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ABSTRACT

This thesis studies the propagation characteristics of coupled dielectric waveguides 
and their application to millimetre-wave components. Firstly, by applying the 
transverse boundary conditions, exact characteristic equations for single and coupled 
dielectric slab waveguides are obtained. By assuming that the loss tangent of the 
guiding and surrounding region is small, approximate expressions for the attenuation 
constant are then derived. These expressions relate the attenuation constant directly 
to the lossless propagation constant and the waveguide parameters; their evaluation is 
then straightforward. Secondly, by defining an effective loss tangent, the slab guide 
solutions are used in the effective dielectric constant (EDC) method and the dual 
effective-index method (DEIM) to yield a simple, yet accurate method for the 
evaluation of the complex propagation constant of single and coupled dielectric 
waveguides with rectangular cross-sections. Furthermore, it is shown that the 
presented results are in good agreement with both finite element values and 
experimental data obtained using the open resonant cavity technique.

By considering transitions between single and coupled dielectric slab guides, and the 
resulting coupling effects, several dielectric waveguide components are described. 
Each device relies on a short length of coupled waveguide formed by placing a 
movable block of dielectric parallel to a dielectric guide. It is shown that if the block 
is of the same material, and has identical cross-sectional dimensions to the 
waveguide, the effects of coupling can be exploited to achieve a variable attenuation. 
It is further shown that the separation at which maximum attenuation arises is 
dependent on the operating frequency; the structure can therefore be used as a 
wavemeter. By introducing large asymmetries into the device, the effects of coupling 
are prevented. Tinder these conditions, the device operates as a low-loss phase- 
shifter.
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‘One cannot escape the feeling that these mathematical formulas have an 

independent existence and an intelligence o f their own, that they are wiser 

than we are, wiser even than their discoverers, that we get more out o f them 

than was originally put into them. ’

-Heinrich Hertz on Maxwell’s equations.



1. INTRODUCTION

In recent years there has been a great deal of interest in the millimetre-wave 
frequency spectrum above 110 GHz. Applications at these frequencies range from 
intelligent vehicle guidance systems, collision avoidance and space debris tracking to 
radio astronomy and high speed LANs. Circuits for millimetre-wave frequencies are 
available using monolithic microstrip or coplanar waveguide technology. 
Furthermore, it has been shown that the guiding structures on integrated circuits can 
be implemented in hybrid dielectric waveguides. These include insulated image guide 
[1], dielectric ridge guide [2], inverted strip dielectric waveguide [3] and more 
recently layered ridge dielectric waveguide [4], Unfortunately, complete systems 
cannot in general be realised completely on-wafer. Connections to source oscillators, 
antenna feeds and test equipment are just some examples where guiding structures 
are required to connect to and from integrated circuits.

Although microstrip and coplanar waveguides are well suited for on-wafer 
connections, they suffer from very high losses at millimetre-wave frequencies due to 
surface roughness and the skin effect. They are therefore of little use for propagation 
over distances much greater than a few millimetres. Coaxial cables are widely used at 
microwave frequencies, however, above 110 GHz the high attenuation and the small 
sizes required for monomode propagation make them impractical. The new classes of 
integrated circuits, using hybrid dielectric waveguides, have low losses but are not 
well suited for propagation over large distances due to their complicated geometries. 
Therefore, due to its compatibility with sources and test equipment, conventional 
metallic waveguide is usually the chosen structure. Unfortunately, as we shall see, 
rectangular metallic waveguide is far from ideal above 110 GHz and thus a different 
class of waveguide is required.

Optical fibres have been used for many years as a means of ultra-low-loss 
propagation. The principle of total internal reflection is exploited to reflect a beam of
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light off the boundary between the fibre and the cladding and thus guide the energy 
down the fibre. This principle is equally valid at microwave and millimetre-wave 
frequencies. Indeed, much work was done in the seventies and eighties on dielectric 
waveguides for millimetre-wave frequencies. It is therefore surprising that dielectric 
waveguides, of the type shown in Figure 1.1, are not more widely used in industry.

2 a

Figure 1.1. Rectangular dielectric waveguide.

The main reason for the neglect of dielectric waveguides is that below 110 GHz the 
advantages they have over conventional metallic waveguides are less apparent. In 
addition, the fear of external fields and the increased complexity of the problem has 
persuaded many engineers to use metallic guides where possible. However, above 
110 GHz the advantages that dielectric waveguides have over conventional 
waveguide far outweigh their disadvantages, making them better suited to millimetre- 
wave propagation. Accordingly, we start with a summary of the main advantages that 
dielectric waveguides have above 110 GHz.

1.1 ADVANTAGES OF DIELECTRIC WAVEGUIDE ABOVE 

110 GHz

The attenuation constant in metallic waveguide increases with at least/ ' 5 [5] due to
the skin effect. In comparison, losses in dielectric waveguide increase with
approximately f  We find that for silver rectangular waveguide the losses are greater
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than 6 dB m"1 at 140 GHz, whereas dielectric guides with losses of just 1 dB m '1 are 
readily constructed at the same frequency [6], Since the attenuation in dielectric 
waveguides is dependent on the geometry, the dimensions of the structure can usually 
be adjusted to achieve the required attenuation constant. For example, Yeh [7] has 
shown that dielectric waveguides with large aspect ratios and high dielectric 
constants can achieve losses of just 20 dB km'1 using commercially available 
material.

In conventional waveguide, the phase velocity varies from infinity to that of free 
space. In contrast, the phase velocity in dielectric waveguides varies from the plane 
wave velocity in the surrounding region to that of the guiding medium. Accordingly, 
the variation of velocity with frequency is much less for dielectric waveguide and 
consequently the dispersion is less. The bandwidth in conventional waveguides is 
usually limited to about half an octave to achieve monomode transmission with 
tolerable dispersion. In dielectric waveguides, the fundamental mode has, in theory, 
no lower cut-off frequency resulting in much larger bandwidths. However, for 
sufficient confinement of the field energy, a bandwidth of about an octave is chosen 
[8].

Conventional waveguide junctions are extremely sensitive to alignment errors in the 
transverse direction. Moreover, if there is an air gap in the longitudinal direction, the 
structure works as a good open circuit, reflecting most of the incident wave. 
Dielectric waveguide junctions, however, are far less sensitive to alignment 
discontinuities, even in the longitudinal direction [9], As a result, the insertion loss in 
dielectric waveguide junctions is far less than conventional guides. Furthermore, 
transitions from dielectric waveguide to both metallic and coplanar waveguide are 
possible using waveguide horns and dielectric probing heads [10], respectively. It is 
further envisaged that transitions between dielectric waveguide and integrated 
circuits using hybrid dielectric guiding structures could be realised since both 
structures use the same technology.

At 35 GHz the internal dimensions of rectangular metallic waveguide are 7.112 mm 
by 3.556 mm; at 140 GHz they are 1.651 mm by 0.8255 mm. Clearly the 
manufacture of hollow metallic tubes at these dimensions is no trivial task, 
particularly over large lengths. In contrast, dielectric waveguides of similar 
dimensions can be manufactured far easier since they are solid, rather than hollow 
structures. As a result, the cost of dielectric waveguide is much less than metallic
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guide at millimetre-wave frequencies. In addition, it is often convenient to have some 
flexibility in the guiding structure. For example, in mechanically scanning antennas 
or movable probe stations. Metallic waveguide can be made flexible, but at 
millimetre frequencies, this is extremely difficult. In comparison, dielectric 
waveguides made from low-loss materials such as PTFE are inherently flexible and 
are ideally suited for systems where movement is required. It should be noted that 
dielectric waveguides suffer from radiation loss if the radius of curvature is small. 
However, with careful design, sharp bends can be avoided.

Many components are available for metallic waveguide such as phase shifters and 
attenuators. Components of this nature can be very useful, particularly in 
measurement systems. If dielectric guides were to replace conventional guides at 
millimetre-wave frequencies, it would be advantageous if passive components were 
also available. The main aim of this thesis is, therefore, the design of passive 
components using dielectric waveguides. However, to achieve this goal, several 
additional subjects must first be examined. These include the propagation 
characteristics of both single and coupled dielectric waveguides and the transitions 
that exist between the two types of structure. All of these topics are studied in the 
following chapters, an outline of which is given below.

1.2 OUTLINE OF THESIS

In order to use dielectric waveguides their propagation characteristics must be 
known. Therefore, in Chapter 2 the complex propagation constants of dielectric 
waveguides are considered. Firstly, the general slab waveguide with dielectric losses 
in both the guiding and surrounding region is defined. From this, an exact set of 
coupled transcendental equations for the complex propagation constants are derived. 
Then, by assuming that the losses are small, approximate expressions for both the 
real and imaginary parts of the propagation constant are obtained. Secondly, the 
approximate solutions are used in the effective dielectric constant method (EDC) and 
the dual effective-index method (DEIM) by introducing an effective loss tangent. 
Solutions are then compared with finite element results.

The dielectric waveguide components studied in Chapter 6 rely on coupled guides.
Accordingly, Chapter 3 looks at the general asymmetrical coupled dielectric
waveguide. As in Chapter 2, we firstly consider slab waveguides. Exact
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transcendental equations for lossless coupled slab waveguides with asymmetry in 
width and permittivity are derived and the various limiting values are examined. 
Field profiles for both forms of asymmetry are displayed giving some insight into the 
coupling phenomena. Next, approximate solutions for symmetrical coupled slab 
waveguides with dielectric losses are derived. Finally, by using the solutions for 
coupled slab waveguides together with the expressions derived in Chapter 2, we 
obtain approximate solutions for coupled dielectric waveguides using the EDC 
method. Again, solutions are compared with finite element results.

In order to verify the theoretical models, experimental results for dielectric 
waveguides are given in Chapter 4. For the single waveguide both the real and 
imaginary parts of the complex propagation constant are measured and compared 
with finite element results and the technique in Chapter 2. For coupled structures, 
results are compared with the technique of Chapter 3 and finite element results.

Chapter 5 studies the discontinuities arising from single to coupled waveguide 
transitions using the mode matching technique. Firstly, the complete set of modes on 
dielectric waveguides are introduced. The field continuity equations for single to 
coupled waveguide transitions are then given. By using the bounded approach, it is 
shown that very little energy is reflected or radiated from the discontinuity. This leads 
to a simple approximate value for the transmitted mode amplitudes. Secondly, using 
the approximate expressions, the effects of separation and asymmetry on the coupling 
of energy between the two guides is studied.

In Chapter 6, the work of chapters 2, 3, 4 and 5 is combined to demonstrate several 
dielectric waveguide components, namely wavemeters, attenuators and low-loss 
phase-shifters. For simplicity, experimental results at 10 GHz are given to verify the 
theoretical models of the components. Finally, in Chapter 7, several conclusions are 
made and suggestions for future work.
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2. PROPAGATION CHARACTERISTICS OF 
DIELECTRIC WAVEGUIDES

Many techniques for the solution of rectangular dielectric waveguides have been 
presented. One of the first of these techniques was given by Marcatili [1], By 
assuming that very little energy flowed in the four corner regions he matched the 
fields along the guide boundaries producing a set of characteristic equations that 
could be solved for weakly guiding structures. Goel [2] provided a more accurate 
mode matching technique by expanding the fields in terms of circular harmonics. By 
analysing several slab waveguide structures Knox and Toulios [3] provided a simple 
technique that gave results comparable to Marcatili’s method but was easier to 
implement than Goel’s technique. Since then, many techniques have been presented, 
such as finite difference and finite element approaches, a review of which can be 
found in [4], These techniques can be extremely accurate, however in general they 
are numerically intensive. Consequently, the effective dielectric constant method of 
Knox and Toulios is still widely used for dielectric waveguide design. Furthermore, 
the accuracy of the technique has been improved in recent years to form the dual 
effective-index method [5],

Although the losses in dielectric waveguides are usually far less than metallic 
waveguides at millimetre-wave frequencies, they can still be significant. The majority 
of work on dielectric waveguides has been at optical wavelengths where the 
dielectric losses are negligible. As a result many of the techniques have dealt with 
simply the imaginary part of the complex propagation constant. The numerical 
techniques such as the finite element or finite difference methods have been applied 
to lossy structures; however, their complexity and large computational times limit 
their use for general design purposes. In contrast, the widely used effective dielectric 
constant method is accurate and extremely simple to implement. Accordingly, in this 
chapter an extension to the effective dielectric constant and dual effective-index 
methods is presented to allow for dielectric losses.
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2.1 MAXWELL’S EQUATIONS

We begin this section with Maxwell’s well-known equations in differential form:

~ ÔB(r,t)
V x E ( r ,0 - -  -at (2.1)

V x H (r,0  = J c(r,i) + J v(r,0  +
at

(2.2)

V-B(r,/) = 0 (2.3)

V -D (r,/)= p (r,0 , (2.4)

where the tildes represent functions of space and time. The variables are defined as 
follows

E Electric field intensity: VnT1

H Magnetic field intensity: A m '1

D Electric flux density: Cm '2

B Magnetic flux density: Wb m

J £ Conduction current density: A m'2

J, Source current density: A m'2

P Electric charge density: Cm '3

r Position vector: m

Maxwell’s equations are supplemented with the following relations

J c = aE (2.5)

D = sE (2.6)

B = p H , (2.7)
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where

a Conductivity: S n f1

8 Permittivity: Fnfi1

P Permeability: H rn 1

The conductivity a, the permittivity s and the permeability p can in general be
functions of the applied field (non-linear); functions of space (inhomogeneous); and 
dependent on the direction of the field (anisotropic). However, in our analysis we 
shall only consider linear homogenous isotropic media. We further assume that all 
media is source free, therefore p = 0 and J s = 0.

The partial differentials in Maxwell’s equations can be simplified by taking the time- 
harmonic case. Thus, the field expressions become

E(r,0 = E(r)e/“' (2.8)

H (r,0  = H(r)e7“' (2.9)

where co is the angular frequency, j  -  Vm  and t is the time in seconds. Substitution 

into Maxwell’s equations and remembering that p = 0 and J v = 0 gives

V x E = -y'copH

f  a  ^V x H = /cos 1 -  / —
 ̂ (08 j

E

V • (pH) = 0

V-(sE) = 0,

(2. 10)

(2. 11)

(2.12)

(2.13)

where for simplicity the r dependence and the e Jb)l factor have been omitted.
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2.2 THE DIELECTRIC SLAB WAVEGUIDE

To enable our analysis of rectangular dielectric waveguides we firstly consider the 
simplest form of dielectric guiding structure, the slab waveguide, refer to Figure 2.1. 
The structure consists of a guiding region (region 1) of relative permittivity s\ 
surrounded by a region of lower permittivity s2 (region 2). The guiding region is 
infinite in extent in both the y  and z directions, with propagation in the positive z 
direction (out of the page). The z dependence is of the form exp(-yzz), where the 
longitudinal propagation constant is defined by y2=az+/pz. Therefore,

E(r) = E {x,y)e-^  

and

H(r) = H(x,y)e~'l’z .

For the slab guide we simplify the problem by assuming the fields are independent of 
the y  coordinate. Therefore, E(x,_y) = E(x) and H(x,^) = H(x). Substitution into 
equations (2.10) and (2.11) gives two sets of uncoupled equations. Thus,

y ,E y = - j ( o n H x (2 .14)

dE
-  ycop.//, 

dx
(2 .15)

y M x - = M s '  js " )E  
dx

(2 .16)

Y2H y = j(o(s' -  j s ”)E x (2.17)

dH. , ,
= yco(s' js")Ez 

dx
(2.18)

i? dE- ■ uy :E, , = /®p//„. dx
(2.19)

The ctE term in phase with the magnetic field in equation (2.11) suggests purely 
ohmic losses due to free carrier collisions. However, for good dielectrics, the loss
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mechanism is somewhat more complicated. The (s -  j a / cos) term in equation (2.11) 

has therefore been replaced with the complex permittivity s'-y's". Where the real part 
is due to the polarizability of the material; and the imaginary part represents losses 
due to carrier collision, and any absorptions associated with resonances in the 
electronic, atomic and permanent polarizabilities of the medium [6],

y

Figure 2.1. Geometry of dielectric slab waveguide.

Equations (2.14), (2.15) and (2.16) do not have an electric field component in the z 
direction and therefore define the transverse electric (TE) mode solutions. 
Eliminating Hx and Hz from equations (2.14), (2.15) and (2.16) gives the 
characteristic equation for the TE mode solutions

d 2E vy
dx2

+ K E y =  0 . (2.20)

Similarly, equations (2.17), (2.18) and (2.19) have no magnetic field component in 
the z direction and therefore define the transverse magnetic (TM) mode solutions. 
Eliminating Ex and Ey from equations (2.17), (2.18) and (2.19) gives the TM mode 
characteristic equation

d 2H
+ KHy = 0 . (2 .21)
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The eigenvalue defined by the transverse propagation constant kx in equations (2.20) 
and (2.21) is given by the dispersion relation

k ¡ = y l - y 2 (2.22)

with

y2 =-co2p(s'-./s"). (2.23)

In our analysis, we assume that all of the materials are nonmagnetic, therefore, we let 
the permeability equal that of free space, p=po- Remembering that e=eo£«, where sn is 
the complex relative permittivity, z„=z'n-jz" of the medium and so is that of free 
space, we obtain from equation (2.23)

(I = -£ o < (W ta n ô „ ), (2.24)

where the free space wavenumber is defined by k 2 = co2p,0s0 and the loss tangent by

tan 8„ (2.25)

Therefore, the transverse propagation constant kxn in region n becomes

(2.26)

We note that since yn is in general a complex quantity the transverse propagation is 
also complex, that is k xn = k'xn + jk"m .

We now consider the TE mode solutions defined by yz.
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2.2.1 TE Mode Solutions

For guided TE modes on slab waveguides with no dielectric losses the transverse 
field Ey is split into two forms: a sinusoidal standing wave function within the 
guiding region and an exponentially decaying function in the surrounding regions. 
When the guide has losses, the solution has sinusoidal and exponential components 
in both regions. However, if the loss tangent of both the guiding and surrounding area 
is small then the real part of kxi will be much greater than the imaginary part, 
resulting in a field profile that is predominantly sinusoidal within the guiding region. 
Thus, we set the electric field function in region 1 equal to the following [7, 8, 9, 10]

E (x) -  Al cos(^,x) for |x |<a (2.27)

for modes with even symmetry and

E (x) = A, sinfA^x) for |x| < a (2.28)

for modes with odd symmetry; where A \ is a complex valued amplitude constant.

With similar reasoning, we find that in region 2 the imaginary part of kX2 is much 
greater than the real part. This results in field profiles that are predominantly 
exponential. Clearly, the power flow in the guided mode must be finite. We therefore 
choose exponential field functions that decay to zero for large x, thus

(2.29)

(2.30)

where a]2 = -k]2 and Ai is a complex constant. From equation (2.15) we have

Ey(x) = ±A2 exp[a t2(x + a)] for x < -a

and

E (x) = A2 exp[- a x2 (x -  a)] for x > a ,

Hz = j  dEy 
cop dx

(2.31)
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Therefore, the longitudinal magnetic field for the TE mode solutions within the 
guiding region is given by

H,(x) = ------kxXAx s in^ jx ) for |x|<
cop

a (2.32)

for modes with even symmetry and

Hz(x)
cop

-kxlAl cos(A:t|x) for |x| < a (2.33)

for modes with odd symmetry.

In the surrounding region the magnetic fields are given by

HXx) = ±-^—CLx2A2exp[ax2(x + a)] for x < -a  (2.34)
cop

and

H .(x) = — ~ a x2^2 exp[-aJt2(x -a)] for x> a . (2.35)
cop

For continuity the tangential fields must be continuous at the two boundaries, we 
therefore have the following boundary conditions:

Ey{\a |) = Ey(\ a+ |)

and

|) = H:(\ a+ I),

(2.36)

(2.37)

where the + and -  superscripts denote the left and right sides of the x=±a boundaries.
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Applying the boundary conditions at the x=a boundary yields

Aj cos(kxla) = A2 (2.38)

and

K A  s'nikx\a) = a x2A2 (2.39)

for even modes; and

Aj sin(kxla)= A2 (2.40)

and

K A  COS(K ^) = ~ ^x2A2 (2.41)

for odd modes.

Dividing equation (2.39) by equation (2.38) gives the guidance condition for the TE 
modes with even symmetry:

Ki tan(^,a) = a x2. (2.42)

Similarly, dividing equation (2.41) by equation (2.40) gives the guidance condition 
for TE odd modes:

kxicot(kxla )= -a x2. (2.43)

On squaring equation (2.42) and remembering that k 2x] = y: -y ]  and a 2v2 = y2 -  y? 
we obtain

^2i[l + tan2(M )]=Y2-Yi (2.44)
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for even modes and similarly

k;\{\+cot2(kxla)\= y;-y . (2.45)

for the odd modes. Finally, using equation (2.26) we obtain the guidance condition 
for TE even mode solutions:

for TE odd mode solutions.

The solution of the above two equations is not trivial since both equations, when 
expanded for complex kx\, result in coupled transcendental equations for k'x] and k”x\ 
[7,11], These can of course be solved by iterative methods, however, by making a 
few simple approximations, equations (2.46) and (2.47) can be greatly simplified for 
structures with small loss tangents [12].

Expanding the first term of the left-hand side of equation (2.46) gives

k 2x,[\ + tan2(kxla)]=k20(s[-s'2)-jk^(e \ tanô, - e 'ta n ô 2) (2.46)

and

k2xl[\ + cot2(kxla)]=k20(z[-e'2)~ jk^(e[ tanÔ! - s ' tanô2) (2.47)

(k'xl+jk " J = k 'x]+j2k'xXk (2.48)

2
where the (k"xi) terms have been neglected. This approximation is valid if the loss 
tangent of both the guiding and surrounding regions is small.

