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Abstract
1.	 State-space models are an increasingly common and important tool in the quan-

titative ecologists’ armoury, particularly for the analysis of time-series data. This 
is due to both their flexibility and intuitive structure, describing the different 
individual processes of a complex system, thus simplifying the model specifica-
tion step.

2.	 State-space models are composed of two processes (a) the system (or state) 
process that describes the dynamics of the true underlying state of the system 
over time; and (b) the observation process that links the observed data with the 
current true state of the system at that time. Specification of the general model 
structure consists of considering each distinct ecological process within the sys-
tem and observation processes, which are then automatically combined within 
the state-space structure.

3.	 There is typically a trade-off between the complexity of the model and the as-
sociated model-fitting process. Simpler model specifications permit the applica-
tion of simpler model-fitting tools; whereas more complex model specifications, 
with nonlinear dynamics and/or non-Gaussian stochasticity often require more 
sophisticated model-fitting algorithms to be applied.

4.	 We provide a brief overview of general state-space models before focusing on 
the different model-fitting tools available. In particular for different general 
state-space model structures we discuss established model-fitting tools that 
are available. We also offer practical guidance for choosing a specific fitting 
procedure.

K E Y W O R D S
hidden Markov model, Kalman filter, Laplace approximation, likelihood-free methods, Markov 
chain Monte Carlo, sampling-based methods, sequential Monte Carlo
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1  |  INTRODUCTION

State-space models have become increasingly popular in the model-
ling of ecological time-series data due to their flexible and intuitive 
structure that includes multiple component processes. In particular, 
state-space models are composed from individual biological pro-
cesses that drive the system’s underlying temporal dynamics (i.e. the 
state process) and the observation processes that link the observed 
data to this state (or system) process (i.e. the observation process). 
The state process is generally constructed from biological knowl-
edge that describes the dynamics of the ecological system over time 
as a function of directly interpretable model parameters. However, 
the underlying states are generally unobserved, and all inference on 
the model parameters comes from statistically disentangling state 
dynamics from the observed data. Ecological applications of state-
space models include for example, the analysis of telemetry data 
(Hooten et al., 2017; Patterson et al., 2017), fisheries stock assess-
ment (Aeberhard et al., 2018; de Valpine & Hilborn, 2005; Millar & 
Meyer, 2000), population dynamics (Buckland et al., 2004; Newman 
et al., 2014), capture–recapture-type data (King, 2014) and biodiver-
sity (Kindsvater et al., 2018).

For further in-depth discussion of ecological state-space models, 
and additional examples, see Auger-Méthé et al. (2021) and Newman 
et al. (2009). The special case of discrete-valued states may lead to 
hidden Markov models (HMMs), which McClintock et al. (2021) re-
cently reviewed with an emphasis on ecological applications. In this 
review, we focus on the situation where the underlying states are 
continuous-valued.

In practice there is a trade-off between the complexity of the 
state-space model specification and the associated computational 
model-fitting challenges. Simpler biological models that reduce the 
system complexity and/or use Gaussian distributional assumptions 
that lead to an analytically tractable likelihood function are relatively 
easy to fit. Conversely, more biologically realistic models (e.g. with 
nonlinear dynamics and/or non-Gaussian distributional assump-
tions) lead to a more complex and analytically intractable likelihood 
expression that require more sophisticated model-fitting algorithms, 
often with trade-offs between accuracy and efficiency. In this paper 
we provide a focused discussion of the model-fitting challenges of 
modern general ecological state-space models. In particular, we de-
scribe the different model-fitting approaches and associated algo-
rithms that can be applied to state-space models dependent on the 
properties of the specified model. In practice, there is no dominant 
algorithm that is universally the ‘best’ for all ecological state-space 
models; instead the performance of different model-fitting tools de-
pends on the particular form, and observed data, of the state-space 
model (Fasiolo et al., 2016).

2  |  STATE-­SPACE MODELS

State-space models (SSMs) are a convenient and useful repre-
sentation of the processes that generate time-series data as they 

separate these into (a) a state model that describes the dynamics 
of the true underlying (unobserved or partially observed) state of 
the system over time; and (b) an observation model that describes 
how observed data are stochastic functions of the true underlying 
state. Different authors define SSMs more narrowly or broadly. Here 
we focus on SSMs for discrete-time, continuous-valued, first-order 
(Markov) states, a special case of hidden process models (Newman 
et al., 2006, 2014).

We start with a general form for SSMs. Let the observed (possi-
bly multivariate) time-series data over the set of observation times 
t = 1,…, T be denoted by y1:T =

{

y1,…, yT
}

, where yt is a (K × 1) ob-
servation vector. The data, y1:T, depend on latent (or unobservable) 
states, �1:T =

{

�1,…,�T

}

, where �t is an (n × 1) state vector. While 
the elements of �t are typically unknown, or partially observed, they 
are governed by a stochastic model that describes the ecological dy-
namics of the system and induce dependence (e.g. temporal correla-
tion) among the data. The SSM is described by:

where f and g are probability density functions, which in full generality 
could be time-varying. The observation and state models are param-
eterised by the parameters of both the ecological dynamics and the 
observation process, �. An important feature that directly influences 
model-fitting algorithms relates to the conditional independence as-
sumptions. First, the latent states, �t, are assumed to be first-order 
Markov; second, the observation at time t, yt, given �t, is independent 
of previous observations and states. See Durbin and Koopman (2012) 
and Sarkka (2013) for further discussion of general SSMs.

The model specification is completed by an initial state distribu-
tion. This may be expressed for states at time 0 or time 1, g

(

�0|�
)

 
or g

(

�1|�
)

. Typically, different rationales are used to choose the 
form of distribution. For example, it is often assumed to be simple 
and uninformative, with large variance(s); or if the state dynamics 
are ecologically stable, the equilibrium distribution of the system 
process may be used (de Valpine & Hastings, 2002). For structured 
population models, the stable age or stage distribution may be used 
with unknown population size (Besbeas & Morgan, 2012).

The associated likelihood for � results by expressing the joint 
density of latent states and observations, and then integrating out 
(marginalising over) the states. For the SSM above, due to the two 
independence assumptions, the likelihood can be expressed in se-
quential form:

The term p
(

y1:T ,�0:T |�

)

 denotes the joint likelihood (probability distri-
bution) of the data and latent states, given the parameters �. The term 

(1)Observation model: f
(

yt|�t ,�
)

, t=1,…, T ;

(2)State model: g
(

�t|�t−1,�
)

, t=1,…, T ,

(3)
L
(

�|y1:T
)

=∫ p
(

y1:T |�0:T ,�
)

d�0:T

=∫ g
(

�0|�

)

×

[

T
∏

t=1

f
(

yt ,�t|�
)

g
(

�t ,�t−1|�
)

]

d�0:T .
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‘complete-data likelihood’ is often used for p
(

y1:T ,�0:T |�

)

, and ‘miss-
ing data’ for �0:T, even when they are not missing but rather unmea-
surable. In contrast, the likelihood, L

(

�|y1:T
)

, is often referred to as the 
‘observed-data likelihood’. The integral in the likelihood is analytically 
intractable for general SSMs, with no closed form expression. Closed 
form likelihood expressions do exist for two special cases: (a) linear and 
Gaussian (LG-)SSMs (see Section 3.1); and (b) for a finite set of discrete-
valued latent states that lead to HMMs (see Section 3.2.2).

