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Abstract—Reservoir computing (RC) has been widely used 

in processing temporal information and classification tasks due 

to its high efficiency in training and testing. In this paper, we 

have experimentally demonstrated the performance of an all-

optical reservoir computer based on time stretch and spectral 

mixing. Spectral comb lines of the stretched optical pulse are 

chosen as virtual nodes in the reservoir layer. Nonlinear spectral 

mixing is achieved through phase modulation and 

semiconductor optical amplification. A simple temporal 

waveform classification task was implemented using the 

demonstrated RC system to verify the approach.  

Keywords—reservoir computing, photonic time stretch, 

dispersion, spectral mixing, classification 

I. INTRODUCTION 

In recent years, with the ever-increasing demand for 
efficient information processing, machine learning, especially 
Deep Neural Networks (DNNs), has provided a promising 
solution to address a wide variety of problems. However, this 
powerful tool has caused a relatively high computational cost 
in training and application [1,2]. 

Among various types of DNNs, Reservoir Computing 
(RC), a special variant of Recurrent Neural Networks (RNN), 
has emerged in the last decade as an alternative to gradient 
descent methods for training RNN [3]. RC is introduced and 
simplified the training of RNN by only training the output 
weights. Therefore, such an approach is computationally 
fasters and consumes less energy. 

Photonic hardware implementation of reservoir computer, 
with great potential of low power consumption and extremely 
fast computation, was first proposed in [4]. The performance 
of RC system is determined by the rich dynamics in the 
reservoir layer. The number of nodes in the reservoir layer has 
a significant influence on the performance of RC. Great 
research efforts have been made to improve the number of 
nodes to enhance the prediction/classification performance 
[5]. 

There are mainly two ways to achieve a large number of 
nodes in the reservoir layer: optical node arrays, and time-

delay systems [6]. The optical node arrays can be obtained 
using an on-chip system to integrate more nodes in the 
reservoir layer. For instance, a passive integrated photonics 
reservoir computing platform based on multimodal Y-
junctions was proposed in [7]. In their designed structure, the 
system allows for upscaling the number of nodes as loss build-
up can be limited. Another family of reservoirs with photonic 
nodes is based on free-space optics principles. An optical 
scheme performing reservoir computing over very large 
networks potentially being able to host several millions of 
fully connected photonic nodes was proposed [8]. The 
experiment result shows that this structure has a better 
performance with less computation time. However, most 
existing reservoir computing units, such as delay-based 
reservoir computing, spatial reservoir computing, have a 
significant influence on performance by the number of nodes 
in the reservoir layer. When scaling up the number of nodes in 
the reservoir layer, the computational cost is overhead 
dramatically [9].  

We have recently reported simulation results on a novel 
all-optical RC based on photonic time-stretch and spectral 
mixing [10], In this paper, we experimentally demonstrated an 
idea. According to the characteristic of time stretch, there is a 
mapping between wavelength and time for a stretched 
ultrashort pulse. We have selected wavelength as nodes in the 
reservoir layer. In this way, the scale of the nodes is increasing 
significantly. The spectral mixing can realize the interaction 
between different neurons. Compare with the previous RC 
structure, this has simplified the RC structure and improved 
the performance. 

II. PRINCIPAL 

The schematic of the proposed all-optical Reservoir 
Computer is shown in Fig. 1. An ultrashort pulse is emitted 
from the mode-locked laser (MLL) and was time-stretched by 
a dispersion compensating fibre (DCF). After being amplified 
by an Erbium-doped fibre amplifier (EDFA), the time-
stretched optical signal was sent into a Mach-Zehnder 
Modulator (MZM). In a typical RC, there are three layers: 
input layer, reservoir layer, and readout layer. In the input 
layer, the signal to be classified was masked in an Arbitrary 
Waveform Generator (AWG) and modulated to the optical 
link. The random mask matrix defines the coupling weights 
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from the input layer to the reservoir layer. The obtained input 
masking sequence is repeated for every time interval. 

In the reservoir layer, a ring topology structure is adopted 
to update reservoir states in this work. The updated states of 
the reservoir can then be defined recursively as: 

 𝑋𝑛+1 = 𝑓𝑁𝐿(𝑊𝑋𝑛 + 𝑊𝑖𝑛𝑢𝑛)     (1) 

where 𝑢𝑛 is the vector of the input data in the input layer. 𝑊 
is a random, square matrix, achieving reservoir connections in 
the reservoir layer. 𝑊𝑖𝑛 is the input weights, which is a fixed, 
random matrix.  𝑥𝑛  is the states in the reservoir. 𝑓𝑁𝐿  is a 
nonlinear activation function. In the proposed RC structure, 
the spectral mixing process is achieved in a phase modulator 
(PM) driven by a sinusoidally signal. The non-linear process 
is achieved by a semiconductor optical amplifier (SOA). 