The tan{kx]a) term is expanded thus

tan[fe, + jk"x\ >/] sin(^(,a)cos(A:[1a )+ j  sinh(/:"1a)cosh(A:"1a) 
cos2 {k'xXa)+ sinh2 (k"xa)

(2.49)
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If k"xia is small then cosh(ft;,a) = 1 and sinh(ft" a) = ft"a , therefore

tan [(ft', + ./ft;, )a) = tan(ft>)+ j
cos2(ft> )

Squaring gives

tan2 [(ft;, + ./ft" )a] = tan(ft>) + ,/2 ft>sin(ft> )
cos3(ft>)

(2.50)

(2.51)

2
where again the (ft"*;) terms have been ignored. The left-hand side of equation (2.46) 
now becomes

,2[l + tan2( i 'x̂\
ft;2f t > t a n ( f t » + ft'2ft;,

cos !( * > )
+ tan (2.52)

where once more the (ft"*;)2 terms have been neglected. By equating the real parts in 
equation (2.46) we obtain

ft*? I1 + tan2 (ft;,« )]=fto (s[ - s ; ) (2.53)

and for the imaginary parts

[ft.uft>tan(ft;,a)
1 cos2 (ft.;, a)

k '2k"/i*l Kx\
ft'*1

ft02(s'2 tan§2 - s \  tanô,). (2.54)

The above equation can be simplified by making use of equation (2.53), thus
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k"
2l k''xXaidLn{k'xXa )+ ^ - \k l{ z \  - z '2)= k l(z \  tan§2 - e] tan 5,).

k[x\
(2.55)

Finally, by solving for k"x\ an approximate expression for the imaginary part of the 
complex transverse propagation constant kx 1 is obtained

k ” -  k' __K x\ ~  K x\ 2(r
s'2 tan52 -e] tan8,

■ s ' )[! + £ >  tan (£ > )]‘
(2.56)

In a similar way the following equations are obtained for the TE odd modes

k'x\ I1 +  cot2 fe i« )]  = k^ (eJ -  s 2) (2.57)

and

k" -  k'K x\ ~  K xl
e2 tan82 - eJ tan 5,

2(s; - s '2X l~ £ >  cot(£ > )] '
(2.58)

We notice from equations (2.56) and (2.58) that the imaginary part of kx\ is expressed 
purely in terms of k!x\. Therefore, by making the above approximations, the coupled 
transcendental equations in (2.46) and (2.47) are replaced by two uncoupled 
equations for the real part of kx\, and two simple expressions relating k"x\ to k x\. This 
greatly simplifies the problem, with now only one uncoupled transcendental equation 
to solve for each mode. Furthermore, equations (2.53) and (2.57) are exactly those 
obtained for lossless guiding structures, as is readily seen by setting the imaginary 
components in equations (2.46) and (2.47) equal to zero. Any technique can thus be 
complemented with the present method to allow for dielectric losses.

The solution of the lossless guidance condition in equations (2.53) and (2.57) is well
known [7, 8, 9, 10], however, for the sake of completeness, a few comments will be
made.
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Figure 2.2. Graph of guidance condition for TE slab guide. Solid lines show even 

mode solutions, dashed lines show odd mode solutions.

Since the guidance condition has been squared to eliminate the a Y? dependence, both 
positive and negative solutions for the real part for aX2 are obtained from equations 
(2.53) and (2.57). Clearly, negative values result in field solutions that diverge away 
from the guiding region. These so-called improper or leaky modes carry infinite 
power and are of limited practical significance. Fortunately, the solutions for proper 
modes are easily distinguished. Figure 2.2 shows plots of the right-hand side of 
equations (2.53) and (2.57), where, for simplicity, both sides have been multiplied by 
a . Even mode solutions are shown as solid lines, odd modes as dashed lines. The 
range for which TE even mode solutions are defined is as follows

nn < k'^a < —(2n +1) n=0, 1,2, ... , me-\ (2.59)

where me is the number of modes with even symmetry supported by the guide. The
range for which TE odd solutions are defined is as follows
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n
2

(2n-l)< k'xla <mr n= 1, 2, ... , m0 (2.60)

where m0 is the number of antisymmetrical modes supported by the guide. The total 
number of modes the guide supports is given by me + m0. In general, TE„ refers to the 
(«+l)th mode of the waveguide. For example, TEo is the lowest order even mode, 
TEi is the lowest order odd mode, TE2 is the next highest order even mode, etc.

The lower limits of equations (2.59) and (2.60) also define the cut-off frequencies of 
the modes. For example, the cut-off frequency of the lowest order odd mode is given 
by kfxla=n/2. Substitution of this value into equation (2.57) allows us to solve for ko 
and therefore the frequency. We see that the fundamental, or lowest order even mode, 
has a cut-off frequency of zero. Practically, this is not possible, since a 'x2->0 as /->0 
and therefore, in the limit, the fields carry infinite power.

2.2.2 TM Mode Solutions

The analysis of TM modes is slightly more complicated than for TE solutions, 
however the method is just the same. Again, we start by assuming the following field 
solutions over the three regions

H v(x) = Bx cos{kxXx) for |x |<a (2.61)

for modes with even symmetry and

H y{x) = B] sin(A:vlx) for |x| < a (2.62)

for modes with odd symmetry. In the surrounding regions we assume

H y (x) = ±B2 exp[a^2 (x + a)] for x < -a (2.63)

and
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H Ax) B2 exp[- a x2 (x -  a)]f(or x > a . (2.64)

From equation (2.18) we have

Ez = j  dHy 
or (s' -  ye") dx

(2.65)

Therefore, the longitudinal electric field for the TM mode solutions within the 
guiding region is given by

E A X )  = —Fb----, o \ k x A  sin(^ix) for 1*1 ̂  a(os,(l -  j  tano, )
(2.66)

for modes with even symmetry and

Ez(x) = -
C0SÍ ( l- y t a n S ,)

kxlB{ cos(kx]x) for |x|< a (2.67)

for modes with odd symmetry. In the surrounding region the electric fields are given 
by

Ez(x) = ±
© 82(1-7 tan ô2)

olx2B2 exp[aï2 (x + a)] for x <-a (2 .68)

and

Ez(x) =
©82(1 - j  tanô2)

a  x2B2 exp[- a x2 (x -  a)] for x> a. (2.69)

Following a similar procedure to the TE mode solutions, we finally obtain the TM 
guidance condition for even modes:
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v;d 1 +
£'22( l - / ta n ò 2)2
e;2(l-y tanô j)2

tan 2{kxXa) kg(s'j - s '2) -  jkg(s[ tan 5, - s 2 tanô2)

(2.70)

and for odd modes:

/ 2
“-il l + £^ (l-y ta n ô 2)2

s ^ l -y ta n ô ,)2
cot2 (kxla) = k 20(s\ - e 2) -  j k 2(e[ tanô, - s 2 tanô2).

(2.71)

Equations (2.70) and (2.71) are more complicated than equations (2.46) and (2.47) 
since the ratio of complex permittivity enters the expression. However, we can make 
the same assumptions that were made for the TE case. Therefore, using equations 
(2.48) and (2.51) and noting that

S22(W ta n 8 2)2
s;2(l-y tan ô ,)2

%  + y'2%(tanô, - t a n ô j
£1 8,

(2.72)

we obtain, after some work, the guidance condition:

<2
l + ̂ t m 2(k'x]a) -  ko (s! -  s '2 ) (2.73)

with the imaginary part of the complex propagation constant kx\ given by

( r /
k2 - k '2Kx\ tanô2 - k 2 K0

_ \  2 J V*x\ — ^x\ ( ,2 \ _1

kg(e[ - s '2)+ k’2Kx\ \ &
 

1 + A:0 (s i £ 2 )

l '2\vl tanô,

aK\ tanfei«)

(2.74)

where products of all small terms (tan5„ and k"x\) have been neglected.



Propagation Characteristics of Dielectric Waveguides 24

Similarly, for the odd modes we obtain

k'2K x\ \ + \ c o t 2 (k'x]a) = ko(z\ -e '2) (2.75)

and

.» \
Ei — — k tan 5, - k tan§,

^x\ ~  ^x\ f  , 2 ^ “
k '2K'xX 1 1 + A:0 (s, — £-2 ) aK \  co t( ^ > )

(2.76)

Once more we notice that k x\ is given from the lossless solution, with k"xl calculated 
directly from k!x\.

Figure 2.3 shows plots of equations (2.73) and (2.75). Since the ratio of permittivity 
enters the equation, different curves result for different permittivity ratios, however, 
here we let e'i=2.07 and s'2=l. Even mode solutions are shown as solid lines, odd 
modes as dashed lines. The range for which TM even and odd mode solutions are 
defined is identical to that of the TE modes, equations (2.59) and (2.60), respectively.

Figure 2.3. Graph of guidance condition for TM slab guide with s'i=2.07 and s'2=l. 
Solid lines show even mode solutions; dashed lines show odd mode solutions.
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2.2.3 Field Profiles

The field profiles of dielectric slab waveguides can be calculated by substituting the 
eigenvalues back into the field equations. For simplicity, we set the amplitude 
constant A \ in the field equations equal to unity, A2 is then given by

A2 = cos(kxla) (2.77)

for even modes and

A2 = sin(£vla) (2.78)

for odd modes. Since, for small loss tangents, the imaginary parts of kx\ and aX2 are 
small in comparison to the real part, the field profiles are almost identical to the 
lossless fields. Therefore, for field profile evaluations, kx\ is set to k!x\ and similarly 
aX2 is set to a'X2-

Figure 2.4 and Figure 2.5 show both even and odd mode electric, Ey, and magnetic, 
Hz, field profiles, respectively. The Hx fields are not shown since they are 
proportional to the electric field, equation (2.14). The profiles are for TE mode 
solutions with 2a=0.9A,o, s'i=2.07 and s'2=l. Solving equations (2.53) and (2.57) for 
these parameters gives ^.vi(e)a=1.162 and k'x](0)a=2.259, where the (e) and (o) 
subscripts represent even and odd mode solutions, respectively.

Figure 2.6 shows plots of the even and odd mode electric field profiles Ex for TM 
solutions. Again, solid lines represent the even modes, dashed lines the odd. The slab 
guide has the following parameters: 2a=0.9A_o, e'i=2.07 and s'2=l. We notice from 
Figure 2.6 that the electric field is discontinuous at the \a\ boundary due to the 
different values of s„ in each region, refer to equation (2.17). Solving equations 
(2.73) and (2.75) gives &Ti(e)a= 1.329 and ¿'.ri(o)tf=2.482.
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It should be noted that the sum of two or more solutions of equations (2.20) and 
(2.21) is also a solution, the complete field profile is therefore given by

e , = E 4 E , . (2.79)

where E, and A, are the field function and amplitude constant for the /th mode, 
respectively. Since the modes on dielectric slab waveguides are orthogonal to each 
other [8, 9], A, cannot be related to A,-+ j. Fortunately, A, can be determined from the 
longitudinal boundary conditions, as we shall see in Chapter 5.

x/Xo

Figure 2.4. Ey electric field profiles for TE mode slab guide. 2a=0.9A,o, s'i=2.07 and

s'2= l. Solid lines show the TEq mode and dashed lines show the TEi.
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x/Xo

Figure 2.5. Hz magnetic field profiles for TE mode slab guide. 2a=0.9X0, s'i=2.07 and 

e'2=l • Solid lines show the TEq mode and dashed lines show the TEi.

x/X0

Figure 2.6. Ex electric field profile for TM mode slab guide. 2a=0.9A,0, s'i=2.07 and
s'2= l . Solid lines show the TMo mode and dashed lines show the TM|.
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2.2.4 Complex Propagation Constant

In general, the longitudinal propagation constant yz is of more importance than k'x]. 
We therefore use the dispersion relation in equation (2.26) to obtain

Yz =  a ;  +  Y'Pz =  V t e l  +  J K 1 f  -  e! 0  -  J tanS , ) (2.80)

2Ignoring the (k”x\) terms and using the binomial expansion to the first order gives

Pz xl (2.81)

and

¿¿sjtanS, +2^,^;, 
2Pz

(2.82)

Figure 2.7 shows plots of the normalised propagation constant (pz/&o)2 for both TE 
and TM mode solutions against normalised guide width 2a/Xo, where is the free 
space wavelength. Solid lines show TE solutions, dashed lines show TM solutions. 
We notice from Figure 2.7 that TM modes have smaller propagation constants than 
TE modes of the same order and operating frequency. This results in field profiles 
that are more extensive in the surrounding region and thus, if tan52<tan5i, the 
attenuation constant of the mode will be less. This is readily seen from Figure 2.8 
where tan52=0. Figure 2.7 and Figure 2.8 use the approximate expressions derived in 
sections 2.2.1 and 2.2.2 for the solution of yz. We therefore compare the approximate 
values with iterative solutions of equations (2.46) and (2.70).
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Figure 2.7. Normalised propagation constant for TE (solid lines) and TM (dashed 
lines) modes against normalised guide width 2a/Xo for £'i=2.07, tan5i=3xl0'4, £'2=1 
and tan52=0.

2 a/X0

Figure 2.8. Normalised attenuation constant for TE (solid lines) and TM (dashed 

lines) modes slab waveguide for s'i=2.07, tan5i=3xl0'4, £'2=1 and tan52=0.
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Figure 2.9 and Figure 2.10 show plots of the relative error of the approximate method 
against tan§i, for the real and imaginary parts of kx\, respectively. In both of the 
curves the TE0 mode is shown for guide widths of O.8X0 and 0.27.0, with si=2.07, 
82=1 and tan§2=0. We see that the error in kx\ for both the real and imaginary parts is 
less than a few percent, even for waveguides with loss tangents equal to 0.1. 
Moreover, for guides where the loss tangent is less than 0.001, which is the case for 
useful low-loss guiding structures, the error is negligible. Figure 2.11 and Figure 2.12 
show plots of the relative error for TM0 mode solutions, where, si=2.07, 82=1 and 
tan52=0. Again the error is only a few percent for tanbi=0.1 and negligible for 
tan8i=0.001.

Due to their infinite geometry, dielectric slab waveguides are only approximations of 
practical guiding structures. Flowever, by combining the values of several different 
slab guides, more complicated structures can be analysed. Methods using this 
approach have several advantages over numerical techniques, namely simplicity and 
computational ease. Consequently, they are often the chosen approach for the 
analysis of dielectric waveguides. We therefore consider the effective dielectric 
constant method in the next section.

tan5]

Figure 2.9. Relative error between approximate method and iterative method for the
calculation of TEq mode k"x\ (imaginary part) with s'i=2.07, s'2=l and tan52=0.
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1

0.1

0.01

0.001

0.0001

tanOj

.10. Relative error between approximate method and iterative method for the 
on of TE0 mode k!x\ (real part) with e'i=2.07, s'2=l and tan§2=0.

Figure 2.11. Relative error between approximate method and iterative method for the 
calculation of TM0 mode k"x\ (imaginary part) with s'i=2.07, s'2=l and tan52=0.
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Figure 2.12. Relative error between approximate method and iterative method for the 
calculation of TM0 mode k x\ (real part) with s'i=2.07, s'2=l and tan52=0.

2.3 THE EFFECTIVE DIELECTRIC CONSTANT METHOD

The effective dielectric constant (EDC) method was first introduced in 1972 by Knox 
and Toulios [3] as a modification to Marcatili’s method [1] for the solution of 
dielectric waveguides with rectangular cross-sections. Since then the method has 
been applied to many different dielectric guiding structures including optical fibres 
[13, 14], nonlinear waveguides [15], composite structures [16] and trapped image 
guides [17]. Theoretical understandings of the method were given by Peng and Oliner 
[18, 19]. They showed that the EDC method was a lowest order formulation of their 
mode-matching technique. By considering the scalar modes, Kumar et al. [20] 
derived a structure that the EDC method actually solves. More recently, Chiang [14] 
showed that the EDC method solves the reduced vector wave equation. Moreover, by 
using standard perturbation theory and expanding the fields in asymptotic form 
Chiang [21] analysed the inherent errors of the EDC method and added a 
modification to achieve better accuracy. Further analysis resulted in the dual 
effective-index method (DEIM) [22],
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For completeness, we firstly outline the effective dielectric constant method and then 
add a simple modification to allow for waveguides with dielectric losses.

2.3.1 The EDC Method

Modes on rectangular guides form two classes: Eymn modes that have their electric 
fields predominantly in the y  direction; and Exmn modes that have their electric fields 
predominantly in the x direction. The subscripts m and n denote the number of field 
maxima in the x andy direction, respectively.

E?mn

2 a

y

T E ,  (a) TM .in-1 n-1

* - X

TM ,n-1

82

(b)

'eff

2 a
(c)

Figure 2.13. The EDC method for Eymn modes, (a) Rectangular dielectric waveguide, 
(b) The (3y(2) method, (c) The (f î) method. Arrows show the direction of the electric 
field.
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To analyse Eymn solutions of the structure shown in Figure 2.13(a) we firstly construct 
a slab waveguide of width 2b and relative permittivity si, see Figure 2.13(c). The 
solution of the TM„.i mode of this structure is then given from equation (2.73) or 
equation (2.75). For guided modes on lossless structures yz will be purely imaginary: 
yz=/Pr. Therefore, we can define an effective permittivity for the n-1 mode:

8eff (2.8 V)

The effective permittivity can now be used to construct a second slab waveguide of 
width 2a, see Figure 2.13(c). The longitudinal propagation constant, denoted by P^i), 
of the TEm.i mode solution of this structure is then a good approximation of the value 
for the dielectric waveguide shown in Figure 2.13(a). For simplicity, we express the 
procedure for the EDC method in the convenient shorthand notation [5]:

P,„> = [TM” , (s2|e,|e2 tT E “  (e, k ,  k  )] for E \ (2.84)

Of course we could calculate the TEm.i solution of a slab of width 2a and relative 
permittivity Si and then, using the effective permittivity, evaluate the TM„_i solution 
of a second slab of width 2b, see Figure 2.13(b). We denote this solution by

km  =frei!,(e2|ei|ejTM “ ,(eJetfk )]  fori? (2.85)

However, it has been shown [22] that better solutions are achieved by evaluating the 
slab structure with the narrower dimension first -  in our case 2b. For Exmn solutions a 
similar procedure is followed but with the polarisation reversed, see Figure 2.14. 
Again, better solutions are achieved by evaluating the structure with the narrower 
dimension first. We therefore have

Px(i) ~ TEn_, (s^Si^^TM ^j^SjIs^lsj)] tor E ,

and

P,B> = for Exmn.

(2 .86)

(2.87)
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y

2b

2 a
(a)

-► x

2 a

2b eff

(b)

2b
► TM

772-1

-> TE'n-1

aeff

2 a
(c)

-> TE«-i

2

-> TMm-1

Figure 2.14. The EDC method for modes, (a) Rectangular dielectric waveguide, 
(b) The (3̂ (2) method, (c) The P*(i) method. Arrows show the direction of the electric 
field.

2.3.2 The EDC Method with Dielectric Losses

In section 2.2 we derived expressions for the attenuation constants of dielectric slab 
waveguides with complex permittivities. By using these values to define an effective 
loss tangent, the EDC method can be modified to allow for dielectric losses [12]. For 
example, to calculate the complex propagation constant yz for the E}\ \ mode of the 
rectangular dielectric waveguide shown in Figure 2.15(a), we first calculate the 
complex transverse propagation constant of the TM0 mode of a slab guide of width 
2b and complex permittivity s'i(l-/tanSj) from equations (2.73) and (2.74). Thus,

k'2K yl

o'2
1 + tan:g'2 f o i ) = k;(c \-e '1) (2 .88)
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and

j  \
- k '2K y\ tanô2 - 3s! - k ' 2Kyi

" y  1 ' "yl ( P '2 ) l-

K  (ei _S2) + k'2Ky\ —̂---1 + (e, s2 )
J

tanô,

bk'yX tan^ '.è)
(2.89)

Where in this case we have used ky\ instead of kx\ since the transverse component is 
now in the y  direction. Since ky\ is complex, we define a complex effective 
permittivity:

= 8 eff (l -  j  tan beJf )= (2.90)

s'O-ytanô,)

2b s'jil-ytanôj)

2 a

s'2( 1 :/tanô2)

2b

s’2(l-ytanô2)

y

(a)

s'^l-ytanôj) (b)

-> x

8’ ( 1 -/tanô2) se//( l :/tanô# )

(c)

s'2(l-ytanô2)

2 a

Figure 2.15. The EDC method for waveguides with dielectric losses.



Propagation Characteristics of Dielectric Waveguides 37

Using equation (2.81) and equation (2.82) and remembering that y, = a .  + y'P_ yields

8 eff =  '

r'k-bl/t0 t '2Si

and

(2.91)

tan 8 ^  =
klz\ tan5, +2k[,,k"y i y i

f1 k l
eff 0

(2.92)

We now construct a second slab of width 2a and permittivity e'^l-ytand^), Figure 
2.15(c). Using equation (2.53) and (2.56) we obtain

K\ I1 + tan2( / : » ]  = £02 (s'e# -  s ' )

and

s', tan 5, - s S  tan5,ff2_____  2 eff______ eff

Al 2(ee#-e ')[ l + A :> tanfca)]'

(2.93)

(2.94)

Finally, the complex propagation is given by y^(1) = a^(1) + y'Pr(]) with

P>(1) -  VseffK ■k'2Kx\

and

a ym ~
K^e/f tan8 ^  + Ik xlkxi

2P3

(2.95)

(2.96)

The above procedure outlines the P_̂ i) method, but equally applies to the pv(2), P.Y(i) 
and px(2) methods. The technique is only valid for low-loss materials since the 
approximate solutions described in section 2.2 have been used. Of course, the exact 
complex propagation constants for the individual slab guides can be evaluated using
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iterative techniques. However, in section 2.2.4 the relative error of the approximate 
solutions was shown to be negligible for low-loss materials.

2.3.3 The Dual Effective-Index Method (DEIM)

Better results are achieved by using the dual effective-index method (DEM). This 
technique is described elsewhere [22], however a brief overview of the derivation is 
given below. It can be shown from Maxwell’s equations that the vector modes of a 
rectangular dielectric waveguide satisfy the full vector wave equation:

v 2e ,+(<*o! -P ') e , + v, (2.97)

where Et = Exx + Eyy . Therefore,

(  d2 52 A
- + •

dx dy

( d2 2 \

dx

dx2 dy1
Ey + (e k t- tf)E y + ~

8 dx s dy

s dx s dy

=  0

=  0

(2.98)

(2.99)

where Ex, Ey and 8 are all functions of x and y. There will be two different forms of 
solution to equation (2.97). Eymn modes where Ey is dominant and Ex„w modes where 
Ex is dominant. These modes are similar to the TE and TM modes of dielectric slab 
waveguides.

Here we only consider structures of uniform permittivity and therefore the gradient of 
8 is zero in all of the regions. However, at the boundary between the guiding region 
and the surrounding medium Vs will be non zero. The effect of the boundary then is 
to couple the terms in equation (2.97). It has been shown [23] that the field 
component in the y  direction is of order
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(2 . 100)

smaller than the x component for the x polarised mode and vice versa for the y  
polarised mode. This would suggest that for dielectric waveguides with A «1 the 
coupling terms in equation (2.97) can be neglected. However, even for larger values 
of A the approximation still gives good results. Therefore, we obtain two separate 
equations for the Exmn and Eymn modes:

(  d2 52 \

U x 2 dy2J£ ,+ (s*02- | i 'K  + dx
1 5s 
-----
s dx

= 0

and

(  5 2 2̂ \

Dx2 dy2
Ey +(et02

dy
1 5s 

s dy y

\
= 0,

(2 .101)

(2 . 102)

respectively, where the electric field is now linearly polarised. The above expressions 
are the reduced vector wave equations and are the first source of error in the EDC 
method.