We note that SSMs are a special case of a more general class of 
models called hierarchical or multi-level models. The main idea is that 
the observed data, which are random variables at one level, depend 
upon another set of random variables, generally not observed di-
rectly, the latent variables, at a higher level. Classical random or fixed 
effects models are special cases of hierarchical models with two lev-
els. Hierarchical models are often analysed in a Bayesian framework 
(Berliner, 1996; Cressie et al., 2009) that adds a third (or higher) level, 
namely prior probability distributions for the parameters of the distri-
butions for the second level of the latent variables. Hierarchical mod-
els can characterise spatial data (Cressie, 2015) and spatio-temporal 
data (Wikle et al., 2019). Our focus here is narrower as we are only 
considering time-series data within a hierarchical framework.

One of the most desirable features of hierarchical models is 
the divide-and-conquer approach to analysing potentially complex 
processes whereby attention can be focused on individual levels. 
With SSMs, for example, scientists and subject matter specialists 
can bring their expertise to bear on the formulation of the state 
process model while statisticians can focus on formulation of the 
observation process model linked to the state. In this paper we are 
admittedly just sketching the basic structures of state and observa-
tion models with little discussion of particular complex formulations 
that are possible—many such examples can be found in Auger-Méthé 
et al. (2021).

3  | MODEL- ­FITTING

The goals of model-fitting for SSMs vary depending on objectives 
and include estimating model parameters (�), estimating latent 
states 

(

�0:T

)

 and/or forecasting of future latent states/observations 
(

�T+k ∕yT+k
)

. Estimates of � provide information about the mecha-
nisms driving the state process dynamics; whereas estimates of �0:T 
provide information about the true state of nature.

Our focus is on estimation of � and we present a variety of clas-
sical and Bayesian inferential procedures. The primary inferential 
challenges, with the exception of LG-SSMs and HMMs, are intracta-
ble likelihoods, the calculation of which typically involves integration 
over T + 1 dimensions. The likelihood, L

(

�|y1:T
)

, is central to classical 
and Bayesian inference. Classical inference via maximum likelihood 
estimation seeks � that maximises L

(

�|y1:T
)

. Bayesian inference cen-
tres on the posterior distribution for �:

where � (�) denotes the prior distribution and m
(

y1:T
)

 the (uncondi-
tional) marginal distribution, where the latter involves additional in-
tegration over �. For a general overview see for example Reich and 
Ghosh (2019), van de Schoot et al. (2021) and Appendix A for further 
details.

Before proceeding, we make remarks about two inferential 
procedures for the states: filtering and smoothing, as they are 
fundamental to inference about �. Inference for �t, conditional 
only on the observations available up to time t , y1:t, is called fil-
tering, with all information contained in the filtering distribution, 
p
(

�t|y1:t ,�
)

 . Inference for �t based on all available observations, 
y1:T, is called smoothing, with associated smoothing distribution, 
p
(

�0:T |y1:T ,�
)

. See Appendices D and E for further details. We 
now describe a range of different SSM fitting algorithms and dis-
cuss their usage.

3.1  | Kalman filter and extensions

For ecological time-series data that are of LG-SSM form the likeli-
hood can be easily calculated by the Kalman filter (KF; Kalman, 1960; 
Welch & Bishop, 1995). MLEs of the parameters can be obtained via 
numerical optimisation, or a Bayesian posterior distribution can be 
explored. However, the LG assumptions are restrictive, necessitat-
ing the use of approximations or more advanced methods described 
later.

3.1.1  |  Kalman filter

We use univariate states and observations for simplicity. The LG-
SSM assumptions hold if:

where a, b, c, � and � are parameters. For the mathematical details of 
the KF, including how to calculate the likelihood function, see Box 1. An 
example of the LG-SSM is the (stochastic) Gompertz population model 
where �t is log population size, yt are noisy observed data of �t (with 
c = 1) and b incorporates density dependence (Dennis et al., 2006).

3.1.2  |  ‘Approximate linear’ Kalman filter

Many models are nonlinear but preserve additive Gaussian re-
siduals. Extending the Gompertz example, different density de-
pendence assumptions lead to nonlinear dynamics (de Valpine 
& Hastings,  2002; Wang,  2007). Similarly, within the observa-
tion process, specifying the additive Gaussian error to be on the 
(non-log) population scale leads to a nonlinear component, such 
that yt ∣ �t , �2 ∼ Normal

(

exp
(

�t

)

�2
)

 . See Knape et al.  (2011) and 
Einarsson et al. (2016) for additional examples.

(4)p
(

�|y1:T
)

=
� (�) L

(

�|y1:T
)

m
(

y1:T
) ,

yt ∣�t ,�∼Normal
(

c�t , �
2
)

;

�t+1 ∣�t ,�∼Normal
(

a+b�t , �
2
)

,
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An approximation called the extended KF (EKF) applies a first-
order Taylor expansion to nonlinear model components within the KF 
algorithm (Einarsson et al., 2016; Sarkka, 2013, Chapter 5). However, 
its accuracy depends on the degree of nonlinearity and will yield 
biased estimates if inaccurate. An alternative is the unscented KF 

(UKF), which propagates weights for a small set of state values (Wan 
et al., 2001). Wang (2007) found that UKF consistently outperformed 
EKF for population dynamics models, and moreso for stronger non-
linearity, making it the preferred of these methods. The ensem-
ble Kalman filter (EnKF), originally proposed as a computationally 

BOX 1 LG-­SSM and Kalman Filter

The linear-Gaussian SSM (LG-SSM) is arguably the most celebrated SSM. Its success is mostly due to the tractability of the inferential 
methods (see Section 3). The observation model is expressed as

for t = 1,…, T, where Zt denotes the (K × m) observation process matrix (and a function of the model parameters) and �t the (K × 1) vector 
corresponding to observational noise. We typically assume that �t ∼ N

(

0,Ht

)

, independently of each other, where 0 denotes the column 
vector with each element equal to 0 and Ht is a (potentially time varying) covariance matrix.The process model is given by

for t = 1,…, T, where T t denotes the (m × m) transition matrix that governs the changes of the state vector from occasion t to occasion 
t + 1 (and is a function of the model parameters); and �t an (m × 1) vector, such that, �t ∼ N

(

0, Ft
)

, corresponding to the stochastic (e.g. 
environmental) variability. For many ecological applications the state vector comprises the abundances of individuals in several age (and 
or state) classes. In such a situation, the formation of T t can be fairly straightforward for state vectors of small dimension, however, it is 
sometimes of interest, and simpler, to decompose the formation of T t into intermediate sub-processes, such as survival, ageing, reproduc-
ing, movement, etc. (Buckland et al., 2004).
For the special case of the linear and Gaussian model, the log of the observed-data likelihood can be calculated explicitly as follows:

where vt and Ft are quantities calculated routinely from application of the Kalman filter, which is defined by the following set of equations:

where at = �
(

�t

)

. This form of the likelihood is sometimes referred to as the prediction error decomposition likelihood owing to the inter-
pretations of vt and Ft. Since the likelihood is available in closed form, the parameters can be estimated, classically, via maximum likelihood 
using a numerical optimisation algorithm or the posterior distribution of the parameters formed within a Bayesian analysis.
In order to obtain the mean of the distribution of �t conditional on the whole sample y1:T fixed-interval smoothing can be implemented 
using the following recursive equations:

where aT∣T = aT and PT∣T = PT are values from the Kalman filter recursions above and P∗
t
= PtT

T

t+1
P
−1
t+1

.

