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Abstract
In recent years, the study of species’ occurrence has benefited from the increased
availability of large-scale citizen-science data. While abundance data from stan-
dardized monitoring schemes are biased toward well-studied taxa and locations,
opportunistic data are available formany taxonomic groups, froma large number
of locations and across long timescales. Hence, these data provide opportuni-
ties to measure species’ changes in occurrence, particularly through the use of
occupancy models, which account for imperfect detection. These opportunis-
tic datasets can be substantially large, numbering hundreds of thousands of
sites, and hence present a challenge from a computational perspective, especially
within a Bayesian framework. In this paper, we develop a unifying framework for
Bayesian inference in occupancy models that account for both spatial and tem-
poral autocorrelation. We make use of the Pólya-Gamma scheme, which allows
for fast inference, and incorporate spatio-temporal random effects using Gaus-
sian processes (GPs), for which we consider two efficient approximations: subset
of regressors and nearest neighbor GPs. We apply our model to data on two UK
butterfly species, one common and widespread and one rare, using records from
the Butterflies for the New Millennium database, producing occupancy indices
spanning 45 years. Our framework can be applied to a wide range of taxa, pro-
viding measures of variation in species’ occurrence, which are used to assess
biodiversity change.

KEYWORDS
Bayesian analysis, biodiversity change, citizen-science data, occupancy models, pólya-gamma,
species distribution models

1 INTRODUCTION

1.1 Background and motivation

Robust measures of biodiversity change are vital for
monitoring the varying state of species’ populations and

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

evaluating progress of conservation actions, for example,
toward national and international targets (Butchart et al.,
2010). Data from standardized, long-running monitoring
schemes are used to produce estimates of species’ status
and trends, particularly in terms of changes in abundance.
However, such data sources are limited taxonomically and
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2 DIANA et al.

geographically. By their nature of intensive, formal sam-
pling theymay be limited in spatial coverage and therefore
cannot always be used to appropriately measure changes
in species’ distributions over time.
Conversely, opportunistic records of occurrence are

often and increasingly available in large quantities for
extensive geographic areas and time periods, and for a
wide variety of taxa. However, opportunistic data are
inherently biased (Isaac & Pocock, 2015). Data are typ-
ically presence-only, where records only indicate where
and when a species is seen rather than including
information on non-detection, unless complete lists are
recorded. Data recording the distribution of animals and
plants are frequently analyzed using occupancy models
(MacKenzie et al., 2018), as they allow for imperfect
detection. Applying such models to presence-only data
requires non-detections to be inferred from the observa-
tions of other species (Kéry et al., 2010). Data of this
nature are not standardized, and result from the submis-
sion and collation of records by citizen scientists who
choose where, when, and what to record, but are often
available in large quantities. For example, the Global Bio-
diversity Information Facility (GBIF) consists ofmore than
2.3 billion occurrence records for at least one million
species (GBIF.org, 2022). In the United Kingdom, exten-
sive occurrence data are available for many taxonomic
groups, and the Biological Recording Centre (BRC) over-
sees more than 80 recording schemes (BRC, 2022; Pocock
et al., 2015). Such data are commonly used to produce
atlases for various taxa (e.g., Blockeel et al., 2014; Ran-
dle et al., 2019) and contribute to national biodiversity
assessments, for example, the State of Nature report (Hay-
how et al., 2019) and government biodiversity indicators
(Department for Environment, Food and Rural Affairs,
UK, 2020).
In addition to imperfect detection,modeling approaches

for occurrence data of this type also need to account
for spatial and temporal autocorrelation (Guélat & Kéry,
2018; Strebel et al., 2022). In this case, Bayesian hier-
archical models are an appropriate choice, thanks to
the available tools for accounting for and inferring the
effects of site and time-specific random effects (r.e.). How-
ever, Bayesian inference is computationally demanding,
in particular when model-fitting involves large numbers
of latent variables. Efficient model-fitting is increasingly
important with the ongoing growth in the volume of
biological recording data, partly due to increasing partic-
ipation through new technologies and platforms for data
submission (August et al., 2015). Fast inference is alsomoti-
vated by the increasing desire to update species’ trend
estimates frequently, in order to inform themeasuring and
reporting of biodiversity change.

1.2 Current models

One popular form of model describes dynamic occupancy;
see, for example, Royle and Dorazio (2008, Chap. 9). This
model is designed for data from several years and incorpo-
rates parameters representing colonization and extinction.
It is therefore mechanistic, with parameters which may
assist in the understanding of spatial and temporal changes
in the distribution. The basic model may be extended, for
example, to allow temporal development to depend upon
the status of neighboring sites; see Broms et al. (2016). Typ-
ically, these informative, complex models are designed for
relatively short studies with small numbers of sites. Both
Bayesian and classical inference methods have been used,
in the latter case using unmarked in R (Fiske & Chandler,
2011); Bayesian inference is discussed in Kéry and Royle
(2021, pp. 208, 564). However for large numbers of sites
and occasions computing times can be excessive (see van
Strien et al., 2013), and other approaches are in current use
in these cases.
Alternatively, one can use static models, in which a sim-

ple occupancy model is fitted to the data for each year
separately, and the site occupancy probability for each year
is described by a logistic function of site-specific covariates.
This approach was proposed by Dennis et al. (2017); it is
fitted using unmarked (Fiske & Chandler, 2011) and clas-
sical inference. The static model is appreciably faster in
execution.However, a drawback of analyzing the data from
each year separately arises regarding records from early
years, whichmay not be sufficiently numerous to allow the
fitting of a static model in those cases. Similarly, produc-
ing occupancy trends for rare or less well-recorded species
may not be possible using the static model and there is
no sharing of information between years, as each year is
modeled separately.
The more recent approaches cast the detection and