The next step is to assume a variable separable profile. Thus, for the Exmn mode we 
let

Ex(x ,y ) = Em(x)E,Xy)

and

s (x ,y )  = s'(x ) + s"(y)

(2.103)

(2.104)

According to the pr(i) EDC method we firstly solve for a slab of width 2b. This is 
expressed mathematically as

a2 \

5 /
E„(y) + {e"(y)k20 ' o )e„ (y) — 0 (2.105)
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with

E'W  =

e2 for -  co < y < -b  
8, for- b < y < b  
s2 for è < y < oo

(2.106)

Substituting equation (2.103) and (2.104) into (2.101) and subtracting equation 
(2.105) from the result yields

d Ê 2 X) + (e'(^)^o + o -  Pin K  (x) + ~ s'(x) + zeji dx

Thus, following the method of the EDC technique, we require

=  0

(2.107)

s'(x) = <
s2 -  zeff for -  co < y < -b  

0 for -  b < y < b
s2 -  se// for b < y < co

(2.108)

Therefore, the actual profile that the EDC method analyses is shown in Figure 2.16. 
This is the second source of error in the EDC technique.

Figure 2.16. Actual structure the EDC method analyses for E?mn modes.
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By allowing the normalised frequency to approach infinity, Chiang used asymptotic 
field expansions in standard perturbation formulas to analyse the error associated 
with the above approximations. By eliminating the errors, the DEIM is obtained [22]:

tf2~l for Exmn (2.109)

and

( o  ; ¥  _  P^( l )  P v ( 2 ) ) + -^(p. t ( l )  P x ( 2 ) )

R2- 1
for Eymn (2.110)

where R = a/b  . We see that now the propagation constants are given by combining 
the four different techniques of applying the EDC method.

2.3.4 The DEIM with losses

By substituting a^pf/P^p for px(p, a^p+yP^p for P^p, etc, into equations (2.109) 
and (2.110) we obtain, for small losses [24],

(2 .111)

or -

(x:tix ( l ) ^ x ( l ) x(2)lA‘x ( 2 ) )  +  ̂ (P
“ p n j p f

a ,.m  -p,o>aXiWp-(i) y(2)^y(2)j (2 . 112)

for Exm„ solutions and
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(2.113)

y  _  P y ( i ) a v(i)  P y ( 2 ) a v ( 2 ) ) + ^ ( p x ( i ) a ^(i) P x ( 2 ) a . t (2) )

'  (/f2 - l ) p i
(2.114)

for Eymn solutions. This is a justifiable step, since the asymptotic field profiles used in 
[22] to obtain equation (2.109) and (2.110) will not be significantly changed if small 
dielectric losses are introduced. Thus, equations (2.112) and (2.114) are valid 
expressions. At first sight, the above equations for the attenuation constants seem 
complicated, since both the propagation and attenuation constants of the four slab 
waveguides are required. However, when we remember that ct^p, ctyp), ax(p and op-p, 
are given directly from the lossless propagation constants we see that only a small 
amount of additional computation is required to allow for dielectric losses.

Figure 2.17 and Figure 2.18 show curves of the attenuation constant for Ey n and Ex\\ 
modes using the conventional EDC method (P^p and P^p) and the DEIM, 
respectively. In each case the waveguide has the following parameters: 2<3=7.112mm, 
26=3.556mm, S2=l and 8i=2.07(1-/3x10'4). For comparison, the curves are compared 
with finite element results using Hewlett Packard’s HFSS software. As can be seen, 
both methods are in excellent agreement for the higher frequency range where the 
fields are more confined. However, the DEIM gives significantly better results for the 
lower frequency range where the fields are less confined to the dielectric. For 
completeness the propagation constant using both methods is compared with finite 
element results, see Figure 2.19. Again, the DEIM results are in good agreement with 
HFSS values. Further results can be found in [12].
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fi  GHz

Figure 2.17 Attenuation constant using the conventional EDC method (P^d and P.v(i)) 
for dielectric waveguide with 2a=7.112, 26=3.556, 82=1 and Si=2.07(l-/3xl0'4). 
Solid lines show EDC method, dashed lines show HFSS finite element results.

10 20 30 40 50

f .  GHz

Figure 2.18. Attenuation constant using the DEIM with losses for dielectric
waveguide with 2a=7.112, 26=3.556, s2=l and Si=2.07(l-/3xl0'4). Solid lines show
DEIM, dashed lines show FIFSS finite element results.
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f  GHz

Figure 2.19. Propagation constant using conventional EDC method (dotted lines), 
DEIM (solid lines) and HFSS finite element (dashed lines) for 2a=7.112, 26=3.556, 
e2=l and s,=2.07(l:/3xl0‘4).

2.4 SUMMARY

In summary, approximate expressions for the attenuation constant a~ of both TE and 
TM slab waveguides have been presented. The problem was greatly simplified by 
converting the coupled transcendental guidance equations into a single transcendental 
equation, and an expression linking az directly to the lossless and the waveguide 
parameters. Moreover, the expressions apply to structures where both the guiding and 
surrounding regions have dielectric losses. By introducing an effective loss tangent 
the approximate expressions were applied to the effective dielectric constant (EDC) 
method and the dual effective-index method (DEIM) and were shown to be in good 
agreement with HFSS finite element simulations. Furthermore, very little additional 
computation is required to calculate a: since the attenuation constants are given 
directly from the lossless solutions. Therefore, the well-established EDC method is 
easily complemented with the present expressions to allow for the calculation of cu at 
millimetre-wave frequencies where the attenuation cannot be neglected.



Propagation Characteristics of Dielectric Waveguides 45

REFERENCES

1 E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupled for 

integrated optics,” Bell Syst. Tech. J., vol. 48, 1969, pp. 2071-2102.

2 J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric 

waveguides,” Bell Syst. Tech. J., vol. 48, 1969, pp. 2133-2160.

3 R. M. Knox and P. P. Toulios, “Integrated circuits for the millimeter through 

optical frequency range,” Proc. Symp. Submillimeter Waves (Polytechnic Press, 

Brooklyn), 1970, pp. 497-516.

4 S. M. Saad, “Review of numerical methods for the analysis of arbitrarily-shaped 

microwave and optical dielectric waveguides,” IEEE Trans. Microwave Theory 

Tech., vol. MTT-33, No. 10, 1985, pp. 894-899.

5 K. S. Chiang, “Dual effective-index method for the analysis of rectangular 

waveguides,” Appl. Opt., vol. 25, no. 13, July 1986, pp. 2169-2174.

6 A. von Hippel, “Dielectrics and Waves,” Artech House, 1954.

7 N. S. Kapany & J. J. Burke, “Optical Waveguides,” Academic Press, Chapter 1, 

1972.

8 D. Marcuse, “Theory of dielectric optical waveguides,” Academic Press, Chapter 

1, 1974.

9 G. Owyang, “Foundations of optical waveguides,” Edward Arnold, Chapter 2, 

1981.



Propagation Characteristics of Dielectric Waveguides 46

10 D. Lee, “Electromagnetic principles of integrated optics,” John Wiley & Sons, 

Chapter 4, 1986.

11 M. Tsuji, K. Kawai, H Shigesawa & K Takiyama, “Submillimeter Guided-Wave 

Experiments with Polyethylene Slab Waveguides,” IEEE Trans. Microwave 

Theory Tech., vol. MTT-27, Nov. 1979, pp. 873-878.

12 P. R. Young and R. J. Collier, “Extension to the effective-index method to 

include the calculation of losses in dielectric waveguides,” Electron. Lett., vol. 

33, No. 13, June 1997, pp. 1151-1152.

13 K. S. Chiang, “Analysis of optical fibres by the effective-index method,” Appl. 

Opt., Vol. 25, 1986, pp. 348-354.

14 K. S. Chiang, “Geometric birefringence in a class of step-index fiber,” J. 

Lightwave Technol., vol. LT-5, No. 6, June 1987, pp. 737-744.

15 K. S. Chiang and R. A. Sammut, “Effective-index method for spatial solitons in 

planar waveguides with Kerr-type nonlinearity,” J. Opt. Soc. Am. B, vol. 10, 

1993, pp .704-708.

16 K. S. Chiang, “Effective-index method for the analysis of optical waveguide 

couplers and arrays: An asymptotic theory,” J. Lightwave Technol., vol. 9, No. 1, 

January 1991, pp. 62-72.

17 W. B. Zhou and T Itoh, “Analysis of trapped image guides using effective 

dielectric constant and surface impedances,” IEEE Trans. Microwave Theory 

Tech., vol. MTT-30, no. 12, December 1982, pp. 2163-2166.

18 S. T. Peng and A. A. Oliner, “Guidance and leakage properties of a class of open 

dielectric waveguides: Part I -  Mathematical formulations,” IEEE Trans. 

Microwave Theory Tech., vol. MTT-29, No. 9, September 1981, pp. 843-854.



Propagation Characteristics of Dielectric Waveguides 47

19 S. T. Peng and A. A. Oliner, “Guidance and leakage properties of a class of open 

dielectric waveguides: Part II -  New physical effects,” IEEE Trans. Microwave 

Theory Tech., vol. MTT-29, No. 9, September 1981, pp. 855-869.

20 A. Kumur, D. F. Clark and B Culshaw, “Explanation of errors inherent in the 

effective-index method for analyzing rectangular-core waveguides,” Opt. Lett., 

vol. 13, 1988,pp. 1129-1131.

21 K. S. Chiang, “Performance of the effective-index method for the analysis of 

dielectric waveguides,” Opt. Lett., vol. 16, no. 10, May 15, 1991, pp. 714-716.

22 K. S. Chiang, “ Analysis of the effective-index method for the vector modes of 

rectangular-core dielectric waveguides,” IEEE Trans. Microwave Theory Tech., 

vol. 44, no. 5, May 1996,pp. 692-700.

23 A. W. Snyder and J. D. Love, “Optical Waveguide Theory,” Chapman and Hall, 

1983.

24 P. R. Young and R. J. Collier, “Solution of lossy dielectric waveguides using the 

dual effective-index method,” Electron. Lett., vol. 33, No. 21, October 1997, pp. 

1788-1789.



3. PROPAGATION CHARACTERISTICS OF 
COUPLED DIELECTRIC WAVEGUIDES

Composite structures are used extensively in dielectric waveguide components such 
as directional couplers [1, 2, 3], filters [4, 5, 6] and, as we shall see in Chapter 6, 
phase shifters [7], variable attenuators [8] and wavemeters [9]. For each of these 
components, accurate values for the modal propagation constants are required. In 
general, solutions of coupled structures are obtained using coupled mode theories 
[10, 11, 12], The coupled mode is approximated by a weighted sum of the modes that 
exist on the isolated structures. However, these methods are only valid for large 
separations or well-confined modes [13, Appendix A], Furthermore, the coupled 
mode theory does not work well for asymmetrical guides [13, Appendix A], Marcuse 
[14] presented an exact technique for the solution of compound slab waveguides with 
width and permittivity asymmetry. Unfortunately, his method is cumbersome, 
requiring numerical techniques to find the eigenvalue of a 8x8 determinant. Exact 
transcendental characteristic equations have been presented for symmetrical coupled 
slabs [15, 16] and coupled slabs with width asymmetry [17], However, no expression 
has been obtained for the general case.

In this section, we derive an exact transcendental characteristic equation for the 
general asymmetrical coupled slab waveguide with dielectric losses. Approximate 
solutions for the attenuation constant of symmetrical coupled guides are then 
obtained. Using these expressions in the EDC method together with the concept of an 
effective loss tangent, we calculate the complex propagation constants of lossy 
coupled rectangular dielectric waveguides. Finite element simulations are then 
compared with the EDC results.
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3.1 ASYMMETRICAL COUPLED SLAB WAVEGUIDES

Consider two parallel slab waveguides, A and B, with thicknesses 2a and 2b, 
respectively (Figure 3.1). Guide A occupies the region -(D+2a)<x<-D and has a 
relative permittivity za. Guide B occupies the region D<x<(D+2b) and has a relative 

permittivity eb. The regions outside the waveguides defined by x<-(D+2a) and 

x>(D+2b) both have a relative permittivity e2. The middle region, between the two 
guides, is defined by -D<x<D and also has a relative permittivity s2. All five regions 

have permeability p(). We make the same assumptions as in section 2.2, therefore we 
have two possible mode polarisations

TE: ^ ~ E y(x) + kxEy(x) -  0

TM: j L Hy(x) + k]Hy(x) = 0

(3.1)

(3.2)

where

k] = - « '2 =Yz-Y2 for x < -(2a  + D ) , x < \D\ and x > (2b + D ) ,

k 2x= k 2„ =  y ] - y 2a for -  (2a + D) < x < -D  ,

k 2x= k 2xb = y ] - y 2b for D < x < (2b + D ).

x
t  G 

(D+2b)-
s*

D
B

■> z

-D

-(D+2a)

(3.3)

Figure 3.1. Geometry of two parallel dielectric slab waveguides.
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Clearly the above expressions are normally complex, however, for the meantime, we 
assume that the dielectric losses are zero. Then

a x2 = VP? ~ s2 K

Ka = K kl ~ &

k xb ~  V £ />^0 P T  •

(3-4)

(3.5)

(3.6)

3.1.1 TE Mode Solutions

For simplicity, we first consider TE mode solutions of equation (3.1). We therefore 
choose the following functions for Ev(x) over the five regions:

Ev(x) = Elea‘l[x+iD+2a)] for x < -(D  + 2a) , (3.7)

Ey(x) = E2 cos{kxa [x + (D + 2a)] -  ^ } for -  (Z) + 2a) < x < - D , (3.8)

Ey(x) = E2 cosh[ai2x] + EA sinhfa^x] for -  D < x < D , (3.9)

Ey (x) = E5 cos{kxb [x -  D] -  <t)A} for D < x < (D + 2b) , (3.10)

Ev(x) = E6e-a'Ax<2b+D)] for x > (Z) + 2b) , (3.11)

where E l...E 6 are amplitude constants and (j>a and <j>A are constant phase terms. It

should be noted that if then kxh can become imaginary, similarly if eh>za then kxa

can become imaginary. If either kxa or kxb becomes imaginary, the transverse field
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variation in the respective waveguide will become a hyperbolic function similar to 
that in the middle region. This effect is discussed in more detail in section 3.2.

Substituting Ey(x) into equation (2.15) yields:

HXx) = ^ E xea'Ax+(D+2a)] for x < -{D  + 2a) , (3.12)

jk
H,(x) = -----— E2sin{kxa[x + (D + 2a ) \ -$a} for -  (D + 2a) < x < - D , (3.13)

H.(x) = ——-  E3 sinh[aj2x] + ^a|r2 EA cosh[at2x] for - D < x < D ,  (3.14)
cop„ cop„

H 2(x) = - ^ - £LE5sm{kxb[ x - D ] - § i } for D < x < (D + 2b), (3.15)
®F0

HXx) = - i ^ E be~aAx-(2b+D)] for x > (D + 2b) . (3.16)

From equation (2.14) we see that Hx is proportional to E and therefore carries no 
additional information. We require Ey(x) and Hz(x) to be continuous, hence dividing 
Ey(x) by Hz(x) at the four boundaries gives:

a x2 = kXa tan((J>a) for x = -(D  + 2a), (3.17)

kxa tan(2^aa - f , )  = a x2 E3 sinh(ar2Z)) -  E4 cosh(axlD) 
E3 cosh(axlD) -  E 4 sinh(a v2D)

for x = - D ,  (3.18)

ka  tanOh) = a ,  ^ n K a ^  + g .c o s h ^ .D )  
E3 cosh(ai2Z)) + E4 sinh(ai2D)

for x = D,  (3.19)



Propagation Characteristics of Coupled Dielectric Waveguides 52

«,2 = kxb tan(2kxhb -  (j)A ) for x = (2b + D).

Combining equation (3.17) with (3.18) yields

tan(2kxaa - § a) _ E3 sinh(axlD )-  EA cosh(ax2D) 
tan((j)a) E3 cosh(a v2i ) ) -  E4 sinh(aJf2D) ’

and equation (3.19) with (3.20)

tan(<j)/> ) _ E3 sinh(ax2D) + EA cost^a^D)
tan(2kxhb -  <(>,,) E3 cosh(ajr2D) + E4 sinh(ax2Z))

On elimination of £3 and E4 from the above two equations we find that

Th cosh(aJc2D) -sinh(aA:2£)) cosh(aï2D) -  Th sinh(ax2Z)) 
Ta cosh(ax2D) -  sinh^a^D) Ta sinh(a;c2Z)) -cosf^a^D )

where T = ian(2kxaa -  §a) 
tan((|)a)

and Th = tan(^)
tan(2 kxhb - § h)

After rearranging equation (3.23) we eventually obtain

tanh(2al2D) Tg+Tb 
T J b+ r

Solving for 2D finally gives the guidance condition:

_ J _ ln sm(2kxaa)sin(2kxhb)
2ax2 |_sin(2f,-2 k xaa)sin(2kxbb-2<\>h)_ '

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Where from equation (3.17)

= tan
a x2
b

V xa y
(3.26)

and from (3.20)

<h = 2M - t a  n
a x2

V ^xb J
(3.27)

We see from equation (3.4), and equations (3.5) and (3.6) that aX2, kxa and kxh are all 
functions of p_. Thus, the right hand side of equation (3.25) is a function of a single 

variable - the longitudinal propagation constant p.. Therefore if a, b, D, ea, and eh are 

specified, we can solve equation (3.25) for all possible solutions of p..

3.1.2 Symmetrical Coupled Slab Waveguides

If the guides are identical then kxa-kxb and thus from equations (3.26) and (3.27) we 
see that(j>A = 2kxaa -  (j)u . Accordingly, equation (3.25) becomes

2 D = In sin(2 kxaa) 
sin(2<|)fl - 2 kxaa)

(3.28)

which is identical to [15, 16].

If the guides are different, the argument of the In function on the right-hand side of 
equation (3.25) can become negative. This would imply that the distance 2D could be 
complex, which obviously has no physical meaning. Furthermore, if the argument of 
the In function is less than unity, the right-hand side of equation (3.25) will be 
negative, again implying a complex distance. We therefore consider only positive
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purely real values for the right-hand side of equation (3.25). As mentioned 
previously, either kxa or kxb can become imaginary, resulting in either <j)a or §h 

becoming respectively complex with real parts given by ±(n+l/2)Ti, where «=0,1,2,... 
[18, 19]. Therefore, both the numerator and denominator of the argument are purely 
imaginary and thus the argument of the In function remains real. We assume that all 

solutions of equation (3.25) are in the region ka < p__ < kny[e where s=sa if za> zh and

PA

Figure 3.2. Normalised separation 2D/Xq against pz/&o for several different 2a/A,o 

ratios. Note a=b and £«=£¿=2.07.

Figure 3.2 shows the normalised separation 2Diko plotted against the normalised 
propagation constant p Jk0 (sometimes referred to as the effective refractive index ncjj) 

for different 2a/^o ratios. Both guides are identical, i.e. a=b and z=zh=2.01. From 

Figure 3.2 we see that, for the given 2a/^o ratios, there are two solutions to equation 
(3.25). The solution with the largest value of PJk0 corresponds to the lowest order 
(even) mode. The solution with the smallest value of $Jk0 corresponds to the next 

higher order (odd) mode. This can be readily seen by substituting pr into the field 
equations. It should be noted that for further increases in frequency, higher order 
modes will propagate, see Figure 3.7 and Figure 3.8. However, in general, coupled
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structures are limited to the two mode case. We clarity Figure 3.2 with an example. 
For a structure with a=7>=0.5mm, 2£>=6.0mm and A.0=10.0mm, Figure 3.2 shows that 
two modes exist: an odd mode with (37^=1.012 and an even mode with [37£0= 1.068.

Solutions with values of $Jk0 approaching unity correspond to modes near to low 

frequency cut-off. It is seen that in the low frequency case, 2üIXq=0.\, that the odd 
mode is cut-off until the guide separation 2D is larger than 0.4À0- Another interesting 
feature is that the even and odd mode propagation constants tend to a constant value 
for increasing separation. Furthermore, they converge more quickly for the higher 
frequency cases. All these effects can be easily explained when we consider the 
limiting cases of zero separation and infinite separation, refer to Section 3.1.4.

3.1.3 Asymmetrical Coupled Slab Waveguides

We now look at the asymmetrical case. For simplicity, we assume that either the 
permittivity or the width of guide B is less or equal to that of guide A. It is further 
assumed that sa=2.07. Figure 3.3 and Figure 3.5 show the effects of width asym­
metry, Figure 3.4 and Figure 3.6 show the effects of permittivity asymmetry. Figure
3.3 and Figure 3.4 are for 2a=0.4^o, Figure 3.5 and Figure 3.6 are for 2a=0.1^o- We 
see that there is a strong similarity between varying asymmetry in permittivity and 
width. For an increase in both permittivity and width asymmetry the guide separation 
has less of an affect on the odd and even mode propagation constants. Furthermore, 
the difference in these propagation constants increases with asymmetry. We also see 
that in the low frequency case, the odd mode is completely cut-off until a given 
separation is reached. Moreover, this cut-off separation increases with increasing 
asymmetry. Again all these effects become clear when we look at the limiting cases 
in the next section.

For completeness, Appendix A gives a comparison between the present technique 
and the improved coupled mode theory. It is shown that the coupled mode theory 
gives good results for large separations, however the values display significant error 
for small separations and large asymmetries. Since the difference in the even and odd 
mode propagation constant is often the important parameter, the coupled mode theory 
should not be used for asymmetrical guides with small separations. Therefore, since 
the present technique is exact and easy to implement, it provides a superior 
alternative to the coupled mode theory.
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PA

Figure 3.3. Effects of width asymmetry. 2a=OAXo and £„=£¿=2.07.

PA

Figure 3.4. Effects of permittivity asymmetry. 2a=2ò=0.4Xo and £„=2.07.
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PA

Figure 3.5. Effects of width asymmetry. 2a=0.1Xo and sa=S/,=2.07.

PA

Figure 3.6. Effects of permittivity asymmetry. 2a=2b=0.1 k{] and sa=2.07.
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3.1.4 Limiting Cases (2D=0 and 2D^oo)

We now look at the two limiting cases of zero separation and infinite separation. 
Suppose we have an infinite value of D, then the right-hand side of equation (3.25) 
must also be infinite. This condition is satisfied when

sin(2<t>0 -  2kxaa) sin(2kxhb -  2<J)A) -> 0, (3.29)

which is achieved when either

2<j)a - 2 kxaa = 2 tan '
f \a

V k x a )

-  2 kxaa = ±rm (3.30)

or

2kxhb -  2<\>h = 2 tan-i f  \  a
\^xb j

- 2  kxhb = ±nn n=0,1,2,3,... (3.31)

Equations (3.30) and (3.31) are exactly the guidance conditions for slab waveguides 
in isolation with widths 2a and 2b, respectively [20], From a physical standpoint, this 
as expected since the coupled modes become more like the isolated modes as the 
separation is increased. We can describe this mathematically if we denote the 
solutions for a given separation by TE,„. We then see that TE2m->TE^a and

TE2m+l —» TEj;f as 2D -» co . Where TE^ is the longitudinal propagation constant 

of guide A, when in isolation, and TE^ is the propagation constant of guide B. in 

isolation, see Figure 3.7. It should be noted that the above is only true if TE^°>TE^ . 