(5)yt = Zt�t + �t ,

(6)�t = T t�t−1 + �t ,

logp
(

y1:T |�
)

= −
T

2
log2� −

1

2

T
∑

t=1

(

log|Ft| + vtF
−1
t
vt

)

,

vt =yt−Ztat

Ft =ZtPtZ
T

t
+Ht

Kt =T tPtZ
T

t
F
−1
t

at+1=T tat+Ktvt

Lt =T t−KtZt

Pt+1=T tPtL
T

t
+Qt

at∣T =at+P
∗
t

(

at+1∣T −T t+1at
)

Pt∣T =Pt+P
∗
t

(

Pt+1∣T −Pt+1

)

P
∗T
t
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efficient approach for high-dimensional system states, can be more 
generally applied to nonlinear SSMs and involves simulating states to 
estimate covariance matrices (see Katzfuss et al. (2016) and Michaud 
et al. (2021) for more details). More recently the EnKF has been ap-
plied to non-Gaussian distributions and continues to perform well 
(Katzfuss et al., 2020; Michaud et al., 2021).

3.1.3  |  ‘Approximate Gaussian’ Kalman filter

Some models that do not have Gaussian distributions may be ap-
proximated as Gaussian based on mean(s) and variance(s). For ex-
ample, Poisson and binomial distributions can be approximated as 
Gaussian distributions if the number of individuals is ‘large’ and 
the binomial probability is not close to 0 or 1. Besbeas et al. (2002) 
proposed this approach for a population dynamics model for ju-
venile and adult birds where the binomial assumption for survival 
and Poisson assumption for reproduction rendered the model non-
Gaussian. Approximating these as Gaussian distributions performed 
well for reasonable population sizes (King et al.,  2004). With the 
model ‘shoe-horned’ into a LG-SSM, the KF likelihood can be used 
for maximum likelihood or Bayesian methods.

3.2  |  Likelihood approximation and beyond

The above approximations may fail if models are too far from being 
linear and/or Gaussian. Here we discuss more general methods for 
handling the likelihood, approximately or exactly.

3.2.1  |  Laplace approximation

The Laplace method is a general and efficient approach for approxi-
mating some integrals (see Appendix B for mathematical details). In 
particular, the Laplace method uses a multivariate Gaussian approxi-
mation for the likelihood via a second-order Taylor expansion of the 
integrand over all time steps. Applying the Laplace approximation to 
SSMs, we can estimate the likelihood using,

where, for given �, �̂0:T maximises the complete-data likelihood, 
p
(

y1:T ,�0:T |�

)

, and H
�̂0:T

 denotes the Hessian (matrix of second deriva-
tives) of lnp

(

y1:T ,�0:T |�

)

 evaluated at �̂0:T.
We note that using the Laplace approximation for obtaining an 

estimate of the MLEs of � involves two stages of optimisation: the 
inner optimisation over ̂� for given �; and the outer optimisation over � . 
Laplace approximation has been widely applied to SSMs for fishery 
stock assessment (e.g. Kristensen et al., 2016) and for marine animal 
movement (Albertsen et al., 2015; Auger-Méthé et al., 2017). While 
most applications of the Laplace approximation to SSMs have been 
in a classical framework, Monnahan and Kristensen (2018) recently 

carried out a Bayesian analysis and also commented on inaccuracies 
of the approximation for a specific case study.

Laplace approximation can also serve as the first step for 
more accurate methods. Importance sampling uses simula-
tions from some distribution that can roughly approximate 
p
(

�0:T |y1:T ,�
)

∝ p
(

y1:T ,�0:T |�

)

. Weighted calculations can then 
approximate the likelihood. The optimum �̂0:T and corresponding 
Hessian provide a natural choice of Gaussian approximating distri-
bution (Skaug, 2002). A further extension is the Laplace importance 
Gauss–Hermite algorithm (Elvira et al., 2020). In both cases, asymp-
totically exact inference can be achieved with large simulation sizes. 
However, all of these methods can struggle to work well for highly 
nonlinear dynamics (e.g. when the state distribution is bimodal) or 
for long time series.

3.2.2  |  Discrete approximation

If the dimensionality of states, �t, is low (i.e. at most 2 or 3), very 
good approximations to the sequential form of the likelihood, given in 
Equation (3), can be obtained by discretising (making a grid for) values 
of �t (Besbeas & Morgan, 2020; de Valpine & Hastings, 2002; Langrock 
& King, 2013). A first-order approximation uses the probability of tran-
sitioning from each cell at time t to each other cell at t + 1, for exam-
ple using a mid-point rule. This results in a HMM, reducing the integral 
to a set of closed form matrix operations; see Box 2. Higher accuracy 
results can be obtained using, for example, the ‘trapezoid method’ of 
assuming line segments between discretised states, and/or using the 
fast Fourier transform to propagate additive Gaussian noise efficiently 
(de Valpine & Hastings, 2002). In general, there is a trade-off between 
accuracy and computational efficiency. Smaller grid cells will give more 
accurate results, but the method suffers from a ‘curse of dimension-
ality’: if �t has too many dimensions, taking the Cartesian product of 
these states to define the overall combined state may lead to a compu-
tationally infeasible number of potential state transitions. In principle 
it is straightforward to repeat the analyses with decreasing grid sizes, 
adaptive grid cells and/or increasing complex estimates of the transi-
tion probabilities to investigate the robustness of the approach and the 
associated computational time trade-offs (Besbeas and Morgan (2019, 
2020); Borowska & King, unpublished data). For low dimensions the ap-
proximation can be made arbitrarily accurate and is thus an attractive 
(and in our view under-used) model-fitting approach. The approach has 
been used within numerous ecological applications including account-
ing for observation error over space for telemetry models (Pedersen 
et al., 2011), population dynamics models (Besbeas & Morgan, 2019, 
2020) and capture–recapture-type models with continuous individual 
time-varying covariates (Langrock & King, 2013).

3.2.3  |  Sequential Monte Carlo

Sequential Monte Carlo (SMC; Chopin & Papaspiliopoulos,  2020) 
methods, or particle algorithms, are essentially iterative importance 

L
(

�|y1:T
)

≈p
(

y1:T , �̂0:T |�

)

(2�)
T+1

2
|

|

|

H
−1
�̂0:T

|

|

|

1

2
,
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sampling procedures (see Appendix C) that simulate values of the 
states, �0:T, often referred to as particles, combined with a resam-
pling procedure. The simulated states are used to construct sto-
chastic approximations of filtering and smoothing distributions, as 
well as the likelihood. The terminology particle filtering (PF) and 
particle smoothing are often used for these approximations. SMC 
procedures typically include a resampling schedule, where particles 
with higher weights are retained and replicated, and particles with 
lower weights are discarded. Details on general recursive filtering 
and smoothing algorithms are given in Appendices D and E; and an 
example is described in Appendix F.

Two features that distinguish different SMC algorithms are (a) 
the importance sampler and (b) the resampling schedule. These af-
fect both the variance and bias of the approximated distributions/
likelihood as well as computational expense. The primary issue with 
SMC methods is particle depletion, which arises when there are very 
few non-negligible weights associated with the simulated states. The 
weights are functions of the observation distribution and simulated 
state values. If the simulated states are ‘at odds’ with the observed 
data, the weights will be small or negligible. An importance sampler 
that is closer to the target distribution (e.g. the filtering distribu-
tion) will yield simulated states more consistent with observations. 