presence process in a binomial probit or logistic regres-
sion framework, taking advantage of fast and efficient
Gibbs sampler schemes. Since posterior inference for
both the probit and logistic likelihood are analytically
intractable, the Gibbs sampler relies on data augmenta-
tion schemes to obtain tractable posterior inference. For
probit regression, the data augmentation scheme used is
due to Albert and Chib (1993), while for logistic regres-
sion the scheme is due to Polson et al. (2013). One of the
first approaches within the occupancy modeling frame-
word is due to Dorazio and Rodriguez (2012), who use a
probit-regression model formulation for the detection and
occupancy probability. Similarly, Johnson et al. (2013) and
Hepler and Erhardt (2021) presented a spatial regression
model using a conditional autoregressive (CAR) model.
All the aforementioned approaches focus on a probit link
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DIANA et al. 3

function. However, after the introduction of the Pólya-
Gamma scheme (PG) of Polson et al. (2013), Clark and
Altwegg (2019) have also proposed the use of the logit
in occupancy models. The logit link leads to more intu-
itive interpretation of the regression coefficients in terms
of log-odds, and hence is the more natural choice for
binary variables, such as site occupancy and detection.
Additionally, the PG scheme has been proved to have opti-
mal mixing properties (Choi & Hobert, 2013). Moreover,
as mentioned later in Section 6, the PG scheme can be
more easily extended to interesting developments, such as
variable selection.
Spatial autocorrelation between surveyed sites has typ-

ically been incorporated using a CAR process (Mardia,
1988). The CAR prior is usually defined on a lattice, where
sites are equally spaced and each site relies on the defi-
nition of a neighborhood structure. Therefore, the use of
the CAR on irregular site locations entails approximation
into a regular grid. For example, Johnson et al. (2013) con-
sidered a tessellation of 100 km2 equally spaced hexagonal
survey units and Clark & Altwegg (2019) considered a con-
tinuous grid of 5′ × 5′ cells. However, opportunistic data of
the type considered in this paper, because of their nature,
are collected at irregular locations and the degree of error
by approximating them on a lattice can be considerable.
Temporal autocorrelation has been introduced using

a first-order vector autoregressive process (Hepler &
Erhardt, 2021), using a spline-basis approach for the spa-
tial effects, whose coefficients follow a time-dependent
random walk (Rushing et al., 2019), or using a random
walk to describe the changes in occupancy across the years
(Outhwaite et al., 2018).
Instead, in this paper we model spatial and temporal

autocorrelation using a Gaussian process (GP) approach
(Rasmussen & Williams, 2006). The advantage of using
a GP is that it allows us to naturally model spatial auto-
correlation between sites sampled at continuous locations,
which is typically the case for opportunistic data, and, in
contrast to CAR, allows for a different degree of correla-
tion between sites according to their distance, even if they
are neighboring. We also model temporal autocorrelation
within a GP framework, and consider an additive structure
for the effect of space and time, also known as the separa-
ble case, and describe how to implement the non-separable
case in our framework, where the spatial and temporal r.e.
are not a priori independent.
We cast the occupancy and detection process within a

logistic regression framework, and take advantage of the
efficient PG augmentation scheme (Polson et al., 2013) for
inference, which is well-established in the Bayesian liter-
ature (Holsclaw et al., 2017; Linderman et al., 2015) but
not in the ecological modeling literature, with some recent
exceptions (Clark & Altwegg, 2019; Griffin et al., 2020)

In addition, we describe and compare different approxi-
mations for the GP, subset of regressors (SoR) (Smola &
Bartlett, 2001) and nearest neighbor GPs (NNGPs) (Datta
et al., 2016), and demonstrate how they can be used within
a PG framework.
The new model of this paper responds to the need for

a computationally efficient approach to analyze presence–
absence data arising from a large number of sites, while
accounting for spatial and temporal autocorrelation, and
which accommodates species with sparse records by
jointly modeling data collected across different years.

1.3 Paper outline

The model of the paper is described in Section 2. Sec-
tion 3 discusses the theoretical concepts of our model,
such as the PG scheme and the GP approximations.
Section 4 presents simulation studies showing compar-
isons between different spatial approximations. Section 5
applies the new model to two illustrative datasets on
UK butterflies. Section 6 discusses possible extensions
and the paper ends with discussion in Section 7. Techni-
cal details of the MCMC and additional results, includ-
ing a simulation study demonstrating the importance of
accounting for spatial autocorrelation, are provided in the
supporting information.

2 MODEL: BAYESIAN FRAMEWORK
AND GAUSSIAN PROCESSES

For any species, observations are collected at 𝑆 sites and
across 𝑌 years. A number of observations may be collected
at each site and year. This number, which does not need to
be defined for the purposes of the model, does not have to
be the same for all sites or years and can be equal to 0 for
particular pairs of sites and years. We refer to the unique
pairs of sites and yearswith at least one observation as sam-
pling units and we index them by 𝑗 = 1,… , 𝐽. If all sites
are sampled in all years, then 𝐽 = 𝑆 × 𝑌. We assume that
the occupancy status of a site can change between years
but not within, which is a standard assumption of similar
models for multi-season occupancy data.
We introduce latent variables 𝑧𝑗, 𝑗 = 1,… , 𝐽, indicat-

ing the occupancy status of sampling units, with 𝑧𝑗 =

1 if sampling unit 𝑗 is occupied and 0 otherwise. We
assume that each sampling unit is occupied with proba-
bility 𝜓𝑗 , that is, 𝑧𝑗 ∼ Be(𝜓𝑗). We index the site and year
of sampling unit 𝑗 by 𝑠𝑗 and 𝑡𝑗 , respectively. Finally, we
denote by 𝐱𝑠 = (𝑥1𝑠 , 𝑥

2
𝑠 ) the location of site 𝑠 and by 𝑤𝑦 the

time point of year 𝑦. For example, if the data were col-
lected in years 2000, 2001, 2004, and 2005, (𝑤1, … ,𝑤4) =
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4 DIANA et al.