If, however, T E ^cT E ^ then TE2m -»T E ^ and TE2m+1 -> TÊ ,a as 2D -> oo. If 

both guides are identical then equations (3.30) and (3.31) are equivalent and therefore 
TE2m ->TE^" for even m and TE2m+l -> TE^a for odd m, as 2D -> oo. This is 

clearly seen in Figure 3.8.
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PA

Figure 3.7. Isolated and coupled solutions of two asymmetrical slab waveguides. 

20=1.2X0, b=0.9a and sfl=s/,=2.07.

P A

Figure 3.8. Isolated and coupled solutions of two symmetrical slab waveguides. 
2a=2b=\.2Xo and Ea=s/,=2.07.
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We now consider the case when 2D=0. Under this condition, the right-hand side of 
equation (3.25) must also equal zero. Therefore,

sm(2kxaa)sin(2kxhb) = sin(2(j)0 -2 k xaa)sm(2kxhb -2 § h) (3.32)

If the guides are of the same material then kxa=kxb and <\>h = 2kxab -  (j)a. Thus

sm(2kxaa)sm(!kxab) = sin(2()a -2 k xaa)ûn{2isfa - 2 kxab) . (3.33)

Intuitively we would expect the solution of equation (3.33) to be identical to a slab 
structure of width 2(a+b), that is [20]

2<(-  2kxa (a + b)= 2 tan
a

K̂ xa )
■ 2kxa(fl + b)= ±nn ■ (3.34)

Solving the above equation for (j)a and substituting back into equation (3.33) shows 
that the above expression is indeed a solution of equation (3.33). Therefore, for zero 
separation, the solution of the guidance condition is identical to that of a slab 
structure of width 2(a+b).

We can now understand why the odd mode for 2a=0.\Xo, in Figure 3.2, is completely 
cut-off for separations less than 0.4Ay. The mode cannot exist for zero separation as 
can be readily seen by solving equation (3.34). However, as 2D —> oo, we see from 
equations (3.30) and (3.31) that the mode can propagate. Therefore, it seems 
reasonable to suppose that the mode can start propagating at some separation 
between these two limits. We obtain an expression for the cut-off separation by
allowing Pz —> ^ ¡ k {). Unfortunately,

lim {2cu2} = 0

and
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lim < In
Pl-»V®2*0

sin(2kraa) sin(2 kxhb) 
sin(2(j)a -  2kxaa)sin(2kxbb -  2<\>h )

=  0

and thus equation (3.25) becomes meaningless. However, L’Hopital’s rule states that 
if both j{x) and g(x) are zero for x=a then

lim
x—>a

f i x )
g(x)

= lim
x-*a

f i x )  
g'(x) '

Therefore, letting

g(fi2) = 2ax2

and

/ ( M  = ln
sin(2 kxaa) sin(2 kxhb) 

sin(2(j)0 -2 k xaa)sin(2kxhb-2<\>h)

we obtain, after some work,

2Dcu. , f f = lim \ —-—In
Pz-*VMo| 2a x2

sin(2kxaa)sin(2k xhb) 
sin(24>;) -  2k„a) sin(2kxhb -  2<J>* )

(3.35)

-— , cot(2ak0-y/e,, - e 2 ) + . 1 cot(2bk0 J e h - e 2 )
k0^e a - z 2 Ve “/s* -e 2

For symmetrical guides we find that

1 1 ln sin(2 kxad) L  2
i a x2 sin(2<t>a - 2  kxaa) J k j e a - e 2

rC0t(2akQ tJe0 - s2 ).

(3.36)
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We note that 2Dcut.0jf can become negative, suggesting that the mode propagates for 
all physical values of 2D.

In Figure 3.2, we have limited the range to (0..1). However, equation (3.25) does 
have solutions with negative values, see Figure 3.7 and Figure 3.8. As we discussed 
in the previous section, negative distance has no physical meaning. Nevertheless, 
these solutions are of some interest. We find that for infinite negative separation, 
2kxaa=rm or 2kx\,b=rm. From section 2.2.1, we see that this is exactly the value of the 
transitional point from proper to improper modes. Therefore, if we plot the whole 
range of equation (3.25) we find that the negative peaks describe the cut-off 
frequencies of the isolated modes, see Figure 3.7 and Figure 3.8.

In section 2.2.1, we saw that the guidance condition solved for modes where the 
fields diverged away from the guiding structure. These so-called improper modes 
carry infinite power but can be of some use in describing waveguides beyond cut-off 
[21]. Equation (3.25) can be used to solve for improper modes by replacing ax2 with - 
aX2 in equations (3.25), (3.26) and (3.27). However, their solution will not be covered 
here.

3.1.5 TM Mode Solutions

TM mode solutions follow in a similar way to section 3.1.1. By using equation (3.2) 
and matching the tangential electric and magnetic fields at the four boundaries we 
obtain:

a  v2 — = kxa tan(<t)a) for x = -(D  + 2a),
e,

(3.37)

kxa\®n(2kxaa - § a) = a xl E3 sinh(ax2D) -  EA cosh(ax2D) 
E3 cosh(ax2D) -  Ea sinh(ax2Z))

for x = -D  , (3.38)

k xk tan (< j)fc)  =  a x2
E3 sinh(at2D) + E4 cosh(al2.D) 
E3 cosh(ax2D) + Ea sinh(ax2D)

for x = D, (3.39)
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a *2 — = kd, tan(2kxhb -  ) for x = (2b + D).
82

(3.40)

Thus, by combining the above equations we have

2 D = 1 ]n sm(2kxaa)sm(2kxhb)
2axl [sin(2<j)a -  2kxaa)sm(2kxbb -2 § h)

with

(3.41)

= tan-1 ! a x2 gq
V k xa S2 y

(3.42)

and

<t>* = 2 * ^ - ta n -1 x2

V k xb S2 y
(3.43)

Notice that equation (3.41) is identical to equation (3.25) except that the argument of 
the arc tangent in (j)a and <j)/, is now multiplied by the permittivity ratio. The 
relationships derived in section 3.1.4 therefore become

2D—>oo:

2<()a - 2 kwa = 2 tan
V k xa £2 J

-2k„ a  -  ±nn (3.44)

or

2kxhb -2 § h =2 tan-l
V k xb e2 J

- 2  kxhb = ±nn n=0,1,2,3,... (3.45)

2D=0 for symmetrical guides:
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2<j)0 -  2kxa (a + b) = 2 tan-i °C2 Sa
V ^ x a  S2 J

-  2kxa (a + b) = ±nn (3.46)

Cut-off separation:

s„2Dcut-off -cot(2akoyJea - s 2) + ■
0̂ S2

cot(2M0 - s 2) 

(3.47)

The 2£>-p; curves and the field profiles are essentially the same for TM modes. 
However, for completeness, we compare the TM mode solutions with those of the TE 
modes. Figure 3.9 shows plots of the guidance condition for both TE and TM modes 
at two different operating frequencies. We see that the TM mode propagation 
constants are less than the corresponding TE solutions. The TM mode field profiles 
are therefore more extensive in the surrounding regions. Figure 3.10 and Figure 3.11 
show TE and TM solutions for permittivity and width asymmetry, respectively. 
Again we see that the TM mode propagation constants are less than the 
corresponding TE solutions.

PA

Figure 3.9. Normalised separation 2DA,o against pJko for TE and TM modes. Note 
a=b and £«=£/,=2.07.
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Figure 3.10. Normalised separation 2D/Xq against pz/ko for TE and TM modes with 
permittivity asymmetry. Note 2a=OA\0 and sa=8i=2.07.

Figure 3.11. Normalised separation 2D/a0 against PJk0 for TE and TM modes with 
width asymmetry. Note 2a=0AX(, and £<,=£¿=2.07.
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3.2 FIELD PROFILES

If the longitudinal propagation constants for the various modes that a guide supports 
are known, then aX2, kxa, kxh, §a and ((>/, can all be calculated from equations (3.4), 
(3.5), (3.6), (3.26) and (3.27), respectively. Therefore, if the amplitude constants 
Ev ..E6 are specified then the electric field profile over the whole structure can be 
evaluated. Since the electric field must be continuous, we equate the field functions 
at four boundaries. Thus:

£, =E2 cos(<jia) for x = -{D + 2d) . (3.48)

£ 3cosh(ax2D )-.E4sinh((xx2D) = E2cos(2kxaa-<\>a) for x = -D  (3.49)

and therefore

E2 cos(2kxaa-<\>a)
(3.50)

cosh(a x2D) -  f  sinh(ax2Z))

and

E2 cos(2kxag - § a)
(3.51)

where from equation (3.21)

r _ Ea _ tan(2^gq-(|)a)cosh(ar2£))-tan (^)sinh(av2T>) 
£ 3 tan(2kxaa -  (j)a)sinh(ax2D) -  tan((()o)cosh(av2D)

(3.52)
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£ 3 cosh(at2£>) + E4 sinh(ax2Z)) 
cos(«t»6)

for x = D . (3.53)

E6 = E5 cos(2kxbb -(j)J forx = (2b + D). (3.54)

It should be noted that for odd modes the sinh function is the dominant component of 
the field function in the middle region and therefore E4 »  E , . For even modes, the

cosh function is the dominant component hence Ez » E4. Furthermore, for 

symmetrical guides Ez = 0 for odd modes and £ 4 = 0 for even modes.

Clearly for a two-mode structure, there will be two electric field profiles: one for the 
lowest order even mode and one for the next higher order odd mode. We thus 
indicate the odd profile by Ey(o)(x) and the even profile by Eiie](x). Since the modes are 
orthogonal [22], the relation between the odd mode amplitude constants, El(oy..E6(o), 
and the even mode amplitude constants, El(ey..E6(e), cannot be determined without 
considering the longitudinal boundary conditions, see Chapter 5. We therefore set 
E2(e)=l and E%n)= \; the reason for this choice will become apparent when we plot the 
electric field.

Field plots are shown in Figure 3.12 and Figure 3.13. In each case 2a=A.0/2 and 
sa=2.0. Figure 3.12 shows the effects of guide separation 2D and width asymmetry 
alb, with both guides having a permittivity, £^=£¿=2.0. Figure 3.12 (a), (b) and (c) 
show the symmetrical case with 2D=Xo/4, 2D=XJ2 and 2D=X(U respectively. Figure
3.12 (d), (e) and (1) are for the same guide separations as above but with a width 
asymmetry of alb=2. Similarly, Figure 3.12 (g), (h) and (I) are for a/b=4 and Figure
3.12 (j), (k) and (1) are for alb=8. Figure 3.13 shows the effects of guide separation 
and permittivity asymmetry, with both guides having the same width, 2a=2b=Xo/2. 
For comparison, Figure 3.12 (a), (b) and (c) are repeated in Figure 3.13 (a), (b) and 
(c), respectively. In a similar fashion to Figure 3.12, Figure 3.13 (d), (e) and (f) are 
for a permittivity asymmetry of £¿=1.8. Figure 3.13 (g), (h), and (I) are for £¿=1.6. 
Finally, Figure 3.13 (j), (k) and (1) are for £¿=1.4.
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We can see from Figure 3.12 and Figure 3.13 that the even field is similar to the 
profile for guide A in isolation with varying degrees of perturbation depending on the 
magnitude and type of asymmetry, and also the guide separation. Similarly, the odd 
field profile is identical to the field for guide B when in isolation with varying 
perturbation depending on the asymmetry and separation. However, the odd field 
profile is more strongly perturbed than the even mode. In fact for smaller separations, 
the odd mode appears to be close to cut-off, and indeed can become cut-off for low 
operating frequencies, see section 3.1.2 and 3.1.3. This becomes clear when we 
consider that for a mode to be odd the field must go positive within guide A. If the 
field outside the isolated mode for guide B is extensive, the amplitude of the field at 
the x=-D boundary of guide A will be relatively large. Therefore, for the field to 
become positive there must be a large perturbation. These effects decrease with 
separation since the field in the middle region will have decayed by a greater amount. 
For very large separations, no perturbation is seen for either the odd or the even 
modes since both the fields have decayed by a considerable amount. The above facts 
become important when we consider discontinuities in Chapter 5. There it is shown 
that for large asymmetries and separations it is pointless to consider the structure as a 
coupled guide.

The field profile in guide B becomes hyperbolic for certain values of permittivity 
asymmetry, although this is difficult to see from Figure 3.13. From equation (3.6),

kxb k 2
0

Thus if $ J k a > ĵfTb then kxb will be imaginary. We can see from Figure 3.4, that if

2b=2a=0.4A,o, sa=2.07 and S£=0.8s£ then the even mode solutions for varying 
separation will all result in an imaginary kxb and thus the field profile for the even 
mode will have a hyperbolic function within guide B. For a two mode structure, the 
odd mode field profile in either guide can never become hyperbolic. This can be 
explained if we note that the odd mode longitudinal propagation constant tends to the 
value of guide B when in isolation with increasing separation 2D. For guide B, in 

isolation, the solution is in the range k0 < p . < y[s^k0. Therefore the odd mode
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solution can never be greater than yje~hkQ and thus kxb can never become imaginary. 

For width asymmetry, kxh can never become imaginary since we assume s=sh.

For completeness, the magnetic fields of both the even and odd mode symmetrical 
solutions are shown in Figure 3.14 and Figure 3.15, respectively. The fields are 
plotted as vectors with the arrows length determining the magnitude.

x/Xa

Figure 3.12. Effects of separation and width asymmetry on the modal electric field 
profiles for TE coupled slab waveguide. Solid lines show the even modes, dashed 
lines show the odd.



Propagation Characteristics of Coupled Dielectric Waveguides 70

x/X„

Figure 3.13. Effects of separation and permittivity asymmetry on the modal electric 
field profiles for TE coupled slab waveguide. Solid lines show the even modes, 
dashed lines show the odd.
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Figure 3.14. Vector field plot of the even mode magnetic field of a symmetrical 

coupled slab waveguide with ea=S6=2.07, 2a=2fr=0.4A,o and 2D=0.4a0.

x

Figure 3.15. Vector field plot of the odd mode magnetic field of a symmetrical 

coupled slab waveguide with sa=Si,=2.07, 2a=2b=QAXo and 2D=0AXq.
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3.3 SYNCHRONOUS SOLUTIONS

So far we have looked at either width or permittivity asymmetry; it is of course 
possible for there to be asymmetry in both. Here we look at the case when the guides 
are different but have identical isolated propagation constants. Structures of this type 
are said to be synchronous [10]. From equation (2.53), we find that

for TM odd modes.

Therefore if a, za and e* are given, we can calculate [3, from equation (2.53) and then, 
using equation (3.55), obtain a value for b such that the guides are synchronous. For 
example, if 2a=0.4^o, ea=2.07 and £¿,= 1.8 then we find that [37ko=l .268 and therefore 
6=1.924a.

Figure 3.16 shows the even and odd mode field profiles for 2a=0.4Xo, sa=2.07, 
£6=1.8 and 6=1.924a. We notice that although there is a high degree of asymmetry, 
the fields have almost equal amplitudes in each of the guides. This is in contrast to 
the asynchronous asymmetry in Figure 3.12 and Figure 3.13 where the even mode is 
dominant in guide A and the odd mode is dominant in guide B. Again, this has 
important implications to the coupling of energy, as we shall see in Chapter 5.

(3.55)

for TE even modes and

(3.56)
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Figure 3.16. Field profile for synchronous guides. 2a=OAXo, sa=2.07, £¿,=1.8 and 
6=1.924a. Solid lines show the TE0 mode and dashed lines show the TEi mode.

3.4 LOSSES IN COUPLED SLAB GUIDES

We found in section 3.1 that the guidance condition for asymmetrical coupled slab 
waveguides for structures with no dielectric losses was given by

1 ,n sm(2kxaa)sm(2kxhb)
2ax2 l_sin(2())i/ -2 k xaa)sm(2kxhb -2 § h)

with

(3.57)

f ,  = tan-1 a x2

, k Pa,V K xa y
(3.58)

and
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=2kxhb-\an a xi
v Kh

P b (3.59)

Where

P a  =1 and pA =1 

for TE modes and

for TM modes. At millimetre-wave frequencies the losses may become significant. 
We therefore allow sa, sb and 82 to become complex, i.e.

= < ( W tanO ,  = e ; ( l - y ta n 8 j  and s2 =e'2(l-y ta n 8 2).

Thus, aX2, kxa and kxb are now given by equation (3.3) with yz=az+/pz. Expanding 
equation (3.57) forms a pair of coupled transcendental equations for az and (3Z. These 
can be solved numerically, however for small losses we can obtain an approximate 
expression for the symmetrical structure. The complete derivation of the approximate 
expressions is lengthy, therefore only an outline is given here.

For symmetrical structures with dielectric losses equation (3.57) becomes

2 D =
1

2 « 2+ y < 2)
-In sin2 (2k'xaa + j2k"xaa)

sin2 (2cj)̂  -2k'xaa + j2§"a -  j2k"aa)
(3.60)

with
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<l>a = tan V z  +J'<2
v K a  +  J K a

P a

\

y
(3.61)

Where

P, =1

for TE solutions and

< ( W t a n 5 J
s '( l-y 'ta n ô 2)

for TM.

Multiplying equation (3.60) by a X2 and taking the exponent of both sides yields

exp(4a^2£) + y4affv2Z)) = sin2 (2k'xaa + j2k"aa)
sin (2§'a -  2k'xaa + j2§"a -  j2k"xaa)

(3.62)

If we assume that k!xa>>k"xa, ol'X2» ol"X2 and <j)'a>> (j)"a then we can expand the 
trigonometric and hyperbolic functions to the first order and neglect the products of 
all small terms. We then find, after some algebra, that the real part of equation (3.60) 
is given by

exp(4a't2£>) = sin2 (2 k'xaa) 
sin2(2ct>'CT-2  k'xaa)

(3.63)

and the imaginary part by
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exp(4a't2Z))4a"2Z) 4sìn(.2kxaa)[k"aa sin(2<|>̂  ) -  sin(2^fla) cos(2^, -  2¿ » f ,  ] 
sin3 (2 ^  - 2 k'xaa)

(3.64)

Equation (3.64) can be simplified further by making use of equation (3.63). Thus

_ [̂ "aa s in(2<K,) ~ sin(2fctQfl)cos(2(|)  ̂- 2k'xaa)§"a\ 
sin(2(j>̂  -  2k'xaa) sin(2kxaa)D

(3.65)

Using standard expressions for the arc tangent of a complex number [18, 19] we find 
that, after the appropriate approximations,

1 . f, 2a"2k' - 2a '2k"<b= -  In 1 + — ----- 4^——
4 a'2 + k'2
^  V a x2 +  K xa

- In  
4

1 2a "x2k'xa ■2a 'x2Ka
<2 + k12 (3.66)

Expanding to the first order gives

n" k' - a '  k"_ u -x2Tra u'x2rt-.vfl
< + k

(3.67)

Substituting equation (3.67) into equation (3.65) yields

<2 . .. Q(£a ~ s2)̂ 0 sin(2f,) + a'x2 sm(2k'xaa)cos(2<\>[, -  2k'xaa)
Ka [cos(2(j>; -2k'xaa)k'w + D(z'a -  s2)k2 sin(2(J>;, -  2A :»]sin(2& » ’

where we have made use of a'x2 + k'2a = (s'a -  z'2) k l .

For TM mode solutions, the analysis is much more complex; we therefore simplify 
the problem by setting the loss tangent of the surrounding regions equal to zero, 
tanS2=0. Then, in a similar way to the TE case, we find that
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» K a < 2 + K a < 2  ^ a  ~  < 2K ,■ 828 ,2,12z2k + s ’2k'l
(3.69)

Substitution into equation (3.65) gives

a x2
k'L

sin(2(l)l) + £2(a',2̂o2el,-2 < 2 K > M 2 k 'ma)cos(2ya-2 k 'a )  
[D(E[?a'x2+ s 'X l ) k 2o sin(2  ̂-2 k '„ a ) -W „ k f c  + 2 * ^ ,0  cos(2<t>;, -2k'xaa)k'xa\\n{2k’xc,a)

(3.70)

We require the attenuation constant a z. Therefore, equating the imaginary parts of 
equation (3.3) gives

2KaKa = ~<,kl  tan5a -2 [T a ; (3.71)

and

2a'c2a"2 = e 2ko tan52+ 2 p .a . , (3.72)

where the products and squares of all small terms have been neglected. Dividing 
equation (3.72) by equation (3.71) and solving for cu we obtain

a a x2x2
a, = - k: k'L

el tan 6a + k'xaz'2 tan82

2P2 a a x2x2 k'L
+ kL

(3.73)

for TE modes, where a ”xi/k"xa is given by equation (3.68). Also,
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a 'x2 tan8„
a. = -k:

k'L

2(3Z a a x2
x2 k'L

+ k'
(3-74)

for TM modes, where a"x̂ k"xa is given by equation (3.70).

We notice that equation (3.63) is identical to the symmetrical guidance condition for 
a lossless guide, equation (3.28). Therefore, we can solve for a given structure in the 
usual manner and then use the above approximate expressions to calculate az directly 
from [T and the waveguide parameters. Equation (3.73) and (3.74) are complicated 
expressions, however they can be evaluated more easily than the original coupled 
transcendental equation in (3.60). Furthermore, a test on the convergence of the 
expressions reveals a similar range of validity as the single guide. Unfortunately, a 
study of the approximate expressions for asymmetrical coupled slab waveguides 
using the above method results in huge expressions and consequently is of little use. 
Therefore, solutions for lossy asymmetrical structures are best obtained by solving 
equation (3.25) numerically for the complex roots.