Resampling is a delicate balancing act between removing particles 
with low weights while ensuring a large enough number of unique 
particles. Ironically, particle depletion worsens with more precise 
observations, as this limits the range of state values that are rea-
sonable. Particle depletion is further exacerbated by mis-specified 
state models. A range of SMC algorithms have been proposed to 
reduce particle depletion. Notably, the auxiliary PF (APF; Pitt & 
Shephard,  1999) uses information of the new observation at the 
prediction step, generating more likely states (e.g. see Thomas 
et al.  (2005) for an application to a stage-structured population of 
grey seals). However, more complex algorithms can be more chal-
lenging to understand and/or fit so that understanding when such 
algorithms may fail can be particularly useful. For example, the 
APF generally performs poorly when the variability of the system 
process, g

(

�t|�,�t−1

)

, is large relative to the observation process, 
f
(

yt|�,�t

)

 (Elvira et al., 2019).
SMC methods are particularly useful for complicated models, in-

cluding, for example, when there are constraints on the processes, 
or the state dimensions change stochastically. Furthermore, many 
SMC methods only require simulating from the state process model 
rather than calculating its distribution (the ‘plug-and-play’ feature; 
Ionides et al., 2015). This is advantageous for process models that 

BOX 2 HMM and likelihood inference

If the values taken by the underlying system states belong to a finite set of discrete values, denoted {1 … M}, then the corresponding 
SSM reduces to a hidden Markov model (HMM) with an explicit likelihood expression. However, we note that this distinction of ter-
minology of SSM referring to continuous-valued states and HMM for discrete-valued states is not universal. The HMM has analogous 
model components as for the SSM, but now defined for discrete system states. Note that for notational simplicity we assume that the 
latent states are univariate (although if this is not the case the set of possible states can be specified in such a manner by taking the 
Cartesian product over possible state combinations). The HMM is then defined via the following components:

1.	The initial state distribution: � of dimension (1 ×M) such that �j = ℙ
(

�1 = j
)

 (assuming that the initial state distribution is specified 
at time 1)
[equivalent to g

(

�1|�
)

];
2.	The state model: defined via the (M ×M) transition probability matrix, �t−1 =

(

� ij

)

t−1
, such that � ijt−1 = ℙ

(

�t = j|�t−1 = i
)

 for 
i, j = 1, … ,M

[equivalent to g
(

�t|�t−1,�
)

];
3.	Observation model: define via the (M ×M) observation process matrix, P

(

yt
)

=diag
(

f
(

yt|�t =1,�O
)

,…, f
(

yt|�t =M,�O
))

, where 
�O denotes the parameters associated with the observation process only.
[equivalent to f

(

yt|�t ,�
)

].

The likelihood of the HMM is expressible in closed form, replacing the integral in Equation (3) by a finite sum, so that,

where, 1 denotes the (M × 1) row vector with each element equal to 1. For further discussion of HMMs, see for example, Zucchini 
et al. (2016).
For the discrete HMM approximation to the SSM the states 1,…,M will typically correspond to a set of intervals (in the univariate 
case) or higher dimensional boxes (in the multivariate case). Transitions between these states are a function of the general state model 
g
(

�t|�t−1,�
)

, approximated using the mid-point rule or higher dimensional approximations (Langrock, 2011; Langrock & King, 2013). A 
similar approximation is made in relation to the observation process.

L
(

�|y1:T
)

= �P
(

y1
)

T−1
∏

t=1

�tP
(

yt+1
)

1,
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are a sequence of random sub-processes, for example, survival and 
reproduction, where the underlying probability models can be quite 
complex, including convolutions (for further discussion see Buckland 
et al.,  2004). In the remainder of this section we discuss classical 
and Bayesian approaches that use SMC with an emphasis on ‘off-
line’ procedures, where inferences are made from the complete 
time series, y1:T. More detailed description of SMC methods for es-
timating � in SSMs is found in Kantas et al. (2015) and Chopin and 
Papaspiliopoulos  (2020); see also Michaud et al., 2021 for concise 
pseudocode.

3.2.3.1 | Classical inference
Classical approaches based on SMC methods typically produce a 
stochastic estimate of the likelihood and then apply some optimisa-
tion algorithm. A difficulty is that the likelihood to maximise is now 
stochastic rather than smooth (de Valpine, 2004, figure 4). To ad-
dress this issue an importance sampling-type approach was pro-
posed by Hürzeler and Künsch (2001). The idea is to get a smooth 
but local (in �) approximation to the likelihood surface around a user-
specified �0 based on a single sample, and reuse that sample repeat-
edly for different � values to move towards the MLE. If the 
approximation breaks down, that is, the weights for a few particles 
are dominating, a new value of �0 is chosen and a new sample is cre-
ated. In other words use SMC to generate N sets of particles, and 

calculate N associated estimates of the likelihood, L̂
i (
�0|y1:T

)

, 
i = 1, …, N. For a different value of �, say �′, calculate N likelihoods 
using those same N sets of particles and the value �′, which are de-

noted L̂
i

�0

(

�
′
|y1:T

)

, with the subscripting of L emphasising the de-

pendence on �0. The average of the ratios of these likelihoods given 
by,

is then an importance sampling estimate of the likelihood of interest, 
L
(

�|y1:T
)

. The practical problem with this is the difficulty in choosing 
�0, as the variance of the estimate will often be high if �′ is far from 
�0. In brief, importance sampling across high dimensions is extremely 
difficult.

An alternative approach is the iterated filtering (IF) method 
(Ionides et al.,  2006). IF uses � particles that are randomly per-
turbed at each time step of each iteration of the filter. The per-
turbation scale (e.g. standard deviation) follows a schedule of 
decreasing magnitude such that the average of the � particles will 
converge to the MLE (Ionides et al., 2006, 2011). To improve the 
performance of the algorithm, a variety of tuning parameters are 
available including the convergence schedule, initial distribution 
of � particles, perturbation scale and number of particles (Ionides 
et al., 2015). Too fast a schedule and/or too few particles can give 
false convergence (Michaud et al.,  2021, figure 4), so that some 
care is required in its implementation. For ecological applications 

of iterated filtering, see for example, Breed et al. (2012), Dowd and 
Joy (2011) and Fasiolo et al. (2016).

3.2.3.2 | Bayesian inference
SMC is used in two ways to achieve Bayesian inference. One simu-
lates the states (to obtain an estimate of the marginal likelihood); the 
other simulates both the states and the model parameters �, which 
permits estimation of the parameters via the associated weights of 
the generated particles. The Liu–West filter (LWF; Liu & West, 2001) 
is an example of the latter. The LWF introduces artificial ‘state dy-
namics’ for the parameters and simple random perturbations to al-
leviate particle depletion. Thomas et al. (2005) applied this method 
to grey seal metapopulation dynamics, while Newman et al. (2006) 
used it for salmon population dynamics. However, a drawback is 
bias that is introduced by these artificial perturbations of � (Kantas 
et al., 2015), with Chopin et al. (2013) demonstrating relatively se-
vere biases in an estimate of mean volatility in a stochastic volatility 
model. Thus we advise caution if using this method.

Particle MCMC (PMCMC; Andrieu et al., 2010) uses MCMC to 
sample from the posterior distribution of the parameters, �, where 
the likelihood function is replaced by an SMC approximation. 
PMCMC is ‘exact approximate’ in that the posterior distribution 
for � is correct even though the SMC used to obtain the likelihood 
is only an unbiased estimate. However, the algorithm is generally 
computationally expensive. In practice there is a trade-off between 
the number of particles used and the mixing of the Markov chain 
(Michaud et al., 2021, figures 2 and 3), thus some pilot tuning is gen-
erally advisable. Examples of ecological applications of PMCMC are 
given by Knape and De Valpine (2012), Hosack et al. (2012), Osada 
et al. (2019) and Finke et al. (2019). See Appendix G for more details. 
Furthermore, we note that, this approach can also be used to obtain 
estimates of posterior model probabilities among competing models 
(Finke et al., 2019).