(2000, 2001, 2004, 2005) and 𝑡𝑗 = 1, … , 4 if sampling unit 𝑗
belongs to years 2000,2001,2004,2005, respectively.
We denote by𝑁 the total number of observations across

all sampling units and we define 𝑦𝑖 , 𝑖 = 1, … ,𝑁, to be
the outcome of observation 𝑖, that is, 𝑦𝑖 = 1 if the species
is detected at observation 𝑖, and 0 otherwise. Finally,
we introduce 𝑘𝑖 ∈ {1, … , 𝐽}, 𝑖 = 1… ,𝑁, which indexes the
sampling unit of observation 𝑖 so that if observation 𝑖 cor-
responds to sampling unit 𝑗, then 𝑘𝑖 = 𝑗. Therefore, if
sampling unit 𝑗 is occupied then 𝑧{𝑖∶𝑘𝑖=𝑗} = 1 and oth-
erwise 𝑧{𝑖∶𝑘𝑖=𝑗} = 0. We account for the probability of a
false negative observation but assume that false positive
observations do not occur and hence assume that 𝑦𝑖 ∼
Be(𝑝𝑖𝑧𝑘𝑖 ) with 𝑝𝑖 being the probability of detecting the
species given presence.
We model the probability of detection 𝑝𝑖 as

logit(𝑝𝑖) = 𝑢𝑡𝑘𝑖
+ 𝑋𝑖𝛽

𝑝, (1)

where 𝑢𝑡 is a year-specific r.e. with prior distribution 𝑢𝑡 ∼
𝑁(𝜇

𝑝
0
, 𝜎

𝑝
0
), 𝑡𝑘𝑖 is the index of the year in which observation

𝑖 is collected and 𝑋𝑖 is the set of covariates for observation
𝑖, 𝑖 = 1, … ,𝑁.
We model the probability that sampling unit 𝑗 is occu-

pied, 𝜓𝑗 , as a function of both fixed effects, such as
covariates, and r.e., and specifically r.e. that account for
temporal autocorrelation between years, spatial autocor-
relation between sites and individual variation of sites:

logit(𝜓𝑗) = 𝜇𝜓 + 𝑏𝑡𝑗 + 𝑎𝑠𝑗 + 𝑋𝐶
𝑗
𝛽𝜓 + 𝜖𝑠𝑗 (2)

where 𝜇𝜓 is an intercept, 𝑏𝑡 is a r.e. for year 𝑡, 𝑎𝑠 and 𝜖𝑠 are
r.e. for site 𝑠, and 𝑋𝐶

𝑗
is the set of covariates for sampling

unit 𝑗. The site-specific random effects (𝜖1, … , 𝜖𝑆) are mod-
eled as independent random variables 𝜖𝑠 ∼ 𝑁(0, 𝜎2𝜖 ), while
the rest of the r.e. are defined below using GPs.

2.1 Gaussian processes

To define a distribution for the r.e. 𝑏 and 𝑎, we intro-
duce the concept of GPs (Rasmussen & Williams, 2006).
Given a general covariance function 𝑘(𝜉𝑖, 𝜉𝑗), we define
the entries of the covariance matrix between the sets
of points 𝜉1 = (𝜉1

1
, … , 𝜉1𝑛) and 𝜉2 = (𝜉2

1
, … , 𝜉2𝑚), 𝐾(𝜉1, 𝜉2),

as {𝐾(𝜉1, 𝜉2)}𝑖,𝑗 = 𝑘(𝜉1
𝑖
, 𝜉2

𝑗
). If 𝜉1 = 𝜉2, we simplify the

notation 𝐾(𝜉1, 𝜉1) to 𝐾(𝜉1) and we might omit 𝜉 if the
dependency is clear. A function 𝑓 has a GP prior dis-
tribution if, for every combination of values 𝜉1, … , 𝜉𝑛,
it holds that (𝜂1, … , 𝜂𝑛) ∼ N(0, 𝐾(𝜉1, … , 𝜉𝑛)), where 𝜂𝑖 =

𝑓(𝜉𝑖). In this paper,we consider the exponential covariance

function 𝑘(𝜉𝑖, 𝜉𝑗) = 𝜎2e−
|𝜉𝑖−𝜉𝑗 |2

𝑙2 , where 𝜎 tunes the overall
variability of the GP and 𝑙 tunes the correlation between
points, and we write the related covariance matrix as 𝐾𝑙,𝜎.
The points 𝜉1, … , 𝜉𝑛 are called support points. Although,
in general, the GP is defined for a function with an infi-
nite number of support points, in our case, we apply the
GP on a function defined on a finite number of points,
as we explain below, and hence this is simply equiva-
lent to assuming a multivariate normal distribution on
(𝜂1, … , 𝜂𝑛) = (𝑓(𝜉1), … , 𝑓(𝜉𝑛)). The advantage of GPs is
that posterior inference is analytically tractable. If a prior
𝜂 ∼ 𝑁(0, 𝐾) is used with a likelihood 𝑦 ∼ 𝑁(𝜂, 𝜎2𝐼), the
posterior distribution 𝑝(𝜂|𝑦) has the form 𝑁(

1

𝜎2
(𝐾−1 +

𝜎−2𝐼)−1𝑦, (𝐾−1 + 𝜎−2𝐼)−1). The posterior distribution at
new points is also readily available.
To account for temporal correlation, we assume that

the year-specific r.e. 𝐛 = (𝑏1, … , 𝑏𝑌) are distributed
according to a GP with parameters (𝑙𝑇, 𝜎𝑇) and support
points (𝑤1, … ,𝑤𝑌), which corresponds to assuming
that (𝑏1, … , 𝑏𝑌) ∼ 𝑁(0, 𝐾𝑙𝑇,𝜎𝑇 (𝑤1, … ,𝑤𝑌)). Similarly, we
account for spatial autocorrelation by assuming that
the 𝐚 = (𝑎1, … , 𝑎𝑆) are distributed according to a GP
with parameters (𝑙𝑆, 𝜎𝑆) and support points the locations
(𝐱1, … , 𝐱𝑆) of the sites, which corresponds to assuming
that (𝑎1, … , 𝑎𝑆) ∼ 𝑁(0, 𝐾𝑙𝑆,𝜎𝑆 (𝐱1, … , 𝐱𝑆)).

