
Lins, Rafael D. and Lira, Bruno O. (1992) GammaCMC: A Novel Way of Compiling
Functional Languages. Technical report. Chapman Hall Limited, University
of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21043/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21043/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

�CMC� A Novel Way of Compiling Functional Languages

Rafael D�Lins � Bruno O�Lira

Dept� de Inform�atica � Universidade Federal de Pernambuco � Recife � Brasil
Computing Laboratory � The University of Kent � Canterbury � England

Abstract

The e�cient compilation of functional languages has been shown to be a di�cult task� The
most successful implementations so far generate code in assembly language� This makes implemen�
tation extremely hard and machine dependant� In this paper we present �CMC� a new abstract
machine� in which we transfer the control of the execution �ow to C� as much as possible� �CMC
takes advantage of the extremely low costs of procedure calls in modern RISC architectures� This
produces a substantial improvement in performance� as we show here�

Introduction

Due to their semantic elegance� expressive power and ease in proving the correctness of programs�
functional languages have been pointed out as a possible solution for the problem of programming
known as the Software Crisis� In such languages programs are written as a set of function de�nitions
and an expression� whose value is the result of the program� The evaluation is accomplished through
consecutively rewriting the expression according to the functions de�nitions� Functional languages
seem to be harder to implement than conventional imperative ones� At execution time� we must
maintain complicated structures� such as unevaluated function applications� which allow us to work
with higher�order functions and in�nite lists�

The traditional way to implement lazy functional languages was graph interpretation of combi�
nators� as introduced by Turner in ���	� The understanding of the evaluation mechanisms of these
languages allowed implementation to move from interpretation towards compilation� with substantial
gain in performance� Cardelli
s abstract machine FAM ��	 developed for the compilation of strict
functional languages was an important step in this search for e�ciency�

Johnsson ��
	 developed a strategy for compiling lazy functional languages� described as an abstract
stack machine� called the G�Machine� The basic principle of the G�Machine is to avoid generating
graphs� The code generated by the G�Machine when executed produces time and space performance
at least an order of magnitude faster than interpreted functional languages� The original G�Machine
implemented at Chalmers� G�otheburg� by Johnsson and his collegues ��
	� generated code in VAX�
��
 Assembly language� which made implementation extremely hard and machine dependant� It was
common sense in the community of implementation of functional languages that assembly language
implementation was the price to pay if one wanted e�ciency� The Chalmers LML compiler is still a
reference in terms of performance of lazy functional languages� The G�machine way of controlling the
execution �ow and evaluation was followed by most of other implementations� even the ones based on
di�erent abstract machines as the Spineless G�Machine ��	� the Spineless Tagless G�machine ��	� TIM
��	� and GM�C ��	�

The �rst author has made several implementations of compiled functional languages in C ��� �� ���
�	� which were close� but worse� in performance to the best assembly language implementations� All
these C�based implementations were portable and simpler than the assembly ones� C was used as a
macro�assembler and all �execution �ow control� was made on a higher�level abstract machine�

In this paper we present �CMC� a new abstract machine� in which we transfer the execution �ow
control to C� as much as possible� The key idea behind �CMC is to take advantage of e�cient context
switching in modern architectures based on RISC� which is able to implement function calls at a very
low cost� We also observed that the object code generated by C compilers is extremely neat and
very fast� These factors lead us to try to translate each function de�nition into a procedure in C�
It is obvious that not all scripts could be translated into C� if we wanted to have a lazy functional

�

language� However� it is safe to translate strict functions on all arguments that produce results of
ground type as procedures in C� The same is also true for arithmetic expressions wherever they appear�
This is the key for the e�ciency of �CMC � A higher�level abstract machine is still needed to glue
together procedure calls� unevaluated expressions and functions� data�structures� etc� Categorical
Multi�Combinators ��� �	 served as a basis for the evaluation model of the �CMC abstract machine�
Our experience with GM�C ��	 and CM�CM ��� ��	 was fundamental for the design� implementation�
and optimisation of �CMC �

In this paper we also compare the performance of �CMC with the Chalmers LML compiler and
with GMC ��	�

Categorical Multi�Combinators

In this section we present a brief introduction to Categorical Multi�Combinators ��	� a rewriting system
which provides the computational model for �CMC � Later� we show how to compile a functional
language directly into �CMC code�

The Source Language

A program is taken to be a sequence of combinator de�nitions together with an expression to be
evaluated� which will involve these combinators�

c� �def combinator�

� � �

cn �def combinatorn

main�expression

A program when compiled will generate a script which is formed by a sequence of combinators linked
to their code thus�

� �

�
��

c� �� ��combinator�		
���

cn �� ��combinatorn		

�
��

The main�expression is compiled separately as�

��main�expression 		�

In order properly to interpret recursion� we assume that the environment � contains the de�nition of
all combinators� so that recursive combinators produce recursive references through the environment�
The notation we use is� with each combinator c there is associated code cr� we supress the environment
� when no confusion is possible�

Compiling into Categorical Multi�Combinators

In Categorical Multi�Combinators function application is denoted by juxtaposition� taken to be
left�associative� The compilation algorithm for translating ��expressions into Categorical Multi�
Combinators is given by the function Rx����xj where each xi is a variable and the corresponding i

its depth in the environment� i�e� the corresponding DeBruijn number� Top level expressions are
translated using an empty environment� so by R� �� For a matter of uniformity combinators will be
represented as composed with a dummy frame� ��� which can be seen as the identity frame�

�T ��� R� � �xk � � ��xl� �z 	
m

�a � hLm���Rxk���xla�� ��i

�T ��� Rx����xja � � � b � Rx����xja � � �Rx����xjb

�T ��� Rx����xjb � b � if b is a constant

�T ��� Rx����xjxi � i

Combinator names are treated as constants�

�

Example of Compilation

The script�

S � �a��b��c�ac�bc�

K � �k��l�k

I � �i�i

SKKI

forms the following environment�

S �� R� ����a��b��c�ac �bc�		

K �� R� ����k��l�k		

I �� R� ����i�i		

which by application of the compilation rules above translates to�

S �� hL���
 ��
��� ��i

K �� hL����� ��i

I �� hL��
�� ��i

The expression to be evaluated is translated as

R� ���SKKI		

which generates SKKI as compiled code�

Categorical Multi�Combinator Rewriting Laws

The core of the Categorical Multi�Combinator machine is presented on page �� of ��	� For a matter
of convenience we will represent the multi�pair combinator� which forms evaluation environments as
�x�� � � � � xn� and compositions� which represent closures� will be written as ha� bi� Using this notation
the kernel of the Categorical Multi�Combinator rewriting laws is�

�M���� hn� �xm� � � � � x�� x��i � xn

�M���� hx�x�x� � � � xn� yi � hx�� yi � � � hxn� yi

�M���� hLn�y�� �w�� � � � � wm�ix�x� � � �xnxn�� � � �xz � hy� �x�� � � � � xn�i xn�� � � �xz

The state of computation of a Categorical Multi�Combinator expression is represented by the
expression itself� Rule �M���� performs environment look�up� this is the mechanism by which a
variable fetches its value in the corresponding environment� �M���� is responsible for environment
distribution� The rule �M���� performs environment formation� if during rewriting a combinator
reaches the leftmost position of the code we proceed a script look�up and enter the corresponding
code in the de�nition environment� This can be expressed as

hl� yi � hlr� yi

From CM�C into �CMC

In this section we give an overview of the �CMC evaluation mechanism�
If one observes the rewriting rules for Categorical Multi�Combinators above we see that rule

�M���� is equivalent to ��Calculus ��reduction�in which substitutions are performed on demand� For

�

a matter of convenience we will structure the Categorical Multi�Combinator expression in two parts�
the reduction stack T and the heap H� where we place evaluation environments� The transition

hT�Hi � hT ��H�i

must be interpreted as� �when the machine arrives at state hT�Hi� it can get to state hT ��H�i� It is
easy to see that the rewriting laws above can be rewritten as state transition rules�

�� hhn� eii�c�H	ei
 �xm� � � � � x��
i � hxn�c�H	ei
 �xm� � � � � x��
i

�� hhx� � � � xn� eii�c�H	ei
 � � �
i � hhx�� eii � � � hxn� eii�c�H	ei
 � � �
i

�� hhLn�y�� eiix� � � �xn�c�Hi � hhy� eji�c�H	ej
 �x�� � � � � xn�
i

�� hhl� eii�c�Hi � hhlr � eii�c�Hi

Instead of manipulating references to environments directly as above we have a stack which keeps
references to the current environment� Variables on the top position of the reduction stack fetch their
values from the current environment� The current environment changes whenever a variable fetches a
closure from the current environment or by creating a new environment via ��reduction� We call the
environment stack E�

�� hn�c�H	e
 �hxm� emi� � � � � hx�� e�i�
� e�Ei � hxn�c�H	ei
 �hxm� emi� � � � � hx�� e�i�
� en�Ei

�� hhLn�y�� eiix� � � �xn�c�Hi � hy�c�H	ej
 �hx�� eii� � � � � hxn� eii�
� ej�Ei

�� hl�c�H�Ei � hhlr� eii�c�H�Ei

Example of Evaluation

The expression SKKI� where S� K� and I correspond to the following entries in the script

S �� L���
 ��
��

K �� L����

I �� L��
�

is evaluated as�

hSKKI�H�Ei
�
� hL���
 ��
�� K K I�H�Ei
�
� h�
 ��
��H�e� � �K K I�	� e��Ei
�
� hK
 ��
��H�e� � �K K I�	� e��Ei
�
� hL����
 ��
��H�e� � �K K I�	� e��Ei
�
� h��H�e� � �h
� e�i� h��
�� e�i�	�e� � �K K I�	� e��e��Ei
�
� h
�H�e� � �h
� e�i� h��
�� e�i�	�e� � �K K I�	� e��e��e��Ei
�
� hI�H�e� � �h
� e�i� h��
�� e�i�	�e� � �K K I�	� e��e��e��Ei

As there are no arguments on the evaluation stack we stop evaluation� The abstract machine presented
above resembles the evaluation mechanism of CM�CM ��	�

Special Functions

Strict functions on all arguments which produce results of ground type are called special� These
functions will fetch their arguments from the evaluation stack and return the result of evaluation
to the top of T� The evaluation of special functions happens outside �CMC � All �CMC does is to
prepare the arguments for them and receive the result� We introduce a new state transition law for
special functions�

�� hfn x� � � � xn�c�H� ei�Ei � hfr�c�H� ei�Ei
where fr
 fn�x��� � � � � x

�
n� and x�i is the weak head normal form of xi�

�

Arithmetic expressions� in general� will be lifted from the code and will be treated in a similar way to
special functions� For instance�

S� � �a��b��c�a�b� c�

generates the following script�

S� �� L��� �f��
��

f� �� ��� �
��

From Interpretation to Compilation

The Categorical Multi�Combinator structures which appear on T are now replaced by code which
when executed will generate a corresponding data structure on T� This data structure is interpreted
by using the state transition laws above� A variable n� for example� is generated on top of T by using
a MKTvar�n� instruction�

The code will always try to predict the behaviour of evaluation and avoid generating intermediate
expressions� as much as possible� The novel aspect of �CMC if compared with its predecessors lies on
translating special functions into procedures in C� In the next section we see �CMC in more details�
We must keep in mind the code sequences generated will perform operations equivalent to the naive
�CMC machine in this section�

Compiling into �CMC Code

We present here the complete set of direct compilation rules for the kernel of �CMC �
A program in �CMC is formed by a set of function de�nitions plus an expression� which we want

to evaluate� as follows�
f�x

�
� � � �x

�
n � body�of�f�

f�x
�
� � � �x

�
m � body�of�f�

���
fzx

z
� � � �x

z
y � body�of�fz

expression�

The expression to be evaluated is compiled by scheme E called as�

E �expression	

Strict functions on all arguments which produce results of ground type are called special� These
functions will be compiled directly as procedures in C� Special functions are compiled as�

fix
i
� � � �x

i
n � body�of�fi fi �� S�body�of�fi 	

Ordinary functions are compiled as�

fjx
j
� � � � x

j
l � body� � of�fj fj �� T x

j

�
���x

j

l �body�of�fj 	

Scheme E

This scheme is responsible for the printing routine and driving the evaluation mechanism�

�� E	k

 printf�k�� if k is a constant

�� E	a� b

 t�
 S �	a
� t�
 S �	b
�printf�t�� t���

�� E	if a � b then c else d

 If true�A�C�D��
where A �� T ��	a
� t�
 ���topT����� rem�value�T ��	b
� t�
 ���topT���� � rem�value� t� � t��
C �� E	c
 D �� E	d
�

�� E	fix� � � � xn

 printf�fi�S
�	x�
� � � � �S

�	xn
��� if fi is a special function�

�� E	fi � � �

 T ��	fi � � �
 print���

Scheme S

This scheme is responsible for starting�up the compilation of special functions generating procedures
in C�

�� S	k

 return�k�� if k is a constant

�� S	x

 return�x�� if x is a variable

�� S	a� b

 return�S �	a
 � S �	b
��

�� S	if �a � b� then c else d

 if �S �	a
� S �	b
� fS	c
g� elsefS	d
g�

�� S	fix� � � � xj

 return�fi�S
�	x�
� � � � �S

�	xj
��� if fi is a special function

�� S �	fix� � � � xj

 T ���fix� � � � xj� return�����topT ���� � rem�value���

Scheme S �

This scheme is ancillary to S and is responsible for the compilation of inner parts of the body of a
special function� generating parts of procedure code in C�

�� S �	k

 k if k is a constant

�� S �	x

 x if x is a variable

�� S �	a� b

 �S �	a
 � S �	b
�

�� S �	if �a � b� then c else d

 if �S �	a
 � S �	b
� f�S	c
�g� elsef�S	d
�g�

�� S �	fix� � � � xi

 fi�S
�	x�
� � � � �S

�	xi
� if fi is a special function�

�� S �	fix� � � � xi

 T ��	fix� � � � xi
 return����topT����� rem�value��

Example of Compilation

Let us show an example of special function compilation� If we have the script�

fib n � if n�� then � else fib�n��� 	 fib�n���

fib �
�

it will be compiled as�

E	fib �

E��
� printf��b�S �	��
���

S���
� printf��b������

Now we compile

fib n � if n�� then � else fib�n��� 	 fib�n���

by using scheme S�

�b �� S	if n � � then � else �b�n � � � � �b�n � � �

S��
� if �S �	n
� S �	�
� fS	�
�g� elsefS	�b�n � � � � �b�n � � �
g�

S
���
� if �n � S �	�
� fS	�
g� elsefS	�b�n� � � � �b�n � � �
g�

S���
� if �n � �� fS	�g� elsefS	�b�n � � � � �b�n � � �
g�

S��
� if �n � �� freturn���g� elsefS	�b�n� � � � �b�n � � �
g�
S��
� if �n � �� freturn���g� elsefreturn�S �	�b�n � � �
 � S �	�b�n � � �
�g�

S���
� if �n � �� freturn���g� elsefreturn��b�S �	�n � � �
� � S �	�b�n � � �
�g�

S���
� if �n � �� freturn���g� elsefreturn��b�S �	�n � � �
� � �b�S �	�n � � �
��g�

S
���
� if �n � �� freturn���g� elsefreturn��b�S �	n
� S �	�
�
� � �b�S �	�n � � �
��g�

S���
� if �n � �� freturn���g� elsefreturn��b�n�S �	�
�
� � �b�S �	�n � � �
��g�

S���
� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�S �	�n � � �
��g�

S
���
� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�S �	n
� S �	�
��g�

S
���
� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�n�S �	�
��g�

S���
� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�n� ���g�

�

As we can see the result of compilation is a procedure in C� which needs only a heading with type
declarations to be compiled and executed by the C machine�

Scheme T

This scheme is responsible for the compilation of ordinary functions and generates code which is
handled by the abstract machine� We assume the arity of a function fn to be n� ��

�� T y����yj 	fnx� � � � xnz� � � � zm

 T �x����xn 	zm
 � � �T �x����xn 	z�
T
x� ���xn 	fnx� � � � xn

�� T y����yj 	fnx� � � � xn

 MKTcte�fn�Z
y����yjx�� � � � �Z

y����yjxn��� if fn is a special function

�� T y����yj 	fnx� � � � xn

 MKEcell�n� ���Gx� ���xn 	x�
n � � �G
x� ���xn 	xn
� Pushfun�fn��Popenv�

�� T y����yj 	fn

 eval����� � � � eval��n��MKTk�n� fn����topT�� rem�value�� � � � � ���topT � n� � rem�value����
if fi is a special function�

�� T y����yj 	fn

 MKenv�n� ���Pushfun�fn��Popenv�

�� T y����yj 	k

 MKTcte�k�� if k is a constant

�� T y����yj 	yi

 MKTvar�i�� if xi is evaluated

�� T y����yj 	yi

 eval env�i��

�� T y����yj 	if a � b then c else d

 If true�A�C�D��
where A �� T y����yj 	a
 t�
 ���topT����� rem�value�T y����yj 	b
 t�
 ���topT����� rem�value� t� � t��
C �� T y����yj 	c
 D �� T y����yj 	d

��� T y����yj 	a� b

 t�
 T y����yj 	a
 t�
 T y����yj 	b
 MKTcte�t�� t���

��� T y����yj 	x��x� � � � xm�

 MKTcomp�A��T y����yj 	x�
 where A �� T y����yj 	x� � � � xm

��� T y����yj 	x� � � � xm

 T �y����yj 	x�
 � � �T
�y����yj 	xm
 T y����yj 	x�

Scheme G

This scheme generates code which when executed �lls the �elds of a cell in an evaluation environment�

�� Gx����xj 	k
i
 MKEcte�k� i��

�� Gx����xj 	xi
j
 MKEvar�xi� j��

�� Gx����xj 	a� b
j
 MKEcte�Z �x� ���xj 	a
 �Z �x� ���xj 	b
� j�� if a and b are evaluated�

�� Gx����xj 	a� b
i
 MKEcomp�A� i�� where A �� T xi ���xj 	a� b
�

�� Gx����xj 	if a then b else c
j
 IfE true�Z �x� ���xj 	a
�B�C� j�� if a is evaluated
where B �� T x����xj 	b
 C �� T x� ���xj 	c

�� Gx����xj 	if a then b else c
i
 MKEcomp�A� i�� where A �� T xi���xj 	if a then b else c
�

�� Gx����xj 	a � � � b
i
 MKEcomp�A� i�� where A �� T xi���xj 	a � � � b
�

�� Gx����xj 	fn
i
 MKEpc�A� i�� where A �� T xi ���xj 	fn
�

Scheme T �

This scheme produces code which when executed generates cells on the top of the T�stack�

�� T �x����xj 	k

 MKTcte�k��

�� T �x����xj 	xi

 MKTvar�i��

�� T �x����xj 	a� b

 MKTcte�Zx����xj 	a
 �Zx� ���xj 	b
�� if a and b are evaluated�

�� T �x����xj 	a� b

 MKTcomp�A�� where A �� T xi ���xj 	a� b

�� T �x����xj 	if a then b else c

 If true�Z
x� ���xj 	a
�B�C�� if a is evaluated�

where B �� T x����xj 	b
�C �� T x� ���xj 	c

�� T �x����xj 	if a then b else c

 MKTcomp�A�� where A �� T x� ���xj 	if a then b else c

�� T �x����xj 	a � � � b

 MKTcomp�A�� where A �� T xi ���xj 	a � � � b

�� T �x����xj 	fi

 MKTpc�A�� where A �� T xi���xj 	fn

�

Scheme Z

This scheme make parameters ready for special functions or arithmetic expressions whenever called
inside an ordinary function�

�� Zx����xj 	k

 k�

�� Zx����xj 	xi

 ���topE� ��topE� � tipo� �� i�� rem�graph� � rem�value�
if xi is already evaluated�

�� Zx����xj 	xi

 eval env�i�� return���topT��� � rem�value��

�� Zx����xj 	fia � � � b

 fi�Z
x����xj 	a
� � � � �Zx����xj 	b
�� if fi is a special function�

�� Zx����xj 	a � � � b

 T x� ���xj 	a � � � b
 return����topT ���� � rem�value��

�� Zx����xj 	a� b

 Zx����xj 	a
 � Zx����xj 	b
�

Scheme Z �

This scheme make parameters ready for special functions or arithmetic expressions whenever called
inside a cell generating scheme�

�� Z �x����xj 	k

 k�

�� Z �x����xj 	xi

 ����topE� �� � ��topE � �� � tipo� �� i�� rem�graph� � rem�value�
if xi is already evaluated�

�� Z �x����xj 	xi

 eval env�i�� return���topT��� � rem�value��

�� Z �x����xj 	fia � � � b

 fi�Z
�x� ���xj 	a
� � � � �Z �x����xj 	b
�� if fi is a special function�

�� Z �x����xj 	a � � � b

 T x� ���xj 	a � � � b
 return����topT ���� � rem�value��

�� Z �x����xj 	a� b

 Z �x����xj 	a
 �Z �x� ���xj 	b
�

Example of Compilation

Let us show an example of compilation of an ordinary function� If we have the script�

fib n � if n�� then � else fib�n��� 	 fib�n���

twice f x � f �f x�

twice fib ��

it will be compiled as�

E	twice fib �

E��
� T ��	twice �b �
�print���
T ��
� MKEcell����G��	fib
�G��	�
��Pushfun�twice��Popenv�print���
G�	
� MKEcell����MKEpc�A� ���G��	�
��Pushfun�twice��Popenv�print���

G��
� MKEcell����MKEpc�A� ���MKEcte��� ���Pushfun�twice��Popenv�print���

where A is�

A �� T f�x	�b

T ��
� eval�����MKTk����b����topT��� rem�value���

Now we compile

twice f x � f �f x�

by using scheme T as�

twice �� T f�x 	f �f x�

T ���
� MKTcomp�A���T f�x	f

T �	
� MKTcomp�A��� eval env����

where A� is�

A� �� T f�x 	f x

T ���
� T �f�x	x
�T f�x	f
�

T � ��
� MKTvar����T f�x	f
�
T �	
� MKTvar���� eval env����

�b is as in the previous example of compilation above�

�

State Transition Laws

We present �CMC as a state transition machine� A state of �CMC is a �uple

hC� T�H�O�Ei

in which each component is interpreted in the following way�

C	 The code to be executed�
This code is generated by the translation rules presented by the compilation schemes above�

T	 The reduction stack� The top of T points to the part of the graph to be evaluated�

H	 The heap where graphs are stored� The notation H�d � e� � � � en	 means that there is in H a
n�component cell named d� The �elds of d are �lled with e� � � � en� in this order�
Cells are fully�boxed�

O	 The output�

E	 The environment stack� Its top contains a reference to the current environment�

�CMC is de�ned as a set of transition rules� The transition

hC� T�H�O�Ei � hC�� T ��H�� O�� E�i

must be interpreted as� �when the machine arrives at state hC� T�H�O�Ei� it can get to state
hC�� T ��H�� O�� E�i��

We present here the complete set of state transition laws for the kernel of �CMC �

�� hprint�c� d�T� H	d
k
� O� E i � h c� T� H	d
k
� k�O� E i

�� h eval�c� d�T� H	d
k
� O� E i �h c� d�T� H	d
k
� O� E i

�� h eval�c�d�T�H	d
�A�e�
� O� E i � hA�Popenv�c� T� H	d
�A�e�
� O� e�E i

�� h eval�c�d�T�H	d
fn
� O� E i �h fn�c� T� H	 d
 fn
� O� E i

�� h eval��i��c� � � � di � � � �T� H 	di
k
� O� E i �h c� � � � di � � �T� H 	d
k
 � O� E i

�� h eval��i��c�� � � di � � � �T�H	di
�A�e�
� O� E i � hA�Pop�i��c� � � � di � � �T� H 	d
�A�e�
� O� e�E i

�� h eval��i��c�� � � di � � � �T�H	di
 fn
� O� E i �h c� � � � di � � �T� H 	 d
 fn
� O� E i

�� h eval env�i��c� T� H	e
� � � fn � � �
� O� e�E i � h fn� T� H	e
� � � fn � � �
� O� e�E i

�� h eval env�i��c� T� H	e
� � � ui � � �
� O� e�E i � h eval�c� ui�T� H	e
� � � ui � � �
� O� e�E i

��� hMKenv�n��c� d�� � � � dn � � � dm�T� H�O� E i � h c�dn
� � � � dm�T� H 	e
d� � � � dn
� O� e�E i

��� hPopenv�c� T� H� O� e�E i �h c� T� H� O� E i

��� hPop�i��c�d�d� � � � di � � �T� H� O� e�E i �h c�d� � � � d� � � �T� H� O� E i

��� hPushfun�fi��c� T� H� O� E i � h fi�c� T� H� O� E i

��� h If true�True�A�B��c� T� H� O� E i � hA�c� T� H� O� E i

��� h If true�False�A�B��c� T� H� O� E i � hB�c� T� H� O� E i

��� hMKTvar�k��c� T� H	e
e� � � � em
� O� e�E i � h c� d�T� H	d
 em�k
	e
e� � � � em
� O� e�E i

��� hMKTcomp�P��c� T� H� O� e�E i � h c� d�T� H	d
�P�e�
� O� e�E i

��� hMKTpc�A��c� T� H� O� E i � h c� d�T� H	d
 A
� O� E i

��� hMKTcte�k��c� T� H� O� E i � h c� d�T� H	d
 k
� O� E i

��� hMKTk�n�A��c� d� � � � dn � � � dm �T� H 	dn
� � �
� O� E i � h c� dn � � � dm �T� H 	dn
A
 � O� E i