Figure 3.17 and Figure 3.18 show typical curves for the normalised attenuation 
constant of a symmetrical coupled structure. Figure 3.17 shows TE solutions and 
Figure 3.18 shows TM. In both cases 2a=2b, £2=1, s'a= s'* =2.07 and 
tanOa=tan5/,=3.Ox 10"4. We notice several interesting features from Figure 3.17 and 
Figure 3.18. Firstly, as expected, the attenuation constant is less for the low 
frequency solutions. Secondly, in a similar way to the real part of the propagation 
constant, az converges to the isolated attenuation constant for increasing 2D and is 
equal to a guide of width 4a when 2D=0. This is as expected since the equations in 
section 3.1.4 are all valid for guides with complex permittivities. Finally, the odd 
mode solutions increase with 2D, reach a maximum and then decrease slightly as 
they converge to the isolated value. For the even modes, a z decreases as 2D 
increases, reaches a minium and then increases with 2D, finally converging to the 
isolated value. This means that for some values of 2D the even mode of the coupled 
structure has a lower attenuation constant than that of the isolated dielectric 
waveguide. This may have some implications on low-loss propagation.
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Figure 3.19 and Figure 3.20 show curves of the attenuation constant for asymmetrical 
structures with 2a=OAX0, £2=1, s'a=E'6 =2.07 and tanS„= tanS* =3.0xl0'4. Again 
Figure 3.19 shows TE solutions, Figure 3.20 shows TM. In a similar way to the real 
part, we find that the attenuation constant of the odd mode converges to that of the 
isolated value of guide B (the smaller guide), and the even mode to that of guide A.

2a K kA z tanS )
z 0 a cr

Figure 3.17. Normalised attenuation constant for TE mode symmetrical coupled slab 
waveguide. 2a=2b, 82=1, e'a= e'* =2.07 and tan5a= tanS* =3.0x1 O'4.
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Figure 3.18. Normalised attenuation constant for TM symmetrical coupled slab 
waveguide. 2a=2b, s2= 1, e'a= s'* =2.07 and tan5a= tanO/, =3.0x1 O'4.

Figure 3.19. Normalised attenuation constant for TE width asymmetrical coupled 
slab waveguide. 2u=0.4A,0, s2=l, s'a= e'b =2.07 and tanôa= tanôè =3.0xl0'4.
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Figure 3.20. Normalised attenuation constant for TM width asymmetrical coupled 
slab waveguide. 2a=0.4A.o, £2=1, e'a= s'* =2.07 and tan8a= tanô* =3.0x1 O’4.

As in Chapter 2, we use the slab guide solutions in the effective dielectric constant 
method to obtain results for the more useful finite dimensioned rectangular dielectric 
waveguide. Only the conventional EDC method is considered since it is envisaged 
that the expressions in equation (2.109) and (2.110) are different for coupled 
structures. This is because the asymptotic field profiles used in Chiang’s DEIM [23] 
will not be the same for coupled guides. It should be noted that the EDC method has 
been applied to coupled structures before [24], however, the analysis has relied on 
coupled mode theory and is therefore only valid for symmetrical guides with large 
separations. Again, we use the convenient shorthand notation:

3.5 THE EDC METHOD FOR COUPLED GUIDES

(3.75)

(3.76)
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That is, we first evaluate the TE (TM) complex propagation constants of a coupled 
slab waveguide. This gives us an effective permittivity and loss tangent. We then use 
these values to construct a second slab waveguide of width 2d and complex 
permittivity s^l-ytanô^). The TM (TE) solutions of this second structure are then an 
approximate value for the complex propagation constant of the coupled structure, 
Figure 3.21.

2d
(C)

->x

Figure 3.21. The EDC method for coupled dielectric guides, (a) Coupled structure, 
(b) Coupled slab guide, (c) Single slab of permittivity seff.

Figure 3.22, Figure 3.24, Figure 3.26 and Figure 3.28 show solutions using the EDC 
method for £* mode propagation withy=25.0, 30.0, 35.0 and 40.0 GHz, respectively. 
Similarly, Figure 3.23, Figure 3.25, Figure 3.27 and Figure 3.29 show Ey modes for 
f=25.0, 30.0, 35.0 and 40.0 GHz, respectively. In each case 2a=2h=3.556 mm, 
2d=lA\2 mm, £¿¡=£¿=2.07, tan8a=tanò*=3.0x 10"4 and £2=1. Solid lines show EDC 
solutions and, for comparison, the boxes show HFSS finite element results. We see 
that both the real and imaginary part of the propagation constant are in good 
agreement, particularly as the frequency increases. We further observe that the even 
mode solutions for both the attenuation and propagation constant are in better 
agreement than the odd modes. This is as expected since the odd mode is always 
more closer to cut-off than the even mode.
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Solutions for asymmetrical structures were also considered. Figure 3.30 and Figure 
3.31 show width asymmetry results for Ex and Ey modes, respectively. In each case 
f= 25.0 GHz, 2a=3.556 mm, 28=1.778 mm, 2d=l.\\2  mm, £„=£¿=2.07, 
tan5a=tan5i=3.0xl0'4 and £2=1. Similarly, Figure 3.32 and Figure 3.33 show 
permittivity asymmetry results for Ex and Ey modes, respectively. In each case f=30.0 
GHz, 2a=28=3.556 mm, 2(7=7.112 mm, £„=2.254, £¿=2.07, tan8„=1.5><10'4, 
tan§¿=3.0xl0"4 and £2=1. Once more, solid lines show EDC solutions and boxes 
show HFSS results. Again, we observe good agreement between the EDC results and 
those from the HFSS finite element solver. However, we see from Figure 3.30 and 
Figure 3.31 that some of the HFSS solutions appear to be erroneous. These points are 
probable spurious modes, since HFSS solves for all of the modes that the structure 
can support. This includes modes that exist in the surrounding medium and may not 
necessarily be the guided modes of the waveguide. This of course highlights a major 
advantage that the EDC method has over commercial finite element electromagnetic 
packages, namely its simplicity. Each point in the HFSS results took about 45 
minutes to compute on workstation. Furthermore, quite some time was needed for 
experimentation to obtain any sensible results. In contrast, the results using the EDC 
method only took a few seconds on a standard desktop PC.

Further results can be seen in the Appendix B.
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a : nepers m

Figure 3.22. Ex modes for coupled dielectric waveguide with f=  25 GHz,
2a=2b=3.556 mm, 2d=l A 12 mm, £,,=£¿=2.07(1-73.0x1 O'4) and £2=1.0. Solid lines are
EDC solutions boxes are HFSS solutions.
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Figure 3.23. Ey modes for coupled dielectric waveguide with f=  25 GHz,
2a=2b=3.556 mm, 2d=7A\2 mm, ea=8i=2.07(l-/3.0xl0'4) and e2=1.0. Solid lines are
EDC solutions boxes are HFSS solutions.
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Figure 3.24. Ex modes for coupled dielectric waveguide with f=  30 GHz,
2^=26=3.556 mm, 2 d = l.\\2  mm, sa=86=2.07(l-/3.0xl0'4) and 82= 1 .0 . Solid lines are
EDC solutions boxes are HFSS solutions.
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Figure 3.25. Ey modes for coupled dielectric waveguide with ^=30 GHz,
2a=2b=3.556 mm, 2<i=7.112 mm, sa=S£=2.07 and S2=l-0. Solid lines are EDC
solutions boxes are HFSS solutions.
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Figure 3.26. Ex modes for coupled dielectric waveguide with f=  35 GHz,
2a=2b=3.556 mm, 2d=7.\ 12 mm, 8a=e6=2.07(l-y3.0xl0'4) and 82= 1 .0 . Solid lines are
EDC solutions boxes are HFSS solutions.
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Figure 3.27. Ey modes for coupled dielectric waveguide with f=  35 GFlz,
2a=2b=3.556 mm, 2d=lA 12 mm, sa=86=2.07(l-y3.0xl0'4) and s2=l-0. Solid lines are
EDC solutions boxes are HFSS solutions.
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Figure 3.28. Ex modes for coupled dielectric waveguide with 7=40 GHz,
2fl=26=3.556 mm, 2d=7.\ 12 mm, £«=£¿,=2.07(1-73.0x1 O'4) and £2=1-0. Solid lines are
EDC solutions boxes are HFSS solutions.
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Figure 3.29. Ey modes for coupled dielectric waveguide with /=40 GHz,
2o=2h=3.556 mm, 2d=lA 12 mm, sa=e/,=2.07(1-73.0x1 O'4) and 82= 1 .0 . Solid lines are
EDC solutions boxes are HFSS solutions.
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Figure 3.30. £* modes for coupled dielectric waveguide with/=30 GFIz, 2a=3.556
mm, 26=1.778 mm, 2d=7.\\2  mm, 8a=Si=2.07(l-73.0xl0'4) and s2=1.0. Solid lines
are EDC solutions boxes are HFSS solutions.
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Figure 3.31. Ey modes for coupled dielectric waveguide with/=30 GHz, 2a=3.556
mm, 2/>=1.778 mm, 2aM7.112 mm, so=8i=2.07(l:/'3.0xl0'4) and s2=1.0. Solid lines
are EDC solutions boxes are HFSS solutions.
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Figure 3.32. E  modes for coupled dielectric waveguide with f=  25 GHz,
2a=2b=3.556 mm, 2d = l,\\2  mm, sa=2.254(1-71.5xl0~4), S6=2.07(l-7'3.0xl0'4) and
82= 1 .0 . Solid lines are EDC solutions boxes are HFSS solutions.
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Figure 3.33. Ey modes for coupled dielectric waveguide with f=  25 GHz,
2a=2b=3.556 mm, 2d=7A\2 mm, £a=2.254(l-y'1.5xl0'4), £6=2.07(l-y'3.0xl0'4) and
£2=1.0. Solid lines are EDC solutions boxes are HFSS solutions.
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3.6 SUMMARY

In summary, an exact transcendental characteristic equation was presented for 
asymmetrical coupled slab waveguides with both width and permittivity asymmetry. 
The solution of this new equation is simpler than previous methods and, unlike 
coupled mode theories, is exact. Moreover, because the method is exact the solutions 
are valid for all guide separations and asymmetries. It was shown that coupled 
structures can become monomode for certain guide separations. Furthermore, 
expressions were derived for the cut-off separation. This phenomenon is exploited in 
Chapter 6 to design very low-loss phase-shifters.

Approximate expressions were obtained for the losses in symmetrical coupled 
waveguides and numerical results for asymmetrical coupled guides were given. It 
was shown that, for certain separations, the even mode had an attenuation constant 
less than that of the isolated waveguide. This may have implications for low-loss 
propagation.

Coupled slab solutions were used in the EDC method and were shown to be in good 
agreement with finite element results for both the propagation and attenuation 
constant. Both symmetrical and asymmetrical structures were considered and shown 
to be in similar agreement with HFSS results. However, due to the complexity of the 
problem, the finite element results appeared to display erroneous points for the case 
of permittivity asymmetry. This clearly highlights the advantages that the EDC 
technique has over finite element techniques, namely its speed and simplicity.

The expressions derived in this chapter form the basis of Chapter 6 where we use 
symmetrical and asymmetrical guides for the design of dielectric waveguide 
components.
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4.DIELECTRIC WAVEGUIDE 
MEASUREMENTS

In this chapter, we obtain experimental verifications of the techniques presented in 
chapters 2 and 3. Two methods are considered for the measurement of the 
propagation characteristics of dielectric waveguides. Namely, the insertion loss 
method [1] and the resonant cavity method [2], However, due to its advantages, 
experimental results are only obtained using the resonant cavity approach. For 
simplicity, experimental results are carried out at 10 GHz and 30 GHz. At these 
frequencies, the physical dimensions of the waveguides and cavities are much larger 
than at millimetre wavelengths making the task far simpler. Measurements are shown 
to be in good agreement with the techniques of chapters 2 and 3. Furthermore, the 
results are shown to be in excellent agreement with HFSS finite element results.

4.1 THE INSERTION LOSS TECHNIQUE

The insertion loss technique is the simplest method for the measurement of the 
propagation characteristics of dielectric waveguides. A simplified schematic of the 
technique is shown in Figure 4.1. Energy is launched into a dielectric waveguide via 
a waveguide horn. The received power at the other end of the waveguide is then 
measured via another horn. Due to the discontinuities between the waveguide and the 
horns, standing waves are set up along the guide. This allows us to measure the 
guided wavelength with a field probe and therefore calculate (T. The attenuation 
constant a: is obtained directly from the received power.
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Figure 4.1. The insertion loss technique.

Unfortunately, the insertion loss technique has several disadvantages for measuring 
small attenuation constants. Firstly, very large lengths of dielectric waveguide are 
required since the losses are very small. Secondly, the standing waves set up in the 
dielectric waveguide because of the waveguide to horn transitions (see Figure 4.1) 
affect the attenuation measurement. Therefore, to account for the standing waves, 
measurements must be obtained for many different waveguide lengths. Finally, 
exciting sufficient amounts of energy in some of the dielectric waveguide modes can 
be a problem, particularly for coupled structures.

4.2 THE OPEN RESONANT CA VITY TECHNIQUE

Due to the disadvantages of the insertion loss technique, particularly the large lengths 
of dielectric waveguide that are required, the resonant cavity technique as described 
by Chandler [2] was used to obtain experimental results for the waveguide 
parameters. The technique involves two parallel conducting plates situated either end 
of a dielectric waveguide, refer to Figure 4.2. Energy is coupled in to and out of the 
waveguide by small coupling holes in the two end plates. By measuring the quality 
factor of the received power the attenuation constant can be determined.
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Figure 4.2. The open resonant cavity technique.

If very little energy is coupled to external circuits, the measured quality factor of the 
cavity can be defined as

— —-----1------ 1----- (4.1)
Q  Q <  Q ,  Q r

Where:

Qd is associated with losses in the waveguide due to dielectric absorptions. It 
should be noted that here we mean absorptions for guided modes. There will 
of course be dielectric absorptions for any radiation modes [3, 4] that may 
exist in the cavity. However, some of the continuum of radiation modes 
inherently have attenuation constants associated with them, even for the 
lossless case. Therefore, the losses due to radiation mode absorption are 
considered with the radiation quality factor Qr (see below).

Qw is due to the finite conductivity of the end plates.

Qr is associated with the radiation losses. These arise from four main 
mechanisms. Firstly, inhomogenities in the dielectric guide and any obstacles
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in the cavity cause mode conversion and coupling into radiation modes. 
Secondly, imperfections in the end plates and any deviation from the parallel 
also cause mode conversions and therefore radiation. Thirdly, the finite extent 
of the end plates results in radiation from the tail end of the evanescent wave. 
Finally, there will be radiation from the coupling holes, since energy will be 
coupled into a continuum of radiation modes as well as the guided modes. 
Fortunately, if the end plates are sufficiently large so that the evanescent field 
has decayed approximately to zero, and the waveguide and end plates are 
carefully machined all but the latter of these can be neglected.

Qr and Ow are both dependent on the cavity length L. This is easily explained when 
we consider the definition of the quality factor:

Q = © (4.2)

where Es is the time-averaged energy stored and P, is the average power loss. If the 

cavity length is increased by a factor K then the stored energy in the guided modes 
will also increase by a factor K. However, the energy loss from the finite conductivity 
of the end plates remains the same since the transverse field profile is independent of 
the cavity length. This is not strictly true, since the energy from the coupling holes 
will excite not only the guided modes of the waveguide, but also a continuum of 
radiation modes. Fortunately, if the cavity is sufficiently long, the radiation modes 
from each end plate will not interfere with each other and thus the transverse field 
incident on the end plates is not a function of the cavity length. Furthermore, the 
amount of radiated energy will remain constant if the cavity is of sufficient length. 
Therefore, the energy loss from radiation, and the finite conductivity of the end plates 
remains constant, resulting in both Qr and Qw increasing by a factor K. The losses in 
the dielectric will clearly increase by a factor P, therefore Qd remains constant.

We therefore express equation (4.1) in the following form

(4.3)

with
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1 l 1

Qp ~Qr
|____

ßw
(4.4)

For very long cavity lengths Qp» Q d  and thus 0=Qd- However, long cavities make 
mounting the dielectric waveguide difficult. Furthermore, materials such as PTFE 
(Polytetrafluoroethylene) are very flexible and tend to bend if the length is excessive. 
This problem can be overcome by measuring the Q for two different lengths L\ and 
f  2- Then

Q L=L, Q «  +  Q P L=L,

and

Q d  Q P l =l 2

(4.5)

(4.6)

but since Qp is directly proportional to length,

Q P (4.7)

Thus

1 _  L 2 Q \l=L2 L \Q \ i.=Li

Qd ~ (L2~La)Q\l=l Q\l=L2-
(4.8)

It should be noted that both lengths should be sufficiently long so that the transverse 
field at the end plates is the same in both cases (see above).

The attenuation constant of the dielectric waveguide is of more importance than the
quality factor. Shimabukuro [5] and Yeh [5, 6] showed that the attenuation constant
is related to the quality factor of the cavity by
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a_ = ü i .
^  2 ^  ’

(4.9)

where

co

and

v,=
ÔC0

5p7-

(4.10)

(4.11)

P„- can be determined by measuring the guide wavelength Xg. Therefore,

P z =
271 nix

T ’

(4.12)

where n is the number of half wavelengths within the cavity. The phase velocity vp 
and the group velocity vg can be determined by constructing a co-p diagram. This 
requires the measurement of the guide wavelength of the various different resonant 
peaks. The phase velocity is then given from equation (4.10) and the group velocity 
from equation (4.11).

4.2.1 Dielectric Waveguides

The basic configuration of the measurement system is shown in Figure 4.3. 
Measurements were obtained for two different dielectric waveguides. One made from 
PTFE, the other from Polyethylene. In each case, the waveguide dimensions were 
2a=7.112mm by 2b=3.556mm. Both Ey\\ and Exn mode propagation was 
investigated with the different polarisations achieved simply by rotating the dielectric 
waveguide through 90 degrees. The quality factors were measured for two different 
waveguide lengths Z=200mm and L= 100mm. Typical curves of the resonant 
frequencies can be seen in Figure 4.16. As expected the resonant peaks for the 
100mm cavity almost coincide with those of the 200mm. Of course only every other 
mode exists on the 100mm cavity since the boundary conditions require a field
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minima at z=100mm, whereas on the 200mm cavity both field minima and maxima 
can exist at z=100mm.

Adapter

Network Analyser

25-35 GHz 

Dielectric waveguide

^------- L _____W
Adapter

Figure 4.3. Schematic of resonant cavity measurement setup.

As discussed in the previous section both the 0  and pz are required to obtain the 
attenuation constant. The propagation constant pz can be acquired by measuring the 
guide wavelength for each resonant peak with a field probe. The propagation constant 
is then given from equation (4.12). Unfortunately this was quite cumbersome. An 
alternative is obtained by moving a metallic plane close to (and perpendicular to) the 
waveguide, in the longitudinal direction and counting the number of minima, n, in 
the received power. The wavelength is then given by Xg=2Lln. It should be noted that 
this is best achieved by setting the source frequency to that of the required resonant 
mode.
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f- GHz

Figure 4.4. Typical Q curves for 200 mm cavity (solid lines) and 100mm cavity 
(dashed lines). The numbers indicate the number of half wavelengths n measured in 
the 200mm cavity for the respective mode.

Figure 4.5 and Figure 4.6 show measured values of P_- for Eyn and £*11 propagation in 
a PTFE waveguide, respectively. As can be seen the theoretical results, using 
published values for the real part of the permittivity [7], are in excellent agreement 
with the measured values. Figure 4.7 and Figure 4.8 show results for a polyethylene 
waveguide and again are in excellent agreement with theoretical results. The very 
small error observed at the lower frequency results could be due to the inaccuracies 
that the DE1M exhibits for modes approaching cut-off. However, another factor may 
also affect the results. Namely that the permittivity of the material is frequency 
dependent [8] - even though most manufacturers quote a single figure.
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Figure 4.5. Propagation constant for Ey\\ mode PTFE waveguide. Solid lines show 
theoretical results using the DEIM, boxes are experimental results using the Q band 
cavity. For the theoretical curves si=2.07 [7],

Figure 4.6. Propagation constant for IE\ \ mode PTFE waveguide. Solid lines show
theoretical results using the DEIM, boxes are experimental results using the Q band
cavity. For the theoretical curves Si=2.07 [7].
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/  GHz

Figure 4.7. Ey\\ mode propagation constant for Polyethylene waveguide. Solid lines 
show theoretical results using the DEIM, boxes are experimental results using the Q 
band cavity. For the theoretical curves si =2.316 [7],

f .  GHz

Figure 4.8. Ex\ i mode propagation constant for Polyethylene waveguide. Solid lines
show theoretical results using the DEIM, boxes are experimental results using the Q
band cavity. For the theoretical curves s i =2.316 [7],
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Figure 4.9 and Figure 4.10 show values of the measured quality factor and 
attenuation constant for the Ex\\ mode PTFE waveguide, respectively. Figure 4.11 
and Figure 4.12 show values of the measured quality factor and attenuation constant 
for the Ey\\ mode polyethylene waveguide, respectively. Similarly, Figure 4.13 and 
Figure 4.14 show results for the Exu mode polyethylene waveguide. In each case 
parabolas were fitted to the measured quality factors, Q\ and Q2, using the least 
squares method. With the help of these fitted curves Qd was calculated from equation 
(4.8). vp and [T were obtained directly from the measured values of Xg, vg was 
calculated by constructing an ca-(3 diagram and finally the attenuation constant ou was 
obtained from equation (4.9).

We see from Figure 4.10 that the attenuation constant of the Ex\\ PTFE waveguide 
suggests a loss tangent of about 2.5 to 3.0xl0'4. Again, from Figure 4.12 and Figure 
4.14, we see that the loss tangent of the polyethylene is approximately 4.5x1 O'4. A 
review of the literature gives values for the loss tangent of PTFE between 2.17x1 O'4 
[5] and 3.15xl0'4 [7] and 1.3xl0'4 [7] to 3.8xl0'4 [5] for polyethylene, at 35 GHz. 
The measured values are therefore in quite good agreement. The range of values 
quoted for the loss tangents of these materials is not wholly due to the varying 
inaccuracies of the different techniques used to acquire them. Another important 
factor is the material itself. Afsar and Button [8] pointed out that the dielectric 
parameters, and in particularly the loss tangent of a specific material, can be greatly 
affected by the manufacturing process. Furthermore, Afsar has shown that the loss 
tangents of both PTFE and polyethylene vary considerable over the 60-300 GHz 
range. Extrapolation of this data suggests that the loss tangent may well vary by up to 
20% over the 20-60 GHz range.

We notice from the results that the values for a- begin to diverge at about 30 GHz 
and we actually find that the attenuation constant becomes negative at 34 GHz. This 
is of course impossible. There may be several reasons for the increase in error as the 
frequency is increased. Firstly, higher order modes start to propagate. When the 
resonant frequency of one of these modes is close to, or equal to, that of the required 
mode, the resonant curves broaden giving erroneous quality factors. Secondly, we 
observe that the quality factor of the two lengths of waveguide appear to converge for 
increasing frequency. This suggests that the dielectric losses become dominant. 
Therefore, under these conditions, the use of two different lengths is not required.
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Figure 4.9. Exn mode PTFE waveguide quality factors for 200 mm cavity O and 100 
mm cavity □. Solid lines show least squares fit.