2.2 Comparison between GP and CAR

As mentioned in the introduction, a popular alternative
to the GP prior for modeling temporal or spatial auto-
correlations is the conditionally autoregressive (CAR)
prior (Besag & Kooperberg, 1995). The CAR prior is
defined conditionally on a neighborhood structure for the
observations. Given a neighborhood matrix, 𝑊, where
𝑊𝑖𝑗 = 1 if the observations 𝑎𝑖 and 𝑎𝑗 are in the same
neighborhood and 0 otherwise, and a spatial dependence
parameter 𝜌, the CAR model defines a prior for the vector
𝐚 = (𝑎1, … , 𝑎𝑆) by defining a prior on the full conditional

distributions 𝑎𝑖|𝑎−𝑖 ∼ 𝑁(𝜌

∑
𝑗≠𝑖 𝑤𝑖𝑗𝑎𝑗

𝑑𝑖
,
𝜎2

𝑑𝑖
), where 𝑑𝑖 is the

number of elements in the neighborhood of 𝑖. There-
fore, the conditional mean of the 𝑖th observation is a
weighted average of the observations in its neighborhood,
that is, the observations 𝑗 for which 𝑊𝑖𝑗 = 1. It follows
from these assumptions that 𝐚 ∼ 𝑁(0, 𝑄−1), with the
precision matrix 𝑄 =

1

𝜎2
(𝐷 − 𝜌𝑊), where 𝐷 is a diagonal

matrix with entries 𝐷𝑖𝑖 = 𝑑𝑖 . Since 𝐷 and 𝑊 are sparse,
this prior leads to sparse precision matrices (but dense
covariance matrices in general), with non-neighboring
elements having entry 0 in the precision matrix, but
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DIANA et al. 5

not necessarily in the covariance matrix. This leads to
the CAR being more computationally efficient than the
GP, since the precision matrix of the GP is in general
not sparse except in the case of the Laplace kernel
𝑘(𝜉1, 𝜉2) = 𝑎 exp(𝑏|𝜉1 − 𝜉2|). However, the CAR assigns
equal correlation to elements in the same neighborhood,
irrespective of their actual distance. We note that exten-
sions to irregular locations do exist (Rue & Held, 2005),
but they are mathematically more challenging and have
not been considered in an occupancy framework. On the
other hand, GPs account for irregular locations, but are
computationally more expensive, and approximation
methods have to be considered when the num-
ber of observations, in this case sites or times, are
large.

2.3 Hierarchical structure

The following hierarchical structure completes the defi-
nition of our model, including the prior distributions of
all parameters, where 𝑖 = 1, … ,𝑁, 𝑗 = 1,… , 𝐽, 𝑡 = 𝑡1, … , 𝑡𝐽 ,
and 𝑠 = 1,… , 𝑆,

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝑦𝑖 ∼ Be(𝑝𝑖𝑧𝑘𝑖 ) 𝑧𝑗 ∼ Be(𝜓𝑗)
logit(𝜓𝑗) = 𝜇𝜓 + 𝑏𝑡𝑗 + 𝑎𝑠𝑗 + 𝑋𝐶

𝑗
𝛽𝜓 + 𝜖𝑠𝑗 , 𝜇𝜓 ∼ 𝑁(𝜇

𝜓
0
, 𝜎

𝜓
0
), 𝛽𝜓 ∼ 𝑁(0, 𝜙𝜓𝐼)

𝜖𝑠 ∼ 𝑁(0, 𝜎2𝜖 ) 𝜎2𝜖 ∼ IG(𝑎𝜖, 𝑏𝜖)
logit(𝑝𝑖) = 𝑢𝑡𝑘𝑖

+ 𝑋𝑖𝛽
𝑝, 𝑢𝑡 ∼ 𝑁(𝜇

𝑝
0
, 𝜎

𝑝
0
), 𝛽𝑝 ∼ 𝑁(0, 𝜙𝑝𝐼)

(𝑏1, … , 𝑏𝑌) ∼ 𝑁(0, 𝐾𝑙𝑇,𝜎𝑇 (𝑤1, … ,𝑤𝑌)), 𝜎𝑇 ∼ IG(𝑎𝜎𝑏 , 𝑏𝜎𝑏 ), 𝑙𝑇 ∼ Gamma(𝑎𝑙𝑇 , 𝑏𝑙𝑇 ),
(𝑎1, … , 𝑎𝑆) ∼ 𝑁(0, 𝐾𝑙𝑆,𝜎𝑆 (𝐱1, … , 𝐱𝑆)), 𝜎𝑆 ∼ IG(𝑎𝜎𝑆 , 𝑏𝜎𝑆 ), 𝑙𝑆 ∼ Gamma(𝑎𝑙𝑆 , 𝑏𝑙𝑆 ).

(3)

3 THEORY

In this section, we define the basic building blocks of our
inference strategy. First, we describe the PG scheme,which
is a data augmentation scheme used to obtain analytically
tractable posterior distributions in a logistic regression set-
ting. Next, we define the GP approximation chosen to
efficiently model autocorrelation between a large number
of observations.

3.1 Pólya-Gamma scheme

A random variable 𝑤 has a PG distribution, 𝑤 ∼ PG(𝑑, 𝑐)
if 𝑤 =

1

2𝜋2

∑∞

𝑘=1

𝑔𝑘

(𝑘−
1

2
)2+

𝑐2

4𝜋2

, where 𝑔𝑘 ∼ Gamma(𝑑, 1).