��� hMKEvar�j�i��c� T� H	e�
 � � � ui � � �
 	e�
 � � � aj � � �
� O� e��e��E i �
h c� T� H	e�
� � � aj � � �
 	e�
 � � � aj � � �
� O� e��e��E i

��� hMKEcte�k�i��c� T� H	e�
 � � � ui � � �
 O� e��E i �h c� T� H	e�
� � � k � � �
� O� e��E i

��� hMKEcell�n��c� T� H� O� E i � h c� d�T� H	e
u� � � � un
� O� E i

��� hMKEcomp�A�i��c� T� H	e�
 � � � ui � � �
�O� e��e��E i �h c�T�H	e�
� � ��A�e��� � �
� O� e��e��E i

��� hMKEpc�A�i��c� T� H	e
� � � i � � �
� O� e�E i � h c� d�T� H	e
� � �A � � �
� O� e�E i

��� h IfE true�True�B�C�i��c� T� H	e�
 � � � ui � � �
�O� e��e��E i � h c� T� H	e�
� � � �B�e�� � � �
� O� e��e��E i

��� h IfE true�False�B�C�i��c� T� H	e�
 � � � ui � � �
�O� e��e��E i � h c� T� H	e�
� � � �C�e�� � � �
� O� e��e��E i

�

Example of Evaluation

As we saw in the examples of compilation above� the program�

fib n � if n�� then � else fib�n��� 	 fib�n���

twice f x � f �f x�

twice fib ��

compiled as�

twice fib � �� MKEcell����MKEpc�A� ���MKEcte��� ���Pushfun�twice��Popenv�print���

A �� eval�����MKTk����b����topT��� rem�value���

twice �� MKTcomp�A��� eval env����

A� �� MKTvar���� eval env����

�b �� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�n� ���g�

The initial state of the machine is�

hMKEcell���� MKEpc	A��
� MKEcte������ Pushfun�twice�� Popenv� print��� �T�H�O�E i

executing this code using the state transition laws above we have�

��
� hMKEpc�A����MKEcte��� ���Pushfun�twice��Popenv�print��� � T� H	e�
 � �
�O� e��Ei
��
� hMKEcte��� ���Pushfun�twice��Popenv� print��� � T� H	e�
 A d�
�O� e��Ei
��
� hPushfun�twice��Popenv�print��� � T� H	d�
 �
	e�
 A d�
�O� e��Ei
��
� hMKTcomp�A��� eval env����Popenv�print��� � T� H	d�
 �
	e�
 A d�
�O� e��Ei
��
� heval env����Popenv�print��� � d��T�H	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��Ei
	
� heval�����MKTk��� �b����topT��� rem�value���Popenv�print��� �

d��T�H	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��Ei
�
� hMKTvar���� eval env����Pop����MKTk����b����topT��� rem�value���Popenv�print��� �

d��T�H	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��e��Ei
��
� heval env����Pop����MKTk����b����topT��� rem�value���Popenv�print��� �

d��d��T�H	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��e��Ei
	
� heval�����MKTk��� �b����topT��� rem�value���Pop����MKTk����b����topT��� rem�value���Popenv�print��� �

d��d��T�H	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��e��Ei
�
� hMKTk����b����topT��� rem�value���Pop����MKTk��� �b����topT��� rem�value���Popenv�print��� �

d��d��T�H	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��e��Ei
��
� hPop����MKTk����b����topT�� � rem�value���Popenv�print��� �

d��d��T�H	d�
 �
	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��e��Ei
��
� hMKTk����b����topT��� rem�value���Popenv�print��� �

d��T�H	d�
 �
	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��Ei
��
� hPopenv� print��� � d��T�H	d�
 �

	d�
 �
	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� e��Ei
��
� hprint��� � d��T� H	d�
 �

	d�
 �
	d�
 �A�� e��
	d�
 �
	e�
 A d�
�O� Ei
�
� h � T� H	d�
 �

	d�
 �
	d�
 �A�� e��
	d�
 �
	e�
 A d�
� �
�O�Ei

Compiling Lists

Now we enrich �CMC with lists� A new compilation scheme� called L� is introduced� Some of the
previous compilation schemes need to be extended�

�

Scheme E

�� E		

 printf�	
��

�� E	a � b

 E	a
 E	b
 print���

�� E	Hd�a � � � b�

 T ��	a � � � b
 Hd�printf����topT���� � rem�value��

�� E	Tl�a � � � b�

 T ��	a � � � b
 Tl�print���

��� E	Hd�a � b�

 E	a

��� E	Tl�a � b�

 E	b

Scheme T

��� T x� ���xj 	 	

 MKTlv�

��� T x� ���xj 	Hd xi

 Ehd�i��

��� T x� ���xj 	Hd�a � b�

 T x� ���xj 	a

��� T x� ���xj 	Hd�a � � � b�

 T x����xj 	a � � � b
 Hd�

��� T x� ���xj 	a �Hd b � � ��

 T x����xj 	b � � �
 Hd�T x� ���xj 	a

��� T x� ���xj 	Tl xi

 Etl�i��

��� T x� ���xj 	Tl�a � b�

 T x����xj 	b

��� T x� ���xj 	Tl�a � � � b�

 T x� ���xj 	a � � � b
 Tl�

��� T x� ���xj 	a �Tl b � � ��

 T x� ���xj 	b � � �
 Tl�T x� ���xj 	a

��� T x� ���xj 	a � b

 T �x� ���xj 	a
 T �x����xj 	b
 MKcons�

��� T x� ���xj 	if xi
 	
 then b else c

 Enull� �i� l���T
x� ���xj 	b
 Jmp l�� l� � T

x� ���xj 	c
 l� �

Scheme G

�� Gx����xj 	 	

j
 MKElv�j��

��� Gx����xj 	Hd xi
j
 Ehd��i� j��

��� Gx����xj 	Hd�a � b�
j
 Gx����xj 	a
j

��� Gx����xj 	Tl xi
j
 Etl��i� j��

��� Gx����xj 	Tl�a � b�
j
 Gx� ���xj 	b
j

��� Gx����xj 	a � b
j
 Lx� ���xj 	a
 Lx� ���xj 	b
 MKEcons��j��

Scheme T �

�� T �x����xj 	 	

 MKTlv�

��� T �x����xj 	 Hd xi

 Ehd�i��

��� T �x����xj 	Hd�a � b�

 T �x� ���xj 	a

��� T �x����xj 	 Tl xi

 Etl�i��

��� T �x����xj 	Tl�a � b�

 T �x����xj 	b

��� T �x����xj 	a � b

 MKTcomp�A�� where A �� T x� ���xj 	 a � b

Scheme L

�� Lx� ���xj 	 xi

 MKETvar�i��

�� Lx� ���xj 	 k

 MKTcte�k��

�� Lx� ���xj 	a� b

 MKTcte�Z �x����xj 	a
 �Z �x� ���xj 	b
�� if a and b are evaluated�

�� Lx� ���xj 	a� b

 MKTcomp�A�� where A �� T xi ���xj 	a� b
�

�� Lx� ���xj 	if a then b else c

 IfE true�T x� ���xj 	a
�B�C� if a is evaluated�
where B �� T x� ���xj 	b
 C �� T x� ���xj 	c

