
Thompson, Simon and Lins, Rafael D. (1992) The categorical multi-combinator
machine - cmcm. Computer Journal, 35 (2). pp. 170-176. ISSN 0010-4620.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/22255/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1093/comjnl/35.2.170

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/22255/
https://doi.org/10.1093/comjnl/35.2.170
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

CMCM 10/7/92

1

The Categorical Multi-Combinator Machine: CMCM

Simon Thompson
Computing Laboratory, University of Kent at Canterbury,U.K.

(sjt@ukc.ac.uk)

Rafael Lins
Department of Informatics, Federal University of Pernambuco, Brazil

INTRODUCTION

Implementations of functional programming languages can take a
number of different forms; the first implementations used the SECD
machine of Landin [Lan], which is a generalisation of the abstract
machine underlying implementations of imperative programming
languages like Pascal. Making the implementation lazy can be done
with some cost in efficiency (details can be found in Henderson’s book
[Hen]), but a more natural way of proceeding is provided by an
implementation which uses rewriting of source-level expressions. Such
implementations were pioneered by Wadsworth’s work on graph-
reduction for the λ-calculus [Wad], but only achieved reasonable
performance after Turner’s observation that the translation of
programs into a variable-free, or combinator, form allowed for more
efficient execution. Turner’s work on the graph reduction of combinator
code (together with that of Abdali [Abd]) was followed up by a number of
researchers, including Hughes ([Hug]), Johnsson ([Joh]) and Lins
([Lins1) each of whom developed different systems of combinators, and
algorithms for translating source programs into combinator form. Each
of these implementations can be characterised as interpretive, as the
reduction and transformation of the combinator graph can be seen as
interpretation of the graph, and the obvious question raised by this is
that of whether a true compiler for lazy functional programs can be
produced. The first attempt to do this was the G-machine (‘G’ for graph)
of Augustsson and Johnsson [Joh] in which many of the manipulations
of the graph are transformed into abstract machine instructions, which
can be rendered into machine code. Another approach is given by the
Three Instruction Machine, or TIM [FaiWr], which comes full circle in
using closures to represent the expressions under evaluation.

In this paper we introduce another abstract machine, Categorical Multi-
Combinator Machine, (CMCM). In this paper we give a thoroughgoing
introduction to the machine, in particular as far as the discussion of
sharing of computational information is concerned. The approaches of
both TIM and the CMCM depend upon the source code being λ-lifted
before the translation takes place. This transformation, discovered by
Johnsson [Joh], independently of related work by Hughes into
supercombinators, has the effect of making flat the environments in
which function bodies are interpreted. The transformation only came to
light with the work on combinators, mentioned above, so perhaps
reflecting the epigraph.
In another paper, [LiTh], we discuss in detail the close relationship
between the TIM and the CMCM.

CMCM 10/7/92

2

CATEGORICAL MULTI-COMBINATORS

 The second author in his thesis [Lins1] introduces the system of
categorical multi-combinators, which are based on Curien’s categorical
combinators [Cur], which in turn have their foundation in the theory of
Cartesian Closed categories [Sco]. The major innovation of the multi-
combinators is that a number of β-reductions can be performed in a
single step of rewriting, rather than in a sequence of such steps. This
offers the possibility of increasing the efficiency of a rewriting
implementation considerably; a similar idea has been discussed by the
implementors of the G-machine [Joh2].
The syntax of categorical multi-combinators consists of variables, n,…
the constants P, °, Ln (where the superscript is a natural number)
which are combined together by application, written as juxtaposition.
The usual syntactic shorthand of omitting brackets in left-associated
applications is adopted.
The rewriting laws which the combinators obey are as follows:

(M*1) ° n (P xm … x1 x0) ⇒ xn
(M*2) ° (x0 … xn) y ⇒ (° x0 y) … (° xn y)

(M*3) Ln(y) x0 … xz ⇒ ° y (P x0 … xn) xn+1 … xz
(M*4) ° c y ⇒ c (c constant or Ln(y))

where we use the symbol ‘⇒’ for ‘rewrites to’. The notation (P…) is for a

multi-pair, and the Ln is a n+1-ary abstraction. The first rule represents
the selection of the value xn of a variable (represented by a non-negative
integer n) from a block (or environment or frame). In general an
expression is combined with its frame information by means of the
composition operator, °. The second law shows the distribution of the
environment information y through a complex application (x0 … xn).
The third rule represents the formation of a frame which takes place
when a function application is evaluated, and the final rule embodies the
fact that neither constants nor lambda expressions (i.e. functions) need
any environment information for their interpretation.