According to the PG scheme, given a set of 𝑛 observations
𝑦𝑖 ∼ Binomial(𝑑𝑖, 𝑝𝑖), where logit(𝑝𝑖) = 𝑋𝑖𝛽, a Gibbs
sampler scheme for 𝛽 is available by introducing a set

of random variables 𝜔𝑖 , such that 𝜔𝑖 ∼ PG(𝑑𝑖, 0). More
specifically, assuming prior distribution 𝛽 ∼ 𝑁(𝑏, 𝐵), the
full conditional distributions used for the Gibbs sampler
are

(𝜔𝑖|𝛽) ∼ PG(𝑑𝑖, 𝑋𝑖𝛽) 𝑖 = 1, … , 𝑛 (4)

( 𝛽|𝑦, 𝜔) ∼ 𝑁((𝑋𝑇Ω𝑋 + 𝐵−1)−1(𝑋𝑇𝑘 + 𝐵−1𝑏),

(𝑋𝑇Ω𝑋 + 𝐵−1)−1), (5)

where Ω = diag(𝜔1, … , 𝜔𝑛) and 𝑘 = (𝑦1 −
𝑑1

2
, … , 𝑦𝑛 −

𝑑𝑛

2
).

Polson et al. (2013) described an efficient algorithm to sam-
ple a PG r.v. that does not require truncating the infinite
sum in the definition of the PG distribution.We use the PG
scheme to sample jointly from the posterior distribution of
the parameters (𝑢𝑡, 𝛽𝑝) and (𝜇𝜓, 𝑏𝑡, 𝑎𝑠, 𝛽𝜓) in Equations (1)
and (2), respectively.

3.2 Spatial approximations

As explained in Section 2.1, in the context of continuous
observations, inference using GPs relies on factorization
of the 𝑆 × 𝑆 matrix (𝐾−1 + 𝜎−2𝐼), where 𝑆 is the number
of observations, whereas when using the PG scheme to
model binary observations, we need to factorize thematrix
(𝐾−1 + 𝑋𝑇Ω𝑋) in Equation (5), since the prior covariance
matrix 𝐵 of the spatial r.e. in Equation (5) corresponds
to the GP matrix 𝐾. If the number of points, in our case
the number of sites, is large (≈ 106 in the case study), it
becomes computationally prohibitive to obtain the factor-
ization of the 𝑆 × 𝑆 matrix. Therefore, approximations of
the GP have to be considered. There is a large literature
on approximation methods for GPs, so we do not aim to
give a comprehensive review here but instead focus on
twopopular types of approximations: low-rank approxima-
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6 DIANA et al.

tions and sparse approximation methods. For an extensive
review, we refer the reader to Liu et al. (2020). In the simu-
lation study in Section 4.1, we compare a method from the
class of low-rank approximations, the SoR, and a method
from the class of sparse approximations, the NNGP. We
also consider a very basic approximation, in which the
initial GP on 𝑆 locations is approximated by introducing
another GP computed on a smaller number of support
points (�̃�1, … , �̃�𝑀), where 𝑀 ≪ 𝑆, with respective values
(�̃�1, … , �̃�𝑀), and replacing each original value 𝑎𝑗 with the
value of its closest support point �̃��̃� . We term this approxi-
mation the closest point (CP) and note that its complexity
is 𝑂(𝑀3 + 𝑆).
Low-rank methods approximate the covariance matrix

𝐾 as Λ𝑇�̃�Λ, where �̃� is an𝑀 ×𝑀 matrix and Λ is an𝑀 ×

𝑆 matrix, where 𝑀 ≪ 𝑆. The Woodbury identity matrix
can then be used to replace the inversion of the 𝑆 × 𝑆

matrix 𝐾−1 with the 𝑀 ×𝑀 matrix �̃�−1. One of the most
popular approximations in this class is the SoR method,
which consists of using the degenerate covariance func-
tion 𝑘SOR(𝑥, 𝑦) = 𝐾(𝑥, 𝐱⋆)(𝐾(𝐱⋆, 𝐱⋆)

⏟⎴⏟⎴⏟
�̃�

)−1𝐾(𝐱⋆, 𝑦), where

𝐾(𝑥, 𝑦) is a covariance function, defined in Section 2.1,
and 𝐱⋆ is a set of 𝑀 points, called inducing points. A use-
ful alternative representation of the SoR is to express the
vector of effects 𝑎 ∼ 𝑁(0, 𝐾(𝑥, 𝑥)) as �̃� = 𝐾(𝑥, 𝐱⋆)�̃�−1

⏟⎴⎴⏟⎴⎴⏟
𝐾⋆

𝑎⋆,

where 𝑎⋆ ∼ 𝑁(0, �̃�) is a vector of lower dimension 𝑀

following an exact GP prior. Using this representation,
inference can be performed as in a standard regres-
sion model, where 𝐾⋆ is the design matrix and 𝑎⋆ is
the 𝑀-dimensional vector of regression coefficients. This
leads to the posterior precision matrix 𝜎−2(𝐾⋆)𝑇𝐾⋆ +

�̃�−1 in the context of continuous observations and, from
Equation (5), (𝐾⋆)𝑇Ω𝐾⋆ + �̃�−1 in the context of the
PG scheme.
However, if in the continuous case (𝐾⋆)𝑇𝐾⋆ needs to be

precomputed only once, in the PG case (𝐾⋆)𝑇Ω𝐾⋆ has to
computed for each new draw ofΩ fromEquation (4). Since
the computation of (𝐾⋆)𝑇Ω𝐾⋆ has complexity 𝑂(𝑆𝑀2),
which is much greater than the cost𝑂(𝑀3) to factorize the
precision matrix, this becomes the dominant calculation
and the SoR method quickly becomes unfeasible. To avoid
this drawback, we propose to replace the full designmatrix
𝐾⋆ of dimension 𝑆 ×𝑀 with a smaller design matrix of
dimension 𝑆 ×𝑀⋆, by taking the𝑀⋆ biggest components
of each row (or, equivalently, by considering only the
𝑀⋆ CPs between all the 𝑀 support points). This approx-
imation, which we term approximated SoR (ASoR), has
reduced complexity 𝑂(𝑀3 + 𝑆𝑀⋆2). We note that the CP
approximation can be seen as a special case of the ASoR,
where𝑀⋆ = 1 and 𝐾⋆(𝑥, 𝑥⋆) ≡ 1.