The SMC2 method (Chopin et al., 2013) is an amalgamation of 
one SMC algorithm for states, conditional on �, and another SMC 
algorithm, iterated batch importance sampling (Chopin, 2002, IBIS) 
for parameters. There are two distinct features of SMC2: (a) for given 
�, an SMC algorithm is carried out to produce an estimate of the 
likelihood L

(

�|y1:T
)

; (b) the sample of � values are periodically re-
plenished, using a Metropolis–Hastings procedure for example, to 
produce new values of �. SMC2 is an accurate method but requires 
significant computational resources, particularly for long time series; 
a more computationally efficient alternative is the nested particle 
filters (Crisan & Miguez,  2018). Application of SMC2 to ecological 
models appears to be relatively limited, one example being a toy ap-
plication to the Lotka–Volterra model by Jacob (2015). Appendix H 
provides additional details.

3.2.3.3 | Advanced SMC
We discuss some recent approaches that as yet do not appear to be 
well known/used within the ecological literature. In particular, fast 
variational methods have been developed to approximate target dis-
tributions of interest with simpler parametric forms and decrease 

L̂
(

�
�
|y1:T

)

=
1

N

N
∑

i=1

L̂
i

�0

(

�
�
|y1:T

)

L̂
i (
�0|y1:T

)

,
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computational effort. The approximating distribution is a parametric 
distribution, denoted q ( ⋅ |�), that is expressed as a function of some 
parameters, �. The value of � is optimised via a given criterion, such 
as the Kullback–Leibler divergence between the target and q ( ⋅ |�) 
(Blei et al., 2017). Such variational methods have been combined with 
SMC for the filtering distribution. For example, Naesseth et al. (2018) 
specify the approximate parametric distribution q

(

�t|�t−1,�
)

 with � 
iteratively improved via variational inference; and Courts et al (un-
published data) propose an MLE of � via a variational approach that 
iteratively improves the lower bound of the likelihood. Alternatively, 
there have been proposed advanced particle filters that require 
fewer particles (e.g. the improved (I)APF in Elvira et al.  (2018) and 
the optimised (O)APF in Branchini and Elvira (2021)) and approaches 
for reducing particle depletion that include the use of nonlinear 
transformations of the importance weight, improving the sample 
diversity following resampling at the expense of introducing addi-
tional bias (Ionides, 2008; Martino et al., 2018). Recent works have 
built on these ideas via the investigation of the effective sample size 
and proposed novel alternative metrics for adaptive resampling with 
SMC (Martino, Elvira, & Louzada, 2017; Martino, Read, et al., 2017).

3.3  | Markov chain Monte Carlo using Bayesian 
data augmentation

While the likelihood is analytically intractable due to the unknown 
latent states that need to be integrated out, the complete-data likeli-
hood, p

(

y1:T ,�0:T |�

)

, is generally trivial to calculate. It is simply the 
product of the simpler observation and state model distributions 
(see Equation (3)), and this suggests a Bayesian data augmentation 
approach for general SSMs, where the latent states are treated as 
parameters (or auxiliary variables). The joint posterior distribution of 
the model parameters and latent states can be expressed as,

where � (�) denotes the prior for �. Specifying the latent states as ad-
ditional parameters means that the joint posterior distribution is easily 
evaluated (up to proportionality) and standard MCMC algorithms can 
be used to sample from p

(

��0:T |y1:T
)

. The marginal posterior dis-
tribution for � is obtained by integrating over the auxiliary variables, 

p
(

� |y0:T
)

= ∫ p
(

�,�0:T |y1:T
)

d�0:T
. This is typically performed indi-

rectly within an MCMC sampling algorithm: given a set of sampled val-
ues from the joint posterior distribution, p

(

�,�0:T |y1:T
)

, considering 
only the sampled � values integrates out the �0:T values and can be 
regarded as a sample from p

(

�|y1:T
)

. For some applications, posterior 
distributions of �0:T are also of interest, and can be similarly obtained.

The performance of the MCMC algorithms in this context ranges 
from fast and efficient to prohibitively slow and inefficient, depend-
ing on model structure, length of time series and observed data. See 
Appendix A and references therein for further discussion. The se-
quential Markov structure simplifies single updates for latent states 

since the conditional distribution at time t only requires the system 
processes at times t − 1 and t, and the observation process at time t; 
whereas updating the parameters typically requires the calculations 
over all time steps (and hence is computationally slower). However, 
this Markov structure also leads to high posterior correlations be-
tween the latent states (posterior correlation with parameters can 
also be high), leading to high autocorrelation in the MCMC chains, 
and slow exploration of the parameter space (see, e.g. King, 2011). 
More advanced strategies include ‘semi-complete’ data likelihood ap-
proaches, where a selectively chosen subset of unknown states are 
not treated as auxiliary variables and imputed but are instead inte-
grated out numerically such that the correlation between the auxil-
iary variables is reduced (Borowska & King, unpublished data), and 
blocked updates, simultaneously updating multiple states within a 
single update (Fearnhead,  2011). Hamiltonian Monte Carlo (HMC; 
Neal, 2011) represents a distinct blocking approach for (necessarily 
continuous-valued) parameters. HMC uses the shape of the posterior 
surface to determine the proposal distribution at each iteration, in-
creasing the computational cost in terms of calculating the necessary 
gradients but having the advantage of traversing the posterior space 
more quickly. In the case of SSMs HMC is typically applied by simul-
taneously updating both the model parameters, �, and auxiliary vari-
ables, �0:T. For a wide range of ecological SSM examples of Bayesian 
data augmentation using a variety of different MCMC algorithms, see 
for instance, Millar and Meyer (2000), Jamieson and Brooks (2004), 
Brooks et al.  (2004), King et al.  (2008), King  (2011), McClintock 
et al. (2012, 2013), Monnahan et al. (2017) and Best and Punt (2020).

3.4  | Other sampling based methods for 
classical inference

For general SSMs there are a variety of methods that permit the 
calculation of MLEs of the parameters using ideas/techniques often 
associated with sampling and/or data augmentation.

3.4.1  |  Monte Carlo EM

The EM (Expectation–Maximisation) algorithm (Dempster et al., 1977) 
is often applied to missing data problems to obtain the MLEs of the 
model parameters via an iterative two-step process. Step 1 (the ‘E’-
step) involves calculating the expectation of the log-likelihood of the 
data given the model parameters; Step 2 (the ‘M’-step) calculates 
the values of the model parameters that maximises this expectation. 
Iterating these steps leads to parameter values that converge to their 
associated MLEs. See Morgan (2008) for further discussion and de-
tailed case studies. For general SSMs the expectation in the E-step is 
analytically intractable. In this case, Monte Carlo (MC)EM can be ap-
plied, which uses a MC estimate of the expectation by simulating a set 
of N latent states from the smoothing distribution p

(

�0:T |y1:T ,�
)

, de-
noted �1, … ,�N (e.g. by using SMC or MCMC). The M-step updates � 
by maximising the MC estimate of the log-likelihood function given by,

p
(

��0:T |y1:T
)

∝g
(

�0|�

)

T
∏

t=1

f
(

yt|�t ,�
)

g
(

�t|�t−1�
)

� (�) ,
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Despite the apparent relative simplicity, the EM algorithm can be slow 
to converge and there is a computational trade-off between the num-
ber of samples generated, N, and computational time. Large N is typ-
ically required due to the fine-scale maximisation issues owing to the 
stochastic approximation of the E-step; but leads to increased com-
putational cost. For further discussion and a range of ecological appli-
cations, see for example, de Valpine (2012); Halladay (2007); Stoklosa 
et al. (2015) and Picchini and Samson (2018).