The four rules above can be combined into two rules thus:

(M1) ° (x0 … xn) (P ym … y1 y0) ⇒ (x’0 … x’n)
 where
 x’i = xi xi constant or Ln(y)
 = yk xi is variable k

= ° xi (P ym … y1 y0) otherwise

CMCM 10/7/92

3

(M2) Ln(y) x0 … xz
⇒ ° y xn+1 … xz y constant

⇒ ° xn-k xn+1 … xz y is variable k

⇒ ° y (P x0 … xn) xn+1 … xz otherwise

General λ-expressions are compiled into categorical multi-combinators
in two stages. First the expressions are λ-lifted, removing non-local
references from function bodies; variables are then replaced by their
distance from their binding λ (the distance being the number of

intervening λs), and blocks of n+1 λs are replaced by Ln.

For example, we compile the combinator G defined by
G = λa.λb.λc. (ab)(ac)

into the code
L2((21)(20))

The identity function, I, or λx.x, compiles into the expression L0(0). We
can now follow the evaluation of an expression using the rewriting rules
above.
The expression

G (II) I I
compiles to

L2((21)(20)) (L0(0)L0(0)) L0(0) L0(0)
This will rewrite thus:
L2((21)(20)) (L0(0)L0(0)) L0(0) L0(0) ⇒ by (M2.3)

(where we use (M2.i) to denote the ith clause of rule (M2))
 ° ((21)(20)) (P (L

0(0)L0(0)) L0(0) L0(0)) ⇒ by (M1)

 (° (21) (P (L
0(0)L0(0)) L0(0) L0(0)) (° (20) (P (L

0(0)L0(0)) L0(0) L0(0)))
now we rewrite the redex in the first bracket using the rule (M1), noting
that this is a situation in which one of the optimisations applies.
 ((L

0(0)L0(0)) L0(0)) (° (20) (P (L
0(0)L0(0)) L0(0) L0(0))) ⇒ by (M2.1)

 (L0(0) L0(0)) (° (20) (P (L
0(0)L0(0)) L0(0) L0(0))) ⇒ by (M2.1)

 L0(0) (° (20) (P (L
0(0)L0(0)) L0(0) L0(0)))⇒ by (M2.1)

 (° (20) (P (L
0(0)L0(0)) L0(0) L0(0)))

Note that in the last three cases we have used the optimised form of β-
reduction, and we have thus avoided the formation of a frame each time.
Note also that the redex

(L0(0)L0(0))
which appears in the frame is reduced to L0(0) in the first of the three
steps above. If we use graph reduction, then this redex would be updated
to have this new value in the graph, and thus in the frame. Resuming
evaluation, assuming the update, we have,

CMCM 10/7/92

4

 (° (20) (P L
0(0) L0(0) L0(0)))⇒ by (M1)

 (L
0(0) L0(0)) ⇒ by (M2.1)

 L
0(0)

at which point evaluation halts.

EXTENDING THE COMBINATOR SET

We saw in the previous section that we could modify the rewriting rules,
from the set M* to the set M by making the observation that a constant or
a variable in the body of a lambda abstraction behaves in a particularly
simple way. We can indeed observe this at compile time, and so we
acknowledge this by defining two new combinators which have the
appropriate effect in these two cases.