Sparse approximation methods rely on obtaining a
sparse approximation of the precision matrix 𝐾−1 by
zeroing some of its elements, so that fast methods for fac-
torizing sparse matrices can be employed. This approach
is closely related to working with a Gaussian Markov
random field (GMRF) and Rue and Tjelmeland (2002)
have proposed embedding the irregular point locations
in a regular lattice and approximating the GP with
a GMRF.
A related method is the NNGP (Datta et al., 2016). The

idea of the NNGP is to replace the conditional distribu-
tions 𝑎𝑖|𝑎1, … , 𝑎𝑖−1, with an approximation using only the
𝑚 closest neighbors in the previous 𝑖 − 1 observations,
𝑎𝑖|𝑎𝑖⋆

1
, … , 𝑎𝑖⋆𝑚 . Using this approximation, the precision

matrix 𝐾−1 can be expressed as (𝐼 − 𝐴)𝐷(𝐼 − 𝐴)𝑇 , where
𝐴 is a sparse triangular matrix and 𝐷 is diagonal, hence
the product is also a sparse matrix. For more details on
inference with NNGP, we refer the reader to Finley et al.
(2019). We note that the complexity of the NNGP is not
known in general as it depends on the sparsity pattern of
the matrix 𝐴. The NNGP is also a GMRF, as the full con-
ditional of each observation depends only on the value of
the observations in its neighborhood.

4 SIMULATION STUDIES

4.1 Approximation of Gaussian
processes

We performed a simulation study to compare the three
GP approximation methods described in Section 3.2: the
CP, the ASoR, and the NNGP. We ran the ASoR method
by choosing 𝑀⋆ = 10, since we observed that the perfor-
mance was very similar to the standard SoR method if
𝑀⋆ was chosen as large as 10. To perform the simula-
tion study, we generated data over 10 years on 𝑆 = 4900

sites, spread uniformly over a unit square. We performed
15 runs, where for each run we fitted the model on 70% of
the sites, chosen at random, predicted the spatial pattern
𝑎𝑠 on the remaining sites and computed themean absolute
error between the true values �̄�𝑠 and the posterior means
�̂�𝑠. To tune the CP and the ASoR method, we varied the
number of inducing points 𝑀. The inducing points were
chosen by taking a uniform grid of points across the unit
square and varying the grid step. To tune theNNGP,we var-
ied the number of neighbors considered. Results are shown
in Figure 1. The ASoR and the NNGP method clearly
outperform the CP as far as mean absolute error is con-
cerned, although theCP is generally faster as expected. The
NNGP and the ASoR obtained comparable performances
in terms of both computational time and predictive power.

 15410420, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13816 by T
est, W

iley O
nline L

ibrary on [30/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DIANA et al. 7

F IGURE 1 Comparison between the Gaussian process (GP) approximation methods showing the relationship between computational
time and mean absolute error (MAE) for each method. The x-axis represents the computational time and the y-axis represents the mean
absolute error. The results of the ASoR are shown by the solid black line, the results of the NNGP by the solid grey line, and the results of the
CP by the dashed line. For the CP, we used grid steps {0.2, 0.175, 0.15, 0.125, 0.1}, for the ASoR, we used grid steps {0.3, 0.25, 0.2, 0.175, 0.15},
while for the NNGP we used as number of neighbors {5, 10, 15, 20, 25, 30}

Therefore, we recommend either the NNGP or the ASoR,
since theCP approximationhas been found to be too crude,
and consider the ASoR for the case studies presented in
this paper.

5 CASE STUDIES

We applied our model to data for two UK butterfly species:
Ringlet (Aphantopus hyperantus) and Duke of Burgundy
(Hamearis lucina). In doing so, we demonstrate the perfor-
mance of the new model for both a common, widespread
species (Ringlet) and a rare, range-restricted species (Duke
of Burgundy).
Butterfly data were collated through the Butterflies for

the NewMillennium (BNM) recording scheme run by But-
terfly Conservation, using records collected between 1970
and 2014, during which the database consisted of over 11
million records of UK butterflies (Fox et al., 2015). BNM
data were restricted to records with an exact date and loca-

tion of 1 km resolution or finer. For each of the two species,
records were then filtered to months within which records
of the focal species had been recorded, and observations
of other species used to form detection histories (Kéry
et al., 2010). Thus for Ringlet, the dataset featured > 2 mil-
lion records from 140,887 unique 1 km2 (defined as sites),
of which Ringlet had been recorded at 47,561 sites from
218,225 detections. Conversely, the dataset for Duke of Bur-
gundy consisted of approximately 1.5 million records from
128,197 sites (1 km2), of which Duke of Burgundy had been
recorded at 747 sites from 6,584 detections. On a machine
equipped with an Intel Core i7-10610@1.8 GHz with 16 GB
of RAM, the model took 19 h to run on each dataset for
15 × 104 burn-in iterations and 25 × 104 iterations.
For both species, we considered the interactions

between year and easting and between year and northing
as covariates for occupancy probability. For the detection
probability, we considered as covariates the relative list
length and the first three powers of the Julian date. The
relative list length is obtained by dividing the list length,
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8 DIANA et al.