3.4.2  |  Data cloning

The idea of data cloning (DC) is to obtain the MLEs of the parame-
ters, and their variances, using a Bayesian framework where the like-
lihood is artificially amplified so that the corresponding posterior 
distribution is dominated by the data and the distribution approaches 
a multiple of the large-sample distribution of the maximum likeli-
hood estimates. This is achieved by creating a new dataset consist-
ing of M exact ‘clones’ of the data, denoted YM

1:T
=

(

y1
1:T

,…, yM
1:T

)

, 
where y j

1:T
= y1:T for j = 1,…,M. The posterior distribution is formed, 

p
(

�|Y
M

1:T

)

, assuming some arbitrary prior, and explored using stand-

ard techniques (Lele et al. (2007) advocate an MCMC data augmen-
tation approach). The MLE of the parameters is estimated by the 
posterior mean, and the associated standard error the posterior 
standard deviation multiplied by 

√

M. See Lele et al. (2007) for the 
associated justification and application to Gompertz and Ricker 
models. DC is more computationally demanding than a standard 
Bayesian approach (with M = 1) because every clone requires sepa-
rate latent states. In general, there is a trade-off between accuracy 
in terms of the number of clones, M, and computational expense. 
Using an MCMC data augmentation approach, the number of addi-
tional imputed latent states will be M times larger than the observed 
data. See Lele et al. (2010) for further discussion regarding determin-
ing a suitable value for M and additional inference on the latent 
states; and for ecological applications, see for example, Ponciano 
et al. (2009); Schlägel and Lewis (2014).

3.4.3  |  Monte Carlo kernel likelihood

The Monte Carlo kernel likelihood (MCKL) approach uses kernel 
smoothing of the posterior distribution of � to approximate its den-
sity (de Valpine, 2004, 2012). In particular, de Valpine  (2004) pro-
posed the use of a Bayesian approach to obtain a sample of � values 
from its associated posterior distribution before the impact of the 
prior is ‘divided out’, yielding a likelihood approximation. This is, at 
first glance, a potentially hazardous idea because kernel density es-
timation suffers from a curse of dimensionality, in this case in rela-
tion to the number of model parameters, that is, the dimension of 

�. However, it is at its most accurate for estimating a mode (maxi-
mum), the sample sizes can be very large due to MCMC sampling, 
corrections from distribution theory can be applied, and the whole 
procedure can be iterated to improve accuracy. de Valpine  (2004) 
gave highly skewed posterior examples where the approach was ac-
curate for even up to 20 parameter dimensions. This approach has 
been seldom applied, but remains potentially useful (see Karban & 
de Valpine, 2010).

3.5  |  Likelihood-­free methods

For SSMs that are highly nonlinear, model-fitting can be particu-
larly difficult. In such instances, likelihood-free (or information-
reduction) methods (Hartig et al.,  2011), namely, approximate 
Bayesian computation (ABC; Martin et al., 2019; Sisson et al., 2018) 
and synthetic likelihood (SL; Drovandi et al., 2018; Wood, 2010), 
are alternative approaches. These approaches rely only on the 
ability to simulate data from the SSM, given the model parameters. 
This involves simulating the underlying states (�1:T) from the state 
model, and then, conditional on these, simulating data (y1:T) from 
the observation model, another example of ‘plug-and-play’. Model 
parameter values (and potentially system states) are deemed plau-
sible if they generate data that are similar to the observed data. 
Similarity is typically defined by transforming the data into a vec-
tor of lower dimensional summary statistics and using a distance 
measure, such as the squared Mahalanobis distance function. For 
ABC there is a further specification to be made in terms of the 
tolerance (or threshold), such that parameter values are retained if 
this distance measure is within the tolerance. In practice a range of 
tolerances may be used to assess the sensitivity of the approximate 
posterior samples to this level, and to determine an appropriate 
tolerance to use. For the SL approach, a parametric (multivariate 
normal) distribution is assumed for the summary statistics, which 
implicitly defines the given distance metric and removes the need 
for any additional tolerance level to be specified. See Fasiolo and 
Wood  (2018) for further discussion and comparison of the ABC 
and SL approaches.

ABC and SL have been successfully applied to several ecological 
state-space models, (Fasiolo & Wood, 2018; Ruiz-Suarez et al., 2020; 
Scranton et al., 2014; Wood, 2010). The principle challenge lies in 
the specification of the reduced summary statistics. For the ecolog-
ical applications considered, summary statistics used range from the 
raw data values themselves to combinations of mean(s)/standard de-
viation(s), regression models fitted to the values (or their differences) 
and/or auto-covariance functions. In practice, biological knowledge 
may be useful to identify the most important or useful summary sta-
tistics, which may be weighted accordingly. Similarly it may be possi-
ble to identify particular areas of lack of fit of the model to the data 
via such metrics. For increasingly complex SSMs, for example, higher 
order Markov system processes, or highly nonlinear dynamics, it is 
often still trivial to simulate data, and in these circumstances ABC 
and SL may provide a very useful tool.

�
[

lnp
(

y1:T |�0:T ,�
)]

≈
1

N

N
∑

j = 1

ln

[

g
(

�
j

0
|�

)

T
∏

t = 1

f
(

yt ,�
j

t
|�

)

g
(

�
j

t
,�

j

t−1
|�

)

]

.

 2041210x, 2023, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13833 by T
est, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    | 35Methods in Ecology and Evolu
onNEWMAN et al.

4  | DISCUSSION

Regardless of the model-fitting method, checks should always be 
conducted to assess the fit of the SSM to the data, which can help di-
agnose poor-fitting models or even structural estimation problems. 
We discuss both relative and absolute goodness-of-fit measures be-
fore describing available SSM software and offering some general 
practical recommendations.

4.1  | Model assessment

4.1.1  |  Parameter redundancy

SSMs can encounter issues of parameter redundancy such that 
parameters are not uniquely estimable given the observed data 
(Auger-Méthé et al., 2016; Cole, 2020; Knape, 2008). Near param-
eter redundancy can also lead to poor precision and poor model-
fitting performance. This has been observed for the process and 
observation errors, particularly for short time series, and ecological 
datasets are often of short duration, for example, 10 years. Cole and 
McCrea  (2016) discuss analytical approaches for detecting redun-
dancy problems in SSMs, while Lele et al.  (2010) describe the use 
of data cloning to do so, where the behaviour of the eigenvalues of 
the posterior variance–covariance matrix provide a measure of es-
timability. Repeated data collection within the study design can aid 
with disentangling these errors (Besbeas & Morgan, 2020; Dennis 
et al., 2010; Knape et al., 2013); while Besbeas and Morgan (2017) 
explored the use of penalised likelihood and pseudo-replicated se-
ries (involving replacing time-series values by neighbouring values).