Figure 4.10. n mode PTFE waveguide attenuation constant (solid line). Dotted, 
dashed and dot-dashed curves show theoretical results for loss tangents of 3.0x1 O'4, 
2.5x1 O'4 and 2.0x10"4, respectively. In each case the dual effective loss tangent 
technique is used.
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Figure 4.11. Ey\\ mode Polyethylene waveguide Quality factors for 200 mm cavity O 
and 100 mm cavity □. Solid lines show least squares fit.

Figure 4.12. Ey\\ mode polyethylene waveguide attenuation constant (solid line).
Dotted and dashed curves show theoretical results for loss tangents of 5.0x1 O'4 and
4.0x1 O’4, respectively. In each case, the dual effective loss tangent technique is used.
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Figure 4.13. Ex\ \ mode Polyethylene waveguide Quality factors for 200 mm cavity O 
and 100 mm cavity □. Solid lines show least squares fit.

Figure 4.14. Ex\\ mode polyethylene waveguide attenuation constant (solid line).
Dotted and dashed curves show theoretical results for loss tangents of 5.0x1 O'4 and
4.0x1 O’4, respectively. In each case, the dual effective loss tangent technique is used.
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Another factor that may have affected the accuracy of the measurements is the fact 
that the network analyser used to obtain the data could only store a maximum of 501 
data points. Therefore, for the frequency range 25-35 GHz the smallest sample width 
is 20 MHz. This gives a maximum measurable Q of about 750. Clearly this is not 
adequate, as the Q factors of low-loss materials can exceed 10,000 for the 25-35GHz 
range. This problem was overcome by acquiring the measurements over small 
frequency ranges of 2 GHz. This of course requires additional work since the 
analyser must be calibrated for each frequency range. Also, it is very difficult to place 
the dielectric waveguide in the same place for each measurement and thus additional 
errors are incurred.

4.2.2 Coupled Dielectric Waveguides

In this section, we look at coupled dielectric waveguides. Figure 4.15 shows a 
photograph of the cavity resonator. Energy is coupled into one of the waveguides, 
which is fixed to the end plates. The other guide is mounted in an expanded 
polystyrene cradle; the cradle in turn is connected to a metal base plate that can be 
moved with the aid of a micrometer. The separation of the two guides can then be 
easily measured.

Figure 4.15. Photograph of cavity resonator for coupled waveguide measurements.

Unfortunately, it was found that an accurate measurement of the attenuation constant 
of coupled dielectric waveguides was extremely difficult due to the following factors:
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1. The resonant frequencies change with separation. This is explained when we 
remember that, for a given cavity mode, P- must remain constant whatever the 
separation. Therefore, with reference to Figure 4.16, we see that the resonant 
frequencies of the modes with even transverse symmetry increase with separation 
whereas the odd mode frequency decreases. Accordingly, there will be 
separations where an odd and even mode will have resonant frequencies close to 
or identical to each other. This results in a spreading of the resonant curves and 
consequently the Q factor can not be accurately obtained. Figure 4.18 to Figure 
4.23 show these effects.

2. Low-loss materials such as PTFE are very flexible. Difficulties therefore arise in 
maintaining a constant separation along the whole length of the guide. For low- 
loss materials, measurements for two different cavities are required, resulting in 
further inconsistencies in the guide separation. We can overcome this by using 
high loss materials. However, it was found that since the resonant peaks of high 
loss materials are much broader, they interfere with each other to such an extent 
that the Q factors become meaningless. Increasing the cavity length so that only 
the dielectric losses are dominant would alleviate the need for two cavities. 
However, the problem of flexibility would then be more apparent.

3. The movable guide has to be mounted in an expanded polystyrene cradle. This 
shifts the resonant peaks since the polystyrene has a relative permittivity different 
from air. In addition, there is a small decrease in the quality factor due to the loss 
tangent of the polystyrene and any reflections from the discontinuity. Fortunately, 
both of these effects are small, as can be seen from Figure 4.17.

4. Unwanted higher order modes are sometimes excited. These interfere with modes 
that have resonant frequencies close to or equal to them giving meaningless 
quality factors.

5. Energy is coupled into all the modes that the guides can support. Unfortunately, 
the amount of energy coupled into some of the modes can be very small for 
certain separations making measurements of the Q impossible.

With more time and effort, some of the above problems could be overcome. 
However, only the real part of the propagation constant is considered here. It should 
be noted that the insertion loss technique could be used to obtain the attenuation 
constant of coupled structures. Unfortunately, the problem of exciting the correct 
mode and varying and maintaining the correct separation would make the method 
impractical.
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Figure 4.16. Illustration of how the resonant frequencies vary with separation.

f  GHz

Figure 4.17. Q curves for E* mode of a single PTFE waveguide with (solid lines) and
without (dashed lines) expanded polystyrene cradle.
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Two different coupled cavities where investigated: one at 10 GHz, the other at 30 
GHz. The first had a length Z,=300mm, the second Z=200mm. In both cases, the 
movable dielectric was mounted in an expanded polystyrene cradle that could be 
moved by a micrometer. The waveguides for the 10 GHz cavity had dimensions 
2a=2b-\0.03mm, 2ri=22.8mm and were both made of PTFE. The waveguides for the 
30 GHz cavity had dimensions 2a=26=3.556mm, 2d=lA 12mm and were, again, both 
made of PTFE. For completeness Figure 4.18, Figure 4.19 and Figure 4.20 and show 
the transmission of the 10GHz cavity for increasing separation. In each case the 
frequency range is 8.0 GHz to 10 GHz. From left to right, Figure 4.18 shows 
separations for 2D=0 to 7mm in steps of 1mm. Figure 4.19 shows separations for 
2D=8 to 15mm; Figure 4.20 shows separations for 2D=16 to 23mm. Similarly, 
Figure 4.21, Figure 4.22 and Figure 4.23 show the transmission for the frequency 
range 10 GHz to 12 GHz.

For each of the resonant peaks shown in Figure 4.18 to Figure 4.23 the guide 
wavelength has to be determined. In a similar way to the single guide cavity, the 
guide wavelength was obtained by moving a metallic plane along the whole length of 
the guides and counting the number of minima in the transmission. The guide 
wavelength is not the only parameter that must be determined. The type of the mode, 
i.e. even or odd, is also important. We can determine this by placing a metallic plane 
between the two guides and parallel to them. If the plane is in the centre, we find that 
the even Ex modes, which do not have electric field zeros at the centre, are cut-off 
leaving only the odd modes. An alternative method for determining the mode type is 
obtained if we remember that odd mode resonant frequencies decrease with 
separation whereas even modes increase. The mode type is then given by simply 
observing which way the resonant frequency moves as the separation is increased.

Clearly, determining which mode is which as the separation is increased is very 
difficult, particularly for the high frequency region where higher order modes start to 
propagate. However, with perseverance, the type and order of each of the resonant 
modes can be determined for each separation.
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Frequency: GHz Frequency: GHz

Figure 4.18. 10 GHz coupled cavity transmission curves for separations of 2D=0 to

7mm.
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Figure 4.19. 10 GHz coupled cavity transmission curves for separations of 2D =8 to

15mm.
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Figure 4.20. 10 GHz coupled cavity transmission curves for separations of 2D =16 to

23mm.



Dielectric Waveguide Measurements 121

Figure 4.21. 10 GHz coupled cavity transmission curves for separations of 2D =0 to

7mm.
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Figure 4.22. 10 GHz coupled cavity transmission curves for separations of 2D =8 to

15mm.
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Figure 4.23. 10 GFIz coupled cavity transmission curves for separations of 2D=16 to

23mm.
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Figure 4.24, Figure 4.25 and Figure 4.26 show results for E? mode coupled PTFE 
waveguides at 8.0, 10.0 and 12.0 GHz, respectively. Figure 4.27, Figure 4.28 and 
Figure 4.29 show results for Ex mode coupled PTFE waveguides at 25.0, 30.0 and 
35.0 GHz, respectively. We see that the EDC method presented in Chapter 3 is in 
good agreement with the experimental results, particularly for even mode solutions. 
As expected, the method compares better for the high frequency results. We further 
see that the HFSS finite element results are in excellent agreement with the measured 
values. It is therefore envisaged that the attenuation constant using HFSS would also 
compare well with experimental results. Consequently, the EDC results in Chapter 3 
can be trusted.

Figure 4.24. Coupled dielectric waveguide measurements for PTFE waveguides:
£a=£b=2.07, 2a=2b= 10.03mm, 2<i=22.8mm and y=8.0GHz. Solid lines show EDC
solutions and boxes show experimental results.
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Figure 4.25. Coupled dielectric waveguide measurements for PTFE waveguides: 
£a=£6=2.07, 2a=2b=\0.03mm, 2i/=22.8mm and /̂HO.OGHz. Solid lines show EDC 
solutions and boxes show experimental results.

Figure 4.26. Coupled dielectric waveguide measurements for PTFE waveguides:
s«=sa=2.07, 2a=2b= 10.03mm, 2<i=22.8mm and ^=12.0GHz. Solid lines show EDC
solutions and boxes show experimental results.
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Figure 4.27. Coupled dielectric waveguide measurements for PTFE waveguides: 
£a=£b=2.07, 2(3=26=3.556mm, 2(7=7.112mm and/=25GHz. Solid lines show EDC 
solutions, dashed lines show HFSS solutions and boxes show experimental results.

Figure 4.28. Coupled dielectric waveguide measurements for PTFE waveguides:
£a=£b=2.07, 2a=26=3.556mm, 2 c h l. 112mm and y=30GHz. Solid lines show EDC
solutions, dashed lines show HFSS solutions and boxes show experimental results.
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Figure 4.29. Coupled dielectric waveguide measurements for PTFE waveguides: 
£a=£*=2.07, 2a=2è=3.556mm, 2d=l. 112mm and f=35GHz. Solid lines show EDC 
solutions, dashed lines show E1FSS solutions and boxes show experimental results.

4.3 SUMMARY

In summary, values for both the propagation and attenuation constant of PTFE and 
polyethylene dielectric waveguides were measured using the cavity resonator 
technique. By using two lengths of cavity, the measurements were obtained without 
the need for large cavity lengths. For both materials the propagation constant was 
shown to be in excellent agreement with experimental values, the attenuation 
constant being in fair agreement.

The problems of measuring the attenuation constant of coupled guides were 
highlighted and some ideas on how to overcome them were given. Propagation 
constants for symmetrical coupled waveguides were acquired and shown to be in 
good agreement with theoretical results using the technique presented in Chapter 3. 
HFSS finite element simulations for symmetrical structures were also shown to be in 
excellent agreement with measured propagation constants. It is therefore envisaged 
that the finite element simulations shown in Chapter 3 are valid for both the 
symmetrical and asymmetrical cases. We can therefore put some faith in the values 
of the complex propagation constant obtained using FIFSS and therefore the 
technique in Chapter 3.
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5. DISCONTINUITES IN DIELECTRIC 
WAVEGUIDES

In chapters 2 and 3, we considered guided modes on single and coupled dielectric 
waveguides. These modes adequately describe the field profiles of dielectric guides 
as long as there are no discontinuities nearby. In regions where discontinuities are 
present, another class of solutions, known as radiation modes, must also be 
examined. These radiation modes, together with the guided modes, form a complete 
set, which can describe exactly the field distributions at, and nearby, a discontinuity.

Discontinuities usually exist somewhere in a system. To launch energy into a 
dielectric waveguide there must be some form of discontinuity, whether it is a 
waveguide horn or another dielectric waveguide. Furthermore, as we shall see in 
Chapter 6, dielectric waveguide components based on coupled waveguides introduce 
discontinuities. Accordingly, in this chapter, we limit ourselves to the important case 
of discontinuities between single and coupled dielectric waveguide structures.

We saw in Chapter 2 that the electric field of a dielectric waveguide with no 
discontinuities is given by

5.1 RADIATION MODES

n

(5.1)

where E,- is the transverse field function of the z'th guided mode and At is a complex 
constant. We recall that the guided modes decayed exponentially within the air region
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and consequently carried finite power in the z direction. There is, however, another 
class of modes that carry infinite power. These so-called radiation modes have 
standing wave functions in both the guiding and surrounding regions. Thus,

E = A, cos(kxlx) for x <| a | (5.2)

E = At cos(kx]a)cos(px + <j>) for x> a, (5.3)

where cj) can be determined by matching the tangential fields at the \x\=a boundary. 
The decay constant a^i that was used in the air region has now been replaced by a 
propagation constant p [1]:

P — "\/̂ 2̂ 0 Pz ’ (5.4)

where here we assume that all the regions are lossless. Since we have not constrained 
the problem by setting the field to zero at infinity, p is continuous and can take on 
any positive value. Therefore,

0  <  p  <  oo . (5.5)

Equation (5.4) results in two different types of solution: propagating modes and non­
propagating evanescent modes. The propagating radiation modes are defined for 

0 < p < -Je^k0, where (T is purely real and the evanescent modes for < p < oo,

where (3- becomes purely imaginary.

Although the radiation modes carry infinite power, an expression for its value can be 
obtained with the help of the Dirac delta function. The Poynting power flow for two 
different modes, E and E', is given by

P =
1
2

jRe{ExH'}-û(itf.
s

(5.6)
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Evaluation of this integral gives a solution of the form [1,2]

P  = / ( p ) S ( p - p ' ) , (5.7)

where p and p' are the transverse propagation constants in the surrounding region for 
the E and E' modes, respectively, and^p) is finite for p>0. We see that the power is 
zero for p * p ' , which is as expected since the modes are orthogonal [2]. However, 
for p = p' the power becomes infinite. This suggests an infinite source power for 
each radiation mode; and therefore a single radiation mode is of little use. 
Fortunately, when we consider a continuum of radiation modes, finite power levels 
are realisable. Thus, the complete solution of a dielectric guide can be expressed as

where A(p) and e(p) are the amplitude constant and field functions of the radiation 
modes, respectively. The above expression completely describes the field function of 
a dielectric waveguide, even if discontinuities are present. It therefore forms the basis 
of the next section where transitions from single to coupled slab guides are analysed.

Consider a transition between a single guide to a coupled guide, see Figure 5.1. We 
denote the fields in the single guide, region A, with the superscript a and the fields in 
the coupled structure, region B, with b. Assuming that the structure supports one 
guided mode in Region A and two in Region B, we have the following continuity 
expressions

n 00

E , = Ë 4 E ,  + J ^ ( p ) e ( p ) i / p , (5.8)
0

5.2 WAVEGUIDE DISCONTINUITIES

m 00

0
(5.9)
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Hfl = h ;
m

J^(p)ha(pVp
0

within region A and

E‘ = |> ,e*+ }ii(p )e'(pW >
<=I 0

H ‘ = i ; 5 (h ?  + J 5 ( p ) h é ( p ) i / p
<=1 o

within region B, where, for our case, m= 1 and n=2.

We require the fields to be continuous across the z=0 boundary, i.e.

E" = Eé 

and

H = H ".

A B 8fc2

1r

— ►  Z

E6
X

-(2 b+D) 

-D 

D

2 a+D

z=0

Figure 5.1. Geometry of dielectric slab waveguide discontinuity.

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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The problem now is to determine the amplitude functions A(p) and i?(p) of the 
radiation fields. This can be achieved by changing the continuous summations in 
equations (5.13) and (5.14) into discrete ones [3, 4]. We therefore write H(p) and 
B(p) in terms of a known set of functions such as the Laguerre polynomials [3, 4], 
Thus,

A(p) = 'Z cb/i(p)
/=1

(5.15)

B(p) = Y ,biN p )  (5-16)
/=0

where a, and b, are constants and f { p) are Laguerre polynomials of degree i. To allow 
an numerical implementation the summation over all i in the above equations is 
truncated, equation (5.13) and (5.14) then become

m M n N
<  + + 2 > ,E ” + |> ,E ‘

i=l i=l Z=1 (=1

and
m M n N

i>; - S w  - S B ,» ? + I » , h ; ,
;=1 1=1 i=l i=l

(5.17)

(5.18)

respectively. Where M  an N  are chosen for the required convergence and Ef’* and 

H °'h are given by

K h = J /(p )e a'A(p)£/p (5.19)
0

and
oo

H " ’A =  J / ( p ) h a’A( p > / p .  (5.20)
0

Clearly, equation (5.19) and (5.20) can be difficult to evaluate, particularly for 
coupled structures. However, Brooke and Kharadly proposed a mathematically
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simpler method [5]; in their technique, the open dielectric waveguide is converted to 
a bounded guide by placing a conducting plane either side of the dielectric structure, 
refer to Figure 5.2. The continuum of radiation modes in equations (5.17) and (5.18) 
then become an infinite, but discrete, set of modes. These modes are of two types: 
fast and evanescent. The fast modes are defined for 0 < p < /c0 and have real

propagation constants. In contrast, the evanescent modes, defined by k0 < p < oo,

have purely imaginary propagation constants and are therefore non-propagating. The 
guided modes of the open structure are now referred to as slow modes but are still 

defined for k0 < p_ < ■N/s~k0.

-(.Xb+2b+D)

-(2 b+D) 

-D 

D

2 a+D

X  +2 a+Da

z= 0

Figure 5.2. Geometry of bounded dielectric slab waveguide discontinuity.

The boundary conditions are now given by

K K

i=i i=i

and

h ; - f > ,h "  = £ ii,h *
i=i ;=i

(5.21)

(5.22)
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where the summations are now over all modes: slow, fast and evanescent. Again, the 
infinite summation of fast and evanescent modes have been truncated to allow a 
numerical implementation. Also, we choose M  and N  such that m+M=n+N=K. 
Applying the orthogonality relations to the above equations we obtain [5]

2 + / ? ) = 2 8 ;l/ r
/=i

K P
■X*. "/=1

ab

Pj
y=l,2, 3 , . . . ,  if

with

-\ba

(5.23)

(5.24)

(5.25)

P° = J e “ x h “ -dS
s

(5.26)

Also, the Kronecker delta function 6y is defined as:

|1 if i = j  
|o  if i * j

(5.27)

To evaluate the integrals in the above expressions we must first calculate the field 
functions for each of the modes on both sides of the z= 0 boundary. This is achieved 
in a similar manner to the open structure; the difference being that now the fields 
must equal zero at the x=(Xa+2a+D) and x=-(Xb+2b+D) boundaries. Therefore, 
following the same approach to Chapter 2 we find that the guidance condition of the 
slow mode solutions in the coupled region (z>0) is given by
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1D = 1 In f + ^  + Va ~ ^  ~ 2kxaü) 1
2a ,2 1 -  !) sin(2¿„a) + (7; +1) sin(2<j>a -  2kxaa) J

+ _ L _  in j ( ^  +1) sin(2^6) + (7̂  -1) sin(2 kxhb -  2tyb ) ] 
2ax2 l ( 7 ; - l ) s in ( 2 ^ 6 )  + (rA+ l ) s i n ( 2 ^ - 2 ^ ) J

where

4>t/ = tan '1 jp  a *2 l ,
1 KaL]

(5.28)

(5.29)

<h =2kxhb-tan Ph <*x2 1
KbTh J

(5.30)

Ta =tanh(ax2A J , (5.31)

T„ = tanh(ax2A J . (5.32)

Again, pa = 1 and pA = 1 for TE modes; pa = and ph =
£2

for TM modes.

As expected, when Xa and Xb become infinite, equation (5.33) is identical to that of 
the open structure, equation (3.25).

The fast and evanescent guidance conditions for both the single and coupled guide 
regions follow in a similar way and are not considered here. The slow mode solutions 
for the single structure are given by

tan(2 kxaa) = - a  x2kxa Ta + tanhja^ (X h +2 b + 2Z>)]
~ Takla tanh[ai2 (X h +2b + 2D)}

(5.34)

Solving P- for each of the waveguide modes and evaluating the corresponding field
functions allows us to calculate the amplitude constants in equation (5.23). The field
distribution at the boundary is then given.
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Figure 5.3 shows field profiles either side of the z= 0 boundary for the following 
waveguide parameters: sa=Si=2.07, si=l, 2a=2h=0.268A,o, and 2D=0. Solid lines are 
for region A, dashed lines are for region B. The number of modes, K, in equation 
(5.23) was set to 22. This figure was chosen for adequate convergence [5]. The mode 
indexes are denoted as follows. In region A, mode 1 is the reflected fundamental 
mode of the structure, mode 2 is the first order fast/evanescent mode, mode 3 is the 
next higher order mode, etc. In region B, modes 1 and 2 are the even and odd slow 
mode solutions, modes 8 to 12 are the first ten fast/evanescent modes with even 
symmetry and modes 13 to 22 are the first ten fast/evanescent modes with odd 
symmetry. Both the metal boundaries were placed a distance of 6 wavelengths from 
the dielectric waveguide, i.e. Xa=Xb=6.OXq. Brooke and Kharadly showed that the 
value of the amplitude constants oscillate about a mean for increasing Xa. However, 
in our case, the amplitude of the oscillation was found to be very small and therefore 
the amplitude constants were only calculated for a single value of Xa.

We see from Figure 5.4 that the amplitude constants of the fast/evanescent modes in 
both regions are much smaller than those of the slow modes. Moreover, the 
magnitude of the reflected fundamental mode in region A is much smaller than the 
slow mode constants in region B. It is further seen from Figure 5.5 and Figure 5.6 
that as the separation is increased the above effects become more apparent. Indeed, as 
the separation is increased, the modes in region A become more and more orthogonal 
to the modes on guide B. In the limit, 2D^>co, we find that the energy splits equally 
between the guided modes of the coupled structure, with the reflected and radiated 
energy converging to zero. It therefore seems reasonable to neglect the reflected 
energy. The amplitude constants in region B are then given by

■yab

B, = (5.35)

Using the above expression we find that, for 2D=0.268/^o, 5i=0.592 and 52=0.408. 
These values compare well with 5i=0.587 and 52=0.416 using equation (5.23). For 
2D=0 we have, 5i=0.848 and 52=0.154 using equation (5.35), and, 5i=0.818 and 
52=0.157 using equation (5.23). Again, the difference is quite small.
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Figure 5.3. Field profiles at discontinuity for 2a=26=0.268A,0, sa=s6=2.07, 2D=0, 
Xa=6h0 and K= 22. Solid lines show the field profile in region A (z<0), dashed lines 
show field profiles for region B (z>0).