F IGURE 2 Top row: 95% posterior credible interval (PCI) of the occupancy index for (A) Ringlet and (B) Duke of Burgundy. Bottom row:
95% PCIs of the year-specific detection probabilities at the average value of the list length covariate for (C) Ringlet and (D) Duke of Burgundy.
The dots represent the posterior medians. Note that different scales are used for the two species

which is the number of species recorded for a given
site/date (Szabo et al., 2010; van Strien et al., 2013), by the
maximum recorded list length in a neighboring area of
50 km. All covariates were standardized to have zero mean
and unit variance. We do not consider the main effects for
year or easting/northing, since the effects of year and space
on the probability of occupancy are already accounted for
in the processes 𝑏𝑡 and 𝑎𝑠 and therefore adding these main
effects would lead to confounding between the spatial
r.e. and the fixed-effect covariates (Hodges & Reich,
2010; Reich et al., 2006). Finally, we employ the ASoR
approximation defined in Section 3.2 with inducing points
taken on a grid of 20 km width on the study area, which
corresponds to𝑀 = 909 inducing points.
For each species, we calculate the yearly occupancy

index (Dennis et al., 2017) at each MCMC iteration using
𝐼
(𝑙)
𝑡 =

1

𝑆

∑𝑆

𝑗=1
𝜓
(𝑙)
𝑡,𝑗
, where 𝜓(𝑙)

𝑡,𝑗
is the occupancy probability

at site 𝑠 and year 𝑡 for iteration 𝑙. Posterior summaries of
the occupancy index for both species are shown inFigure 2,
and support previous findings suggesting that Ringlet has
increased in occurrence since 1970, whereas Duke of Bur-
gundy has seen a reduction in occurrence (Fox et al., 2015).
The indices for both species show increasing precision

with time, reflecting an increase in underlying recording
effort (Dennis et al., 2017), which is also a feature for other
taxa (Isaac & Pocock, 2015).
The estimated occupancy probabilities for the two

species are mapped over space for selected years in
Figure 3. Note that the map for the Duke of Burgundy has
been zoomed in to the part of the countrywhere the species
can be found, due to its restricted range. These patterns are
consistent with what is known, namely that Ringlet has
been expanding in range andnowoccupiesmost of theUK,
with the exception of Northern Scotland and a small por-
tion of northern England, whereas Duke of Burgundy has
been contracting in range and can now only be found at a
very small number of locations.
Ringlet has been shown to have increased in both range

and abundance (Fox et al., 2015), which is a likely response
to recent climate change (Mason et al., 2015). Duke of Bur-
gundy is one of the UK’s most threatened species (Fox
et al., 2011), with long-term declines in both abundance
and distribution (Fox et al., 2015), but as seen in Figure 2
the decline in occurrence appears to have stabilized in
more recent years, which may be due to conservation
efforts (Ellis et al., 2012).
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DIANA et al. 9

F IGURE 3 Posterior medians of the site-specific occupancy probabilities for Ringlet (top row) and Duke of Burgundy (bottom row) for
1970 (first column), 1985 (second column), 2000 (third column), and 2014 (fourth column). White areas represent parts of the country with no
records of any butterfly species. This figure appears in color in the electronic version of this paper, and any mention of color refers to that
version

F IGURE 4 Posterior median and 95% posterior credible interval (PCI) of the detection probability 𝑝 across the year for the Ringlet (A)
and Duke of Burgundy (B) in the year 2000, at the average value of the relative list length. The black line represents the posterior median. We
note that we have plotted only one year as the coefficients of Julian date are constant across time and hence the trend in other years is simply
a shifted version

Relative list length has a positive effect on detection
probability with 95% posterior credible interval (PCI)
(1.085, 1.098) and (0.797, 0.866) for Ringlet and Duke of
Burgundy, respectively. The PCIs of the year-specific detec-
tion probabilities are shown in Figure 2. Interestingly,
detection probabilities for Ringlet appear relatively stable
over time, whereas estimated detection probabilities for
Duke of Burgundy may have increased slightly, possibly

due to increases in recorder effort to observe this rare, but
also diminutive, species. In Figure 4, we show the poste-
rior summaries of detection probability at each time 𝑡 of
the year, 𝑝𝑡, for both species, where it can be seen that
the detection probability is extremely low outside the sum-
mer months corresponding to each species’ flight period.
However, it is important to consider that in our model
we assume that occupancy status of sites does not change
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10 DIANA et al.

F IGURE 5 Goodness of fit for yearly detections for (A) Ringlet and (B) Duke of Burgundy. The squares represent the true values, while
the error bars represent the 95% posterior credible interval (PCI) of the test statistics

during a year, even though butterflies obviously do not fly
throughout the year. Therefore, the probability of detec-
tion at time 𝑝𝑡 in our model can be interpreted instead
as the product 𝑝0𝑑𝑡, where 𝑑𝑡 is the probability of butter-
flies of the species flying at time 𝑡 and 𝑝0 is the probability
of detecting at least one butterfly of that species, condi-
tional on the species flying at time 𝑡, with the latter usually
considered as the detection probability.
Convergence has been checked by monitoring trace-

plots from single chains, which we have reported in the
supporting information.

5.1 Goodness of fit

To check the goodness of fit of themodel, we have also per-
formed posterior predictive checks using two test statistics:
the number of yearly detections across all sites, 𝑇1𝑡 (𝑦) =∑

