�in an implementation� a collection of terms as a directed acyclic graph� allowing
the violation of the property that each vertex has an indegree of at most �� i�e� that
each vertex has at most one incoming edge�

If the language satis�es referential transparency for those terms� i�e� if the mean�
ing of �closed� terms is context�independent and if this meaning is expressible as a
term� one can moreover exploit the internal representation and destructively replace
subgraphs by their results� even if their indegree is greater than ��

Such graph reduction is the standard technique for implementing lazy languages�
see 	�
� ��� because under lazy evaluation unevaluated subterms naturally occur� For
implementing �general� term rewriting systems� graph reduction may lose con
uence
and weak normalisation� see 	��� but rewriting systems in programming languages
normally satisfy further properties that make graph reduction a correct implement�
ation�

� The research reported here was partially supported by SERC grant GR
E ������



While acyclic graphs seem to be a natural choice for the internal representation
of terms �cyclic graphs are not easily handled by a reference�counting garbage col�
lector�� one might also look at the extreme cases of this representation� There are
two of particular interest� �i� the indegree of every vertex is at most � �trees and
forests�� �ii� the function that maps vertices to the terms they represent is injective�
i�e� each represented term is represented uniquely�

The disadvantage of proper trees �i� is obviously the waste of space� but it also
has advantages� memory management becomes easy� and sharing analysis 	��� comes
for free� For example� concatenation of two lists xs and ys in a graph representation
usually works by copying xs and drawing an edge from the last vertex in the copy
to ys� i�e� ys may become a shared object� In representation �i� however� it is known
that xs and ys are uniquely used for the concatenation� hence it is not only possible
to avoid copying ys� but also to avoid copying xs� using LISP�s NCONC for list
concatenation�

At �rst glance� the advantage of unique representation �ii� seems to be compact�
ness� a further gain of space� But actually� it is more the uniqueness of representation
itself� i�e� the property that a term can be uniquely identi�ed by the root vertex of
its representation� that turns out to be the major plus� The disadvantage is the e�ort
needed to preserve this uniqueness under rewriting�

In this paper� we study this representation� how to get it and how to exploit it
under the slogan �Uniqueness as a Leitmotiv for Implementation�� short� Unlimp�

The examples are written in Haskell and in SML� Readers not familiar with these
languages may consult 	��� and 	����

� Preliminaries

Instead of considering ordinary directed graphs� we deal with directed hypergraphs�
i�e� we have directed hyperedges instead of ordinary edges� A hyperedge has in general
more than one target �and also more than one source�� we adopt a formal de�nition
from 	���

De�nition �� A hypergraph G � �VG� EG� sG� tG� lG�mG� over � consists of a �nite
set VG of vertices� a �nite set EG of hyperedges� two mappings sG � EG � V �

G and
tG � EG � V �

G� assigning a string of source vertices and a string of target vertices

to each hyperedge� and two mappings lG � VG � S and mG � EG � OP� labelling
vertices with sorts� and hyperedges with operation symbols�

The de�nition was originally intended for �rst�order signatures� � � �S�OP��
but it can also be used in the higher�order case� simply by allowing non�elementary
sorts in S� adding apply�symbols to OP� etc�

We also use some other standard graph�theoretic notions� indegreeG�v� denotes
the sum �over all e � EG� of the number of occurrences of v in tG�e�� analogously
outdegreeG�v� for the sG�e�� The subterm relation �G �on vertices� is de�ned as
follows�

v �G v
� � �e � EG �a� a�� b� b� � V

�

G � sG�e� � a � v � b � tG�e� � a
� � v� � b�



A hypergraph is acyclic if the transitive closure of �G is irre
exive� Notice that
irre
exivity of �G also implies that it is strongly normalising� as we have assumed
a �nite set of vertices�

De�nition �� A hypergraph G is a jungle� i� �i� it is acyclic� �ii� outdegreeG�v� � �
for all v � VG and �iii� for all e � EG�mG�e� � f � s� � � � sn � s implies l�G�sG�e�� � s

and l�G�tG�e�� � s� � � � sn�

l�G is the homomorphic extension of lG to strings of vertices�
Acyclicity is useful for maintaining uniqueness of representation �see below�� the

restriction for the outdegree is motivated by the analogy between addresses and
vertices� and the third condition is well�typedness�

The reason for this choice for the representation of terms is the very close corres�
pondence between a jungle� vertices and hyperedges on the one hand� and a heap�
addresses �pointers� and storage cells on the other� i�e� hypergraphs model imple�
mentations more faithfully than ordinary directed graphs� Therefore we will also
freely intermix these notions� depending on whether it is in a particular case more
intuitive or useful to talk about� say� a pointer rather than a vertex�

Given a jungle G� we de�ne a function termG � VG � Ter��� that assigns any
vertex �address� the term it represents�

termG�v� � mG�e� � term
�

G�tG�e�� where sG�e� � v �

The � again denotes homomorphic extension to strings� Note that e is unique
because of the outdegree restriction�

A jungle is a called fully collapsed� if termG is injective� Because of this one�to�one
correspondence we choose fully collapsed jungles to represent terms in Unlimp�

For any jungle there exists a �unique� fully collapsed jungle that represents the
same set of terms� For this and some other results about representing terms by
jungles and term rewriting by graph grammars� see 	�� ���

� Hash Consing

Suppose we already have a fully collapsed jungle� then we have the problem of
preserving this property each time we change the jungle� that is when we�

� create new objects
� evaluate an object
� delete an object

An object is anything represented by a vertex in a jungle� For the implement�
ation of a functional programming language� objects could be values �elementary
and composed values� functions�� expressions yet to be evaluated� even non�closed
expressions and type expressions �in an interpreter or compiler�� etc�

How do we create a composed value op�x�� ���� xn� in a fully collapsed jungle �for
some n�ary operation op�� Since we need a vertex that represents this value� there
are two cases� either there is already a vertex v in VG with termG�v� � op�x�� ���� xn��



then we have to ��nd� it� or� if there is not� then we have to create a new cell �add
a vertex and a hyperedge� and make sure that future searches can �nd it�

Typically� each xi is already represented in the jungle� i�e� there is a vertex vi
in VG with termG�vi� � xi� Because of Unlimp vi is uniquely determined� as two
vertices represent the same term i� they are identical� So any other hyperedge �in
the jungle� pointing at a vertex that represents the same term as xi� actually points
at vi�

To search for a cell op�x�� ���� xn� we could scan the entire heap� but that would
be horribly ine�cient� Since such a cell is uniquely determined by the vertices vi
and the operation op� these could give us a hint where we have to search� In other
words� we can compute a search key from them� a value which is �almost� unique
for the cell to be constructed� Because of the �almost� we still have to search� but
our search space is very restricted�

Such a method is known as �hash consing�� see 	��� ���� because CONS is the only
cell�constructing operation in LISP� It does not only apply for creating composite
values� but for any kind of composite heap object� for example terms representing
the application of a function to some other terms� also type expressions� etc� For the
implementation of op� it is only a minor di�erence whether the cell to be created is
supposed to be a value or some other heap object� We can even apply this method
for creating ��abstractions� If we lambda�lift 	�
� �� all nested abstractions �such
that any abstraction becomes a closed term� and then rename its variables� to x��
x�� etc�� then ��congruence becomes trivial �pointer comparison��

In implementations of strict languages� one usually tries to avoid to create heap
objects whenever possible� i�e� a term like length ������� would never exist as a
vertex in the jungle� For reasons which become apparent later� we do not follow this
line�

The author experimented with several ways to organize the heap� The method
�nally chosen �surely not the best one� is a combination of digital search trees and
double hashing �see 	
� ��� or some other standard book on data structures and
algorithms�� the search tree has hash tables as its leaves� searching an entry is done
by using the leading bits of the key to branch in the tree� and �nally the remaining
bits are used for double hashing at a leaf�

� Reduction

The second way to change the hypergraph is to evaluate a term�
Evaluation usually refers to the evaluation in the language itself� but we may

apply it to a more general setting� the evaluation result of a type expression is the
type expression one gets after substituting all type synonyms �e�g� in Haskell�� the
evaluation result of function de�nition is the code the compilation produces for it�

In a strict language implementation� an evaluation simply creates some new
objects and makes some other objects �probably� obsolete� For Unlimp this view is
harmless� because it reduces the problem of keeping the uniqueness to the previous
one� to the creation of new objects�

� SML and Haskell have a generalised �	abstraction �patterns instead of variables
 that
allows to abstract more than one variable in a single abstraction�



In an ordinary implementation of a lazy language the following happens� if a term
t is evaluated to u� then the subhypergraph reachable from the vertex t is deleted
and replaced by the subhypergraph reachable from u� This method is usually called
graph reduction 	���

In Unlimp� this would not work well� Firstly� we might lose the injectivity of
termG� because if t is a subterm of some C	t� then the vertex representing C	t� now
represents C	u�� but this term might already be represented by another vertex� For
the implementation the situation is worse� because even if the jungle remains fully
collapsed� the term C	u� would be located at the wrong place in the search tree
in our sketched implementation method� One could repair this mess by relocating
all those terms in the search tree that have t as a direct� subterm� but then all
�direct� superterms of t have to be found� Moreover� this method can introduce
cycles�� i�e� it may destroy our jungle structure� Allowing cycles would lead to �some
restrictions for garbage collection and� the Unlimp problem for cycles� i�e� having a
unique representation for any in�nite term that can be expressed by a cyclic graph�

For these reasons� we do not replace t by u� On the other hand� we do not
want to evaluate t a second time� staying as lazy as possible� Therefore� we draw an
additional edge from t to u� a result edge� The hypergraph containing all the edges
�hyperedges and result edges� may now be cyclic� but the result edges form a kind
of second layer for the graph and both layers are in themselves acyclic�

A very simple example�

cycle xs � xs 		 cycle xs

A one�step evaluation for cycle xs �for an arbitrary xs� leads to the hypergraph in
�gure ��

The three small circles are the vertices� the marked ellipses together with all
incoming and outgoing arrows the hyperedges� The dotted arrow from the left to
the right circle is a result edge� Looking just at the ordinary hyperedges� the picture
says� �the result of cycle xs is xs		cycle xs�� but thinking of the result edge as
an indirection pointer� we have the full result xs		xs		xs		


� These result edges
are not only a natural way to perform lazy evaluation� they are also useful for certain
debugging tasks� like tracing a function� because the unevaluated expression and the
evaluation result are available at the same time�

To allow these result edges in our hypergraph model� we add another component�
a set of result edges to it�

De�nition �� A result jungle J � �G�RJ � sJ � tJ � consists of a jungle G� a set of
result edges RJ and two mappings sJ � tJ � RJ � VG� such that sJ is injective and
�e � RJ � lG�sJ�e�� � lG�tJ �e���

Furthermore we call a result jungle loopless if the subterm relation �H of any
hypergraph H � �VG� RJ � sJ � tJ � � � is strongly normalising�

Result edges of the above form are simply partial� sort�preserving functions on
vertices� but the above encoding within the hypergraph world preserves the close

� Example� t is a direct subterm of f�t
� but not of f�f�t

�
� According to ���� theorem ���� jungle reduction cannot introduce cycles� due to the real	
isation of rewrite steps chosen there� We do not consider this here� because it violates
the Unlimp principle in a di�erent way�
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cy c le � �

Fig� �� Term with Result Edge

correspondence to implementations� For example� the storage cell corresponding to
a result edge could be located at the address corresponding to its source vertex�
either before or after the storage cell corresponding to the �ordinary� hyperedge
going from there�

For loopless result jungles� we have another mapping termJ from vertices to
terms� but the terms might be of in�nite size� see 	����

termJ � VG � Ter����
termJ �sJ�r�� � termJ�tJ �r��
termJ �sG�e�� � mG�e� � term

�

J�tG�e��� if 	�r � RJ � sJ�r� � sG�e�

For any vertex v� termG�v� is the ��nite� term before evaluation and termJ �v�
the �possibly in�nite� term after it� The result jungle J has to be loopless to make
the above de�nition of termJ well�de�ned� In �gure �� we have termG�v� � cycle xs

where v is top left vertex and xs the term represented by the bottom vertex� and
termJ�v� � xs�		xs�		


 where xs� is the termJ �value of the bottom vertex�

The de�nition of result jungles still allows chains of result edges� We can propag�
ate results by the following relation � between result jungles�

�G�RJ � sJ � tJ� � �G�RJ � sJ � t
�

J � i�
�r � RJ � tJ�r� � t�J �r� 
 �r

� � RJ � sJ �r
�� � tJ�r� � tJ�r

�� � t�J �r�

For loopless result jungles� the irre
exive part � of � is strongly normalising�
Its �unique� normal forms are the result jungles with fully propagated result edges�
The relation � does not change termJ � i�e� if J � J �� J � �G�RJ � sJ � tJ�� then
�v � VG � termJ �v� � termJ��v��

� Memoization by Memo Tables

Memoization �sometimes called function caching� is a method to store evaluation
results such that they can be reused if the same evaluation is required again later�



The traditional approach 	��� uses memo tables� i�e� hash tables that store pairs of
argument and result for those functions that are supposed to be memoized� From the
hypergraph point of view� this method corresponds to a slightly di�erent encoding
of result edges� see 	��� a result hyperedge has then n sources �the n arguments
of the function�� one label �the function symbol� and one target� the result� One
disadvantage� which is immediately obvious from the encoding itself� is a certain
waste of space� the information the hyperedge has to carry comprises the function
symbol� all the argument vertices and the result vertex�

Hughes 	��� generalised memoization appropriately for lazy evaluation� storing
as argument the �pointer to the� unevaluated argument in such a table� Pugh and
Teitelbaum 	��� showed how to widen the application of memoization to incremental
computations �like attribute grammars� by carefully selecting the representation of
the involved data types�

Beside the mentioned disadvantage that is apparent just by looking at the hy�
pergraph encoding� memo tables have certain other drawbacks�

� they may over
ow�

� they may be nearly unused�

� entries have to be searched for�

� they are oriented towards a �rst�order programming style�

In other words� they need some administration�

The last point refers to the problem� Where do we store the result of �f � g��x��
The natural solution �in the memo table of �� seems fairly unreasonable� because it
then heavily depends on the programming style whether the memo table for a com�
binator like � is nearly empty� for programs written in �rst�order style� or totally
overcrowded� as would be typical for programs developed in the Bird�Meertens form�
alism 	���

Figure � suggests a natural place for the result edge� it is the storage cell of the
�unevaluated� expression� This means to make storage cells of expressions bigger
�space for an additional pointer�� provided the expression can have a value� This
proviso is simply the negation of �is in weak head normal form� �for the terminology�
see 	�
��� and this property is known when the cell is created�

This approach has a neat side�e�ect� Suppose� we create a cell op�t�� ���� tn�� If
a cell of this form already exists somewhere in the heap� Unlimp guarantees �and
forces� us to �nd it� and if it has already been evaluated before� we will moreover
�nd the result in this very cell� A memo table approach requires some further search�
look up the memo table for op and then search for the appropriate n�tuple�

Similarly� if we store the compiled code of a ��abstraction as its result� then
creating the same �an ��congruent� ��abstraction would �nd this compilation res�
ult� avoiding a super
uous recompilation� One could even give a pattern a value�
the code to match it� this would not only guarantee to avoid recompilation of pat�
terns� it might also ease the task of creating a decision tree	�� for pattern matching
compilation�



� Dealing with Side�E�ects

Occasionally� the e�ect of memoization is unwanted� particularly in the presence
of side�e�ects of various kinds� e�g� assignment and I�O� or  in an interpreter  a
change of the rule base� To allow this in an Unlimp framework� one has to distinguish
between applicative expressions� expressions that may depend on the state� and
expressions that may change the state�

Expressions that may change the state have to be re�evaluated each time their
value is required� hence we do not need a result edge for them� Expressions that may
depend on the state but do not change it �like access to variables� have to be re�
evaluated each time the state changes� hence result edges have to be time�stamped�
time being a kind of side�e�ect counter� If the considered side�e�ects include the
change of the rule base in an interpreter� every expression is state dependent and so
each result edge needs a time stamp�

The properties �may change state� and �may depend on state� can be seen as
simple syntactic properties of certain elementary operations �e�g� assignment the
former� variable access the latter�� But it is not quite obvious how they should be
inherited by other operations or composite expressions� An abstract interpretation
would probably provide a good approximation to the required information� But even
in the absence of such an analysis� one can do the following�

For each expression �except whnf�s�� space for a result edge and its time stamp
has to be provided� There are global counters for state changes and state accesses� If
the evaluation of an expression t to some result u increases neither of the counters�
we can draw an unstamped result edge� If the state change counter was increased�
we do not draw a result edge� if the state remains unchanged but was accessed� the
result edge gets the actual �time� �state change counter� as a stamp�

In the hypergraph world� we can encode this as follows�

De�nition �� A changeable jungle C � �J� T� p� consists of a result jungle J � a
number T � � �the time�� and a mapping p � RJ � � ! � �the time stamp�� such
that �r � RJ � p�r� � � 
 p�r� � T �

The e�ect of the time stamp can be described by a forgetful map from changeable
jungles to result jungles� which maps ��G�RJ � sJ � tJ �� T� p� to �G�R�

J � sJ � tJ�� R
�

J

being the set fr � RJ j p�r� 
 Tg� i�e� the map forgets the expired result edges� The
stamp � indicates that the result edge is not state�dependent�

Result propagation for changeable jungles is slightly trickier than for result
jungles� because instead of simply redirecting the target of certain result edges�
we may have to add further result edges�

��G�RJ � sJ � tJ�� T� p� � ��G�RJ � R�

J � sJ � s�J � t
�

J�� T� p � p�� i�
�r � R�

J � p��r� � T � �a� b � RJ � p�a� � � � p�b� � T �
s�J �r� � sJ�a� � t�J �r� � tJ�b� � sJ �b� � tJ�a�

�r � RJ � tJ�r� � t�J �r� 
 p�r� � T �
�r� � RJ � p�r�� 
 T � sJ�r

�� � tJ �r� � tJ�r
�� � t�J�r�

What this rather lengthy formula is all about can be seen in �gure ��
If an unmarked result edge is followed by a marked one� we can propagate the

result as shown by the dotted line� but it would be a pity to overwrite the unmarked
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Fig� �� Result Propagation for Changeable Jungles

edge� if there is a further change of state� the unmarked result is still valid while
the marked result information expires� Therefore we have an additional set of result
edges R�

J created in situations as above�
For the implementation this suggests the need to provide space for two result

edges� a marked and an unmarked one� but this is not really necessary� If we restrict
� to the case where R�

J is empty� then chains of �non�expired� result edges in the
normal forms of � have length at most ��

Intuitively� this means the following� Suppose we have an evaluation sequence
t� �� t� �� ��� �n tn� We draw an unstamped result edge from t� to the last ti�
such that all the �j � j � i are applicative� and mark ti as an applicative normal

form� If i � n� we draw a stamped result edge from ti to tn� provided no �l� l � n

changed the state�
Notice that this a�ects the notion of value� in addition to weak head normal

forms there are now applicative normal forms�
The concept of a monolithic state is a bit strict� because it does not re
ect locality

of variables� e�g� �in SML��

fun fac n �

let val p � ref �n�
� in

while �
��p� � �

do p �� ��
��p��
� op � ��p���

����p�

end�

The lifetime of the variable p does not exceed any call of fac and it is not access�
ible outside of fac  a data
ow analysis could easily detect this� We could exploit
information of this kind for a more sophisticated concept of time and time stamp�
but this goes beyond the scope of this paper�

	 Compilation

One subtask of compiling a function de�nition in a language that supports pattern
matching is the management of a symbol table for the pattern variables� It assigns
to each variable name a relative address �relative to the stack� and can furthermore
be used to detect free variables� anonymous variables and non�linear patterns� Non�
linear patterns are forbidden in most languages �not all�� but even when they are



allowed� the second occurrence of a variable in a pattern has to be treated di�erently
from its �rst occurrence�

Under Unlimp� we can generalise the symbol table easily by treating not just
variables� but arbitrary non�ground expressions� Easily� because comparing complex
expressions is here not more di�cult or expensive than comparing variables� since it
is just the comparison of addresses�

The generalisation to non�ground expressions �nge� works as follows�

� An nge is allocated space on the stack� if and only of it occurs more than once
in the left�hand or right�hand side of the de�nition�

� If an nge occurs a second time� we do not count its subterms as second occur�
rences�

Variables are also nge�s� and in this special case the �rst point is the detection of
anonymous variables� because variables occurring only once do not need to be stored
on the stack� For composite expressions it is a common subexpression elimination�
because we put them onto the stack if they occur more than once� which corresponds
to the introduction of a let�expression� An example �in Haskell�� taken from 	����

dropWhile p �� � ��

dropWhile p �x�xs�

� p x � dropWhile p xs

� otherwise � x�xs

For the �rst rule� there are � nge�s� but none of them requires space on the stack�
p occurs only once and is hence anonymous� In the second rule� we have � nge�s and

 of them are allocated space on the stack� see table ��

Table �� Generalised Symbol Table

nge occurrences

dropWhile p �x�xs� �
dropWhile p �

p �
x�xs �
x �
xs �
p x �

dropWhile p xs �

In this example� each nge which is to be stored on the stack is a subexpression
of the left�hand side of the rule� Hence� when an expression matches the left�hand
side� each nge to be stored on the stack is a subterm of this expression and can be
stored during the matching process� One can argue about nge�s like dropWhile p�
it depends on other implementation details �representation of function application�
whether they should count or not�



Some care is necessary to treat conditional expressions properly� e�g� common
subexpressions of the then� and else�parts of a conditional expression are not really
common� It is harmless to put them onto the stack� but harmful to expect them to
be there�


 Garbage Collection

��� is a weak point of Unlimp�
The problem is that there is very little proper garbage� Deallocating an unrefer�

enced cell would also throw away its result edge and hence a bit of useful information�
so that only unreferenced weak head normal forms �have no result edge� and former
K�redexes� �result edge remains NIL under lazy evaluation� are proper garbage� Un�
fortunately� almost no weak head normal form will be unreferenced� at least there
is the result edge from some �perhaps unreferenced� vertex� and K�redexes are more
the exception than the rule� Only in the presence of side�e�ects can we expect some
unreferenced weak head normal forms� because the time stamps of the result edges
pointing to them may have expired�

For this reason� a garbage collector would need to collect improper garbage� which
is against the spirit of Unlimp� of course� Each unreferenced vertex is �im�proper
garbage� Even vertices only referenced by result edges could be treated as improper
garbage� but this would require some additional administration� e�g� the garbage
collection has to be treated as a global side�e�ect�

� Programming Style

Working with an Unlimp implementation can in
uence programming style� First let
us look at a similar in
uence of lazy evaluation�

Lazy and strict evaluation do not have the same computational power �in a
practical sense�� because lazy evaluation can deal with �conceptually� in�nite objects�
whereas strict evaluation cannot� Thus� when the natural solution of a problem
requires the intermediate creation of an object of in�nite size� solving the problem
with a strict language means looking for a less natural way�

But such an in
uence on programming style is also present when there is no such
principal di�erence in computational power� because for certain programming styles�
strict evaluation is very ine�cient� Typical for this are backtracking algorithms�
see 	���� one example is the following simpli�ed version �in Haskell� of the pairing
algorithm used for Swiss System chess tournaments�

type Entry a � �a��a��

type Pairing a � ��Entry a�Entry a��

pairing �� �Eq a� �� �Entry a� �� Pairing a

pairing table � if allpairs���� then error �no pairing�

else head allpairs

where allpairs � fullpairs table

� In �	calculus� ��x�t
u is a K	redex if x is not free in t�



fullpairs �� �Eq a� �� �Entry a� �� �Pairing a�

fullpairs �� � ����

fullpairs �x�xs� � � �x�y��zs � y �� xs� condition x y�

zs �� fullpairs �xs���y�� �

condition �� �Eq a� �� Entry a �� Entry a �� Bool

condition �x�xs��y�ys� � notElem x ys

The function pairing is applied to the actual table of the players �which is
supposed to be a list of even length� and produces a list of pairs �the pairing for the
next round�� such that each pair ful�lls the condition� Moreover� the table leader
should play �if possible� against the second� the third against the fourth� etc� The
entries in the table consist of the player and his or her opponents so far� which is
su�cient for the condition �haven�t already played against each other��

The above algorithm is expressed in terms of computing all possible pairings
and then selecting the �rst one� which  because of the structure of the algorithm
 tends to pairs �rst with second etc� This is �ne for lazy evaluation� but under
strict evaluation it is very ine�cient� because the number of all possible pairings
usually �depending on condition� grows very fast� Table � shows the number of
reduction steps �successful rule applications� executed to evaluate pairing tab� for
�ve di�erent examples�� depending on whether the evaluation strategy is strict or
lazy and whether full memoization is used or not�

Table �� Reduction Steps for a Backtracking Algorithm

strategy stab mtab� mtab� ltab� ltab�

strict� nomemo ��� ������ ������ ��������� ���������
strict� memo ��� ����� ����� ������ ������
lazy� nomemo ��� ��� ��� ��� �����
lazy� memo �� ��� ��� ��� ���

Clearly� strict evaluation is inappropriate for this program� Although the al�
gorithm is correct for strict evaluation too� a programmer using a strict language is
encouraged to solve the problem on a lower level� e�g� by making the backtracking
strategy explicit�

The impact of memoization on the program is characteristic� the �better� the
algorithm is� the less is the e�ect of memoization� It cannot turn a horribly slow
program into a fast one� but it can reduce the horror drastically� The drastic im�
provement under strict evaluation� and the slight but signi�cant improvement for the
heavy backtrackers �mtab� and ltab�� under lazy evaluation are rather surprising�
as the pairing program does not appear to be a prime candidate for memoization�

Full memoization can work together with lazy as well as strict evaluation� but
it does not a�ect the computational power of either strategy� Therefore� there is no

� The chosen examples were lists of length � after � rounds �stab
� of length �� after
� rounds �mtab� and mtab�
� and of length �� after � rounds �ltab� and ltab�
� The
examples mtab� and ltab� were chosen to require a lot of backtracking� in contrast to
mtab� and ltab��



principle need to change the programming style when memoization is absent� but
we do have similar kinds of unpleasant encouragement to solve problems at a lower
level�

Some further examples �and references� can be found in 	���� We do not have to
look for examples that are contrived to support this argument  the following piece
of program �in SML� to compute the nth prime number was taken from 	����

fun prime n �

let fun next�k�i� �

if n��i then k

else if divides�prime i�k� then next�k	
���

else next�k�i	
�

in

if n�� then �

else next�prime�n�
�	
���

end

It was considered there to be �rather ine�cient�� In a traditional implementation
it is indeed� but under Unlimp it turns out to be fairly reasonable� because memoizing
prime makes the algorithm behave like a �rather na"#ve� variation of the sieve of
Eratosthenes�

�� Speed�Up in the Small

Most examples people mention when they promulgate memoization are like the na"#ve
version of the Fibonacci function or the above version of prime � without memoiza�
tion terribly ine�cient and � since they are na"#ve � only na"#ve people would write the
function this way� unless it is known that the implementation supports memoization��

But memoization also has great e�ects in the small� as in the pairing program�
Sometimes they appear very unexpectedly� like the following one�

As their favoured benchmark test for functional programs� J"orn von Holten and
Richard Seifert at the University of Bremen took arithmetic on natural numbers
represented as successor terms� To make the task hard� the following version of
arithmetic was used�

data Nat � Z � S Nat

add Z x � x

add �S x� y � S �add x y�

mul Z x � Z

mul �S x� y � add �mul x y� y

pow x Z � S Z

pow x �S y� � mul �pow x y� x

This version is supposed to make arithmetic expensive� because �minor reason�
add is not tail recursive and �major reason� the right�hand sides of the last rules for

� Another less well	known example of this kind is model checking with binary decision
diagrams� see ����



mul and pow have their recursive calls in the �rst rather than the second argument
of add and mul� Note that add n m is linear in n and constant in m�

However� the response time of an Unlimp implementation turned out to be fairly
stable under switching the arguments of add and mul in the mentioned rules� The
reason is that several addition terms reappear in this process� because computing
n!m involves also the computation of k !m for all k less than m�

The following table compares the number of evaluation steps to compute ��� ���
and ��� The left �gures show the number of steps for the above de�nition� the right
�gures refer to the version obtained by switching the arguments of the mentioned
calls of add and mul�

Table �� Reduction Steps for a Successor Arithmetic

strategy �� �� ��

strict� nomemo �� �� ��� ��� ���� ���
strict� memo �� �� �� ��� ��� ���
lazy� nomemo �� ��� ������� ����� too many ������
lazy� memo �� �� ��� ��� ���� ���

The suspected bad behaviour of exponentiation does not appear under memoiza�
tion and strict evaluation� here it is even slightly better than the ordinary de�nition�
Only for lazy evaluation� memoization cannot fully compensate for the �bad� al�
gorithm�

As in the pairing example� we can again observe di�erent kinds of improvement�
depending on how �badly� the algorithm behaves� In both cases� the e�ects appeared
in the small� i�e� they had no fancy recursive structure �as the prime example�� the
functions were linear recursive�

�� Conclusion

A unique representations for expressions can a�ect compilation� execution and usage
of functional languages�

We tried to convey the spirit of thinking in unique representations and of exploit�
ing it for di�erent purposes� e�g� for compilation� The given modelling by hypergraphs
stays close to the machine level and allows several meta�observations on a rather ab�
stract level� We showed how memoization and side�e�ects can happily coexist� even
in the hypergraph modelling�

The e�ect of memoization on program execution seems to be well�known� but the
analysis of the given examples suggest that it is not well�known enough� When using
full memoization� i�e� storing every evaluation result� an important and often unex�
pected phenomenon appears� a cumulative speed�up by saving minor� but numerous
computations� This phenomenon encourages a more problem�oriented programming
style�
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