K
n
y x0 … xz ⇒ y xn+1 … xz

V
n
k x0 … xz ⇒ xn-k xn+1 … xz

EXAMINING THE EFFECT OF THE β-REDUCTION RULE

What is the effect of the general form of the rule (M2)?
Ln(y) x0 … xz ⇒ ° y (P x0 … xn) xn+1 … xz

First we create a composition, in which the body of the L-expression, y, is
combined with the appropriate frame, (P x0 … xn); after this the rule
(M1) will cause this information about the values of variable to be
distributed through the body of the abstraction. We can see this in action
in the example of S’ (II) I I we examined above.

We can see that an alternative strategy suggests itself when we perform
the evaluation of the body of a lambda-abstraction: we can preserve the
frame information separately, and perform lookups into this
information when and if it is necessary. Examining the example we
looked at earlier, we can say that

L2((21)(20)) (V
0
0 V

0
0) V

0
0 V

0
0

will rewrite thus:

expression frame

 (21)(20) (P (V
0
0 V

0
0) V

0
0 V

0
0)

where we picture the expression and the current frame separately. We
only fetch values from the frame when necessary.

 ((V
0
0 V

0
0) 1) (20) ⇒

 (V
0
0 1) (20) ⇒

1 (20) ⇒
At this point we again have to fetch a value from the frame,

CMCM 10/7/92

5

 V
0
0 (20) ⇒ (20)

and so we continue. Note that under this procedure, we do not update the
frame with the reduced value of the variable 0, which is reduced from

(V
0
0 V

0
0) to V

0
0. We will return to the issue of sharing later in this paper.

Obviously we do not simply create a single frame during the course of an
evaluation. How are we to maintain a structure of frames,
corresponding to the various redexes which we reduce during the
course of an evaluation?

A STACK OF FRAMES

The natural structure for the frames we generate is a stack. Each time
we begin to evaluate a function application, we push onto the frame or
multi-pair stack the frame formed from the arguments of the
application. If we deal with pure, untyped λ-expressions, without any
ground values like numbers, then we find that the result of each
function call is another expression, the reduction of (the leftmost-
outermost redex of) which gives rise itself to another function call,
creating another frame. In other words, we seem not to need ever to pop
a frame from the stack. Why then do we need to preserve the earlier
frames we formed, rather than simply keeping track of the current
frame? There are two reasons for this. The first is in the case when we
add base values, which we explain below, and the second is to keep track
of information about free variables. Consider the following situation:

expression frame stack

L2((21)(20)) 1 V
0
0 0 (P (V

0
0 V

0
0) V

0
0 V

0
0)

This calls for the formation of a new frame,

(P 1 V
0
0 0)

but in this frame we have the free variables 1 and 0 which are references
to the previous frame. Two possibilities suggest themselves

• We can resolve the references of any free variables at the time
that we form the frame. This can be done either by copying the
entry in the appropriate frame, or by copying a pointer to the
(position in the) frame. One difficulty with the latter solution is
that it allows the possibility that frames may have a longer extent
than suggested by the stack discipline.
• In the situation outlined above, the situation is simple: to find
the values of the free variables in a frame, we only have to look in
the frame below that frame in the stack. For instance, our stack
will now be

 (P 1 V
0
0 0) , (P (V

0
0 V

0
0) V

0
0 V

0
0)

with the values of the variables 1 and 0 to be found in the frame
below the top frame.

Are the values of free variables always to be found one frame down in the
stack? Let us consider a variant of the previous example:

CMCM 10/7/92

6

expression frame stack

L2((21)(20)) 1 V
0
0 0 2 (P (V

0
0 V

0
0) V

0
0 V

0
0)

Formation of a frame produces the following situation:

(21) (20) 2 (P 1 V
0
0 0) (P (V

0
0 V

0
0) V

0
0 V

0
0)

We now have a problem. The sub-expression (21) (20) refers to the
newly formed frame, whereas the final 2 refers to the previous frame.
This is because we have included no information about the extent of the
function body in the expression we produced. We can do this by placing
a mark in the expression, F, which delimits the extent of the function
body, thus:

(21) (20) F 2 (P 1 V
0
0 0) (P (V

0
0 V

0
0) V

0
0 V

0
0)