�� Lx� ���xj 	if a then b else c

 MKETcomp�A�� A �� T x� ���xj 	if a then b else c

�� Lx� ���xj 	 a � b

 Lx� ���xj 	 a
 Lx� ���xj 	b
 MKcons� if a is evaluated�

��

�� Lx� ���xj 	 a � b

 MKETcomp�A�� where A �� T x� ���xj 	 a � b

�� Lx� ���xj 	fix� � � � xm

 MKTcte���Z �x� ���xjx�� � � � �Z
�x� ���xjxn��� if fi is a special function

��� Lx� ���xj 	fi

 MKTpc�fi��

��� Lx� ���xj 	 	

 MKTlv�

��� Lx� ���xj 	Hd xi

 EThd�i��

��� Lx� ���xj 	Hd�a � b�

 Lx� ���xj 	a

��� Lx� ���xj 	Tl xi

 ETtl�i��

��� Lx� ���xj 	Tl�a � b�

 Lx� ���xj 	b

��� Lx� ���xj 	 a � � �b

 MKETcomp�A�� where A �� T x����xj 	 a � � �b

Example of Compilation

Let us present an example of compilation involving lists� If we have the script�

map f x � if x�
� then
� else f�Hd x��map f �Tl x�

fib n � if n�� then � else fib�n��� 	 fib�n���

twice f x � f �f x�

map �twice fib� ������
����

it will be compiled as�

E	map �twice fib� �� � �� � 	
��

E��
� T ��	map �twice �b� �� � �� � 	
��
�print���
T ��
� MKEcell����G��	twice fib
��G��	�� � �� � 	
��
��Pushfun�map��Popenv�print���
G��
� MKEcell����MKEcomp�B� ���G��	�� � �� � 	
��
��Pushfun�map��Popenv�print���
G���
� MKEcell����MKEcomp�B� ���L��	�
 L��	�� � 	
�

MKEcons�����Pushfun�map��Popenv�print���
L��
� MKEcell����MKEcomp�B� ���MKTcte���� L��	�� � 	
�

MKEcons�����Pushfun�map��Popenv�print���
L��
� MKEcell����MKEcomp�B� ���MKTcte���� L��	�
 L��		

MKcons�MKEcons�����Pushfun�map��Popenv�print���
L��
� MKEcell����MKEcomp�B� ���MKTcte����MKTcte���� L��		

MKcons�MKEcons�����Pushfun�map��Popenv�print���
L���
� MKEcell����MKEcomp�B� ���MKTcte����MKTcte����MKTlv�

MKcons�MKEcons�����Pushfun�map��Popenv�print���

where B is�

B �� T ��	twice �b

T ���
� T ���	�b
 T ��	twice

T ��	
� MKTpc�A��T ��	twice

T ��
� MKTpc�A��MKenv����Pushfun�twice��Popenv�

and A is as in the last example of compilation� Now we translate map by using scheme T �

map �� T f�x	if x
 	
 then 	
 else f �Hd x � � map f �Tl x �

T ���
� Enull��� l���T

f�x		

 Jmpl�� l� �T f�x	f �Hd x � � map f �Tl x �
 l� �

T ���
� Enull��� l���MKTlv� Jmpl�� l� �T f�x	f �Hd x � � map f �Tl x �
 l� �

T ���
� Enull��� l���MKTlv� Jmpl�� l� �T f�x	f �Hd x �
T �f�x	map f �Tl x �
�MKcons� l� �

��

T �

� Enull��� l���MKTlv� Jmpl�� l� �T f�x	f �Hd x �
T �f�x	map f �Tl x �
�MKcons� l� �

T ��	
� Enull��� l���MKTlv� Jmpl�� l� �T f�x	x
 Hd�T f�x	f
 T �f�x	map f �Tl x �
�MKcons� l� �

T ��
� Enull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd�T f�x	f
 T �f�x 	map f �Tl x �
�MKcons� l� �

T �	
� Enull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd� eval env���� T �f�x	map f �Tl x �
�MKcons� l� �

T
���
� Enull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd� eval env����MKTcomp�C��MKcons� l� �

where�

C �� T f�x	map f �Tl x �

T ��
� MKEcell����Gf�x	f
� Gf�x	�Tl x �
� Pushfun�map��Popenv�
G��
� MKEcell����MKEvar��� ���Gf�x	�Tl x �
� Pushfun�map��Popenv�
G���
� MKEcell����MKEvar��� ���Etl���� ���Pushfun�map��Popenv�

New State Transition Laws

�CMC with lists also makes use of the following state transition laws�

��� hprint�c� d�T� H	d
 a � b
� O� E i � h eval�print�eval�print�c� a�b�T� H	d
a � b
� O� E i

��� hprint�c� d�T� H	d
	

� O� E i �h c� T� H	d
	

� O� E i

��� hHd�c� d�T� H	d
a � b
� O� E i � h c� a�T� H	d
a � b
� O� E i

��� hTl�c� d�T� H	d
a � b
� O� E i � h c� b�T� H	d
a � b
� O� E i

��� hMKcons�c� d��d��T� H	d�
 b
	d�
 a
� O� E i � h c� d�T� H	d
d��d�
� O� E i

��� hMKTlv�c� T� H� O� E i � h c� d�T� H	d
 	

� O� E i

��� hMKElv�i��c� T� H	e�
 � � � ui � � �
� O� e��E i � h c� T� H	d
	

	e�
� � � d � � �
� O� e��E i

��� hMKEcons��i��c� d��d��T� H	d�
 a
	d�
b
	e�
 � � � ui � � �
� O� e��E i � h c� T� H	d
d� � d�
	e�
� � � d � � �
�
O� e��E i

��� hMKETvar�i��c� T� H	e�
 � � � ui � � �
� O�e�� e��E i � h c�d�T� H	d
 ui
	e�
 � � � ui � � �
� O� e�� e��E i