\a\ \b\
1 0.0297 0.8181
2 6.1930E-5 0.1569
3 3.1956E-5 2.202 IE-4
4 2.4450E-4 8.5732E-4
5 1.2452E-4 1.7698E-3
6 5.3878E-4 2.8279E-3
7 2.6945E-4 3.8167E-3
8 8.9917E-4 4.6643E-3
9 4.5868E-4 5.3574E-3

10 1.3521E-3 5.9693E-3
11 6.8798E-4 6.1500E-3
12 1.8679E-3 6.2437E-3
13 9.6006E-4 0.0830
14 2.4377E-3 0.0820
15 1.2869E-3 0.0643
16 3.0659E-3 0.0501
17 1.6953E-3 0.0391
18 4.1799E-3 0.0310
19 2.2435E-3 0.0252
20 5.3493E-3 0.0226
21 3.0866E-3 0.0184
22 7.2866E-3 0.0147

Figure 5.4. Amplitude constants for 2a=26=0.268^0, sa=sA=2.07, 2D=0, Xa=6X0 and 
K= 22.
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Figure 5.5. Field profiles at discontinuity for 2a=2b=0.26Sk0, £a=eb=2.07, 
2D=0.26Tko, Xa=6k0 and K=22. Solid lines show the field profile in region A (z<0), 
dashed lines show field profiles for region B (z>0).

14 1*1
1 3.1560E-3 0.587
2 3.9982E-5 0.416
3 5.479 IE-6 8.2418E-5
4 1.5451E-4 3.0827E-4
5 2.1802E-5 6.3390E-4
6 3.2953E-4 9.8005E-4
7 5.0258E-5 1.3007E-3
8 5.4377E-4 1.5590E-3
9 8.9495E-5 1.7242E-3

10 7.7263E-4 1.7529E-3
11 1.4067E-4 1.6219E-3
12 9.9239E-4 1.2372E-3
13 2.0322E-4 1.7485E-3
14 I.1852E-3 3.1480E-3
15 2.7222E-4 3.9834E-3
16 1.3450E-3 4.3505E-3
17 3.3519E-4 4.3800E-3
18 1.4886E-3 4.2235E-3
19 3.6147E-4 3.9898E-3
20 1.6655E-3 3.7599E-3
21 3.2020E-4 3.5579E-3
22 1.9875E-3 3.3380E-3

Figure 5.6. Amplitude constants for 2a=26=0.268X0, sa=sil=2.07, 2D=0.261Xq, 
Xa=6kQ and K= 22.



Discontinuities in Dielectric Waveguides 140

Figure 5.7 shows the amplitude constants B\ and fh against separation for a 
symmetrical structure using equation (5.35). We observe that for increasing 
separation the amplitudes of both the odd and even modes converge to 0.5. 
Therefore, as the separation is increased, the energy is split equally between the 
guided modes of the coupled structure. In contrast, from Figure 5.8 and Figure 5.9 it 
is seen that when asymmetry is introduced more of the energy is coupled into the 
even mode of the composite guide. Furthermore, as 2D increases, the amplitude 
constant B\ converges to 1.0 and thus all of the energy is coupled into the even mode. 
As the asymmetry is increased, the above effect is more apparent. It should be noted 
that if the second waveguide has an isolated propagation constant greater than that of 
the first then the opposite would occur, i.e. more of the energy would couple to the 
odd mode. For synchronous structures, the amplitude constants converge to constant, 
but different values, see Figure 5.10. However, evaluation of the power in each mode 
shows that the energy is split evenly between the guided modes for increasing 
separation.

Figure 5.7. Variation of amplitude constants with separation for symmetrical coupled 
waveguide: 2a=2Z>=0.4A.o and sa=SA=2.07.
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Figure 5.8. Variation of amplitude constants with separation for coupled waveguide 
with width asymmetry: 2a=0.4A,o and £<,=£¿=2.07. Solid lines are for a=b, dashed 
lines are for a=0.Sb, dotted lines are for a=0.6b and dot-dashed lines are for a=0Ab

Figure 5.9. Variation of amplitude constants with separation for coupled waveguide 
with permittivity asymmetry: 2a=2b=0.4'ko and £„=2.07. Solid lines are for £¿=2.07, 
dashed lines are for £¿=2.00, dotted lines are for £¿=1.90 and dot-dashed lines are for 
£¿=1.80.
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D '\

Figure 5.10. Variation of amplitude constants with separation for asymmetrical 
synchronous coupled waveguide: 2a=0.4^0, 26=0.568A.0, sa=2.07 and 86=1.9.

Greater insight can be obtained if we plot the energy distribution around the 
discontinuity. Neglecting all radiation modes, the electric field profile in the coupled 
region is given by

E(x,z) = 5 ,£ 1(x)exp(-yP1,z) + B2E2(x)exp(-jfi2zz ) . (5.36)

Therefore, the energy distribution is of the form

P(x,z) = PL.5,2£,2(x) + P;2522JE22(x) + (Pzl+Pz2)B1JE1(x)52£ 2(x)cos(APzz),
(5.37)

where

A P z = P l z ~ P 2 z . (5.38)
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Figure 5.11 shows plots of the energy distribution for a discontinuity of the type 
shown in Figure 5.1. The areas in red show the highest intensities, with the regions in 
purple showing the lowest intensities. The longitudinal dimension, z, is in a direction 
parallel to the side of the page; the transverse dimension, x, is parallel to the bottom 
of the page. Six plots are shown; (a), (b) and (c) are for separations of 2D=0.0, 0.1 A,0 
and 0.2A.O, respectively. Similarly, (d), (e) and (f) show plots for 2£>=0.3A,o, 0.4Xo and 
0.5^o, respectively. In each case 2a=26=0.4Xo, sa=8A=2.07 and 82=1. Several 
interesting points can be noted from Figure 5.11.

Firstly, as expected, the energy distribution does not vary with z in the single 
structure since the guide is monomode. In contrast, within the coupled region, where 
two modes exist, the energy distribution oscillates back and forth between the two 
waveguides, a maximum in one guide coinciding with a minimum in the other. This 
effect becomes clear when we remember that the modes travel with different phase 
velocities. Therefore, when the modes are in phase, the fields constructively interfere 
within the first waveguide and destructively interfere within the second guide. When 
the modes are in antiphase the opposite occurs with the maximum occurring in the 
second guide.

Secondly, the period of oscillation increases indefinitely with separation. This is 
because the even and odd modes become degenerate to each other, i.e. their 
propagation constants converge to the same value for increasing separation. 
Consequently, Apr->0 as 2Z)—>oo and therefore the period constantly increases with 
increasing separation.

Finally, the energy intensity maxima in one guide are approximately equal to those in 
the other and, for increasing separation, become identical. This suggests that the 
energy will transfer back and forth between the two guides even if the separation is 
extremely large - say kilometres. Of course, large longitudinal lengths are required 
for complete transferral but, nonetheless, the energy will transfer. From a practical 
standpoint, however, this is impossible. Referring to Figure 5.8 and Figure 5.9 we see 
that for relatively small asymmetries the energy coupled into the odd mode is much 
smaller than that of the even. Furthermore, as the separation is increased the above 
effect becomes more apparent. Thus, for very large separations, any small 
asymmetries will result in little or no energy coupling into the odd mode. We further 
note that asymmetry results in the even mode of the coupled structure being
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indistinguishable from that of the isolated guide. It therefore becomes pointless to 
consider the problem as a coupled structure. Consequently, since no two guides can 
ever be identical, coupling over large separations is impossible.

Figure 5.12 and Figure 5.13 show plots for structures with asymmetry in permittivity 
and width, respectively. Figure 5.12 follows Figure 5.11 but with £¿=1.9. Similarly, 
Figure 5.13 is identical to Figure 5.11 except that ¿=0.8a. We notice that for both 
plots the period of the energy transfer appears to increase with separation in the same 
way as the symmetrical structure. However, it was shown in Chapter 3 that the even 
and odd mode propagation constants on asymmetrical guides converged to different 
values for increasing 2D. Therefore, Apz remains finite, and consequently the period 
converges to a constant value. It is further seen from Figure 5.12 and Figure 5.13 that 
very little energy couples into the second guide, particularly as the separation is 
increased. This is expected from the previous discussions.

For completeness, Figure 5.14 shows plots for an asymmetrical synchronous guide. 
We notice that the plot is similar to that of the symmetrical structure. The only 
difference, that the maximum energy intensity in the second guide is less than that of 
the first.
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Figure 5.11. Energy distribution for symmetrical structure: a=b=0.2Xo, ea=Si=2.07.
(a) 2D =0, (b) D = 0 .0 5 l0, (c) D=O.R0, (d) £M).15A,o, (e) D =0.2X0 and (f) 0.25X0.
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(a) (b) (c)

x
Figure 5.12. Energy distribution for permittivity asymmetry: sa=2.07, £¿,=2.0 and
a=b=0.2X0. (a) 2Z>0, (b) D=0.05X0, (c) D=O.R0, (d) D=0.15X0, (e) D =0.2X0 and (f)
D=0.25X0.
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Figure 5.13. Energy distribution for width asymmetry: £¿,=£*=2.07, a=0.2Xo and
b=0.8a. (a) 2Z>=0, (b) D = 0 .0 5 l0, (c) D =0A X o, (d) Z>=0.15 A«, (e) D=0.2X0 and (f)
D = 0 .2 5 h -
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Figure 5.14. Energy distribution for asymmetrical synchronous structure: sa=2.07,
sft=1.9, o=0.2A,0 and 6=0.284X0. (a) 2Z)=0, (b) D=0.05X0, (c) D = 0.1 lo , (d) Z>0.15^0,
(e) D = 0.2A.O and (f) D=0.25A.o.
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5.3 SUMMARY

In summary, exact expressions for bounded dielectric slab waveguides have been 
derived. It was shown that, for the cases considered here, very little energy is lost due 
to reflection and radiation from the discontinuities between single and coupled slab 
waveguides. Using this information, approximate expressions for coupled dielectric 
slab waveguide discontinuities were derived. Energy distribution plots around 
waveguide discontinuities were then displayed giving much insight into the coupling 
phenomena. It was shown that the energy transfers back and forth between the two 
guides with a beat length equal to Apz/7r. Furthermore, it was shown that coupling 
between symmetrical (and synchronous) guides can be achieved even with large 
separations. However, if any asymmetries are present the coupling is greatly reduced. 
This has important implications for the design of dielectric waveguide components, 
as we shall see in the next chapter.
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6. DIELECTRIC WAVEGUIDE 
COMPONENTS

It is clear from the previous chapters that dielectric waveguides are superior to 
conventional guiding structures for interconnects between integrated circuits and test 
equipment at millimetre-wave frequencies above 110 GHz. For these applications, 
passive components such as attenuators and phase-shifters are often useful, 
particularly in measurement systems.

In Chapter 5 it was shown that the energy in coupled structures transfers back and 
forth between the two guides. If the guides are identical, large amounts of energy 
transfer between them. However, if any asymmetries are present, the coupling is 
greatly reduced. These phenomena are used in this chapter to demonstrate several 
dielectric waveguide components, namely an attenuator, a wavemeter and a low-loss 
phase-shifter. The attenuator and wavemeter exploit the coupling effects of 
symmetrical coupled structures to introduce large insertion losses. In contrast, for the 
phase-shifter, the coupling effects are prevented by introducing asymmetries. For 
simplicity, measurements for each component are provided at microwave 
frequencies, but their operation would apply equally to millimetre-wave frequencies.

6.1 DIELECTRIC WA VEGUIDE A TTENUATOR

The first component we consider is a dielectric waveguide attenuator. The geometry 
of the device is shown in Figure 6.1. A dielectric block of length L is situated parallel 
to the dielectric waveguide forming a short length of coupled guide. As a result, the 
energy transfers back and forth between the waveguide and the dielectric block with 
a periodicity A(3z/7i. If an energy maxima in the dielectric block coincides with the 
z=L boundary, large amounts of energy will be lost as radiation. The block can 
therefore be used as a useful waveguide attenuator. To ensure that maximum
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attenuation is achieved, both the dielectric and the waveguide have the same cross- 
sectional dimensions and are made of the same material (refer to Chapter 5). Since 
the beat length Ap/ir and therefore the amount of radiated energy is dependent on the 
separation, varying amounts of attenuation can be achieved by altering the distance 
between the dielectric and the waveguide. The device then works as a variable 
attenuator.

y

2 a 2D 2b <---x —x  >

Figure 6.1. Geometry of dielectric waveguide attenuator/wavemeter.

To analyse the operation of the attenuator, we must first study the structure in Figure 
6.1. Double discontinuities of this type have been described by Clarricoats and Slinn 
[1] for metallic waveguide. However, their method applies equally to open structures. 
Following the bounded approach of Chapter 5, i.e. we assume that the structure in 
Figure 6.1 has a metallic plane at -Xa and Xh. Then, if the isolated guide is monomode 
and the coupled region supports only two guided modes we find that the continuity 
equations for the two boundaries are given by

• r + 2 4 'e ? - £ « . « ? + l > ?
;=i <=i ;=i

(6.1)

and

/=1 /=! M
(6.2)

at the z=0 boundary and
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A K„

exP (-y ,^ )+ E 5 'e" exP(y<z ) = E c -< (6.3)

and

g  ¡£ £

E 5 < h f  exp(-y,Z) - £ b ; h ?  exp(y,Z) = ¿ C X  (6.4)

at the z-Z boundary. The orthogonality conditions can now be applied and Ka and Kb 
chosen to allow a solution.

However, it was shown in Chapter 4 that the reflected components are much smaller 
than the transmitted components. Thus, if we neglect the reflected (primed) terms in 
equations (6.1), (6.2), (6.3) and (6.4) we find that the continuity equations simplify to

ea
1 (6.5)

and

K K
£ ^ e fe x p ( -y ;Z) = ^ C
;=1 (=1

,e , (6.6)

Applying the orthogonality relations yields

-\ab

B. =■ i=l,...,Kb

and

K„ p h a

C‘ = 2 ^ T - ^ exP(-yyZ)
j=i c

(6.7)
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where the integrals P,a, P b, P ,/6 and P ,/a are defined in Chapter 5.

The problem can be simplified further if we assume that the radiation terms from the 
first boundary do not reach the second boundary, i.e. all of the energy in the forward 
propagating radiation modes radiates away. We then have, for the transmitted guided 
mode,

p b a  p a b  
C l  M l  

p a  p b  
M 1 1

exp(-y,P)+
p b a  p a b  
r 2 \ M 2

p a  p bJT\ r2 exp(-y2P) (6.8)

The amplitude of the transmitted guided mode is now related to the power in the 
incident mode, and the field profiles of the guided modes in the coupled structure. 
Since we do not consider radiation modes in equation (6.8) the problem can be 
treated as an open structure. The surface integrals, P,a, P,b, Pij lb and P ba are therefore 
defined over an infinite cross-section.

Figure 6.2 and Figure 6.3 show the variation of the transmitted mode amplitude with 
separation for frequencies of 8.0 GHz and 12.0 GHz, respectively. In each case the 
solid line shows theoretical results, using equation (6.8), for a TE mode symmetrical 
coupled slab waveguide of relative permittivity £„=£¿=2.07 and width 
2a=2b=\0.9mm. The length of the dielectric block was set to P=180mm. For 
comparison, experimental results for coupled PTFE dielectric waveguides of 
dimensions 22.86 mm by 10.9 mm are shown. The experimental results were 
obtained from a network analyser using the insertion loss technique, described in 
Chapter 4. As can be seen, the theory is in good agreement with the experimental 
results, except where the attenuation reaches a maximum. At this point most of the 
energy is in the dielectric block and it is envisaged that there will be considerable 
reflection from the z=L boundary. Therefore, it may not be appropriate to neglect the 
multiple reflections under these operating conditions. Of course, the theoretical 
method only considers slab waveguides with infinite d dimensions. Whereas for the 
experimental results the d dimension is only twice the a dimension. However, as 
frequency increases, the solutions of dielectric waveguides converge to those of slab 
waveguides [2], This fact is demonstrated when we look at Figure 6.3. There the
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experimental results are in better agreement with theoretical values than those in 
Figure 6.2.

A more thorough analysis would consider all the terms: radiation and reflected. In 
addition, the transverse field functions for rectangular rather than slab waveguides 
should be examined. However, here we are only concerned with the principle of 
operation, for which the present technique is sufficient.

Several additional points should be noted about the attenuator. Firstly, the large 
maximum in the insertion loss occur when the energy is predominantly in the 
dielectric block at the z=L boundary. This condition is satisfied when AfizL=nn, 
where n is an odd integer. Care must therefore be taken to ensure that AprZ<37t, 
otherwise several maxima will be present in the insertion loss. Secondly, we observe 
that the attenuation in Figure 6.3 reaches a maximum of 7.4 dB. For many 
applications, this figure would be insufficient. Fortunately, further attenuation can be 
achieved by increasing the cross-sectional dimensions of both the waveguide and the 
dielectric block. Alternatively, several blocks can be placed one after each other (in 
the longitudinal direction). Thirdly, the structure radiates large amounts of energy 
from the z=L boundary. Therefore, if EMC considerations are important, radio 
absorbing material (RAM) should be placed at the z=L boundary to absorb any 
radiated energy. Finally, the dielectric block must have some movable supporting 
structure in order to keep it parallel to the waveguide. However, any material in 
contact with the block will change the propagation characteristics of the coupled 
guide. To minimise these effects, the dielectric block can either be housed in an 
expanded polystyrene jig, or small dielectric rods can be connected to the block. An 
alternative would be a metallic plate in place of the dielectric block. For Ey mode 
propagation, the method of images shows that a metallic plane situated a distance 2D 
from the waveguide would act as a dielectric block of equal cross-section situated at 
4D. Unfortunately, due to the skin effect and surface roughness the metallic plane 
would be an imperfect mirror and consequently the structure may not be as efficient 
as the dielectric block.
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Figure 6.2. Attenuation for PTFE Ex mode dielectric waveguide attenuator with 
L- 180 mm at/=8.0 GHz.

Figure 6.3. Attenuation for PTFE Ex mode dielectric waveguide attenuator with 
1=180 mm at/=12.0 GHz.
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6.2 DIELECTRIC WA VEGUIDE WA VEMETER

We notice that the position of maximum attenuation in Figure 6.2 and Figure 6.3 
varies as a function of frequency. The actual point of maximum radiation occurs 
when an energy maxima in the dielectric block coincides with the z=L boundary. This 
is satisfied when

E$:L = mi where n=\, 3, 5,... (6.9)

We see from Figure 6.4 that the above condition is obtained at different separations 
for different operating frequencies. It therefore seems plausible to measure the 
separation at which maximum radiation occurs and, from this value, calculate the 
operating frequency [3], The structure can then be used as a simple dielectric guide 
wavemeter, in much the same way as variable resonant cavities are used for 
conventional metallic waveguide.

Figure 6.5 shows the insertion loss for a Eymn mode wavemeter. The results are for 
operating frequencies of 12.0, 14.0 and 16.0 GHz, with 2a=10.9 mm, 2d=22.9 mm 
and L=\ 80 mm. Both the waveguide and the movable dielectric are PTFE with an 
assumed relative permittivity ea=2.07. It is clearly seen from Figure 6.5 that 
maximum insertion loss occurs at different separations for different operating 
frequencies. Figure 6.6 and Figure 6.7 show experimental and theoretical results for 
both Ey and Ex mode wavemeters, respectively. In each case, the theoretical and 
measured separation, 2D, resulting in maximum insertion loss is plotted against 
frequency. The theoretical values are calculated using the slab waveguide 
approximation. The reason for this becomes clear when we look at Figure 6.8. We 
see that although the values for P- calculated using the EDC method are better than 
the slab approximation, the difference in the two values is not. Consequently, the 
results in Figure 6.6 and Figure 6.7 are for slab waveguides of width 2a=10.9 mm 
and permittivity ea=2.07.

As can be seen, the experimental results are in good agreement with theoretical 
values at the higher frequencies. This is because the slab guide approximation is 
more accurate when the modes are far from cut-off. Better theoretical results could be
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achieved by using numerically intensive finite element methods. Alternatively, the 
wavemeter structure could be operated far from cut-off by increasing the 2a 
dimension. This has the added advantage of sharper insertion loss, see Figure 6.5. 
Once more, the length L must be chosen to ensure that A(3zZ<37t. Further, the coupled 
region should only support two guided modes, otherwise several maxima will be 
observed in the insertion loss.

Another useful application for the structure in Figure 6.1 would be as technique to 
measure the dielectric constant of an unknown material. This would again be 
achieved by measuring the separation of maximum radiation. However, to ensure that 
large amounts of energy transfer to the unknown material, the structure would need 
to be synchronous, or at least close to synchronism. This would require an a priori 
value of the unknown dielectric. Nevertheless, an approximate value for the unknown 
is usually given from a theoretical understanding. The above technique may therefore 
be worth consideration in later work.

2a=0AXo------ 2a=0.3Z„------2a=0.5Xo--------
2a=0.2ln........ 2a=0.4\,------

Figure 6.4. Variation of Aß- with frequency.
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Figure 6.5. Insertion loss for Ey mode wavemeter for 12.0 GHz (solid line), 14.0 GHz 
(dashed line) and 16.0 GHz (dotted line). Points are experimental values, lines are 
interpolated values.

Figure 6.6. Separation of maximum attenuation against frequency for Ey modes.
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Figure 6.7. Separation of maximum attenuation against frequency for Ex modes.

a

B : rads m"''z

Figure 6.8. pz as a function of 2D for experimental (boxes), HFSS (dotted lines), slab 
approximation (dashed lines) and coupled EDC method (solid lines) results.
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6.3 LOW-LOSS PHASE-SHIFTER

In Chapter 5 we saw that very little energy is coupled to the second dielectric 
waveguide if the guides are asymmetrical. Furthermore, in Chapter 2 it was shown 
that for large asymmetries the coupled guide remains monomode. Under these 
conditions, very little energy is lost due to radiation since the energy remains 
predominantly within the first guide. Therefore, the large maxima in the insertion do 
not exist for large asymmetries. In addition, large asymmetries reduce the radiation 
and reflection from the discontinuities at z=0 and z=L, particularly if the dielectric 
block is of the same material with bm. We can exploit these facts to design a low- 
loss phase-shifter [4].

2a 2D 2b
<----

Figure 6.9. Geometry of dielectric waveguide phase-shifter.

Existing phase-shifters for millimetre-wave dielectric waveguide [5, 6, 7] use 
conducting planes in order to change the phase velocity of the propagating modes. By 
varying the distance between the dielectric waveguide and the conducting plane, a 
varying phase shift is achieved. However, metallic plane phase-shifters can become 
very lossy since they work like a symmetrical coupled dielectric waveguide. It is 
further envisaged that at millimetre-wave frequencies above 110 GHz the losses due 
to the skin effect will contribute significantly to the overall loss of metallic plane 
phase-shifters.

We therefore place a dielectric block, of different width and/or permittivity to the 
main guide, at a distance 2D, refer to Figure 6.9. The phase shift of this device, if the 
coupled region is monomode, is given by
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®(2Z)) = [J3; -P '.(2D )]Z (6 . 10)

where (T is the longitudinal propagation constant of the isolated waveguide and P'_- is 
the propagation constant of the composite dielectric waveguide, formed by the piece 
of dielectric situated a distance 2D.