Constructing models that are (near) parameter redundant is, un-
fortunately, all too easy, particularly when considering multiple bio-
logical mechanisms acting on the system process and/or where the 
observed data are limited to only a subset of the latent states (e.g. 
only young/adults for age-structured populations; or where multi-
ple processes occur between observations). Even for very simple 
univariate LG-SSMs, problems can arise in separating the effects of 
state process variation and the observation noise. As both Dennis 
et al.  (2006) and Auger-Méthé et al.  (2016) have shown there can 
be a ridge in the joint likelihood function for the state and observa-
tion variances whereby nearly equivalent fits can result from com-
binations of low process variation-high observation noise and high 
process variation-low observation noise. This non-identifiability or 
weak identifiability can easily arise in other seemingly simple SSMs 
and hierarchical models in general and the unintended effects on 
statistical inference can be striking—see Staples et al. (2009) for the 
effects on estimates of the probability of quasi-extinction and see 
Lele (2020) for potential conflicts in Bayesian inference arising from 
seemingly harmless alternative parameterisations. The bottom line 
cautionary note is that the available data necessarily constrains the 
complexity of the SSM that can be fit.

To improve estimability and to thus fit more complex SSMs, 
additional external data may be needed (Cole & McCrea,  2016). 

Incorporating different kinds of data from different surveys or data 
collection procedures can lead to integrated population models. 
For example, count data have been combined with other data such 
as ring-recovery (Besbeas et al., 2002, 2005; King et al., 2008) or 
nest productivity data (Abadi et al., 2010; Besbeas & Morgan, 2019) 
to separate survival from reproduction. Also, the inclusion of co-
variates, such as environmental conditions and/or density depen-
dence, for sub-process models in the state model has been shown 
to improve identifiability (Besbeas et al.,  2002; Finke et al.,  2019; 
Polansky et al., 2021).

4.1.2  |  Model assessment

Once a model has been fitted to data it is useful to investigate how 
well the model describes the data, that is, the absolute goodness-of-
fit. A well-fitting model provides confidence that the main biologi-
cal drivers have been identified and the estimated parameters are 
meaningful. In contrast a poor-fitting model would lead to a more 
cautious interpretation and ideally identify where the lack-of-fit is 
most prevalent, potentially leading to alternative better fitting mod-
els. Newman et al.  (2014, §5.6) outline the challenges for absolute 
goodness-of-fit procedures for SSMs, and provide a range of alter-
native procedures, including plotting appropriate residuals, meas-
ures of discrepancy (also called innovations), Bayesian p-values and 
cross-validation. Additional discussion is provided by Auger-Méthé 
et al.  (2021). For a general guide to Bayesian model checking for 
ecologists see Conn et al. (2018), who emphasised the conservative 
nature of Bayesian p-values, as while they detect extreme model in-
adequacy, they can fail to detect more subtle misfit. Recent work has 
also focused on the one-step ahead predictions of the observations 
using different statistics to assess potential model mismatch (Djuric 
& Míguez, 2010; Elvira et al., 2017, 2021; Karban & de Valpine, 2010; 
Thygesen et al.,  2017). Extending SSMs to integrated population 
models provides further goodness-of-fit challenges with Besbeas 
and Morgan (2014) proposing a calibrated simulation approach.

4.1.3  |  Model selection

Often there are multiple possible models that represent competing 
biological hypotheses and one may want to compare the models in 
terms of relative goodness-of-fit and to select a single model. Hooten 
and Hobbs (2015) provide a guide to model selection for ecologists; 
and for the specific application to SSMs see Newman et al.  (2014, 
§5.4) and Auger-Méthé et al. (2021). A common model selection ap-
proach for ecological models is to use information criterion, nota-
bly Akaike information criterion (AIC) and its variants (including the 
method of Bengtsson and Cavanaugh (2006) for SSMs, although this 
is relatively complex and computationally demanding) within clas-
sical analyses. The Watanabe–Akaike information criterion (WAIC; 
Watanabe, 2013, 2021; Watanabe & Opper, 2010) is the preferred 
criterion for Bayesian analyses. Alternatively, within the Bayesian 
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framework, posterior model probabilities (and the related idea of 
Evidence; Finke et al. (2019)) may be calculated to provide a quantita-
tive comparison of competing models, and permit model-averaged 
estimates. These can be calculated using reversible jump (RJ)MCMC 
(Gimenez et al., 2009; Jamieson & Brooks, 2004; King, 2011; King 
et al.,  2009), SMC methods (Finke et al.,  2019; Martino, Elvira, & 
Louzada, 2017; Martino, Read, et al., 2017; Urteaga et al., 2016) or 
general ‘normalising constant’ methods (de Valpine,  2012). Auger-
Méthé et al. (2021) discuss these criteria further and emphasise that 
for information criteria the system processes need to be of the same 
dimension. To address this issue Besbeas, McCrea and Morgan (un-
published data) present ways to ensure that such model comparisons 
do not affect the asymptotic distribution of a likelihood-ratio test.

4.2  |  Software

Many software packages provide one or more methods for some 
assortment of SSMs, and these range from application-specific 
domains to general model specification. Given the huge variety of 
packages, we classify some of the most widely used general pack-
ages in Table  1, excluding domain-specific applications (e.g. pack-
ages for animal movement models, etc). However, we do include 
some R packages that focus on types of models. For example, of 
particular interest to ecologists working with ecological communi-
ties and multiple species is the R package MARSS for ‘multivariate 

autoregressive state-space’ modelling (Holmes et al., 2012) which is 
an implementation of probabilistic models for community stability, 
among other things (Ives et al.,  2003). The underlying of assump-
tions of MARSS are normality and linearity; for an application see 
Hampton et al. (2013).

Our list is non-exhaustive and the categories are coarse, as 
there are variants of each method and different ranges of models 
for each package, but will allow researchers to explore some of the 
methods summarised above. We would also recommend further 
investigation for additional domain-specific software/packages. 
Comparisons in terms of efficiency or range of supported models 
are beyond our scope. Most of the covered tools are, or can be 
interfaced from, R packages. Of course, individuals who are rea-
sonably fluent writing R code can implement their own customised 
algorithms. Tools in Python, Julia, standalone C++ or other lan-
guages are not listed.

A few important and interesting themes emerge from Table 1. 
MCMC ‘black-box’ software packages such as nimble (de Valpine 
et al.,  2017), JAGS (Plummer,  2016), Open/WinBUGS (Lunn 
et al.,  2012) and Stan (Stan Development Team,  2021) are not 
specific to SSMs and support general model structures. LibBi 
(Murray, 2015) (and associated R package, rbi) is an SMC-specific 
package that supports a range of these methods. The packages pomp 
(King et al., 2016) and nimble stand out as the most general, mak-
ing them useful for methodological research and comparisons per se, 
with nimble the most general due to its combination of extensible 

TA B L E  1  Software packages (columns) against methods (rows). KF R packages include dlm, FKF, KFAS, MARSS; HMM R packages include 
HiddenMarkov, depmixS4, msm. TMB = Template Model Builder (Kristensen et al., 2016). dclone (Sólymos, 2010) is an R package. 1: 
Method could be supported in nimble’s algorithm language but is not part of the package. 2: Method is in development. 3: Any MCMC 
engine could be used for MCKL or DC. 4: HMMs must be marginalised in Stan and may be handled in different ways in nimble, JAGS or 
Open/WinBUGS

KF 
packages TMB

HMM 
packages LibBi pomp nimble JAGS

Open/
WinBUGS Stan dclone

KF ✓ 1

EKF ✓ 1

UKF 1

EnKF ✓ ✓

Laplace ✓ 2

Discrete approximation (HMM) ✓ 4 4 4 4

SMC/PMCMC ✓ ✓ ✓

IF ✓ ✓

LWF ✓ 1

SMC2 ✓ 1

MCMC (data augmentation) ✓ ✓ ✓ ✓

MCEM ✓

MCKL 3 3 3 3

DC 3 3 3 3 ✓

ABC ✓ 1

SL ✓

VI ✓
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models and embedded algorithm language. Using nimble, the nim-
bleSMC package supports SMC methods, including some more ad-
vanced techniques such as APF, with the full model flexibility of the 
BUGS model language.