��� hMKETcomp�A��c� T� H� O�e�� e��E i � h c�d�T� H	d
 �A� e��
� O� e�� e��E i

��� hEhd�i��c� T� H	e�
 � � � �a � b� � � �
� O� e��E i �h c� a�T� H	e�
� � �
� O� e��E i

��� hEtl�i��c� T� H	e�
 � � � �a � b� � � �
� O� e��E i �h c� b�T� H	e�
� � �
� O� e��E i

��� hEThd�i��c� T� H	e�
 � � � �a � b� � � �
� O� e��e��E i �h c� a�T� H	e�
� � �
� O� e��e��E i

��� hETtl�i��c� T� H	e�
 � � � �a � b� � � �
� O� e��e��E i �h c� b�T� H	e�
� � �
� O� e��e��E i

��� h Ehd��i�j��c� T� H	e�
 � � � xj � � �
 	e�
 � � � �a � b� � � �
� O� e��e��E i �h c� T� H 	e�
 � � � a � � �
 	e�
 � � �
�
O� e��e��E i

��� hEtl��i�j��c� T� H	e�
 � � � xj � � �
 	e�
 � � � �a � b� � � �
� O� e��e��E i �h c� b�T� H 	e�
 � � � b � � �
	e�
� � �
� O�
e��e��E i

��� hEnull�n�l�� � � � l��c� T� H	d�
	

	e�
 � � � dn � � �
� e��E i � h c�T�H	d�
	

	e�
 � � � dn � � �
� e��E i

��� h Jmp l � � � l�c� T� H� O� E i � h c� T� H� O� E i

��� h Jfalse�False�l� � � � l�c� T� H� O� E i � h c� T� H� O� E i

��� h Jfalse�True�l� �c� T� H� O� E i � h c� T� H� O� E i

Example of Evaluation

As we saw in the examples of compilation above� the program�

map f x � if x�
� then
� else f�Hd x��map f �Tl x�

fib n � if n�� then � else fib�n��� 	 fib�n���

twice f x � f �f x�

map �twice fib� ������
����

��

compiled as�

map �twice fib� �� � �� � 	
�� �� MKEcell����MKEcomp�B� ���MKTcte����MKTcte����MKTlv�

MKcons�MKcons�MKEcons�����Pushfun�map��Popenv�print���

B �� MKTpc�A��MKenv����Pushfun�twice��Popenv�

map �� Enull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd� eval env����MKTcomp�C��MKcons� l� �

C �� MKEcell����MKEvar��� ���Etl���� ���Pushfun�map��Popenv�

A �� eval�����MKTk����b����topT��� rem�value���

twice �� MKTcomp�A��� eval env����

A� �� MKTvar���� eval env����

�b �� if �n � �� freturn���g� elsefreturn��b�n� �� � �b�n� ���g�

The initial state of the machine is�

hMKEcell���� MKEcomp�B���� MKTcte���� MKTcte���� MKTlv� � � � �T�H�O�E i

executing this code using the state transition laws above we have�

��
� hMKEcomp�B� ���MKTcte����MKTcte����MKTlv� � � � � T� H	e�
 ��
�O� e��Ei
��
� hMKTcte����MKTcte����MKTlv� � � � � T�H	e�
 �B� e��
	e�
 e��
�O� e��Ei
�

� hMKTcte����MKTlv� � � � � d��T� H	d�
 �
	e�
 �B� e��
	e�
 e��
�O� e��Ei
�

� hMKTlv� � � � � d��d��T� H	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e��
�O� e��Ei
��
� hMKcons�MKEcons�����Pushfun�map��Popenv�print��� � d��d��d��T�

H	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e��
�O� e��Ei
��
� hMKEcons�����Pushfun�map��Popenv� print��� � d��d��T�

H	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e��
�O� e��Ei

at this point of execution the graph for the list is complete and we enter the code for map�

��
� hPushfun�map��Popenv�print��� � d��T�H	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e��
�O� e��e��Ei
��
� hEnull��� l���MKTlv� Jmpl�� l� �MKTvar����Hd� eval env����MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e�d�
�O� e��Ei
��
� hMKTvar����Hd� eval env����MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e�d�
�O� e��Ei
��
� hHd� eval env����MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e�d�
�O� e��Ei
��
� heval env����MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e�d�
�O� e��Ei

� heval�MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e�d�
�O� e��Ei
�
� hMKTpc�A��MKenv����Pushfun�twice��Popenv�Popenv�MKTcomp�C��MKcons� l� �Popenv�print��� � d��T�

H	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e�d�
�O� e��e��Ei
�	
� hMKenv����Pushfun�twice��Popenv�Popenv�MKTcomp�C��MKcons� l� �Popenv�print��� � d��d��T�

H	d�
 A
	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e�d�
�O� e��e��Ei
��
� hPushfun�twice��Popenv�Popenv�MKTcomp�C��MKcons� l� �Popenv�print��� � e��T�

H	e�
 d�d�
	d�
 A
	d�
 d� � d�
	d�
 d� � d�
	d�
 	

	d�
 �
	d�
 �
	e�
 �B� e��
	e�
 e�d�
�O� e��e��Ei

Now the code for twice is called taking as arguments fib and �� which are referenced by the frame on
the top of the environment stack� The reduction sequence above gives an idea of how �CMC evaluates
lists�

��

Optimisations

A number of code optimisations should be introduced to �CMC in order to obtain a better perfor�
mance� In this section we present the most important of them�

Sharing

Sharing of computation can bring substantial improvement to the performance of the machine� There
is a number of ways sharing can be incorporated to �CMC � Although the authors are still experi�
menting to know the best possible way� the sharing mechanism implemented at the moment is similar
to the one in CMCM ��� ��	� which is inspired in the frame update mechanism of TIM ��	� Now� the
user provides annotations �U combinator� to specify variables one wants to share�
The U combinator performs the following state transition�

��� hU	i
�c�d�T� H	e�
 � � � ai � � �
� O� e��E i �h c� d�T� H	e�
� � � d � � �
� O� e��E i

As Categorical Multi�Combinators do not allow for partial applications to be reduced we think of
using Partial Categorical Multi�Combinators � 	 to deal with sharing of partial applications�

Tail Recursion

Functions over lists recursively de�ned as

fn x� � � �xn � if a then b else z � �fn y� � � � yn�

such as map� are of widespread use in functional programs� The compilation schemes we have generate
an environment every time we make a recursive call and discard the environment used for the previous
call� To increase the performance of �CMC we avoid garbage generation by compiling tail recursive
functions as