The presence of the F shows that any references to its right are not to the
top frame but to the frame 1 down in the stack. Similarly, if variable has
n Fs before it, lookups should be made n frames down in the stack.
Taking an analogous problem, now, we see the difficulty in frame
formation.

expression frame stack

L1(…) (20) F 2 (P 1 V
0
0 0) (P (V

0
0 V

0
0) V

0
0 V

0
0)

This calls for the formation of a frame. First we note that F is obviously
not an argument, so that we don’t incorporate it into a frame. We do
need to note that the references in the first argument are to the top
frame, whilst those in the second, to the right of the F, are to the next to
top. We can form the frame in either of the ways indicated above, i.e.,

• Resolve the references of any free variables at the time that we
form the frame.
• Annotate the position in the frame under formation with the
number of Fs that occur to the left of the corresponding argument
in the expression. In fact we could do this even more easily: we
could copy the Fs into the frame as well as leaving them in the
code. In the example above this would mean the new frame would
have the form

(P (20) F 2)
(In this case we must make sure we do not confuse the copied F
with an in the code — we therefore mark them with a prime,
thus:

(P (20) F' 2)
Either of these strategies is sufficient to give the correct information for
the variable bindings.

STRUCTURED EXPRESSIONS → A SEQUENCE OF INSTRUCTIONS

Our next design decision is to turn the expression under evaluation into
a flat sequence of code instructions. We turn the expressions we are
familiar with into a sequence of code instructions thus:

CMCM 10/7/92

7

• Left-associated applications are simply treated as a sequence of
instructions;
• other (bracketed) applications are replaced by labels;
• bodies of abstractions are labelled.

Considering the example we saw above, of, S’ (II) I I which produced the
code

L2((21)(20)) (V
0
0 V

0
0) V

0
0 V

0
0

this code would be replaced by

fun → L2(body) l2 V
0
0 V

0
0

body → 2 1 l1
l1 → 2 0

l2 → V
0
0 V

0
0

How do we obey these instructions? The behaviour of the instructions Ln,

V
n
m K

n
y is exactly as before. The occurrence of a label as the first

instruction results in the code for the label replacing the label itself. This
is can obviously be implemented by a jump to the code labelled, with a
return address held on a stack of continuations, for example. This is
after all exactly what the code to the right of the first instruction
represents: the continuation of the computation.

There is one other effect which results from us adding labels to the code.
When we move some code into a frame, we have to resolve any
references it might contain, in the form of free variables. The same
comment will apply to a piece of code which contains a label which
refers to code containing free variables such as the labels body and l1
which appear in the example above.

Two alternatives for this sort of reference resolution were mentioned
above. In the second, we made a note of the frame referenced, but in the
former, we simply replaced the reference by its referent. The second
(former) possibility is still available here, but the latter causes difficulty.
We may have a number of references to a particular label, with different
instantiations of the variables, and so we cannot change the code
referenced by the label. We have instead to create a new instance of the
labelled code, instantiating the variables in the appropriate way. This
imposes an overhead, comparable to the overhead of t emplate
instantiation in other implementations. It also means that the code is no
longer static: we generate code as execution proceeds.

RECURSION

Once we have labels then we are able to treat recursion in a completely
straightforward way: recursive functions are compiled into functions
with circular definitions, that is functions which refer to their own
labels in their code.

CMCM 10/7/92

8

A STACK OF BASIC VALUES

If we want to add to our system values of base type, such as integers,
characters and so on, we can do this by means of a stack which will
store the intermediate results of calculations, exactly as is done in the
postfix expression evaluators we are familiar with from conventional
machines. This means that values are stored in two places in the
machine. Basic values reside on the ground stack and functional values
are represented by the state of the expression and multi-pair stack.
In detail, we handle the base types thus:

• If the first instruction in the sequence of instructions is a
number it is transferred to the ground stack;
• If the instruction is an operation, like +, it is applied to the
appropriate number of arguments (in the case of +, two) taken
from the ground stack, with the result replaced on the ground
stack.