4.3  |  Practical guidance for implementation

Here we offer guidance for fitting SSMs based on our experiences, 
admittedly subjective, with the different model-fitting approaches. 
There is no universal ‘best’ approach, as they nearly all try to achieve 
valid classical or Bayesian inference but differ in difficulty of imple-
mentation, delicacy of tuning, and computational cost. In Table 2, we 
have compressed the pros and cons of each method into an overall 
score from 1 (hardest/slowest) to 4 (easiest/fastest), regardless of 
classical versus Bayesian analysis goals. We emphasise that the ef-
ficiency of different model-fitting algorithms depends on both the 
model structure and the observed data, so these are coarse scores. 
For example, high-quality data with relatively small observation 
error can lead to high particle depletion within SMC approaches; 
conversely, small system process variation can lead to very high cor-
relation and poor mixing within MCMC approaches.

General advice is to start with a relatively simple model, po-
tentially oversimplified and correspondingly simple model-fitting 
procedures, so as to get initial parameter estimates and predic-
tions of observations. Goodness-of-fit assessment may indicate 

unacceptable results, and then one formulates a more complex SSM 
structure and applies a more sophisticated fitting procedure. And 
more iterations may ensue.

For many problems, the Kalman Filter and its approximations, 
and MCMC with data augmentation of latent states, are the first 
stop for practical and effective methods. Maximum likelihood es-
timation with one of the KF-based methods can be fast and thus 
amenable to resampling-based model-checking and model selection 
methods such as the moving-block bootstrap. MCMC, on the other 
hand, gives Bayesian accounting of uncertainty and use of prior 
information when desired. For relatively short time series, for ex-
ample, T ≤ 20, an MCMC fit may be fine even with relatively high 
correlations, so long as a long enough run can be made in an accept-
able amount of time.

When classical inference is desired but KF-based methods are 
inadequate, one can turn to Monto Carlo approaches, Laplace ap-
proximation or discretisation. If the dimension of states (n) at each 
time step is small, discretisation into an HMM is particularly attrac-
tive and can give efficient and accurate results. While one needs to 
check the effects of different levels of discretisation of the state vec-
tor components, depending on the dimension of the state and model 
complexity, this is a relatively easy procedure. When MCMC is prac-
tical, the general Monte Carlo MLE methods of MCEM, MCKL and 
DC can be considered. Among these, DC can potentially be run from 
any MCMC engine and requires tuning the number of data clones. 
MCEM has simpler MCMC needs (only sampling latent states) and 

LG ΔNL ΔNG NL/NG HNL

Likelihood evaluation/estimation

KF ✓✓✓✓

EKF =KF ✓✓

UKF =KF ✓✓✓

EnKF ✓✓✓ ✓✓✓ ✓✓✓ ✓✓

Approximation KF =KF ✓✓✓

Laplace =KF ✓✓ ✓✓✓ ✓✓

Discrete (n = 1, 2) — ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓

Discrete (n = 3–5) — ✓✓ ✓✓ ✓✓ ✓

SMC (direct optimisation) — ✓ ✓ ✓ ✓

Classical approaches

IF — ✓✓ ✓✓ ✓✓ ✓

MCEM — ✓✓ ✓✓ ✓✓ ✓

MCKL — ✓✓ ✓✓ ✓✓ ✓

DC — ✓✓ ✓✓ ✓✓ ✓

SL — ✓ ✓ ✓ ✓✓

Bayesian approaches

SMC/PMCMC — ✓✓ ✓✓ ✓✓ ✓

MCMC (data augmentation) — ✓✓✓ ✓✓✓ ✓✓✓ ✓

SMC2 — ✓✓ ✓✓ ✓✓ ✓

Variational — ✓✓ ✓✓ ✓✓ ✓

ABC — ✓ ✓ ✓ ✓✓

TA B L E  2  Overview of the general 
appropriateness of the different model-
fitting tools for different categories 
of models: LG = linear and Gaussian; 
ΔNL/NG = mild nonlinearity and/
or non-Gaussian; NL/NG = nonlinear 
and/or non-Gaussian; HNL = highly 
nonlinear SSMs. ✓✓✓✓ = generally easily 
applied and efficient; ✓✓✓ = should 
be generally applicable but some mild 
additional considerations (such as further 
reasonable assumptions; increased 
computational effort); ✓✓ = may be 
applicable under certain conditions 
with additional considerations (such 
as stronger modelling assumptions; 
algorithm requires tuning; increased 
computation effort); ✓ = potentially 
applicable but greater considerations 
(such as strong approximations required; 
potential bias; information reduction; 
large computational effort); —denotes 
that although the approach can be applied 
it is not necessary due to the analytical 
calculation of the likelihood via the KF, 
n for the discrete approaches is the 
dimension of the state vector
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requires tuning parameters for stochastic convergence assessment. 
Both of these can require some trial and error. MCKL can be run from 
any MCMC engine but currently lacks a general package. Laplace ap-
proximation can be simple, fast and practical, but its accuracy should 
be assessed; for example, by simulating data from the fitted model 
and seeing if the score function (the derivative of the log likelihood) 
equals zero at the MLEs (personal communication, Hans Skaug). For 
state models that have probability distributions that are difficult to 
evaluate but can be simulated, then the IF algorithm is attractive as 
a ‘plug-and-play’ procedure.

When Bayesian inference is desired (and KF-based methods are 
inadequate), again Monte Carlo approaches, particularly MCMC or 
SMC methods, can be employed. In general for complex higher di-
mensional systems, such sampling based approaches may become 
necessary, although these often require a greater amount of pilot 
tuning and are computationally more expensive. SMC methods come 
into their own when MCMC does not work well, either because the 
likelihood is hard to evaluate, or the posterior is highly correlated, or 
specialised MCMC sampling methods would be needed. The latter 
case might arise to respect a constraint in the model, or to sample be-
tween different numbers of latent state dimensions, or to sample la-
tent states for every individual in a population rather than for cohorts 
or whole populations. However, while SMC methods sound good in 
principle, in practice they can require large simulation sample sizes 
and can perform poorly for inadequate models, so they can take some 
effort to make work well. That said, there are many problems where 
MCMC does not work well (although standard MCMC implementa-
tions do indeed work well in many situations, too), or where online 
(real-time) forecasting is needed, so SMC is a rapidly developing field.

Synthetic likelihood and approximate Bayesian computation 
are most useful when none of the above work, likelihoods are be-
yond reach, and one is willing to formulate ad-hoc metrics of what 
‘fitting the data’ should mean. For example, one might use various 
correlations over time and among observation dimensions as met-
rics that should match between model and data, in a spirit similar 
to methods-of-moments approaches. Then SL and ABC offer a path 
to a rough form of estimation and inference, contingent on the cho-
sen metrics. Variational methods, on the other hand, come into their 
own when the time series is so long that above methods bog down 
computationally.

In summary, there is no single algorithm that dominates for gen-
eral SSMs and model-fitting may require consideration of more than 
one technique to satisfactorily fit a model to data. However, there 
is an ever-growing set of computational algorithms and associated 
software (as discussed in Section 4.2) in the ecologists toolbox that 
can now be applied to a vast range of ecologically interesting and 
complex models.
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