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�CMC� A Novel Way of Compiling Functional Languages

Rafael D�Lins � Bruno O�Lira

Dept� de Inform�atica � Universidade Federal de Pernambuco � Recife � Brasil
Computing Laboratory � The University of Kent � Canterbury � England

Abstract

The e�cient compilation of functional languages has been shown to be a di�cult task� The
most successful implementations so far generate code in assembly language� This makes implemen�
tation extremely hard and machine dependant� In this paper we present �CMC� a new abstract
machine� in which we transfer the control of the execution �ow to C� as much as possible� �CMC
takes advantage of the extremely low costs of procedure calls in modern RISC architectures� This
produces a substantial improvement in performance� as we show here�

Introduction

Due to their semantic elegance� expressive power and ease in proving the correctness of programs�
functional languages have been pointed out as a possible solution for the problem of programming
known as the Software Crisis� In such languages programs are written as a set of function de�nitions
and an expression� whose value is the result of the program� The evaluation is accomplished through
consecutively rewriting the expression according to the functions de�nitions� Functional languages
seem to be harder to implement than conventional imperative ones� At execution time� we must
maintain complicated structures� such as unevaluated function applications� which allow us to work
with higher�order functions and in�nite lists�

The traditional way to implement lazy functional languages was graph interpretation of combi�
nators� as introduced by Turner in ���	� The understanding of the evaluation mechanisms of these
languages allowed implementation to move from interpretation towards compilation� with substantial
gain in performance� Cardelli
s abstract machine FAM ��	 developed for the compilation of strict
functional languages was an important step in this search for e�ciency�

Johnsson ��
	 developed a strategy for compiling lazy functional languages� described as an abstract
stack machine� called the G�Machine� The basic principle of the G�Machine is to avoid generating
graphs� The code generated by the G�Machine when executed produces time and space performance
at least an order of magnitude faster than interpreted functional languages� The original G�Machine
implemented at Chalmers� G�otheburg� by Johnsson and his collegues ��
	� generated code in VAX�
��
 Assembly language� which made implementation extremely hard and machine dependant� It was
common sense in the community of implementation of functional languages that assembly language
implementation was the price to pay if one wanted e�ciency� The Chalmers LML compiler is still a
reference in terms of performance of lazy functional languages� The G�machine way of controlling the
execution �ow and evaluation was followed by most of other implementations� even the ones based on
di�erent abstract machines as the Spineless G�Machine ��	� the Spineless Tagless G�machine ��	� TIM
��	� and GM�C ��	�

The �rst author has made several implementations of compiled functional languages in C ��� �� ���
�	� which were close� but worse� in performance to the best assembly language implementations� All
these C�based implementations were portable and simpler than the assembly ones� C was used as a
macro�assembler and all �execution �ow control� was made on a higher�level abstract machine�

In this paper we present �CMC� a new abstract machine� in which we transfer the execution �ow
control to C� as much as possible� The key idea behind �CMC is to take advantage of e�cient context
switching in modern architectures based on RISC� which is able to implement function calls at a very
low cost� We also observed that the object code generated by C compilers is extremely neat and
very fast� These factors lead us to try to translate each function de�nition into a procedure in C�
It is obvious that not all scripts could be translated into C� if we wanted to have a lazy functional
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language� However� it is safe to translate strict functions on all arguments that produce results of
ground type as procedures in C� The same is also true for arithmetic expressions wherever they appear�
This is the key for the e�ciency of �CMC � A higher�level abstract machine is still needed to glue
together procedure calls� unevaluated expressions and functions� data�structures� etc� Categorical
Multi�Combinators ��� �	 served as a basis for the evaluation model of the �CMC abstract machine�
Our experience with GM�C ��	 and CM�CM ��� ��	 was fundamental for the design� implementation�
and optimisation of �CMC �

In this paper we also compare the performance of �CMC with the Chalmers LML compiler and
with GMC ��	�

Categorical Multi�Combinators

In this section we present a brief introduction to Categorical Multi�Combinators ��	� a rewriting system
which provides the computational model for �CMC � Later� we show how to compile a functional
language directly into �CMC code�

The Source Language

A program is taken to be a sequence of combinator de�nitions together with an expression to be
evaluated� which will involve these combinators�

c� �def combinator�

� � �

cn �def combinatorn

main�expression

A program when compiled will generate a script which is formed by a sequence of combinators linked
to their code thus�

� �

�
��

c� �� ��combinator�		
���

cn �� ��combinatorn		

�
��

The main�expression is compiled separately as�

��main�expression 		�

In order properly to interpret recursion� we assume that the environment � contains the de�nition of
all combinators� so that recursive combinators produce recursive references through the environment�
The notation we use is� with each combinator c there is associated code cr� we supress the environment
� when no confusion is possible�

Compiling into Categorical Multi�Combinators

In Categorical Multi�Combinators function application is denoted by juxtaposition� taken to be
left�associative� The compilation algorithm for translating ��expressions into Categorical Multi�
Combinators is given by the function Rx����xj where each xi is a variable and the corresponding i

its depth in the environment� i�e� the corresponding DeBruijn number� Top level expressions are
translated using an empty environment� so by R� �� For a matter of uniformity combinators will be
represented as composed with a dummy frame� ��� which can be seen as the identity frame�

�T ��� R� � �xk � � ��xl� �z 	
m

�a � hLm���Rxk���xla�� ��i

�T ��� Rx����xja � � � b � Rx����xja � � �Rx����xjb

�T ��� Rx����xjb � b � if b is a constant

�T ��� Rx����xjxi � i

Combinator names are treated as constants�
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Example of Compilation

The script�

S � �a��b��c�ac�bc�

K � �k��l�k

I � �i�i

SKKI

forms the following environment�

S �� R� ����a��b��c�ac �bc�		

K �� R� ����k��l�k		

I �� R� ����i�i		

which by application of the compilation rules above translates to�

S �� hL��� 
 �� 
��� ��i

K �� hL����� ��i

I �� hL��
�� ��i

The expression to be evaluated is translated as

R� ���SKKI		

which generates SKKI as compiled code�

Categorical Multi�Combinator Rewriting Laws

The core of the Categorical Multi�Combinator machine is presented on page �� of ��	� For a matter
of convenience we will represent the multi�pair combinator� which forms evaluation environments as
�x�� � � � � xn� and compositions� which represent closures� will be written as ha� bi� Using this notation
the kernel of the Categorical Multi�Combinator rewriting laws is�

�M���� hn� �xm� � � � � x�� x��i � xn

�M���� hx�x�x� � � � xn� yi � hx�� yi � � � hxn� yi

�M���� hLn�y�� �w�� � � � � wm�ix�x� � � �xnxn�� � � �xz � hy� �x�� � � � � xn�i xn�� � � �xz

The state of computation of a Categorical Multi�Combinator expression is represented by the
expression itself� Rule �M���� performs environment look�up� this is the mechanism by which a
variable fetches its value in the corresponding environment� �M���� is responsible for environment
distribution� The rule �M���� performs environment formation� if during rewriting a combinator
reaches the leftmost position of the code we proceed a script look�up and enter the corresponding
code in the de�nition environment� This can be expressed as

hl� yi � hlr� yi

From CM�C into �CMC

In this section we give an overview of the �CMC evaluation mechanism�
If one observes the rewriting rules for Categorical Multi�Combinators above we see that rule

�M���� is equivalent to ��Calculus ��reduction�in which substitutions are performed on demand� For
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a matter of convenience we will structure the Categorical Multi�Combinator expression in two parts�
the reduction stack T and the heap H� where we place evaluation environments� The transition

hT�Hi � hT ��H�i

must be interpreted as� �when the machine arrives at state hT�Hi� it can get to state hT ��H�i� It is
easy to see that the rewriting laws above can be rewritten as state transition rules�

�� hhn� eii�c�H	ei 
 �xm� � � � � x��
i � hxn�c�H	ei 
 �xm� � � � � x��
i

�� hhx� � � � xn� eii�c�H	ei 
 � � �
i � hhx�� eii � � � hxn� eii�c�H	ei 
 � � �
i

�� hhLn�y�� eiix� � � �xn�c�Hi � hhy� eji�c�H	ej 
 �x�� � � � � xn�
i

�� hhl� eii�c�Hi � hhlr � eii�c�Hi

Instead of manipulating references to environments directly as above we have a stack which keeps
references to the current environment� Variables on the top position of the reduction stack fetch their
values from the current environment� The current environment changes whenever a variable fetches a
closure from the current environment or by creating a new environment via ��reduction� We call the
environment stack E�

�� hn�c�H	e 
 �hxm� emi� � � � � hx�� e�i�
� e�Ei � hxn�c�H	ei 
 �hxm� emi� � � � � hx�� e�i�
� en�Ei

�� hhLn�y�� eiix� � � �xn�c�Hi � hy�c�H	ej 
 �hx�� eii� � � � � hxn� eii�
� ej�Ei

�� hl�c�H�Ei � hhlr� eii�c�H�Ei

Example of Evaluation

The expression SKKI� where S� K� and I correspond to the following entries in the script

S �� L��� 
 �� 
��

K �� L����

I �� L��
�

is evaluated as�

hSKKI�H�Ei
�
� hL��� 
 �� 
�� K K I�H�Ei
�
� h� 
 �� 
��H�e� � �K K I�	� e��Ei
�
� hK 
 �� 
��H�e� � �K K I�	� e��Ei
�
� hL���� 
 �� 
��H�e� � �K K I�	� e��Ei
�
� h��H�e� � �h
� e�i� h�� 
�� e�i�	�e� � �K K I�	� e��e��Ei
�
� h
�H�e� � �h
� e�i� h�� 
�� e�i�	�e� � �K K I�	� e��e��e��Ei
�
� hI�H�e� � �h
� e�i� h�� 
�� e�i�	�e� � �K K I�	� e��e��e��Ei

As there are no arguments on the evaluation stack we stop evaluation� The abstract machine presented
above resembles the evaluation mechanism of CM�CM ��	�

Special Functions

Strict functions on all arguments which produce results of ground type are called special� These
functions will fetch their arguments from the evaluation stack and return the result of evaluation
to the top of T� The evaluation of special functions happens outside �CMC � All �CMC does is to
prepare the arguments for them and receive the result� We introduce a new state transition law for
special functions�

�� hfn x� � � � xn�c�H� ei�Ei � hfr�c�H� ei�Ei
where fr 
 fn�x��� � � � � x

�
n� and x�i is the weak head normal form of xi�
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Arithmetic expressions� in general� will be lifted from the code and will be treated in a similar way to
special functions� For instance�

S� � �a��b��c�a�b� c�

generates the following script�

S� �� L��� �f�� 
��

f� �� ��� � 
��

From Interpretation to Compilation

The Categorical Multi�Combinator structures which appear on T are now replaced by code which
when executed will generate a corresponding data structure on T� This data structure is interpreted
by using the state transition laws above� A variable n� for example� is generated on top of T by using
a MKTvar�n� instruction�

The code will always try to predict the behaviour of evaluation and avoid generating intermediate
expressions� as much as possible� The novel aspect of �CMC if compared with its predecessors lies on
translating special functions into procedures in C� In the next section we see �CMC in more details�
We must keep in mind the code sequences generated will perform operations equivalent to the naive
�CMC machine in this section�

Compiling into �CMC Code

We present here the complete set of direct compilation rules for the kernel of �CMC �
A program in �CMC is formed by a set of function de�nitions plus an expression� which we want

to evaluate� as follows�
f�x

�
� � � �x

�
n � body�of�f�

f�x
�
� � � �x

�
m � body�of�f�

���
fzx

z
� � � �x

z
y � body�of�fz

expression�

The expression to be evaluated is compiled by scheme E called as�

E �expression	

Strict functions on all arguments which produce results of ground type are called special� These
functions will be compiled directly as procedures in C� Special functions are compiled as�

fix
i
� � � �x

i
n � body�of�fi fi �� S�body�of�fi 	

Ordinary functions are compiled as�

fjx
j
� � � � x

j
l � body� � of�fj fj �� T x

j

�
���x

j

l �body�of�fj 	

Scheme E

This scheme is responsible for the printing routine and driving the evaluation mechanism�

�� E	k
 
 printf�k�� if k is a constant

�� E	a� b
 
 t� 
 S �	a
� t� 
 S �	b
�printf�t�� t���

�� E	if a � b then c else d 
 
 If true�A�C�D��
where A �� T ��	a
� t� 
 ���topT����� rem�value�T ��	b
� t� 
 ���topT���� � rem�value� t� � t��
C �� E	c
 D �� E	d 
�

�� E	fix� � � � xn
 
 printf�fi�S
�	x�
� � � � �S

�	xn
��� if fi is a special function�

�� E	fi � � �
 
 T ��	fi � � �
 print���

 



Scheme S

This scheme is responsible for starting�up the compilation of special functions generating procedures
in C�

�� S	k
 
 return�k�� if k is a constant

�� S	x
 
 return�x�� if x is a variable

�� S	a� b
 
 return�S �	a
 � S �	b
��

�� S	if �a � b� then c else d 
 
 if �S �	a
� S �	b
� fS	c
g� elsefS	d 
g�

�� S	fix� � � � xj
 
 return�fi�S
�	x�
� � � � �S

�	xj
��� if fi is a special function

�� S �	fix� � � � xj
 
 T ���fix� � � � xj� return�����topT ���� � rem�value���

Scheme S �

This scheme is ancillary to S and is responsible for the compilation of inner parts of the body of a
special function� generating parts of procedure code in C�

�� S �	k
 
 k if k is a constant

�� S �	x
 
 x if x is a variable

�� S �	a� b
 
 �S �	a
 � S �	b
�

�� S �	if �a � b� then c else d 
 
 if �S �	a
 � S �	b
� f�S	c
�g� elsef�S	d 
�g�

�� S �	fix� � � � xi
 
 fi�S
�	x�
� � � � �S

�	xi
� if fi is a special function�

�� S �	fix� � � � xi
 
 T ��	fix� � � � xi
 return����topT����� rem�value��

Example of Compilation

Let us show an example of special function compilation� If we have the script�

fib n � if n�� then � else fib�n��� 	 fib�n���

fib �
�

it will be compiled as�

E	fib �


E��
� printf��b�S �	��
���

S���
� printf��b������

Now we compile

fib n � if n�� then � else fib�n��� 	 fib�n���

by using scheme S�

�b �� S	if n � � then � else �b�n � � � � �b�n � � �

S��
� if �S �	n
� S �	� 
� fS	� 
�g� elsefS	�b�n � � � � �b�n � � �
g�

S
���
� if �n � S �	� 
� fS	� 
g� elsefS	�b�n� � � � �b�n � � �
g�

S���
� if �n � �� fS	�g� elsefS	�b�n � � � � �b�n � � �
g�

S��
� if �n � �� freturn���g� elsefS	�b�n� � � � �b�n � � �
g�
S��
� if �n � �� freturn���g� elsefreturn�S �	�b�n � � �
 � S �	�b�n � � �
�g�

S���
� if �n � �� freturn���g� elsefreturn��b�S �	�n � � �
� � S �	�b�n � � �
�g�

S���
� if �n � �� freturn���g� elsefreturn��b�S �	�n � � �
� � �b�S �	�n � � �
��g�

S
���
� if �n � �� freturn���g� elsefreturn��b�S �	n
� S �	� 
�
� � �b�S �	�n � � �
��g�

S���
� if �n � �� freturn���g� elsefreturn��b�n�S �	� 
�
� � �b�S �	�n � � �
��g�

S���
� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�S �	�n � � �
��g�

S
���
� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�S �	n
� S �	� 
��g�

S
���
� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�n�S �	� 
��g�

S���
� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�n� ���g�

�



As we can see the result of compilation is a procedure in C� which needs only a heading with type
declarations to be compiled and executed by the C machine�

Scheme T

This scheme is responsible for the compilation of ordinary functions and generates code which is
handled by the abstract machine� We assume the arity of a function fn to be n� ��

�� T y����yj 	fnx� � � � xnz� � � � zm
 
 T �x����xn 	zm
 � � �T �x����xn 	z�
T
x� ���xn 	fnx� � � � xn


�� T y����yj 	fnx� � � � xn
 
 MKTcte�fn�Z
y����yjx�� � � � �Z

y����yjxn��� if fn is a special function

�� T y����yj 	fnx� � � � xn
 
 MKEcell�n� ���Gx� ���xn 	x�
n � � �G
x� ���xn 	xn
� Pushfun�fn��Popenv�

�� T y����yj 	fn
 
 eval����� � � � eval��n��MKTk�n� fn����topT�� rem�value�� � � � � ���topT � n� � rem�value����
if fi is a special function�

�� T y����yj 	fn
 
 MKenv�n� ���Pushfun�fn��Popenv�

�� T y����yj 	k
 
 MKTcte�k�� if k is a constant

�� T y����yj 	yi
 
 MKTvar�i�� if xi is evaluated

�� T y����yj 	yi
 
 eval env�i��

�� T y����yj 	if a � b then c else d 
 
 If true�A�C�D��
where A �� T y����yj 	a
 t� 
 ���topT����� rem�value�T y����yj 	b
 t� 
 ���topT����� rem�value� t� � t��
C �� T y����yj 	c
 D �� T y����yj 	d 


��� T y����yj 	a� b
 
 t� 
 T y����yj 	a
 t� 
 T y����yj 	b
 MKTcte�t�� t���

��� T y����yj 	x��x� � � � xm�
 
 MKTcomp�A��T y����yj 	x�
 where A �� T y����yj 	x� � � � xm


��� T y����yj 	x� � � � xm
 
 T �y����yj 	x�
 � � �T
�y����yj 	xm
 T y����yj 	x�


Scheme G

This scheme generates code which when executed �lls the �elds of a cell in an evaluation environment�

�� Gx����xj 	k
i 
 MKEcte�k� i��

�� Gx����xj 	xi
j 
 MKEvar�xi� j��

�� Gx����xj 	a� b
j 
 MKEcte�Z �x� ���xj 	a
 �Z �x� ���xj 	b
� j�� if a and b are evaluated�

�� Gx����xj 	a� b
i 
 MKEcomp�A� i�� where A �� T xi ���xj 	a� b
�

�� Gx����xj 	if a then b else c
j 
 IfE true�Z �x� ���xj 	a
�B�C� j�� if a is evaluated
where B �� T x����xj 	b
 C �� T x� ���xj 	c


�� Gx����xj 	if a then b else c
i 
 MKEcomp�A� i�� where A �� T xi���xj 	if a then b else c
�

�� Gx����xj 	a � � � b
i 
 MKEcomp�A� i�� where A �� T xi���xj 	a � � � b
�

�� Gx����xj 	fn
i 
 MKEpc�A� i�� where A �� T xi ���xj 	fn
�

Scheme T �

This scheme produces code which when executed generates cells on the top of the T�stack�

�� T �x����xj 	k
 
 MKTcte�k��

�� T �x����xj 	xi
 
 MKTvar�i��

�� T �x����xj 	a� b
 
 MKTcte�Zx����xj 	a
 �Zx� ���xj 	b
�� if a and b are evaluated�

�� T �x����xj 	a� b
 
 MKTcomp�A�� where A �� T xi ���xj 	a� b


�� T �x����xj 	if a then b else c
 
 If true�Z
x� ���xj 	a
�B�C�� if a is evaluated�

where B �� T x����xj 	b
�C �� T x� ���xj 	c


�� T �x����xj 	if a then b else c
 
 MKTcomp�A�� where A �� T x� ���xj 	if a then b else c


�� T �x����xj 	a � � � b
 
 MKTcomp�A�� where A �� T xi ���xj 	a � � � b


�� T �x����xj 	fi
 
 MKTpc�A�� where A �� T xi���xj 	fn


�



Scheme Z

This scheme make parameters ready for special functions or arithmetic expressions whenever called
inside an ordinary function�

�� Zx����xj 	k
 
 k�

�� Zx����xj 	xi
 
 ���topE� ��topE� � tipo� �� i�� rem�graph� � rem�value�
if xi is already evaluated�

�� Zx����xj 	xi
 
 eval env�i�� return���topT��� � rem�value��

�� Zx����xj 	fia � � � b
 
 fi�Z
x����xj 	a
� � � � �Zx����xj 	b
�� if fi is a special function�

�� Zx����xj 	a � � � b
 
 T x� ���xj 	a � � � b
 return����topT ���� � rem�value��

�� Zx����xj 	a� b
 
 Zx����xj 	a
 � Zx����xj 	b
�

Scheme Z �

This scheme make parameters ready for special functions or arithmetic expressions whenever called
inside a cell generating scheme�

�� Z �x����xj 	k
 
 k�

�� Z �x����xj 	xi
 
 ����topE� �� � ��topE � �� � tipo� �� i�� rem�graph� � rem�value�
if xi is already evaluated�

�� Z �x����xj 	xi
 
 eval env�i�� return���topT��� � rem�value��

�� Z �x����xj 	fia � � � b
 
 fi�Z
�x� ���xj 	a
� � � � �Z �x����xj 	b
�� if fi is a special function�

�� Z �x����xj 	a � � � b
 
 T x� ���xj 	a � � � b
 return����topT ���� � rem�value��

�� Z �x����xj 	a� b
 
 Z �x����xj 	a
 �Z �x� ���xj 	b
�

Example of Compilation

Let us show an example of compilation of an ordinary function� If we have the script�

fib n � if n�� then � else fib�n��� 	 fib�n���

twice f x � f �f x�

twice fib ��

it will be compiled as�

E	twice fib �

E��
� T ��	twice �b � 
�print���
T ��
� MKEcell����G��	fib
�G��	�
��Pushfun�twice��Popenv�print���
G�	
� MKEcell����MKEpc�A� ���G��	�
��Pushfun�twice��Popenv�print���

G��
� MKEcell����MKEpc�A� ���MKEcte��� ���Pushfun�twice��Popenv�print���

where A is�

A �� T f�x	�b

T ��
� eval�����MKTk����b����topT��� rem�value���

Now we compile

twice f x � f �f x�

by using scheme T as�

twice �� T f�x 	f �f x�

T ���
� MKTcomp�A���T f�x	f 

T �	
� MKTcomp�A��� eval env����

where A� is�

A� �� T f�x 	f x

T ���
� T �f�x	x
�T f�x	f 
�

T � ��
� MKTvar����T f�x	f 
�
T �	
� MKTvar���� eval env����

�b is as in the previous example of compilation above�

�



State Transition Laws

We present �CMC as a state transition machine� A state of �CMC is a  �uple

hC� T�H�O�Ei

in which each component is interpreted in the following way�

C	 The code to be executed�
This code is generated by the translation rules presented by the compilation schemes above�

T	 The reduction stack� The top of T points to the part of the graph to be evaluated�

H	 The heap where graphs are stored� The notation H�d � e� � � � en	 means that there is in H a
n�component cell named d� The �elds of d are �lled with e� � � � en� in this order�
Cells are fully�boxed�

O	 The output�

E	 The environment stack� Its top contains a reference to the current environment�

�CMC is de�ned as a set of transition rules� The transition

hC� T�H�O�Ei � hC�� T ��H�� O�� E�i

must be interpreted as� �when the machine arrives at state hC� T�H�O�Ei� it can get to state
hC�� T ��H�� O�� E�i��

We present here the complete set of state transition laws for the kernel of �CMC �

�� hprint�c� d�T� H	d
k
� O� E i � h c� T� H	d
k
� k�O� E i

�� h eval�c� d�T� H	d
k
� O� E i �h c� d�T� H	d
k
� O� E i

�� h eval�c�d�T�H	d
�A�e�
� O� E i � hA�Popenv�c� T� H	d
�A�e�
� O� e�E i

�� h eval�c�d�T�H	d
fn
� O� E i �h fn�c� T� H	 d
 fn
� O� E i

�� h eval��i��c� � � � di � � � �T� H 	di
k
� O� E i �h c� � � � di � � �T� H 	d
k
 � O� E i

�� h eval��i��c�� � � di � � � �T�H	di
�A�e�
� O� E i � hA�Pop�i��c� � � � di � � �T� H 	d
�A�e�
� O� e�E i

�� h eval��i��c�� � � di � � � �T�H	di 
 fn
� O� E i �h c� � � � di � � �T� H 	 d
 fn
� O� E i

�� h eval env�i��c� T� H	e
� � � fn � � �
� O� e�E i � h fn� T� H	e
� � � fn � � �
� O� e�E i

�� h eval env�i��c� T� H	e
� � � ui � � �
� O� e�E i � h eval�c� ui�T� H	e
� � � ui � � �
� O� e�E i

��� hMKenv�n��c� d�� � � � dn � � � dm�T� H�O� E i � h c�dn
� � � � dm�T� H 	e
d� � � � dn
� O� e�E i

��� hPopenv�c� T� H� O� e�E i �h c� T� H� O� E i

��� hPop�i��c�d�d� � � � di � � �T� H� O� e�E i �h c�d� � � � d� � � �T� H� O� E i

��� hPushfun�fi��c� T� H� O� E i � h fi�c� T� H� O� E i

��� h If true�True�A�B��c� T� H� O� E i � hA�c� T� H� O� E i

��� h If true�False�A�B��c� T� H� O� E i � hB�c� T� H� O� E i

��� hMKTvar�k��c� T� H	e
e� � � � em
� O� e�E i � h c� d�T� H	d 
 em�k
	e
e� � � � em
� O� e�E i

��� hMKTcomp�P��c� T� H� O� e�E i � h c� d�T� H	d
�P�e�
� O� e�E i

��� hMKTpc�A��c� T� H� O� E i � h c� d�T� H	d
 A 
� O� E i

��� hMKTcte�k��c� T� H� O� E i � h c� d�T� H	d
 k
� O� E i

��� hMKTk�n�A��c� d� � � � dn � � � dm �T� H 	dn 
� � � 
� O� E i � h c� dn � � � dm �T� H 	dn
A
 � O� E i

��� hMKEvar�j�i��c� T� H	e� 
 � � � ui � � �
 	e� 
 � � � aj � � �
� O� e��e��E i �
h c� T� H	e�
� � � aj � � �
 	e� 
 � � � aj � � �
� O� e��e��E i

��� hMKEcte�k�i��c� T� H	e� 
 � � � ui � � �
 O� e��E i �h c� T� H	e�
� � � k � � �
� O� e��E i

��� hMKEcell�n��c� T� H� O� E i � h c� d�T� H	e
u� � � � un
� O� E i

��� hMKEcomp�A�i��c� T� H	e� 
 � � � ui � � �
�O� e��e��E i �h c�T�H	e�
� � ��A�e��� � �
� O� e��e��E i

��� hMKEpc�A�i��c� T� H	e
� � � i � � � 
� O� e�E i � h c� d�T� H	e
� � �A � � � 
� O� e�E i

��� h IfE true�True�B�C�i��c� T� H	e� 
 � � � ui � � �
�O� e��e��E i � h c� T� H	e�
� � � �B�e�� � � �
� O� e��e��E i

��� h IfE true�False�B�C�i��c� T� H	e� 
 � � � ui � � �
�O� e��e��E i � h c� T� H	e�
� � � �C�e�� � � �
� O� e��e��E i

�



Example of Evaluation

As we saw in the examples of compilation above� the program�

fib n � if n�� then � else fib�n��� 	 fib�n���

twice f x � f �f x�

twice fib ��

compiled as�

twice fib � �� MKEcell����MKEpc�A� ���MKEcte��� ���Pushfun�twice��Popenv�print���

A �� eval�����MKTk����b����topT��� rem�value���

twice �� MKTcomp�A��� eval env����

A� �� MKTvar���� eval env����

�b �� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�n� ���g�

The initial state of the machine is�

hMKEcell���� MKEpc	A��
� MKEcte������ Pushfun�twice�� Popenv� print��� �T�H�O�E i

executing this code using the state transition laws above we have�

��
� hMKEpc�A����MKEcte��� ���Pushfun�twice��Popenv�print��� � T� H	e� 
 � �
�O� e��Ei
��
� hMKEcte��� ���Pushfun�twice��Popenv� print��� � T� H	e� 
 A d�
�O� e��Ei
��
� hPushfun�twice��Popenv�print��� � T� H	d� 
 �
	e� 
 A d�
�O� e��Ei
��
� hMKTcomp�A��� eval env����Popenv�print��� � T� H	d� 
 �
	e� 
 A d�
�O� e��Ei
��
� heval env����Popenv�print��� � d��T�H	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��Ei
	
� heval�����MKTk��� �b����topT��� rem�value���Popenv�print��� �

d��T�H	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��Ei
�
� hMKTvar���� eval env����Pop����MKTk����b����topT��� rem�value���Popenv�print��� �

d��T�H	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��e��Ei
��
� heval env����Pop����MKTk����b����topT��� rem�value���Popenv�print��� �

d��d��T�H	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��e��Ei
	
� heval�����MKTk��� �b����topT��� rem�value���Pop����MKTk����b����topT��� rem�value���Popenv�print��� �

d��d��T�H	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��e��Ei
�
� hMKTk����b����topT��� rem�value���Pop����MKTk��� �b����topT��� rem�value���Popenv�print��� �

d��d��T�H	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��e��Ei
��
� hPop����MKTk����b����topT�� � rem�value���Popenv�print��� �

d��d��T�H	d� 
 �
	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��e��Ei
��
� hMKTk����b����topT��� rem�value���Popenv�print��� �

d��T�H	d� 
 �
	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��Ei
��
� hPopenv� print��� � d��T�H	d� 
 �

	d� 
 �
	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� e��Ei
��
� hprint��� � d��T� H	d� 
 �

	d� 
 �
	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
�O� Ei
�
� h � T� H	d� 
 �

	d� 
 �
	d� 
 �A�� e��
	d� 
 �
	e� 
 A d�
� �
�O�Ei

Compiling Lists

Now we enrich �CMC with lists� A new compilation scheme� called L� is introduced� Some of the
previous compilation schemes need to be extended�

�




Scheme E

�� E		

 
 printf�	
��

�� E	a � b
 
 E	a
 E	b
 print���

�� E	Hd�a � � � b�
 
 T ��	a � � � b
 Hd�printf����topT���� � rem�value��

�� E	Tl�a � � � b�
 
 T ��	a � � � b
 Tl�print���

��� E	Hd�a � b�
 
 E	a


��� E	Tl�a � b�
 
 E	b


Scheme T

��� T x� ���xj 	 	 
 
 
 MKTlv�

��� T x� ���xj 	Hd xi
 
 Ehd�i��

��� T x� ���xj 	Hd�a � b�
 
 T x� ���xj 	a


��� T x� ���xj 	Hd�a � � � b�
 
 T x����xj 	a � � � b
 Hd�

��� T x� ���xj 	a �Hd b � � ��
 
 T x����xj 	b � � �
 Hd�T x� ���xj 	a


��� T x� ���xj 	Tl xi
 
 Etl�i��

��� T x� ���xj 	Tl�a � b�
 
 T x����xj 	b


��� T x� ���xj 	Tl�a � � � b�
 
 T x� ���xj 	a � � � b
 Tl�

��� T x� ���xj 	a �Tl b � � ��
 
 T x� ���xj 	b � � �
 Tl�T x� ���xj 	a


��� T x� ���xj 	a � b
 
 T �x� ���xj 	a
 T �x����xj 	b
 MKcons�

��� T x� ���xj 	if xi 
 	 
 then b else c
 
 Enull� �i� l���T
x� ���xj 	b
 Jmp l�� l� � T

x� ���xj 	c
 l� �

Scheme G

�� Gx����xj 	 	 
 
j 
 MKElv�j��

��� Gx����xj 	Hd xi
j 
 Ehd��i� j��

��� Gx����xj 	Hd�a � b�
j 
 Gx����xj 	a
j

��� Gx����xj 	Tl xi
j 
 Etl��i� j��

��� Gx����xj 	Tl�a � b�
j 
 Gx� ���xj 	b
j

��� Gx����xj 	a � b
j 
 Lx� ���xj 	a
 Lx� ���xj 	b
 MKEcons��j��

Scheme T �

�� T �x����xj 	 	 
 
 
 MKTlv�

��� T �x����xj 	 Hd xi 
 
 Ehd�i��

��� T �x����xj 	Hd�a � b�
 
 T �x� ���xj 	a


��� T �x����xj 	 Tl xi 
 
 Etl�i��

��� T �x����xj 	Tl�a � b�
 
 T �x����xj 	b


��� T �x����xj 	a � b
 
 MKTcomp�A�� where A �� T x� ���xj 	 a � b 


Scheme L

�� Lx� ���xj 	 xi
 
 MKETvar�i��

�� Lx� ���xj 	 k 
 
 MKTcte�k��

�� Lx� ���xj 	a� b
 
 MKTcte�Z �x����xj 	a
 �Z �x� ���xj 	b
�� if a and b are evaluated�

�� Lx� ���xj 	a� b
 
 MKTcomp�A�� where A �� T xi ���xj 	a� b
�

�� Lx� ���xj 	if a then b else c
 
 IfE true�T x� ���xj 	a
�B�C� if a is evaluated�
where B �� T x� ���xj 	b
 C �� T x� ���xj 	c


�� Lx� ���xj 	if a then b else c
 
 MKETcomp�A�� A �� T x� ���xj 	if a then b else c


�� Lx� ���xj 	 a � b 
 
 Lx� ���xj 	 a 
 Lx� ���xj 	b
 MKcons� if a is evaluated�

��



�� Lx� ���xj 	 a � b 
 
 MKETcomp�A�� where A �� T x� ���xj 	 a � b 


�� Lx� ���xj 	fix� � � � xm
 
 MKTcte���Z �x� ���xjx�� � � � �Z
�x� ���xjxn��� if fi is a special function

��� Lx� ���xj 	fi
 
 MKTpc�fi��

��� Lx� ���xj 	 	 
 
 
 MKTlv�

��� Lx� ���xj 	Hd xi
 
 EThd�i��

��� Lx� ���xj 	Hd�a � b�
 
 Lx� ���xj 	a


��� Lx� ���xj 	Tl xi
 
 ETtl�i��

��� Lx� ���xj 	Tl�a � b�
 
 Lx� ���xj 	b


��� Lx� ���xj 	 a � � �b 
 
 MKETcomp�A�� where A �� T x����xj 	 a � � �b 


Example of Compilation

Let us present an example of compilation involving lists� If we have the script�

map f x � if x�
� then 
� else f�Hd x��map f �Tl x�

fib n � if n�� then � else fib�n��� 	 fib�n���

twice f x � f �f x�

map �twice fib� ������
����

it will be compiled as�

E	map �twice fib� �� � �� � 	
��

E��
� T ��	map �twice �b� �� � �� � 	
��
�print���
T ��
� MKEcell����G��	twice fib
��G��	�� � �� � 	
��
��Pushfun�map��Popenv�print���
G��
� MKEcell����MKEcomp�B� ���G��	�� � �� � 	
��
��Pushfun�map��Popenv�print���
G���
� MKEcell����MKEcomp�B� ���L��	�
 L��	�� � 	
�


MKEcons�����Pushfun�map��Popenv�print���
L��
� MKEcell����MKEcomp�B� ���MKTcte���� L��	�� � 	
�


MKEcons�����Pushfun�map��Popenv�print���
L��
� MKEcell����MKEcomp�B� ���MKTcte���� L��	�
 L��		



MKcons�MKEcons�����Pushfun�map��Popenv�print���
L��
� MKEcell����MKEcomp�B� ���MKTcte����MKTcte���� L��		



MKcons�MKEcons�����Pushfun�map��Popenv�print���
L���
� MKEcell����MKEcomp�B� ���MKTcte����MKTcte����MKTlv�

MKcons�MKEcons�����Pushfun�map��Popenv�print���

where B is�

B �� T ��	twice �b

T ���
� T ���	�b
 T ��	twice


T ��	
� MKTpc�A��T ��	twice

T ��
� MKTpc�A��MKenv����Pushfun�twice��Popenv�

and A is as in the last example of compilation� Now we translate map by using scheme T �

map �� T f�x	if x 
 	
 then 	
 else f �Hd x � � map f �Tl x �

T ���
� Enull��� l���T

f�x		

 Jmpl�� l� �T f�x	f �Hd x � � map f �Tl x �
 l� �

T ���
� Enull��� l���MKTlv� Jmpl�� l� �T f�x	f �Hd x � � map f �Tl x �
 l� �

T ���
� Enull��� l���MKTlv� Jmpl�� l� �T f�x	f �Hd x �
T �f�x	map f �Tl x �
�MKcons� l� �

��



T �

� Enull��� l���MKTlv� Jmpl�� l� �T f�x	f �Hd x �
T �f�x	map f �Tl x �
�MKcons� l� �

T ��	
� Enull��� l���MKTlv� Jmpl�� l� �T f�x	x
 Hd�T f�x	f 
 T �f�x	map f �Tl x �
�MKcons� l� �

T ��
� Enull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd�T f�x	f 
 T �f�x 	map f �Tl x �
�MKcons� l� �

T �	
� Enull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd� eval env���� T �f�x	map f �Tl x �
�MKcons� l� �

T
���
� Enull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd� eval env����MKTcomp�C��MKcons� l� �

where�

C �� T f�x	map f �Tl x �

T ��
� MKEcell����Gf�x	f 
� Gf�x	�Tl x �
� Pushfun�map��Popenv�
G��
� MKEcell����MKEvar��� ���Gf�x	�Tl x �
� Pushfun�map��Popenv�
G���
� MKEcell����MKEvar��� ���Etl���� ���Pushfun�map��Popenv�

New State Transition Laws

�CMC with lists also makes use of the following state transition laws�

��� hprint�c� d�T� H	d
 a � b 
� O� E i � h eval�print�eval�print�c� a�b�T� H	d
a � b
� O� E i

��� hprint�c� d�T� H	d
	 

� O� E i �h c� T� H	d
	 

� O� E i

��� hHd�c� d�T� H	d
a � b 
� O� E i � h c� a�T� H	d
a � b 
� O� E i

��� hTl�c� d�T� H	d
a � b 
� O� E i � h c� b�T� H	d
a � b 
� O� E i

��� hMKcons�c� d��d��T� H	d�
 b
	d�
 a
� O� E i � h c� d�T� H	d
d��d�
� O� E i

��� hMKTlv�c� T� H� O� E i � h c� d�T� H	d
 	 

� O� E i

��� hMKElv�i��c� T� H	e� 
 � � � ui � � �
� O� e��E i � h c� T� H	d
	 

	e�
� � � d � � �
� O� e��E i

��� hMKEcons��i��c� d��d��T� H	d�
 a
	d�
b
	e� 
 � � � ui � � �
� O� e��E i � h c� T� H	d
d� � d�
	e�
� � � d � � �
�
O� e��E i

��� hMKETvar�i��c� T� H	e� 
 � � � ui � � �
� O�e�� e��E i � h c�d�T� H	d 
 ui
	e� 
 � � � ui � � �
� O� e�� e��E i

��� hMKETcomp�A��c� T� H� O�e�� e��E i � h c�d�T� H	d 
 �A� e��
� O� e�� e��E i

��� hEhd�i��c� T� H	e� 
 � � � �a � b� � � �
� O� e��E i �h c� a�T� H	e�
� � �
� O� e��E i

��� hEtl�i��c� T� H	e� 
 � � � �a � b� � � �
� O� e��E i �h c� b�T� H	e�
� � �
� O� e��E i

��� hEThd�i��c� T� H	e� 
 � � � �a � b� � � �
� O� e��e��E i �h c� a�T� H	e�
� � �
� O� e��e��E i

��� hETtl�i��c� T� H	e� 
 � � � �a � b� � � �
� O� e��e��E i �h c� b�T� H	e�
� � �
� O� e��e��E i

��� h Ehd��i�j��c� T� H	e� 
 � � � xj � � �
 	e� 
 � � � �a � b� � � �
� O� e��e��E i �h c� T� H 	e� 
 � � � a � � �
 	e� 
 � � �
�
O� e��e��E i

��� hEtl��i�j��c� T� H	e� 
 � � � xj � � �
 	e� 
 � � � �a � b� � � �
� O� e��e��E i �h c� b�T� H 	e� 
 � � � b � � �
	e�
� � �
� O�
e��e��E i

��� hEnull�n�l�� � � � l��c� T� H	d�
	 

	e�
 � � � dn � � � 
� e��E i � h c�T�H	d�
	 

	e�
 � � � dn � � � 
� e��E i

��� h Jmp l � � � l�c� T� H� O� E i � h c� T� H� O� E i

��� h Jfalse�False�l� � � � l�c� T� H� O� E i � h c� T� H� O� E i

��� h Jfalse�True�l� �c� T� H� O� E i � h c� T� H� O� E i

Example of Evaluation

As we saw in the examples of compilation above� the program�

map f x � if x�
� then 
� else f�Hd x��map f �Tl x�

fib n � if n�� then � else fib�n��� 	 fib�n���

twice f x � f �f x�

map �twice fib� ������
����

��



compiled as�

map �twice fib� �� � �� � 	
�� �� MKEcell����MKEcomp�B� ���MKTcte����MKTcte����MKTlv�

MKcons�MKcons�MKEcons�����Pushfun�map��Popenv�print���

B �� MKTpc�A��MKenv����Pushfun�twice��Popenv�

map �� Enull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd� eval env����MKTcomp�C��MKcons� l� �

C �� MKEcell����MKEvar��� ���Etl���� ���Pushfun�map��Popenv�

A �� eval�����MKTk����b����topT��� rem�value���

twice �� MKTcomp�A��� eval env����

A� �� MKTvar���� eval env����

�b �� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�n� ���g�

The initial state of the machine is�

hMKEcell���� MKEcomp�B���� MKTcte���� MKTcte���� MKTlv� � � � �T�H�O�E i

executing this code using the state transition laws above we have�

��
� hMKEcomp�B� ���MKTcte����MKTcte����MKTlv� � � � � T� H	e� 
 ��
�O� e��Ei
��
� hMKTcte����MKTcte����MKTlv� � � � � T�H	e� 
 �B� e��
	e� 
 e��
�O� e��Ei
�

� hMKTcte����MKTlv� � � � � d��T� H	d� 
 �
	e� 
 �B� e��
	e� 
 e��
�O� e��Ei
�

� hMKTlv� � � � � d��d��T� H	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e��
�O� e��Ei
��
� hMKcons�MKEcons�����Pushfun�map��Popenv�print��� � d��d��d��T�

H	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e��
�O� e��Ei
��
� hMKEcons�����Pushfun�map��Popenv� print��� � d��d��T�

H	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e��
�O� e��Ei

at this point of execution the graph for the list is complete and we enter the code for map�

��
� hPushfun�map��Popenv�print��� � d��T�H	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 



	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e��
�O� e��e��Ei
��
� hEnull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd� eval env����MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e�d�
�O� e��Ei
��
� hMKTvar����Hd� eval env����MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e�d�
�O� e��Ei
��
� hHd� eval env����MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e�d�
�O� e��Ei
��
� heval env����MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e�d�
�O� e��Ei


� heval�MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e�d�
�O� e��Ei
�
� hMKTpc�A��MKenv����Pushfun�twice��Popenv�Popenv�MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e�d�
�O� e��e��Ei
�	
� hMKenv����Pushfun�twice��Popenv�Popenv�MKTcomp�C��MKcons� l� �Popenv�print��� � d��d��T�

H	d� 
 A
	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e�d�
�O� e��e��Ei
��
� hPushfun�twice��Popenv�Popenv�MKTcomp�C��MKcons� l� �Popenv�print��� � e��T�

H	e� 
 d�d�
	d� 
 A
	d� 
 d� � d�
	d� 
 d� � d�
	d� 
 	 

	d� 
 �
	d� 
 �
	e� 
 �B� e��
	e� 
 e�d�
�O� e��e��Ei

Now the code for twice is called taking as arguments fib and �� which are referenced by the frame on
the top of the environment stack� The reduction sequence above gives an idea of how �CMC evaluates
lists�

��



Optimisations

A number of code optimisations should be introduced to �CMC in order to obtain a better perfor�
mance� In this section we present the most important of them�

Sharing

Sharing of computation can bring substantial improvement to the performance of the machine� There
is a number of ways sharing can be incorporated to �CMC � Although the authors are still experi�
menting to know the best possible way� the sharing mechanism implemented at the moment is similar
to the one in CMCM ��� ��	� which is inspired in the frame update mechanism of TIM ��	� Now� the
user provides annotations �U combinator� to specify variables one wants to share�
The U combinator performs the following state transition�

��� hU	i
�c�d�T� H	e� 
 � � � ai � � �
� O� e��E i �h c� d�T� H	e�
� � � d � � �
� O� e��E i

As Categorical Multi�Combinators do not allow for partial applications to be reduced we think of
using Partial Categorical Multi�Combinators � 	 to deal with sharing of partial applications�

Tail Recursion

Functions over lists recursively de�ned as

fn x� � � �xn � if a then b else z � �fn y� � � � yn�

such as map� are of widespread use in functional programs� The compilation schemes we have generate
an environment every time we make a recursive call and discard the environment used for the previous
call� To increase the performance of �CMC we avoid garbage generation by compiling tail recursive
functions as

�fn x� � � �xn � if xi � � 	 then b else z � �fn y� � � � yn�	

by the following entries in the script�
fn �� Enull�i� l���T

x� ���xn 	b
 Jmp l�� l� �T x����xn 	z
 MKTcomp�A��MKenv�n� ���MKcons� l� �
A �� Gx� ���xn 	yn
n � � � G

x����xn 	y�
� Swap�Pushfun�f �n��Popenv�
f �n �� Enull�i� l���T

x����xn 	b
 Jmp l�� l� �T xl ���xj 	z
 MKTcomp�A��MKcons� l� �
The state transition law for Swap is�

��� hSwap�c� T� H� O� e��e��E i �h c� A�T� H� O� e��e��E i

Recursive Functions

Recursion is fundamental for functional programming languages� Many functions are not special thus
can not bene�t from the very e�cient handling of recursion made by the C compiler� which takes
advantage of the fast context switching mechanism of RISC architectures� Better performance can be
obtained if we introduce a stack to handle recursion� Thus we translate functions de�ned as

fn x� � � � xn � if a � b then c else fn y� � � �yn

by using the following scheme�
fn �� pushR�
�!

LP� �Jfalse�T x����xj �a	! t� � ���topT���� � rem�value!
T x����xj �b	! t�� ���topT���� � rem�value! t� � t�!� l��! T

x����xj c!
Jmp l�!
l� �MKEcell�n� ��!
Gx����xn �yn	n
���
Gx����xn �y�	

pushR���! Jmp�LP��!
LP� � Popenv!
l� � if���topR���� �� �� Jmp�LP��!

� 



Avoiding Indirections

Functions which take only one parameter are frequent� Because we adopted a fully�boxed representa�
tion the cell which represents the environment of a function to one argument works as an indirection
cell� One can avoid the generation of this indirection cell by making the environment stack point
directly to its argument� New operators are needed for this optimisation� For a matter of simplicity
we will call them as before su�xed by 
� For instance� instruction Ehd�i� becomes Ehd��

Monomorphic Print

Instead of having a general �polymorphic� printing routine� which at run�time tests the data produced
to output it� we use information provided by the type�checker to choose statically which printing
function is suitable for printing the output�

Performance

In this section we present the performance �gures obtained for the benchmark programs below running
on a SUN Sparckstation II under UNIX�

Fib �
	 the Fibonacci number of �


Rev	 reverse reverse reverse of a list of �

 numbers�

Sieve	 generates a list of prime numbers smaller than �


 by using Erathosthenes
 sieve�

Insord	 sorting by insertion of a list of �

 random numbers�

Simlog	 takes a list of �


 random numbers and produces �


 boolean values�

Map	 maps �twice twice twice successor� on a list of �


 integers�

Tak	 Takeiushi function of �
 � � �

Prog Fib �� Rev Sieve Insord Simlog Map Tak

GM�C �
�� " ���  �
 ��� ��� ������
�CMC �� �� ��� ��� 
�� 
� ���
LML ��� ��
 ��� �� 
�� 
�� ����

GM�C corresponds to the last version of GM�C ��	 done by Musicante and Lins� �CMC refers to our
best implementation of �CMC� LML presents the performance of the Chalmers Lazy ML compiler
version 
������

As we can observe from the table above the performance of �CMC is far better than GM�C� for all
our benchmark programs� �CMC presented a performance close to LML in the benchmark programs
which made intensive use of higher�order�functions and lazy evaluation� In the case of the use of strict
functions under recursion �CMC performed far better than LML�

Further Work � Conclusions

The authors are currently working on a front�end for �CMC and also analysing a number of opti�
misations to the back�end� We believe the benchmark �gures we presented are representative of the
performance of �CMC and that they scale�up for larger programs�

In our opinion� �CMC has already shown that transferring the �ow of execution from a higher�
level abstract machine to C� by using procedure calls� brings not only portability but also e�ciency
on RISC architectures� The performance of �CMC is in the worst case as good as the Chalmers LML
compiler� In the best case� �CMC can run several times faster than LML�

��
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