A conditional expression like
 if e then g else h

is treated in a similar way, compiling to the code sequence
[[e]] C l1 l2

where [[e]] is the code compiled for e, and l1, l2 label the code for g and h.
The instruction C will branch to whichever of l1, l2 labels the code to be
chosen.This is one point at which the machine is different from TIM, in
which there is no explicit stack of base values, rather they use the ‘self’
combinator.

SUMMARY

We can summarise the behaviour of the machine thus. Note first that
there are two sorts of instruction. The operators and constants affect the
ground stack but not the multi-pair stack; the others do the reverse. We
first summarise the former. Note that we use the convention that
boldface symbols like ‘k’ represent constants, and lightface symbols
like ‘k‘ are variables.

code multi-pair ground code multi-pair ground
 stack stack stack stack

k … …… … → … …… k …
+ … …… p q → … …… (p+q) …
C x y … …… True… → x … …… …
C x y … …… False… → y … …… …

K
n
k… …… … → … …… k …

In summarising the other instructions we omit the ground stack which
is not affected by their action.

CMCM 10/7/92

9

code multi-pair code multi-pair
 stack stack

Ln(y) x0 … xz …… → y F xn+1 … xz (P x0 … xn) ……

V
n
k x0 … xz …… → xn-k xn+1 … xz ……

y z0 … zl (P…xi…)……→ xn-y z0 … zl (P…xi…)……

F … (P…xi…)……→ … ……
Note that in the execution of the first instruction we treat the mark F in
a different way. Fs are left on the stack, and are not moved into frames.
For example,
L2(y) x0 F x1 x2… …… → y F F x3 … (P x0 … x2) ……
The first F comes from the entry of the function body, y, and the second is
that which originally lay between x0 and x1.

EXAMPLE

In this section we look at an example of the operation of the machine.
The expression

(λx.λy.λz.(xy+xz))((λvλu.λw.v+w) (5+2) 0) 3 7

will compile into the following code:
l1 → L2 (body1) ex1 3 7

body1 → 2 1 ex2 +

ex1 → L2 (body2) ex3 0

ex2 → 2 0

body2 → 2 0 +

ex3 → 5 2 +
and execution will proceed thus:
 code multi-pair stack ground
L2 (body1) ex1 3 7
body1 F (P ex1 3 7) ..
2 1 ex2 + F (P ex1 3 7) ..
ex1 1 ex2 + F (P ex1 3 7) ..

L2 (body2) ex3 0 1 ex2 + F (P ex1 3 7) ..
body2 F ex2 + F (P ex3 0 1) (P ex1 3 7) ..
Note that in the frame we have just formed, we have a free variable, 1;
this refers to the frame below. We have not recorded this explicitly, but
we keep informal track of the fact, and in the next sequence of moves,
when we look up the value, we are careful to take it from the right frame.
2 0 + F ex2 + F (P ex3 0 1) (P ex1 3 7) ..
ex3 0 + F ex2 + F (P ex3 0 1) (P ex1 3 7) ..
5 2 + 0 + F ex2 + F (P ex3 0 1) (P ex1 3 7) ..

CMCM 10/7/92

10

Now we have to place these constant values on the ground stack:
2 + 0 + F ex2 + F (P ex3 0 1) (P ex1 3 7) 5
+ 0 + F ex2 + F (P ex3 0 1) (P ex1 3 7) 2 5
and then we add them
0 + F ex2 + F (P ex3 0 1) (P ex1 3 7) 7
Here we have to fetch the value from the previous frame:
3 + F ex2 + F (P ex3 0 1) (P ex1 3 7) 7
+ F ex2 + F (P ex3 0 1) (P ex1 3 7) 3 7
 F ex2 + F (P ex3 0 1) (P ex1 3 7) 10
ex2 + F (P ex1 3 7) 10
2 0 + F (P ex1 3 7) 10
ex1 0 + F (P ex1 3 7) 10