�fn x� � � �xn � if xi � � 	 then b else z � �fn y� � � � yn�	

by the following entries in the script�
fn �� Enull�i� l���T

x� ���xn 	b
 Jmp l�� l� �T x����xn 	z
 MKTcomp�A��MKenv�n� ���MKcons� l� �
A �� Gx� ���xn 	yn
n � � � G

x����xn 	y�
� Swap�Pushfun�f �n��Popenv�
f �n �� Enull�i� l���T

x����xn 	b
 Jmp l�� l� �T xl ���xj 	z
 MKTcomp�A��MKcons� l� �
The state transition law for Swap is�

��� hSwap�c� T� H� O� e��e��E i �h c� A�T� H� O� e��e��E i

Recursive Functions

Recursion is fundamental for functional programming languages� Many functions are not special thus
can not bene�t from the very e�cient handling of recursion made by the C compiler� which takes
advantage of the fast context switching mechanism of RISC architectures� Better performance can be
obtained if we introduce a stack to handle recursion� Thus we translate functions de�ned as

fn x� � � � xn � if a � b then c else fn y� � � �yn

by using the following scheme�
fn �� pushR�
�!

LP� �Jfalse�T x����xj �a	! t� � ���topT���� � rem�value!
T x����xj �b	! t�� ���topT���� � rem�value! t� � t�!� l��! T

x����xj c!
Jmp l�!
l� �MKEcell�n� ��!
Gx����xn �yn	n
���
Gx����xn �y�	

pushR���! Jmp�LP��!
LP� � Popenv!
l� � if���topR���� �� �� Jmp�LP��!

�

Avoiding Indirections

Functions which take only one parameter are frequent� Because we adopted a fully�boxed representa�
tion the cell which represents the environment of a function to one argument works as an indirection
cell� One can avoid the generation of this indirection cell by making the environment stack point
directly to its argument� New operators are needed for this optimisation� For a matter of simplicity
we will call them as before su�xed by
� For instance� instruction Ehd�i� becomes Ehd��

Monomorphic Print

Instead of having a general �polymorphic� printing routine� which at run�time tests the data produced
to output it� we use information provided by the type�checker to choose statically which printing
function is suitable for printing the output�

Performance

In this section we present the performance �gures obtained for the benchmark programs below running
on a SUN Sparckstation II under UNIX�

Fib �
	 the Fibonacci number of �

Rev	 reverse reverse reverse of a list of �

 numbers�

Sieve	 generates a list of prime numbers smaller than �

 by using Erathosthenes
 sieve�

Insord	 sorting by insertion of a list of �

 random numbers�

Simlog	 takes a list of �

 random numbers and produces �

 boolean values�

Map	 maps �twice twice twice successor� on a list of �

 integers�

Tak	 Takeiushi function of �
 � � �

Prog Fib �� Rev Sieve Insord Simlog Map Tak

GM�C �
�� " ��� �
 ��� ��� ������
�CMC �� �� ��� ���
��
� ���
LML ��� ��
 ��� ��
��
�� ����

GM�C corresponds to the last version of GM�C ��	 done by Musicante and Lins� �CMC refers to our
best implementation of �CMC� LML presents the performance of the Chalmers Lazy ML compiler
version
������

As we can observe from the table above the performance of �CMC is far better than GM�C� for all
our benchmark programs� �CMC presented a performance close to LML in the benchmark programs
which made intensive use of higher�order�functions and lazy evaluation� In the case of the use of strict
functions under recursion �CMC performed far better than LML�

Further Work � Conclusions

The authors are currently working on a front�end for �CMC and also analysing a number of opti�
misations to the back�end� We believe the benchmark �gures we presented are representative of the
performance of �CMC and that they scale�up for larger programs�

In our opinion� �CMC has already shown that transferring the �ow of execution from a higher�
level abstract machine to C� by using procedure calls� brings not only portability but also e�ciency
on RISC architectures� The performance of �CMC is in the worst case as good as the Chalmers LML
compiler� In the best case� �CMC can run several times faster than LML�

��

Acknowledgements

We express gratitude for several discussions with Ricardo Massa and Gen#esio Neto�
Research reported herein has been sponsored jointly by The British Council� CNPq �Brazil� grants

�
����
$����� ���
���$����� and �
�� �
$����� and CAPES �Brazil� grant ����$���
��

References

��	 G�L�Burns� S�L�Peyton Jones and J�D�Robson� The spineless g�machine� In Proc�ACM Conference

on Lisp and Functional Programming� pages ���%� �� Snowbird� USA� �����

��	 J�Fairbairn and S�Wray� TIM� A simple� lazy abstract machine to execute supercombinators�
In Proceedings of Third International Conference on Functional Programming and Computer

Architecture� pages ��%� � LNCS ���� Springer Verlag� �����

��	 L�Cardelli� The functional abstract machine� Polymorphism� �� �����

��	 R�D�Lins� Categorical Multi�Combinators� In Gilles Kahn� editor� Functional Programming

Languages and Computer Architecture� pages �
%��� Springer�Verlag� September ����� LNCS
����

� 	 R�D�Lins� Partial Categorical Multi�Combinators� UKC�Computing Lab�Report �$��� The Uni�
versity of Kent at Canterbury� April ����

��	 R�D�Lins & S�J�Thompson� CM�CM� A Categorical Multi�Combinator machine� In Proceedings

of XVI LatinoAmerican Conference on Informatics� Assuncion� Paraguay� September ���
�

��	 R�D�Lins & S�J�Thompson� Implementing SASL using Categorical Multi�Combinators� Software
� Practice and Experience� �
��������%��� � November ���
�

��	 M�A�Musicante & R�D�Lins� GMC� A Graph Multi�Combinator Machine� Microprocessing and

Microprogramming� �����%� � April �����

��	 S�L�Peyton Jones and J�Salkild� The spineless tagless g�machine� In Proc�ACM Conference

on Functional Programming Lannguages and Computer Architecture� pages ���%�
�� Snowbird�
USA� �����

��
	 T�Johnsson� Compiling Lazy Functional Languages� PhD thesis� Chalmers Tekniska H�ogskola�
G�oteborg� Sweden� January �����

���	 S�J�Thompson & R�D�Lins� The Categorical Multi�Combinator Machine�CM�CM� The Program�
ming Journal� vol � ������
����� BCS� Cambridge University Press� April �����

���	 D�A� Turner� A new implementation technique for applicative languages� Software � Practice

and Experience� �� �����

��

