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Abstract: We hypothesized that an interpretable gra-
dient boosting machine (GBM) model considering
comorbidities, P-wave and echocardiographic meas-
urements, can better predict mortality and cerebro-
vascular events in mitral regurgitation (MR). Patients
from a tertiary center were analyzed. The GBM model
was used as an interpretable statistical approach to
identify the leading indicators of high-risk patients
with either outcome of CVAs and all-cause mortality.
A total of 706 patients were included. GBM analysis
showed that age, systolic blood pressure, diastolic
blood pressure, plasma albumin levels, mean P-wave
duration (PWD), MR regurgitant volume, left ventric-
ular ejection fraction (LVEF), left atrial dimension at
end-systole (LADs), velocity-time integral (VTI) and
effective regurgitant orifice were significant predictors
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of TIA/stroke. Age, sodium, urea and albumin levels,
platelet count, mean PWD, LVEF, LADs, left ventricu-
lar dimension at end systole (LVDs) and VTI were sig-
nificant predictors of all-cause mortality. The GBM
demonstrates the best predictive performance in terms
of precision, sensitivity c-statistic and F1-score com-
pared to logistic regression, decision tree, random for-
est, support vector machine, and artificial neural
networks. Gradient boosting model incorporating clin-
ical data from different investigative modalities signifi-
cantly improves risk prediction performance and
identify key indicators for outcome prediction in MR.
(Curr Probl Cardiol 2023;48:101464.)
Introduction

M
itral regurgitation (MR), defined as a retrograde flow through

the mitral valve during ventricular systole, is one of the most

prevalent valvular heart disease worldwide with an estimated

incidence of 1.7%.1-3 The combination of aortic stenosis and MR accounts

for 3 in 4 cases of valvular disease with an age-dependent increase in inci-

dence of greater than 6% amongst those above the age of 65.3,4 Due to the

chronic volume overload under MR, the left ventricular function deterio-

rates under remodeling, which ultimately leads to pulmonary hypertension

and heart failure.5,6 The mechanisms underlying MR can organic, often

degenerative, valvular defects, or functional problems secondary to left

ventricular dysfunction.7 Over the recent years, a variety of prognostic

markers has been identified to improve the risk stratification in MR. Clini-

cally, Besides from left ventricular ejection fraction, there is increasing evi-

dence supporting the use of other electrocardiographic markers in outcome

prediction, such as left ventricular end systolic diameter, peak mitral inflow

velocity, and left atrial size.8-10 Furthermore, P-wave indices, such as P-

wave area and P-wave terminal force, were found to reflect left atrial

remodeling and MR severity, hence may yield useful prognostic

insights.11,12 In terms of laboratory markers, raised serum brain natriuretic

peptide was found to associated with higher risk of cardiac event.13,14 The

increase in inflammatory biomarkers, such as high-sensitivity C-reactive

protein and raised neutrophil-to-lymphocyte ratio, were found to be associ-

ated with the adverse outcomes of MR, such as heart failure.15,16

Currently, there is yet a multi-parametric approach in the risk stratifi-

cation of MR. Recently, we reported that risk stratification of MR can be
Curr Probl Cardiol, February 2023



significant improved with the use of a multi-task Gaussian process learn-

ing model which outperformed logistic regression.17 In this study, we

extend previous analyses by assessing the comparative performance of

several machine learning models, such as Decision Tree (DT), Random

Forest (RF), Support Vector Machine (SVM), Artificial Neural Network

(ANN), and Gradient Boosting Machine (GBM).
Methods
Study Population and Baseline Characteristics
This study was approved by the New Territory East Cluster- Prince of