𝑘𝑖=𝑗
𝑡𝑗=𝑡

𝑦𝑖 and the number of detections in a given region

𝑟, 𝑇2𝑟 (𝑦) =
∑

𝑘𝑖=𝑗
𝑠𝑗∈𝑟

𝑦𝑖 . We have compared the true value of

the statistic in each case with the 95% PCI of the posterior
predictive distribution of the test statistic, 𝑇(�̃�), where �̃�
has distribution 𝑝(�̃�|𝑦) = ∫ 𝑝(�̃�|𝜃)𝑝(𝜃|𝑦)𝑑𝜃. We note that
draws �̃�1, … , �̃�𝑙 from 𝑝(�̃�|𝑦) can easily be obtained by sam-
pling at each step of the MCMC �̃� ∼ 𝑝(𝑦|�̄�), where �̄� is the
value of the parameters at the each iteration. For the test
statistics 𝑇2𝑟 (𝑦), we took as region the patches used for the
spatial approximation.
The resulting goodness of fit plots for both datasets are

shown in Figures 5 and 6. Figure 5 shows that the model
properly accounts for the variation across years for both

species. It is worth noting that we also ran the model with
a constant detection probability across years and the PCIs
of 𝑇1𝑡 (𝑦) did not always contain the true values, suggest-
ing that the fit of the model is not as good in that case.
We show plots of the goodness of fit for the model with
constant detection probability in Figure 2 of the support-
ing information. The lack of fit of 𝑇2𝑟 (𝑦) (i.e. seen in Figure
6) is likely a suggestion that detection probability exhibits
variation across space as well as time. However as com-
mented earlier, we do not model variation of the detection
probability across space since we already model spatial
variation of the occupancy probability, and modeling the
spatial variation of both quantities could lead to uniden-
tifiability issues between the two. We note that using list
length instead of relative list length causes a bias in the
goodness of fit and leads to the number of detections in
the north being consistently underestimated. The cause of
the bias is that since fewer butterfly species inhabit the
North of the UK, observers in the North are penalized
with respect to the ones in the South as it is more diffi-
cult further north to detect a large number of species, and
hence their capabilities are underestimated compared to
observers in the South.

6 POTENTIAL EXTENSIONS

We model temporal and spatial r.e. as additive inde-
pendent effects, as shown in Equation (2). To allow for
interaction between time and space, we can define a GP
prior jointly over time and space in the following way. For-
mally, we introduce 𝑆 × 𝑌 r.e., {𝑐𝑦𝑠}𝑦=1,…,𝑌,𝑠=1,…,𝑆 , where
𝑐𝑦𝑠 is the r.e. for year 𝑦 and site 𝑠, and assume a GP prior
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DIANA et al. 11

F IGURE 6 Goodness of fit for space detections for (A) Ringlet and (B) Duke of Burgundy. Different colors identify where the true
statistic is inside the 95% posterior credible interval (PCI), above and below the 99% PCI, and between the 95% and 99% PCI. This
figure appears in color in the electronic version of this paper, and any mention of color refers to that version

distribution with support points (𝑤𝑦, 𝐱𝑠)𝑦=1,…,𝑌,𝑠=1,…,𝑆 ,
such that (𝑐11, … , 𝑐𝑆𝑌) ∼ 𝑁(0, 𝐾), where
𝐾((𝜔𝑦1 , 𝐱𝑠1), (𝜔𝑦2 , 𝐱𝑠2)) depends on the distance between
the time–space points (𝜔𝑦1 , 𝐱𝑠1) and (𝜔𝑦2 , 𝐱𝑠2). Similar
approaches have been proposed. For example, Datta et al.
(2016) proposed to use NNGP to assume nonseparable
covariance matrices in a GP framework while obtain-
ing scalable computations. We note that our additive
modeling approach arises if 𝐾((𝜔𝑦1 , 𝐱𝑠1), (𝜔𝑦2 , 𝐱𝑠2)) =

𝐾𝑙𝑇,𝜎𝑇 (𝜔𝑦1 , 𝜔𝑦2) + 𝐾𝑙𝑆,𝜎𝑆 (𝐱𝑠1 , 𝐱𝑠2). In the non-separable
case, it is paramount to use approximations such as the
ones described in Section 3.2, as the covariance matrix is
of dimension 𝑆𝑌 × 𝑆𝑌. For example, in the non-separable
case, the complexity of the CP method is 𝑂(𝑀3 + 𝑆𝑌),
while the complexity of the ASoR is 𝑂(𝑀3 +𝑀⋆𝑆2𝑌2).
Moreover, 𝑀 should be chosen bigger in the nonsepa-
rable case as the grid is used to approximate time and
space together.
In addition to the optimal mixing properties, another

advantage of the PG scheme is that it allows efficient
variable selection, as performed in Griffin et al. (2020),
since the logistic regression equations for the detection
and presence processes can be cast in the linear regres-
sion framework using the PG augmentation. Although
not considered in this paper, which aims to introduce
the new modeling framework, we note that this approach
can be used to perform variable selection on the occu-
pancy and detection probabilities if a number of covariates
are available as potential predictors for either of the two

processes. Finally, we note that the PG scheme is easily par-
allelisable with respect to the variables 𝜔𝑖 in Equation (4),
which would bring further computational advantages for
large datasets.

7 DISCUSSION

We proposed a unifying Bayesian framework for modeling
large occupancy datasets, while accounting for spatio-
temporal autocorrelation and for the effect of covariates on
the probabilities of occupancy and detection.We employed
and developed a number of algorithms and approxima-
tions for fast inference, even for very large datasets, and
we used simulation to assess the performance of our
new models.
We compared two popular approximation methods,

a low-rank approximation and a sparse approximation
method, according to computational time and predictive
power. We found that although the methods have very dif-
ferent theoretical biases, they tend to perform similarly
in the context of occupancy modeling. We note that the
NNGP approximation has been also considered within an
occupancy model framework in a recent paper by Doser
et al. (2022).
Our model incorporates both time and space, and the

results for the two case studies are in accord with what
is known for the species involved. The spatial maps of
Figure 3 demonstrate how the distribution of each species
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changes over time, similarly to what is shown in Dennis
et al. (2017).
We have illustrated how goodness of fit can be routinely

studied. It was interesting to note the differences between
themagnitudes of detection probability for the two species,
and this highlights the potential of using the model for
further investigation of this poorly understood aspect of
citizen-science occupancy modeling.
As with all models, several assumptions are made on

how the probabilities of species’ presence and the proba-
bility of detection vary across sites or years. The validity of
results will depend on how realistic these assumptions are
and the general appropriateness of the model for the data
at hand.
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