L2 (body2) ex3 0 0 + F (P ex1 3 7) 10
body2 F + F (P ex3 0 0) (P ex1 3 7) 10
Note that in the frame we have just formed, we again have a free
variable, 0.
2 0 + F + F (P ex3 0 0) (P ex1 3 7) 10
ex3 0 + F + F (P ex3 0 0) (P ex1 3 7) 10
5 2 + 0 + F + F (P ex3 0 0) (P ex1 3 7) 10
Now we have to place these constant values on the ground stack:
2 + 0 + F + F (P ex3 0 0) (P ex1 3 7) 5 10
+ 0 + F+ F (P ex3 0 0) (P ex1 3 7) 2 5 10
 0 + F+ F (P ex3 0 0) (P ex1 3 7) 7 10
Here we have to fetch the value from the previous frame:
7 + F + F (P ex3 0 0) (P ex1 3 7) 7 10
+ F + F (P ex3 0 0) (P ex1 3 7) 7 7 10
 F + F (P ex3 0 0) (P ex1 3 7) 14 10
 + F (P ex1 3 7) 14 10
F (P ex1 3 7) 24
.. .. 24
The example exhibits the main features of the machine, including the
fact that it is not lazy. The computation of 5+2, labelled ex3 is repeated,
even though it could be saved and performed only once. In the next
section we look at the means by which we can add sharing to the
machine, making it lazy.

SHARING

The only feature which the machine described so far lacks is the ability
to share the results of computations. Graph reduction of λ-lifted
expressions [Joh1] ensures that all arguments which become duplicated
will have their computation shared — this is called lazy evaluation.
There remains the possiblity that there are sub-expressions of shared
arguments whose computation is not shared under this transformation.
One way to achieve this full laziness in a graph reduction machine for
categorical multi-combinators is to perform the supercombinator
transformation of maximal free expressions (mfes) before compiation.

CMCM 10/7/92

11

A disadvantage of this compilation scheme is that the granularity of
computation is thereby much reduced.
In contrast to graph reduction, we ensure this full laziness by a run-
time strategy, inspired by the mechanism in TIM.
As an example of a situation in which we have to update more than the
arguments which are explicitly repeated consider the expression

(λf.λx.λy.fx+fy)((λa.λq.(a+q)) (3+5)) 7 9
 even though the argument a is not repeated in the expression (a+q) the
result of the evaluation

λq. (3+5)+q
is a shared argument of the function (λf.λx.λy.fx+fy). Because of this we
need to update the slot containing the argument a, which will contain
the value 8, as well as the slot containing the argument f itself.

We therefore need to decide what mechanism we will use to achieve the
sharing we require. A number of options present themselves. We might
decide to label every occurrence of every variable as requiring updating
when it is evaluated; we might perform some compile-time analysis to
decide which occurrences of which variable could ever be shared (there
is a lot of work in this area: see, for instance, [Gol] and also [AbHa] for a
survey of the general techniques involved); the final option which we
adopt here is to mark all occurrences of repeated variables, distributing
marks to further variables as evaluation proceeds.
The mechanism for sharing is relatively straightforward. We have to
arrange that it works for the two kinds of value we have in the machine.
These are

• Basic values, like numbers, etc. These are transferred to the
ground stack once evaluated, so it should be simple to arrange
that the appropriate frame slot is updated at the appropriate time.
If we think of placing a mark in the code at the end of an
expression, carrying the information about where the argument
lies in a frame, then an update should take place when that mark
reaches the head of the code. We update the slot mentioned with
the value we just transferred to the ground stack, and carry on.
• The other kind of value is functional.

Functions are represented in CMCM by portions of code, together with
sufficient frame information to interpret the free variables. For

instance, the function λx.x is represented by the code V
0
0 and the

function
λx . (13+x)

may be represented in a number of different ways, depending upon the
way that it is generated during evaluation. The simplest representation
is by the code

L0 (body)
where body labels the code (13 0 +) but it may also be represented by the
code for the following λ-expression, where b is bound to 13.