Wales Hospital (NTEC-PWH) Ethics Committee. The anonymized dataset

on this study has already been made available in an online repository.18,19

This study include Han Chinese patients referred for echocardiography and

subsequently diagnosed with MR during the period between 1st March

2005 and 30th October 2018. Comprehensive medical data were accessed

from the healthcare database (Clinical Management System, CMS) that is

linked to a territory-wide Clinical Data Analysis and Reporting System

(CDARS) with unique reference identifier for each patient. Our team and

other teams have previously used this system for epidemiological stud-

ies.20-22 Clinical details including patient age, gender, blood pressure,

smoking status, hypertension, diabetes mellitus, hypercholesterolemia,

ischemic heart disease were extracted using CDARS. These characteristics

and comorbidities were manually checked using CMS records to avoid

under-coding. Automated hematological analyzer performed complete

blood counts. Biochemical data including sodium, potassium, creatinine,

urea, and albumin levels were also extracted. Neutrophil-to-lymphocyte

ratio (NLR) was given by the ratio of peripheral neutrophil count/mm3 to

peripheral lymphocyte count/mm3. The prognostic nutritional index (PNI)

was calculated by 10£ serum albumin value (g/dl) + 0.005£ peripheral

lymphocyte count/mm3. Echocardiographic data was also obtained. Pri-

mary outcome is all-cause mortality, and secondary outcome is incident

transient ischemic attack (TIA)/stroke.
Electrocardiographic Measurements
We extracted P-wave measurements of patients in sinus rhythm at base-

line determined by electrocardiography and calculated the mean P-wave

duration (PWD) from the leads V1, II, III and aVF. In addition, lead V1 was

used to determine the amplitude of the P-wave for each included patient.
Curr Probl Cardiol, February 2023 3



Leads V1 to V6 as well as II, III and aVF were used to determine the P-wave

morphology. P-wave duration (PWD)� 120 ms in the absence and presence

of biphasic P-waves in the inferior leads were used to indicate partial inter-

atrial block (IAB) status and advanced IAB status of the patients. P-wave

dispersion was determined according to the calculated maximum difference

in PWD between the leads V1, II, III and aVF. P-wave terminal force in V1

(PTFV1) was determined as the area subtended by the terminal negative

component of a biphasic P-wave in lead V1, and the area was calculated by

the multiplication of the duration and waveform depth.23 Abnormal PTFV1

was defined if it was> 40 ms.mV.
Variable Network Analysis
One interesting exploration of the correlations between variables are

the patterns of variable clustering, which then forms a variable network

that can be visualized. In a variable network, each point represents a vari-

able, and each path represents a correlation between the 2 variables that it

joins. The width and transparency of the path represent the strength of the

correlation (wider and less transparent = stronger correlation). The posi-

tioning of variables can be handled by multidimensional scaling of the

absolute values of the correlations. Variables that are more highly corre-

lated appear closer together and are joined by stronger paths. Paths can

also be colored by their sign (eg blue for positive and red for negative).

The proximity of the points is determined using multidimensional cluster-

ing.24 In this study, we first obtain the correlation matrix by calculating

correlation coefficient of each variable pair, and then visualize the corre-

lation matrix in a network diagram. In the diagram, each variable is repre-

sented by a node, and the connection between each pair of 2 nodes are

shown by a colored path if the correlation reaches a threshold. The calcu-

lation and visualization are conducted by using the packages igraph and

corrr in RStudio (Version 1.1.456).
Interpretable Gradient Boosting Learning Approach
Gradient boosting machine (GBM),25 a state-of-the-art machine learn-

ing method, was used to identify a set of key leading indicators that may

help predict TIA/stroke and all-cause mortality. The idea behind boosting

is that each sequential model builds a simple weak learner model to

slightly improve the remaining errors. At each iteration, a new weak tree

learner is trained with respect to the error the whole ensemble learnt so

far. More details about GBM can be found in.25,26
4 Curr Probl Cardiol, February 2023



Outcomes and Statistical Analysis
The primary outcome is all cause mortality, and secondary outcome is

TIA/stroke. Evaluation metrics including precision, recall, and F1-score

of using gradient boosting machine model were calculated and compared

to benchmark models of logistic regression (LR), decision tree (DT), and

the random forest model (RF). DT reveals from observational variables

(represented in the branches) to target value (represented in the leaves),

and was used for cardiovascular disease diagnosis, such as in-hospital

mortality,27 congestive heart failure28 etc. RF, first proposed by Brei-

man,29 is an ensemble approach for building predictive models where a

forest is formed using a series of decision trees that act as “weak” learn-

ers. As individual trees, they are poor predictors, but can produce a robust

prediction in aggregate form. Owing to its simple nature, lack of strong

assumptions, and general high prediction performance, RF has been suc-

cessfully used in many medical applications including prediction of

severe asthma exacerbations,30 hospital readmissions in heart failure,31

non-invasive classification of pulmonary hypertension,32 etc. However, it

should be noted that GBM is typically used with decision trees of a fixed

size as base learners. RF combines results at the end of the process (by

averaging or "majority rules") while GBM combines results along the

process. RF builds each tree independently while GBM builds 1 tree at a

time. GBM as an additive model works in a forward stage-wise manner,

introducing a weak learner to improve the shortcomings of existing weak

learners. In addition, we also include black-box-like machine learning

approaches of support vector machine (SVM) and artificial neural net-

work (ANN) as baseline models for risk stratification. Statistical analysis

was conducted using Stata (Version MP 13.0) and RStudio (Version

1.1.456). Experiments are simulated on a 15-inch MacBook Pro with

2.2 GHz Intel Core i7 Processor and 16 GB RAM.
Results
Baseline Characteristics and Network Visualization of
Variables

A cohort of patients diagnosed with mitral regurgitation at a single ter-

tiary center (n=706; 57% male; median age: 66 [57-75] years old) was

included in this study. Their clinical and laboratory parameters at base-

line are shown in Table 1, stratified by cerebrovascular event outcome

(top) or mortality outcome (bottom). The principles of the GBM model
Curr Probl Cardiol, February 2023 5



TABLE 1. Baseline characteristics stratified by outcome of TIA/stroke (left) and all-cause mortality (right). Expressed as median (Q1-Q3) for continuous varia-
bles or frequency (percentage) for categorical variables. P-values indicate comparisons between the groups. Abbreviations are the same as those defined in
the legend for Figure 1

Variable No TIA/stroke TIA/stroke P-value Alive Dead P-value

Sex 355 (355/613) 48 (48/92) 0.292 334 (334/587) 69 (69/118) 0.768
Age 66 (57-74) 69 (57-77) 0.286 64 (56-72.75) 7 (66-81) 1.1e-10 ***
LVH 198 (198/613) 31 (31/92) 0.798 187 (187/587) 42 (42/118) 0.437
SBP 128 (113-144) 130.5 (115.75-147.25) 0.987 129 (115-144) 125 (109.25-144.5) 0.0633.
DBP 73 (65-83) 74 (64-81) 0.088 74 (65-83) 70 (61.25-83.75) 0.389
Smoking 196 (196/613) 28 (28/92) 0.775 177 (177/587) 47 (47/118) 0.0383 *
Hypertension 511 (511/613) 79 (79/92) 0.524 483 (483/587) 107 (107/118) 0.0224 *
Diabetes mellitus 134 (134/613) 24 (24/92) 0.370 109 (109/587) 49 (49/118) 3.91e-08 ***
High cholesterol 164 (164/613) 22 (22/92) 0.553 141 (141/587) 45 (45/118) 0.00159 **
IHD 219 (219/613) 32 (32/92) 0.869 186 (186/587) 65 (65/118) 1.01e-06 ***
PSMR 377 (377/613) 48 (48/92) 0.092 381 (381/587) 45 (45/118) 1.87e-08 ***
Severity 609 (609/613) 92 (92/92) 0.759 583 (583/587) 117 (117/118) 0.674
LVDd 5.2 (4.7-5.8) 5.2 (4.625-5.8) 0.842 5.1 (4.6-5.8) 5.4 (4.9-5.9) 0.0335 *
LVDs 3.5 (3-4.2) 3.5 (3.1-4.35) 0.850 3.5 (3-4.1) 4.1 (3.2-4.9) 0.2
LADs 4.2 (3.5-4.8) 4 (3.4-4.6) 0.200 4.1 (3.4925-4.7) 4.6 (3.5-5.15) 0.00356 **
VTI 156.8 (135.4-181.25) 161.3 (145.4-188) 0.952 157.4 (136.175-181.375) 160.15 (136.625-190.55) 0.815
MR volume 157.1 (63.675-332.9) 148.2 (76.15-364.2) 0.185 168.1 (66.225-342.75) 122 (65-311.7) 0.353
ERO 0.27 (0.16-0.435) 0.25 (0.18-0.36) 0.570 0.27 (0.165-0.44) 0.23 (0.13-0.39) 0.575
MRVol 41.995 (26.1-67.015) 39.2 (27.75-59.25) 0.372 42 (26.8-67.95) 37 (24.4-54.1) 0.0667.
LVEDD 5.2 (4.7-5.8) 5.2 (4.65-5.8) 0.751 5.1 (4.6-5.8) 5.4 (4.9-5.9) 0.411
LVESD 3.5 (3-4.2) 3.5 (3.1-4.4) 0.514 3.49 (3-4.1) 4.1 (3.225-4.975) 5.34e-06 ***
LVEF 59 (50-65) 56.95 (41.75-64.05) 0.0913 60 (52-65) 50 (35-60) 2.6e-08 ***
Symptomatic 197 (197/613) 24 (24/92) 0.244 176 (176/587) 45 (45/118) 0.0817.
NYHA class 610 (610/613) 92 (92/92) 0.231 575 (575/587) 117 (117/118) 0.0279 *
Surgery 259 (259/613) 35 (35/92) 0.446 260 (260/587) 34 (34/118) 0.00183 **

(continued on next page)
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TABLE 1. (continued)

Variable No TIA/stroke TIA/stroke P-value Alive Dead P-value

Average P-wave
duration

112.3 (97.625-124.225) 107.5 (97-121.3) 0.104 109.9 (96 -123.5) 113.5 (103.25-123.3) 0.171

Lymphocyte count 1.3 (0.8-1.715) 1.2 (0.9-1.6) 0.753 1.4 (1-1.8 0.9 (0.7-1.5) 5.69e-07 ***
Neutrophil count 5.1 (3.8-7.1) 5.61 (4-7.48) 0.119 5.02 (3.8 .2) 5.5 (4-7.15) 0.23
Albumin 36.9 (32-41.4) 36.1 (30.7-40.3) 0.316 37.9 (33. 41.7) 33.4 (28.65-37.8) 9.29e-10 ***
Creatinine 90 (72-117) 94.5 (74.25-110.5) 0.755 87 (71-10 ) 117.5 (87-190.75) 3.57e-15 ***
Platelet 207 (166.5-263.5) 202 (161.25-256) 0.599 209 (171 69) 197.5 (151.25-239.25) 0.0427 *
Potassium 4 (3.7-4.3) 4.1 (3.775-4.325) 0.721 4 (3.7-4.3 3.95 (3.575-4.3) 0.124
Sodium 139.6 (137-141.4) 139.3 (137.175-141.225) 0.679 139.6 (13 .3-141.5) 138.75 (136.05-140.725) 0.216
Urea 4.9 (6.5-8.47) 6.47 (4.54-8.9075) 0.966 6.15 (4.8 7.85) 8.885 (5.175-17.2825) <2e-16 ***

*, ** and *** denote P<0.05, 0.01 and 0.001, respectively.
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are illustrated in Figure 1, where we build an ensemble of shallow and

weak successive tree-based learners, then sequentially combine a set of

weak learners to deliver improved prediction accuracy. The network of

variables constructed by the correlations between variables are shown in

Figure 2, yielding patterns of variable clustering and the correlation

strength of variable pairs. For instance, a cluster is formed by the highly

correlated variable pairs of LVEF and LVESD, LVEDD and LVESD,

LVDD and LVESD, and LVEDD and LVDD. Variables that are more

highly correlated appear closer together and are joined by stronger paths.

Blue and red colors denotes positive and red correlation, respectively.

Strong correlations are observed between sex, urea, creatinine, regurgi-

tant volume, and MR severity, LVDs.
Performance Comparisons for Risk Stratification in Mitral
Regurgitation

We compare the performance of using LR, DT, RF, SVM, ANN, GBM

to predict (1) TIA/stroke and (2) all-cause mortality. All the models were

trained with 80% of patients and tested with 5-fold cross-validation

approach using the remaining 20% patients. The computation results were

evaluated using the following metrics of recall, precision, F1-score and

area under ROC curve (AUC) (Table 2). With cross-validation approach,

the GBM model significantly produced better risk prediction performance

compared with other baseline models in predicting both cerebrovascular

events and all-cause mortality. As the important hyperparameters in the

GBM model, the number of trees and the tree depth were tuned to be 500

and 5, respectively. The hyper-parameter tuning process was essential to

improve the predictive performance of GBM model. For the SVM model,

the radial kernel parameters gamma and cost of constraints violation were

tuned to 0.01, and 10, respectively. For the ANN model, the number of

units in the hidden layer was set to 4, and the decay was set to 0.05. The

observations about model performance are consistent with previous studies

that GBM exhibited better predictions than SVM and mixture discriminant

analysis in non-medical research domains.33,34
Key Predictors of Adverse Outcomes With GBMModel
The GBM model calculates the importance (predictive strength) of

variables to predict TIA/stroke (Fig 3, top) and all-cause mortality (Fig 3,

bottom) in MR. The top ten most important variables for risk stratification

of TIA/stroke and all-cause mortality are listed in Table 3. Average
8 Curr Probl Cardiol, February 2023



FIG 1. Diagram of sequential learning process of GB prediction model.
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IG 2. Variable correlation and clustering network. Abbreviations: LVH (left ventricular hypertr hy), SBP (systolic blood pressure), DBP (diastolic blood pres-
re), HTN (hypertension), DM (diabetes mellitus), PSMR (Primary or secondary mitral regurgita n), LVDs (left ventricular dimension at end systole), LVDd (left
entricular dimension at end diastole), LADs (left atrial dimension at end systole), VTI (velocity-t e integral), ERO (effective regurgitant orifice), MRVol (mitral
gurgitation volume), LVEDD (left ventricular end-diastolic diameter), LVESD (left ventricular e d-systolic diameter), LVEF (left ventricular ejection fraction),
YHA class (New York Heart Association class for heart failure).
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TABLE 2. Performance comparison of Logistic Regression (LR), Decision Tree (DT), Random Forest
(RF), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Gradient Boosting
Machine (GBM) in predicting TIA/stroke and all-cause mortality with five-fold cross-validation.
The best metrics are shown in bold

Adverse outcome Model Recall Precision F1-score AUC

TIA/stroke LR 0.5581 0.5189 0.5378 0.4128
DT 0.6302 0.6826 0.6554 0.5528
RF 0.7327 0.7104 0.7214 0.7202
SVM 0.7301 0.7211 0.7256 0.7429
ANN 0.7121 0.7272 0.7196 0.7533
GBM 0.7909 0.7828 0.7868 0.8084

All-cause mortality LR 0.5629 0.5241 0.5428 0.4063
DT 0.6407 0.6862 0.6627 0.5490
RF 0.7123 0.6735 0.6924 0.7132
SVM 0.7094 0.7255 0.7174 0.7354
ANN 0.7196 0.7055 0.7125 0.7702
GBM 0.7703 0.7961 0.7830 0.7962
PWD, albumin, MR regurgitant volume, left ventricular ejection fraction

(LVEF), left atrial dimension at end systole (LADs), velocity-time inte-

gral (VTI) and effective regurgitant orifice (ERO) play critical roles in

predicting TIA/stroke, in descending order of importance. For all-cause

mortality, urea, LVEF, platelet count, LADs, VTI, albumin, age, sodium,

average PWD and LVDs are the most powerful predictors. Clearly, the

optimum set of variables for predicting each outcome is different. For

instance, average PWD is the most important predictor in the TIA/stroke

model, while it is less important in the all-cause mortality model. By con-

trast, age was the most important predictive factor for all-cause mortality.

In addition, we can find that variables that are highly correlated with

those that show high predictive power may not show similar strong pre-

dictive strength.
Partial Dependence of Key Risk Stratification Variables
Partial dependence plots generated by GBM provide additional

insights on how the variables affect the adverse outcome. The partial

dependence plots of the top 8 most important variables for the stroke/TIA

prediction model is shown in Figure 4. The deciles of the distribution of

the corresponding variable are shown by the log odds and the hash marks

at the base of each plot. The partial dependence of each predictor

accounts for the average joint effect of the other predictors in the model.