 

According to the pulse temporal stretch, the time-stretched 
gaussian pulse has a corresponding relation between the 
wavelength and time. Hence, the wavelength is selected as the 
node in the reservoir layer. The phase modulator can achieve 
spectral mixing between wavelength neurons. As shown in 
Fig. 2, under a gaussian envelop, there has the spectral mixing 
between different wavelengths. This enables a richer 
dynamics statue in the reservoir layer, which is determined by 
the driven signal of PM and SOA. 

Then, the signal was sent to a photodetector (PD) to collect 
reservoir status, the other is used as feedback corresponding 
to the memory function in RC. The feedback strength ratio is 
controlled by a variable optical attenuator. The output layer 
can be described as: 

 𝑦𝑛 = 𝑊𝑜𝑢𝑡𝑓𝑁𝐿,𝑜𝑢𝑡(𝑋𝑛)             (2) 

where 𝑓𝑁𝐿,𝑜𝑢𝑡  is an optional output nonlinear activation 

function. 𝑊𝑜𝑢𝑡  is a matrix containing the output weights 
trained by some optimization routine. 

III. EXPERIMENT RESULTS 

In this section, a proof-of-concept experiment has been 
designed and implemented based on conceptual schematic 
shown in Fig. 1. To verify the proposed RC scheme, the basic 
waveform task (interleaved square and triangle waves 
classification) is performed. The corresponding expected 
output label is set to -1 and 1. The target waveform and output 
label is shown in Fig. 3. 

 

A mode-locked laser (Calmar Mendocino FP laser) is used 
as the optical source to generate a series of ultrashort (800 fs) 
broadband (12 nm) pulses with a repetition rate of 50 MHz. 
The pulses are time-stretched with total dispersion of -1.04 
ns/nm provided by a dispersion compensating fibre from 800 
fs to ~12 ns. In the input layer, 400 random values chosen from 
a binary set (0, 1) are used as the input mask. A 20 GHz 
sinusoidal signal is used to drive the phase modulator. The 
driven current of SOA is set to   500 mA. In the readout layer, 
400 updated statuses are collected for each stretched optical 
pulse as shown in Fig. 4. The linear regression approach is 
used to calculate the output. 

In general, the performance of RC is indicated by the 
Normalized Mean Square Error (NMSE) between the 
reservoir output and the expected values for the test data. The 
NMSE can be described as: 

 𝑁𝑀𝑆𝐸 =
〈(𝑦̅(𝑛)−𝑦(𝑛))

2
〉𝑛

〈(𝑦̅(𝑛)−𝑦̅(𝑛))
2

〉𝑛

               (3) 

 
Fig. 1: The schematic of the proposed all-optical reservoir computer. MLL: Mode-Locked Laser, DCF: Dispersion Compensating Fibre, MZM: Mach-

Zehnder modulator, AWG: Arbitrary Waveform Generator, PM: Phase Modulator, VOA: Variable Optical Attenuator, SOA: Semiconductor Optical 

Amplifier, PD: Photodetector, OSC: Oscilloscope. 

 
Fig. 2: The proposed nonlinear spectral mixing in photonics time stretch 

using phase modulation and optical semiconductor amplification. 

 
Fig. 3: The input data and corresponding output label. 



where 𝑦(𝑛)  is the reservoir output, and 𝑦̅(𝑛)  is the target 
output. < >𝑛 denotes the average over the discrete time steps. 
The NMSE is always a positive value, with lower NMSE 
values corresponding to better performances. In the training 
phase, 24 waveforms are used. In the testing phase, 4 
waveforms are used. The classification result is shown in Fig. 
5. 

 

 

Fig. 5 shows the result of waveform classification for the 
task. The blue curve represents the target output level. The red 
curve represents the classified output level. As can be 
observed in the figure, different waveforms can be classified 
correctly (Output Label 1 represents square waves, and Output 
Label 2 represents triangle waves). The NMSE for this task is 
0.14. The accuracy can be still improved by increasing the 
number of nodes. 

In Fig. 6, we depict the NMSE as a function of the number 
of virtual nodes. The optimal value lies around N = 600. When 
N is larger, this would cause many more computational 
resources cost. When N is smaller, the classification 
performance is decreased. The minimal NMSE is as low as 
NMSE = 0.098. 

IV. CONCLUSION 

In this paper, we have experimentally demonstrated an all-
optical reservoir computing method based on photonic time 

stretch and nonlinear spectral mixing. This method adapts 
photonics reservoir computing with spectral mixing to 
generate wavelength nodes in the reservoir layer. As a proof-
of-concept experiment, the proposed all-optical RC with 
wavelength node has a better performance in waveform 
classification task. We have also demonstrated the relation 
between the nodes and NMSE. 
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Fig. 4: Reservoir output weight. 

 
Fig. 5: Experiment results for a waveform classification task. 

 
Fig. 6: Performance of waveform classification task as a function of 

number of nodes. 