λa.λx.(a+x) b
In terms of categorical combinator code, this might be

L1 (body) 0

CMCM 10/7/92

12

where body labels the code (1 0 +) and the current frame binds the
variable 0 to 13.

What is meant by sufficient frame information? We may find that the
code part of a function representation contains one or more Fs. In such
a case, we have to refer to more than one frame to gain enough
information. In fact, when we perform this update we replace all free
variables with their values. This seems an expensive option, but will not
be so if we make sure also that every value in a frame is in fact a label
(or pointer). The effect of this update then is just to replace an index into
a frame by a pointer.

An alternative method is provided by grouping together the variables
and (pointers to) the frames from which they come. This forms what
looks like a closure, and makes the machine look closer to the TIM.
When do we perform an update to a functional value? In terms of the λ-
calculus we perform an update when a function reaches weak head
normal form:

λx.e
To do any further reduction we need to supply the expression with
another argument value; in other words we have a result, or canonical
form, when we find a function with too few arguments.

How is this manifested in the CMCM? We will have a marker in the
code, signifying that what lies to its left will eventually represent the
canonical value of an expression. This is a canonical value when it has
the form

Ln (body) a0 … am
with m less than n. When the code takes the form

Ln (body) a0 … am U
α ……

then we will update the label α with the code to the left of the U, (with the
variables replaced with labels or pointers as we explained above). Now
we examine two examples to show how sharing works in the CMCM.
Compiling the expression

λx,y((x+y)*x) (λx.x 5) 4
we obtain the script

ex0 → ex2 ex1 ex4

ex1 → V
0
0 ex3

ex2 → L1(10 + 1*)

ex3 → 5

ex4 → 4

in which shared occurrences of variables appear in outline font (1, etc.)

CMCM 10/7/92

13

Let us execute an example
 code multi-pair stack ground
ex0
ex2 ex1 ex4

L2(10 + 1*) ex1 ex4
10 + 1* F (P ex1 ex4) ..

ex1 U
ex1 0 + 1* F (P ex1 ex4) ..

Note that all the slots in the multi-pair are occupied with labels
appearing in the script.

V
0
0 ex3 Uex1 0 + 1* F (P ex1 ex4) ..

ex3 Uex1 0 + 1* F (P ex1 ex4) ..

5 Uex1 0 + 1* F (P ex1 ex4) ..

 Uex1 0 + 1* F (P ex1 ex4) 5
At this point we update the ex1 entry in the script, so making the link

ex1 → 5
If we continue execution, we have,
0 + 1* F (P ex1 ex4) 5
ex4 + 1* F (P ex1 ex4) 5
4 + 1* F (P ex1 ex4) 5
+ 1* F (P ex1 ex4) 4 5
1* F (P ex1 ex4) 9

 ex1 U
ex1* F (P ex1 ex4) 9

5 Uex1* F (P ex1 ex4) 9

 Uex1* F (P ex1 ex4) 5 9
This second update is unnecessary - we should mark the label to this
effect.
 * F (P ex1 ex4) 5 9
F (P ex1 ex4) 45

45
Now we consider a second example in which we share a partial function
application. The λ-expression

(λa.λb.λc(ac)(bc))(λi.i)(λj.j)((λk.k)(λl.l)) 3
translates into the expression ex5 in the following script.

ex0 → ex1 ex2 ex2 ex3 ex4
ex1 → L2(2 0 fex)

fex → 1 0

ex2 → V
0
0

ex3 → V
0
0 V

0
0

ex4 → 3

CMCM 10/7/92

14

Now we look at the evaluation
 code multi-pair stack ground
ex0

L2(2 0 fex) ex2 ex2 ex3 ex4
2 0 fex F ex4 (P ex2 ex2 ex3) ..
ex2 0 fex F ex4 (P ex2 ex2 ex3) ..

V
0
0 0 fex F ex4 (P ex2 ex2 ex3) ..

 0 fex F ex4 (P ex2 ex2 ex3) ..

V
0
0 V

0
0 Uex3 fex F ex4 (P ex2 ex2 ex3) ..

V
0
0 Uex3 fex F ex4 (P ex2 ex2 ex3) ..

At this point there are not enough arguments on the left-hand side of the
Uex3 to perform β-reduction. We therefore update the label ex3 with the

code to the left of the Uex3

ex3 → V
0
0

and continue. Note that in this simple example, we had no free variables
in the code which updates the label. If they are present, recall that we
replace them with the labels to which they refer. Evaluation proceeds
thus:

V
0
0 fex F ex4 (P ex2 ex2 ex3) ..

fex F ex4 (P ex2 ex2 ex3) ..
and so on.

CONCLUSION

We have given an account of a new machine, based on the ideas of
categorical multi-combinators which first appeared in [Lins 2]. The
machine has links with the TIM abstract machine, which we have
explored in the companion paper [LiTh]. During the development of the
machine we found the functional programming language Miranda1 the
ideal tool for machine prototyping; we have also written a prototype of
much of the machine in C — obviously the next step is to build a
complete implementation of the machine in an efficient manner.
We are grateful to Richard Jones and David Turner, both of the
University of Kent, for discussions of the ideas in this paper; any defects
are, of course, our responsibility.

1 Miranda is a trademark of Research Software Ltd.

CMCM 10/7/92

15

 BIBLIOGRAPHY

[Abd] A. Abdali An abstraction algorithm for Combinatory Logic,
Journal of Symbolic Logic 41 (1976) pp 222-224.

[AbHa] S. Abramsky & C. Hankin (eds.) Abstract Interpretation of
Declarative Languages, Ellis-Horwood, 1987.

[Cur] P.-L. Curien Categorical Combinators, Sequential Algorithms
and Functional Programming, Pitman, 1986.

[FaiWr] J. Fairbairn & S. Wray The Three Instruction Machine in
[Kahn]

[Gol] B. Goldberg Detecting Sharing of Partial Applications in
Functional Programs in [Kahn]

[Hen] P. Henderson Functional Programming: Application and
Implementation, Prentice-Hall, 1980.

[Hug] J. Hughes The Design and Implementation of Programming
Languages, D. Phil thesis,Oxford University, 1984.

[Joh] T. Johnsson Efficient Compilation of Lazy Evaluation, in
Proceedings of ACM SIGPLAN ’84 Symposium on Compiler
Construction, Montreal, ACM Press 1984.

[Joh1] T. Johnsson Lambda Lifting —transforming programs to
recursive equations, in Jouannaud (ed.) Functional Programming
Languages and Computer Architecture, Lecture Notes in
Computer Science 201, 1985.

[Joh2] T.Johnsson Compiling Lazy Functional Languages Ph. D. thesis
Chalmers Tekniska Hogskola, 1987.

[Kahn] G. Kahn (ed.) Functional Programming Languages and
Computer Architecture, Lecture Notes in Computer Science 274,
Springer-Verlag,1987.

[Lan] P. J. Landin The mechanical evaluation of expressions, The
Computer Journal 6 (1964), pp 308-320.

[Lins1] R. D. Lins On the Efficiency of Categorical Combinators in
Applicative Languages Ph. D. Thesis, University of Kent at
Canterbury, 1986.

[Lins2] R. D. Lins Categorical Multi-Combinators in [Kahn]
[LiTh] R. D. Lins & S. Thompson On the Equivalence Between CM-C

and TIM Computing Laboratory Report 67,University of Kent at
Canterbury,1989, revised 1990. (Submitted for publication in
Journal of Functional Programming.)

[Sco] D. S. Scott Relating theories of the lambda calculus in J.P. Seldin &
J. R. Hindley (eds.) To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalisation, Academic Press, 1980.

[Tur] D.A. Turner An Overview of Miranda in D.A. Turner (ed.)
Research Topics in Functional Programming, Addison-Wesley,
1990.

[Wad] C. P. Wadsworth Semantics and Pragmatics of the Lambda
Calculus, D. Phil thesis, Oxford University, 1971.