Average PWD, LVEF, albumin, and age have a nonmonotonic partial

dependence. They decrease over the middle range and increases nearly at
Curr Probl Cardiol, February 2023 11



FIG 3. Variable importance plot for GBM to predict TIA/stroke (top) and all-cause mortality (bot-
tom).

TABLE 3. Top ten most important variables for GBM to predict stroke/TIA and all-cause mortality

Stroke/TIA All-cause mortality

Variable Importance Variable Importance
PWD.Average 7.39575638 Urea 13.0174483
Albumin 6.96337408 LVEF 9.8039849
MR.volume 6.75244604 Platelet 6.5079659
LVEF 6.33211352 LADs 6.3070352
DBP 5.89778068 VTI 4.8609568
SBP 5.85177609 Albumin 4.5779961
Age 5.62802293 Age 4.4357176
LADs 5.18594188 Sodium 4.4212368
VTI 5.09976485 PWD.Average 4.2446033
ERO 4.01540682 LVDs 4.0208133

12 Curr Probl Cardiol, February 2023



FIG 4. Partial dependence of six most important variables in predicting Stroke/TIA.
the highest values. MR Volume increases sharply before reaching 150 ml,

decreases before 350 ml and then increases again at the end. For SBP, the

risk fluctuates before reaching 170 mmHg and then abruptly increases at

the end, followed by a small decrease. DBP has a roughly monotonically

decreasing partial dependence followed by a long plateau still the end.

Note that these plots are not necessarily smooth, since no smoothness

constraint was imposed on the fitting.

The partial dependence plots generated by GBM between the different

variables and all-cause mortality are shown in Figure 5. For both urea
Curr Probl Cardiol, February 2023 13



and LADs, there is a monotonic increase in the risk of mortality as their

levels increase. The relationship between LVEF and mortality is com-

plex, with mortality increase as LVEF decreases below 52%. Platelet and

albumin show similar roughly monotonically decreasing partial depen-

dence except an increase in the middle range levels. At very low VTI val-

ues, VTI decreases sharply with increasing mortality. Finally, for average

PWD, there appears to be a U-shaped relationship with al-cause mortal-

ity.
Discussion
In this study, we found that an interpretable machine learning method

with the consideration of baseline comorbidities, laboratory examinations

reflecting inflammatory and nutritional states, electrocardiographic P-

wave as well as echocardiographic measurements can accurately predict

cerebrovascular and mortality in MR. Gradient boosting machine (GBM)

significantly outperformed other approaches of logistic regression (LR),

decision tree (DT), random forest (RF), support vector machine (SVM)

and artificial neural network (ANN).
A Gradient Boosting Machine (GBM) Method
Outperformed Other Machine Learning Techniques

GBM,25 a state-of-the-art machine learning method, was used to iden-

tify a set of key leading indicators that may help predict TIA/stroke and

all-cause mortality. Previously, GBM models have been successfully

used for MiRNA-disease association prediction,35 blood pressure predic-

tion,36 and identification of medication relations with adverse drug

events.37 GBM generally showed better predictive performance in a

series of model comparisons compared to other machine learning algo-

rithms such as SVM and ANN.38 Another study used a territory-wide

database to predict stroke outcome and investigated the performance of

SVM, ANN and also random survival forest,39 but did not compare it to a

GBM approach. Another study using the United Kingdom General Prac-

tice database compared RF, LR, GBM and neural networks for first car-

diovascular event in patients initially free from cardiovascular diseases.40

GBM slowly but steadily achieves optimization by growing a series of

weak decision trees in a stage-wise fashion which efficiently utilize the

strengths of classification/regression trees and boosting. The superior pre-

dictive performance of the GBM model against the conventional models

highlights the power of machine learning techniques in accounting for
14 Curr Probl Cardiol, February 2023



FIG 5. Partial dependence of eight most important variables in predicting all-cause mortality.
the intervariable nonlinear correlations, whilst maintaining interpretabil-

ity, in outcome prediction. GBM is appropriate for risk stratification in

the present study since it can improve the overall predictions by capturing

the non-linearity in sparsely populated data. Besides from the advantages

of quick convergence and accuracy improvement, GBM avoid overfitting

since it can stop learning as soon as overfitting has been detected, typi-

cally by using cross-validation.

MR, a classical example of cardiovascular diseases where several fac-

tors interplay in its progression, is an ideal model for the application of
Curr Probl Cardiol, February 2023 15



machine learning. Although no other studies were noted to use machine

learning in the risk stratification of MR, it has been applied in other car-

diovascular diseases. For example, DT has been successfully used for

both diagnosis28 and prognosis prediction.27,41 Random forests, first pro-

posed by Breiman,29 is an ensemble approach for building predictive

models. RF has been successfully used in many medical applications

including prediction of severe asthma exacerbations,30 hospital readmis-

sions in heart failure,31 non-invasive classification of pulmonary hyper-

tension.32 Recently, RF was shown to demonstrate stronger predictive

power in identifying predictors for the heterogeneity in response against

pharmacotherapy amongst a large cohort of heart failure patients.42 GBM

is typically used with decision trees of a fixed size as base learners. RF

combines results at the end of the process, by averaging or using "major-

ity rules", whereas GBM combines results along the process. RF builds

each tree independently while GBM builds 1 tree at a time. GBM as an

additive model works in a forward stage-wise manner, introducing a

weak learner to improve the shortcomings of existing weak learners.

With increasing evidence supporting the superiority of machine learn-

ing in predictive accuracy, it is increasingly applied in multi-parametric

risk stratification models. Jamthikar et al. developed a novel model based

on RF that incorporates conventional risk factors with predictive features

from carotid ultrasound image as an inexpensive and effective tool for

cardiovascular/ stroke risk prediction.43 Similarly, the WATCH-DM risk

score was developed to predict the risk of incident heart failure during

hospitalization amongst diabetic patients. The RF and DT based multi-

parametric score, which included clinical, laboratory and electrocar-

diographic variables, demonstrated better discrimination than the best-

performing Cox-based model, which illustrate the potential in the incor-

poration of machine learning into clinical practice.44

The prognostic use of markers found by the present study is well sup-

ported. Clinical predictors, such as age, diastolic and systolic blood pres-

sure, were well established, and justified by their relation to the

pathogenesis and disease progression of MR.45,46 For laboratory markers,

uric acid has been found to correlate with left ventricular remodeling,

MR severity and the outcome of heart failure in MR.47 Serum albumin

was reported to be lower in those with persistent MR after acute rheu-

matic fever.48 Mean platelet volume, which reflects the platelet produc-

tion and function, is associated with MR severity and thromboembolism

risk.49,50 In terms of electrocardiographic markers, reduced LVEF,

increased left atrial dimensions and left ventricular end diastolic diameter

have been found to predict MR severity, which is associated with
16 Curr Probl Cardiol, February 2023



increased in-hospital cardiac death risk and overall mortality.47,51,52 P

wave indices reflective of left atrial remodeling, such as P wave area and

P wave terminal force, was predictive of MR severity.11,12 In this study,

P-wave duration was shown to be 1 of the most important predictors of

incident stroke and was incorporated for risk prediction in our machine

learning models.
Study Limitations
Several limitations should be noted. Firstly, it is limited by its retro-

spective nature and single ethnicity of the patients included. Secondly,

data on some widely used clinical prognostic markers, such as results on

exercise tolerance test, were not available for all patients. Finally, only

the impact of medical or surgical treatment was not assessed in this study.
Conclusion
An interpretable machine learning risk stratification model considering

multi-modality clinical data can better predict cerebrovascular events and

mortality in MR. Experiments demonstrate the advantage of GBM to sig-

nificantly improve the overall risk stratification performance over base-

line models, including LR, DT, RF, SVM, and ANN, in addition to

provide good model interpretability about the predictive strengths of pre-

dictors. Partial dependences are also observed, which benefit insightful

understanding on the effects of these predictive variables upon the

adverse outcomes.
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