From chapters 2 and 3 we know both P'z(2D) and pr; equation (6.10) can thus be 
easily evaluated. Figure 6.10(a) shows experimental and theoretical results for a 
dielectric phase-shifter operating at 8.0 GHz and 12.0 GHz. The results show £> 
mode solutions for a PTFE dielectric waveguide of relative permittivity sa=2.07 and 
dimensions 2a=10.9 mm by 2d=22.9 mm. The phase shifting dielectric is also PTFE 
with dimensions 26=3.4 mm by 2d=22.9 mm and is of length T=180 mm. As can be 
seen, the experimental results are in good agreement with theoretical values. We note 
that the theoretical results were obtained using the EDC method described in chapters 
2 and 3. The experimental results were acquired in a method similar to that of the 
wavemeter, except that the phase delay was also considered.

Figure 6.10(b) shows plots of the attenuation. We see that the attenuation is less than 
1 dB for both frequencies. If the phase-shifter is operated for 2D>\0 mm then the 
attenuation is reduced to less than 0.1 dB. This will of course reduce the maximum 
phase shift to less than 20 degrees. However, if the longitudinal length is increased, 
then from equation (6.10) we see that the phase shift is also increased. Furthermore, 
increasing L has no affect on the attenuation (assuming the dielectric is lossless) 
because the losses are only due to the discontinuities at z=0 and z=L. These can be 
decreased further if the b dimension of the dielectric is reduced.

For the purpose of comparison, a phase-shifter using a metallic wall in place of the 
dielectric is given in Figure 6.11. The longitudinal length L is again 180 mm and 
results for both 8.0 GHz and 12.0 GHz are given. As can be seen, the attenuation for 
the metallic phase-shifter is far greater than that of the dielectric, especially in the 
low frequency case.
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Figure 6.10. Phase shift (a) and attenuation (b) for dielectric phase-shifter. 2a=10.9 
mm, 26=3.4 mm, 2d=22.9 mm, Z=180 mm and eo=sfi=2.07.
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Figure 6.11. Phase shift (a) and attenuation (b) for metallic wall phase-shifter of
length Z=180 mm.
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6.4 SUMMARY

In Chapter 5 it was shown that the energy in coupled dielectric waveguides transfers 
back and forth between them with a beat length Apz/rc. By exploiting this, and 
remembering that A(3Z changes with separation, the principle of a dielectric 
waveguide attenuator was presented. It was further shown that the point of maximum 
insertion loss was dependent on the operating frequency. Therefore, by measuring the 
separation at which maximum insertion occurs, a simple dielectric guide wavemeter 
was demonstrated. For simplicity, experimental measurements were given for low 
microwave frequencies, however their principle would apply equally at millimetre- 
wave frequencies. Components of this nature could have uses at millimetre 
wavelengths where conventional metallic waveguides become impractical.

In Chapter 3 it was shown that by introducing large asymmetries, a coupled dielectric 
waveguide structure could be made monomode. Thus, by placing a dielectric block 
parallel to a dielectric waveguide and varying the separation, a phase shift could be 
obtained without any mode beating. This has the advantage of decreasing the 
insertion loss since the energy does not transfer back and forth between the two 
guides. Instead, it remains predominantly in the main waveguide. Accordingly, by 
changing the distance between the waveguide and a dielectric block, a variable phase 
shift is achieved with minimal loss. Again, components of this type may have their 
use at the higher frequency ranges, particularly in multistate reflectometers realised in 
dielectric waveguide [8,9].
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7. CONCLUSIONS

We saw in Chapter 1 that dielectric waveguides have clear advantages over metallic 
waveguide at millimetre-wave frequencies above 110 GHz. They are easier to 
manufacture and therefore have cheaper production costs. They have less insertion 
and transition loss than metallic guides. Furthermore, they have lower dispersion and 
higher bandwidth making them ideal for broadband communications. It therefore 
seems plausible that they will replace metallic guides for above 110 GHz 
applications. For this to be accomplished, passive waveguide components are 
required such as phase-shifters, attenuators and wavemeters. Components of this type 
were demonstrated in Chapter 6. However, to achieve this, several additional topics 
were also covered. We therefore begin this chapter with a summary of the work 
presented in the preceding pages, followed by some suggestions on a possible future 
work.

7.1 SUMMARY

In Chapter 2, the complex propagation constants of rectangular dielectric waveguides 
were analysed. Firstly, for simplicity, both TE and TM mode slab waveguides with 
complex permittivity in the guiding and surrounding regions were considered. By 
making the appropriate assumptions for small loss tangents, approximate expressions 
were given for the attenuation and propagation constant of these guides. It was shown 
that for loss tangents as large as 0.1 the error in the approximate method was only of 
the order of a few percent. Furthermore, the expressions derived for the attenuation 
constant relate a: directly to the lossless propagation constant and the waveguide 
parameters; the attenuation constant can therefore be calculated with the minimum of 
effort. Secondly, by introducing the concept of an effective loss tangent, the 
approximate expressions were used in the effective dielectric constant (EDC) method 
to allow for the calculation of az in the more useful rectangular dielectric waveguide.
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Results were compared with finite element solutions and were shown to be in good 
agreement. Further improvements were given by using the dual effective-index 
method (DEIM).

Chapter 4 provided some experimental verification of the techniques. By using the 
open resonant cavity method, values for both the propagation and attenuation 
constant were obtained. pz was shown to be in excellent agreement with DEIM 
values using published results for e. Measurement of a z proved more difficult. 
Nevertheless, values for cu corresponding to loss tangents within the range of 
published data were obtained. The work of Chapter 2 therefore provides a simple and 
accurate modification to the well-known effective dielectric constant method to allow 
for the calculation of losses in dielectric waveguides. Furthermore, since the EDC 
method has been applied to many different structures, such as waveguides with 
circular geometry or guides with nonlinearities, it is envisaged that the present 
modification would be applicable to a wide range of different structures.

Coupled dielectric waveguide structures form the basis of many dielectric waveguide 
components, from filters and couplers to, as we saw in Chapter 6, attenuators, phase- 
shifters and wavemeters. To analyse these components, the propagation 
characteristics of coupled dielectric waveguides must first be determined. In general, 
approximate coupled mode theories have been used for this purpose. However, due 
to their approximate nature, their use is not always appropriate. In Chapter 3, an 
alternative method for the characterisation of coupled rectangular dielectric 
waveguides with asymmetry in both width and permittivity was given.

Firstly, the general case of two parallel asymmetrical slab waveguides was 
considered. A characteristic equation for this structure was derived and shown to be 
far simpler than previous methods. Furthermore, unlike coupled mode theories, the 
technique is exact. Appendix A showed that the improved coupled mode theory gives 
significant errors for small separations, where either the fields are extensive in the 
surrounding region, or large asymmetries are present. We saw in chapters 5 and 6 
that the difference in the propagation constants of the even and odd modes is often 
the important parameter. Consequently, the general guidance condition presented in 
Chapter 3 is more appropriate under these conditions since it is exact.
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In coupled mode theories, the eigenmodes of the isolated structures must first be 
determined using the transcendental characteristic equations of Chapter 2. Secondly, 
the coupling terms in Appendix A are evaluated before, finally, the propagation 
constants are obtained. In contrast, the exact technique in Chapter 3 only requires the 
solution of one transcendental equation. Therefore, for coupled slab waveguides, 
there seems no benefit in using the approximate coupled mode theory in place of the 
exact technique since there is no difference in the numerical complexity of the two 
methods. In addition, the technique of Chapter 3 allows the evaluation of the exact 
field profile of the individual modes.

Since coupled mode theory uses an expansion in terms of the modes that the isolated 
guides support, it does not provide an ideal expansion for the fields at waveguide 
discontinuities. Moreover, because the coupled mode theory expands the field profile 
of the composite guide in terms of the isolated fields, it always predicts two or more 

modes. These may include modes below cut-off, i.e. p, < y[s^k0. Care should 

therefore be taken to neglect these modes. In contrast, the guidance condition in 

Chapter 3 can be solved over the guiding range k0 < p. < y[e^k0 and thus the

physical solutions can easily be determined. Furthermore, the exact technique 
provided an expression for the separation at which cut-off occurs. This proved useful 
in Chapter 6 to ensure that the coupled structure used in the low-loss phase-shifter 
remained monomode and consequently did not suffer from coupling effects.

By allowing the permittivity in both the guiding and surrounding regions to become 
complex, approximate solutions were given for the attenuation constant ou of 
symmetrical coupled slab waveguides. Again, the propagation constant was given 
purely in terms of the lossless propagation constants and the waveguide parameters, 
making its evaluation straightforward. An analysis of asymmetrical structures proved 
too complicated and only numerical values were given for these structures. It was 
shown that, for certain separations, the attenuation constant of the odd mode of a 
symmetrical coupled guide was greater than that of the isolated structures. In 
contrast, the even mode attenuation constant was less. This may have implications 
for reducing the losses in dielectric waveguides by using coupled structures.

By using the concept of an effective loss tangent, the coupled dielectric slab
waveguide solutions were used in the EDC method to solve for coupled rectangular
dielectric waveguides with dielectric losses. Solutions were compared with finite
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element results and were shown to be in good agreement for both the real and 
imaginary parts of the complex propagation constant. Furthermore, Chapter 4 gave 
experimental values for the propagation constant of coupled structures using the open 
resonant cavity technique. It was shown that the experimental results were in 
excellent agreement with finite element results and in good agreement with EDC 
values. However, the large computational times required for finite element 
techniques limit their use. As a result the EDC method is more suitable for practical 
design purposes.

The work of Chapter 3 therefore provides a technique, which is as easy to implement 
as coupled mode theories, but gives significantly better results. More importantly, the 
addition of expressions for the attenuation constant make the technique more 
appropriate for millimetre-wave applications where the losses can become 
significant.

Waveguide components based on coupled structures introduce discontinuities in the 
transition region from single to coupled waveguide. Transitions of this nature were 
analysed in Chapter 5 using the bounded mode matching approach. It was shown that 
very little energy was reflected or radiated from discontinuities of this type, even 
when the guides in the coupled region were touching. The reflected and radiation 
terms were therefore neglected, resulting in a simple expression for the guided mode 
amplitudes of the coupled structure.

It was shown that as the separation increased, equal amounts of energy couple into 
the even and odd modes of symmetrical or synchronous waveguides. In contrast, for 
asymmetrical guides, the energy couples to just one of the composite modes for 
increasing separation. Since the two modes travel with different velocities, the modes 
beat together causing the energy to transfer back and forth between the two guides 
with a beat length equal to the difference in the propagation constants divided by n. 
For asymmetrical guides, little energy transfers for increasing separation since the 
energy is only coupled to one of the guided modes. For symmetrical or synchronous 
guides a complete transferral is seen, for increasing separation, since each mode 
carries an equal amount of energy. This suggests that the energy will couple between 
synchronous guides whatever the separation. For large separations, very large 
longitudinal lengths are required for complete transferral since the modes become 
degenerate. However, practically, perfect symmetry or synchronism is not possible 
and therefore all dielectric waveguides become isolated for large asymmetries.
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In Chapter 6, double waveguide discontinuities were considered. It was shown that 
by placing a dielectric block parallel to a dielectric waveguide to form a short length 
of coupled guide, an attenuation could be achieved. By varying the separation 
between the guide and the dielectric block, the attenuation could be varied to obtain a 
useful variable attenuator. The large maximum in the insertion loss of the attenuator 
was shown to be dependent on the operating frequency. Therefore, by measuring the 
separation at which this maximum attenuation occurred, the attenuator could be used 
as a wavemeter. By introducing large asymmetries into the coupling region, it was 
shown that the structure could be made to remain monomode over the composite 
region. This prevents the energy from transferring back and forth between the guide 
and the block. There is, however, a change in the phase velocity over the composite 
region. Accordingly, by varying the separation, the structure can be used as a low- 
loss variable phase-shifter. For simplicity, experimental results at microwave 
frequencies were given for all three components to demonstrate their operation. 
Nevertheless, the devices would be equally valid for millimetre-wave frequencies 
where dielectric waveguides are more applicable than metallic guides.

7.2 FUTURE WORK

Some of the topics covered in the preceding text would benefit from additional work. 
A few suggestions for which are given below.

The dual effective-index method (DEIM) was used in Chapter 2 for the solution of 
dielectric waveguides, where it provided significantly better results than the 
conventional effective dielectric constant method. However, since the expressions 
derived by Chiang depend on the asymptotic field profiles, the technique is not 
applicable to coupled dielectric waveguides with asymmetry, where the fields are of a 
different form. It would therefore be useful, in later work, if the DEIM was modified 
to allow the solution of coupled structures.

The general principle of several novel waveguide components was given in Chapter
6. However, for practical applications, additional design work is required. For
example, a more accurate characterisation may be required, possibly by applying a
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more thorough mode matching technique. In addition, it would be useful if the 
components were electronically controlled, perhaps by using a stepper motor or a 
piezoelectric device. Furthermore, as the components main application is at 
millimetre-wave frequencies above 110 GHz, work is required to implement the 
components at these wavelengths.

It was suggested in Chapter 6 that the wavemeter could be used to measure an 
unknown permittivity. This would require the unknown being placed parallel to a 
waveguide; then, by varying the separation between the material and the waveguide a 
minimum would be observed in the transmitted power. The position of this minimum 
would be dependent on the operating frequency, the geometry and the dielectric 
constant of the material. Therefore, by measuring the separation at which the 
minimum occurs it would be possible to obtain the permittivity. This is worth 
additional work since it would provide a simple technique for the measurement of 
dielectric constant, particularly at higher frequencies.

Finally, it is hoped that as a result of this work that dielectric waveguides will be 
used more extensively in the millimetre-wave industry.



A. COUPLED MODE THEORY

Coupled mode theory and the improved coupled mode theory are covered extensively 
in the literature [1, 2, 3], However, for the sake of completeness, a brief outline of the 
method is given here. We wish to determine the field of a composite structure 
(Figure 3.1). Clearly a field distribution centred about one of the waveguides cannot 
be a good approximation of the total field since at least part of the energy will be 
centred about the second guide. We therefore try to express the field in terms of the 
field distribution on both waveguides. Thus, we let

{ ^ W ) J
s,
~7eAz + e /i< 
8 • + B(z)-

s R— eR, +eR, 
s' Bl[H (x ,_y ,z )J M x,t ) hg(x,T) .

(A.l)

where eA and are the fields of waveguide A, when in isolation, and eg and hg are 
the fields on waveguide B, when in isolation. zA is the permittivity profile of guide A, 
sg is the permittivity profile of guide B and s' is the profile of the combined structure, 
i.e. s'=£^+8g. The t subscript denotes the transverse component of the field. Our task 
is to determine the amplitude functions A(z) and B(z). This is achieved with the help 
of the Lorentz reciprocity theorem:

* xH, HE, xH, *)• zdS = -yco jj(s '-e)E  * -E'dS,
s

(A.2)

where again the t subscript indicates the transverse component of the field. We let

JE { x ,y , z ) \ _ [ tA(,x,y ) \  jkzAZ 
|H(x,.y,z)J jh ^ x ,^ )}
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Substituting equations (A.l) and (A.3) into equation (A.2) yields

CAA

dA(z) 
dz

+ jA(z)[CAAkzA +k aa] = -C K  BA +  C a b  k zA ]■

(A.4)

where

Cn,n = j jK , *xh„, + e„i Xh„» *)'ZdS ,
s

(A.5)

K m„ = coJ | ( e ' - s„ ) eml 'enl +' ~emzenz dS (A.6)

m=A, B and n=A, B.

We now let

jE (x,y ,z)] j e B(x,y)l 
[H(x,_y,z)J j h B(x ,y )je

(A.7)

Substituting equations (A.l) and (A.7) into equation (A.2) gives

c» ,^ p -  + jB(z)[Ct,K:B +  K  KB ] ~ C . BA + cAB  ^  ^  BA k zB \

(A.8)

On eliminating dB(z)
dz

from equations (A.4) and (A.8) we obtain

dA(z) ~jy AA(z) -  j K AB b ( z ) ,
d z

(A.9)
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where

y a = ^ A B ^ B A ^ z B  ^ A A ^ B B ^ z A  +  ^ 'A B K AB C B B K  AA

c cAB ^ B A c cv"AA BB

and

K _  ^-'A B ^'B B  i^ z B  k zA )  C A B K  BB ^  BBK BA
AB c C - C  c^ A B ^ B A  '-'AA '-'B B

Similarly, eliminating ------- from equations (A.4) and (A.8) gives
dz

= - n ,B ( z ) - j K u A(z), 
dz

where

r  r  k
_  ^ A B ^ B A ^ z A ' ^ A A ^ B B ^ z B  +  ^  BA K BA ^ A A  K BB

C C - C  c^ A B ^ B A  ^ A A ^ B B

and

Kba = C B A  CAA i^ z A  k , B ) + CBA K AA C AA
C C^  AB ̂  BA c c'-'AA'̂ BB

Solving equation (A.9) and (A. 12) for^(0)=l and Æ(0)=0 yields

^ 4 i + Ay

BA

,-A !■+ — Ay

BA

-Jk,2z

(A.10)

(A.l 1)

(A. 12)

(A. 13)

(A. 14)

(A. 15)

and
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B(z) = V  K  AB K BA -,ikz\Z J K abKba ~j'kz2Z
2 V Â ? T T T C  y2+KMKu

(A. 16)

where

Ay y_A~y_B (A. 17)

k^ = L iY i  + ̂ + K AiKBA (A. 18)

and

k:2 - Y^+Ys - i / V + V „ (A. 19)

For our analysis we have assumed slab waveguides. Thus, the fields in equations 
(A.l), (A.3) and (A.7) are known exactly, see Chapter 2. Moreover, the integrals in 
equations (A. 5) and (A. 6) are also known. Therefore all the parameters in equations 
(A. 15) and (A. 16) can be obtained, allowing us to solve for A(z) and B(z). If we know 
A(z) and B(z) then the field variation in (A.l) is easily determined.

We notice that the total field is now of the form

jE ' (x, y,z) I f  A, eA (x, y) + Bx eB (x, y) } - jkziZ 
| h '(x,y,z)j |T ,h /4(x,y) + 5 1hB(x ,y )je

(A.20)
+ [A2eA(x,y) + B2eB(x ,y ) } _ jk'2z 

[A2h A(x,y) + B2hB(x ,y ) \e
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where A\, B\, A2 and B2 are constants. The first term in the above equation gives an 
approximate value for the even symmetry eigenmode of the composite structure; the 
second term gives an approximate value for the odd. kz\ and kz2 are approximate 
values for the propagation constants of the even and odd modes of Chapter 3, 
respectively.

The following Figures give an illustration of the error in the calculated propagation 
constant of the guided modes using the improved coupled mode theory. For 
comparison, the values are compared with the exact values of Chapter 3. As can be 
seen, the coupled mode theory gives good results for well confined structures with 
large separations. However, if asymmetry is present or the mode is close to cut-off, 
the coupled mode theory displays significant errors. Since the difference in the 
propagation constants is often the important parameter (Chapter 5 and 6) the exact 
method presented in Chapter 3 is more appropriate.

PA

Figure A.l. Comparison of exact (solid line) and improved coupled mode theory
(dashed line) for symmetrical TE coupled slab waveguide with 2a=2b, za=zy=2.01

and S2=0 .
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PA

Figure A.2. Comparison of exact (solid line) and improved coupled mode theory 
(dashed line) for width asymmetry TE coupled slab waveguide with 2a=OAX0, 
b=0.5a, sa=Sfe=2.07 and 82=0.

Figure A.3. Comparison of exact (solid line) and improved coupled mode theory
(dashed line) for width asymmetry TE coupled slab waveguide with 2a=0.1A,0,
b=0.5a, sa=Si=2.07 and S2=0.
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PA

Figure A.4. Comparison of exact (solid line) and improved coupled mode theory 
(dashed line) for permittivity asymmetry TE coupled slab waveguide with 2a=0.4A,o, 
2b=2a, £„=2.07, s*=0.8ea and £2=0.

PA

Figure A. 5. Comparison of exact (solid line) and improved coupled mode theory
(dashed line) for permittivity asymmetry TE coupled slab waveguide with 2a=0.1A,0,
2b=2a, £„=2.07, £/,=().8£„ and £2=0.
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B. COUPLED DIELECTRIC WAVEGUIDE 
RESULTS

Figure B.l. E? modes for coupled dielectric waveguide with f=25 GHz, 2a=3.556
mm, 26=1.778 mm, 2z/=7.112 mm, ea=sb=2.07(\-j3.OxlO'4) and s2=1.0. Solid lines
are EDC solutions boxes are HFSS solutions.
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Figure B.2. E7 modes for coupled dielectric waveguide with f=  35 GFlz, 2a=3.556
mm, 26=1.778 mm, 2(7=7.112 mm, sa=eb=2.07(1-73.OxlO'4) and s2=1.0. Solid lines
are EDC solutions boxes are FLFSS solutions.
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Figure B.3. Ex modes for coupled dielectric waveguide with y=40 GHz, 2a=3.556
mm, 26=1.778 mm, 2d=7.112 mm, sa=sfe=2.07(l:/'3.0xl0'4) and 82=1.0. Solid lines
are EDC solutions boxes are HFSS solutions.
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Figure B.4. Ey modes for coupled dielectric waveguide withy=40 GFIz, 2a=3.556
mm, 26=1.778 mm, 2J=7.112 mm, £«=£¿=2.07(1 -j'3.0x1 O'4) and £2=1.0. Solid lines
are EDC solutions boxes are HFSS solutions.
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Figure B.5. Ex modes for coupled dielectric waveguide with^ 3 0  GHz, 2a=2b=3.556

mm, 2d=7.U2 mm, sa=2.254(l-j 1.5x1 O'4), s6=2.07(1-23.OxlO'4) and s2=1.0. Solid
lines are EDC solutions boxes are HFSS solutions.
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Figure B.6. Ey modes for coupled dielectric waveguide with/=30 GHz, 2a=2b=3.556

mm, 2d=7.\\2  mm, sa=2.254(l-; 1.5x1 O'4), 66=2.07(1-/3 .Ox 10"4) and e2=1.0. Solid
lines are EDC solutions boxes are HFSS solutions.
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Figure B.7. Ex modes for coupled dielectric waveguide with/=35 GHz, 2a=2b=3.556

mm, 2d=lA 12 mm, s«=2.254(l-7 1,5xl0'4), S£,=2.07(l-7'3.0xl0'4) and s2=1.0. Solid
lines are EDC solutions boxes are HFSS solutions.
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Figure B.8. Ey modes for coupled dielectric waveguide with/=35 GHz, 20=26=3.556
mm, sa=2.254(l-y 1.5x1 O'4), £¿=2.07(1-73.Oxl 0‘4), £¿=2.07 and £2=1.0. Solid lines are
EDC solutions boxes are HFSS solutions.
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