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Abstract—Maodelling the failure process of a system is one of
the most important problems in the reliability and maintenance
research community. The geometric process (GP) is widely used
for modelling the failure process because it can describe the
phenomenon that the working times after repairs become shorter
and shorter. This article reviews the geometric process and its
extensions based on existing research. It also reviews relevant
methods for estimating parameters, model performances, and
widely used distributions for times to first failures. Future
challenges for the GP-like processes will be discussed.

Index Terms—Geometric process, Reliability, Stochastic pro-
cess, Parameter estimations, Model performance

I. INTRODUCTION

Modelling the failure process of a system has been an
important process in the reliability and maintenance research
community. Its focus is on modelling the working times
between failures (WTBF). A common phenomenon is that
WTBF of a system after repairs may become shorter and
shorter, and the repair times may become longer and longer.
This phenomenon can be described by the geometric process
(GP), which was first introduced by [1]. Since then, the GP
has been widely applied in different fields such as software
reliability analysis [2], [3], reliability analysis [4], maintenance
policy optimisation [5], [6], warranty analysis [7] and electric-
ity pricing, etc. [8]-[11]. Besides, the multiple extensions of
the GP has been introduced: the arithmetic geometric process
(AGP) [12], the a-series process (a-series) [13], the threshold
geometric process (TGP) [14], the extended poisson process
(EPP) [15], the exponent extended geometric process (EEGP)
[16], the extended geometric process (EGP) [17], the doubly
geometric process (DGP) [18], the semi-geometric process
(SGP) [19], the alternating geometric process (alternating GP)
[7], and the double ratio geometric process (DRGP) [20].

The flexibility of GP’s extensions means that the GP-
like models can be widely used in not only reliability and
maintenance but also other fields. Therefore, the purposes of
this paper are

« to conduct a brief review of the existing extensions of the

GP;

e to review the estimation methods of the GP and its

extensions; and

o to review the application of the GP and its extensions in

other fields.

Shaomin Wu
Kent Business School
University of Kent
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s.m.wu@XKkent.ac.uk

The remainder of the paper is structured as follows. Section
IT describes the GP and its extensions according to existing
research. Section III describes the common estimation methods
of the parameters and model performance. Section IV de-
scribes the application beyond the reliability and maintenance.

II. THE GP AND ITS EXTENSIONS

This section introduces the GP and its extensions in detail.
Before that, relevant concepts will be introduced.

Assume that X and Y are two random variables. If for every
real number u, the inequality

PX>u)>PY >u)

holds, then X is stochastically greater than or equal to Y,
or Y is stochastically less than or equal to X. Then, the
monotonicity of a stochastic process can be defined as the
following.

Definition 1: [21] Given a stochastic process { X = 1,2...},
if X <g Xpy1 or Xp >4 Xgq1 for £ = 1,2... then
{Xk,k=1,2,...} is stochastically increasing or decreasing.

[1] proposes the definition of the GP, as shown below.

Definition 2: [1] Given a sequence of non-negative random
variables { X,k = 1,2,...}, if they are independent and the
cdf of X}, is given by F(a*~1x) for k = 1,2,..., where a
is a positive constant, then {X;, &k = 1,2,---} is called a
geometric process (GP).

A. The arithmetic geometric process (AGP)

The AGP is proposed by [12] with the following definition.

Definition 3: [12] Given a sequence of random variable
{ Xk, k =1,2,...}, if for real positive number a and real num-
ber d, and the cdf of X}, is given by F(a* "1z +a*~1(k—1)d),
where d and a are called the common difference and common
ratio of the AGP, respectively, then { X, k = 1,2, ...} is called
an AGP.

B. The a-series process (a-series)

The a-series process (short for: a-series) is proposed by
[13]. It considers that the expected number of counts at an
arbitrary time does not exist for the decreasing geometric
process. The a-series process has a finite expected number
of counts within certain conditions.



Definition 4: [13] alpha-seriesGiven a sequence of non-
negative random variables {Xy,k = 1,2,...}, if they are
independent and the cdf of Xj is given by F(k%z) for
k =1,2..., where « is a positive constant.

C. Threshold geometric process (TGP)

The threshold geometric process (TGP) is proposed by [14].
The main characterise of TGP is that it can describe non-
monotonous trends in a failure process. According to [14], it
has separate GPs and the kth GP is denoted

GP, ={X;, T, <i<Tpi},k=1,.. K,

to each trend with turning point 7,,. Then each GP has its a
and the following definition can be introduced

Definition 5: [14] Given a sequence of non-negative random
variables { X,k = 1,2, }, if they are independent and the
cdf of X} is given by F(a;;T"x) for k = 1,2..., where a is a
positive constant, then { X,k = 1,2, ...} is called a threshold
geometric process.

D. The Extended Poisson Process (EPP)

The extended Poisson process(EPP) is proposed by [15].
Similar to the TGP, the EPP can model a failure process with
non-monotonous trends.

Definition 6: [15] Given a sequence of non-negative random
variables { X,k = 1,2, ...}, if they are independent and the
cdf of Xy, is given by F((aa®~! + gbv*~1)x) for k = 1,2...,
where F'(x) is an exponential c¢df, a + 8 # 0, a, 8 > 0,
a>0and 0 <b<l1,then {Xi,k=1,2,...} is called as an
extended poisson process (EPP).

E. Binary geometric process (BGP)

The binary geometric process (BGP) is proposed by [22] for
longitudinal binary data with rends. The definition is given by

Definition 7: [22] Given a sequence of non-negative random
variables { X, k = 1,2, ...}, which is a GP, if W} is given by
Wy = (X > 1) = I(Y}, > a*71), and the cdf of Y}, is
1 — F(a*'z), then {Y},k = 1,2,...} is called as a binary
GP model.

F. Exponent extended geometric process (EEGP)

[16] proposed the EEGP with the following definition.
Definition 8: [16] Given a sequence of non-negative random
variables { Xy, k = 1,2, ...}, if they are independent and non-
negative, and the cdf of X} is given by F(a’*Y}) for k =
1,2..., where a is a positive constant, (b;)r>1 forms a non-
decreasing sequence such that 0 = b; < bo, ..., limyg_, o by =
oo and Y}, are the inter-arrival times of a RP, then {Xj, k =

1,2,...} is called an exponent extended geometric process.

G. Doubly geometric process (DGP)

The doubly geometric process (DGP) is proposed by [18].
It can model a situation that the shape parameters of the
lifetime distributions of inter-arrival times X} changes k with
monotonously increasing or decreasing. The definition of a
DPG is given in the following definition.

Definition 9: [18] Given a sequence of non-negative random
variables { Xy, k = 1,2,...}, if they are independent and the
cdf of X}, is given by F(a*~12z"(®)) for k = 1, 2..., where a is
a positive constant, h(k) is a function of k and the likelihood of
the parameters in A(k) has a known closed form, and h(k) >
0, then {Xj,k = 1,2,...} is called as a doubly geometric
process (DGP). The a*~1 is refereed as the scale impact factor
and h(k) as the shape impact factor.

H. Semi-geometric process (SGP)

[19] considered that the independence assumption of the
GP is too restrictive due to a sequence of independent random
variables { X,k = 1,2,...}. Working times between occur-
rences of failures may be statistically dependent in the real
world. In this paper, a relax assumption is that times between
failures are independent.

The definition of the SGP is following

Definition 10: [19] Given a sequence of non-negative ran-
dom variables {Xj,k = 1,2,..}, if P{X} < z | Xp—1 =
Th_1,...,X1 = 1‘1} = P{Xk <z | Xp_1 = ij_l} and the
marginal distribution of X}, has cdf of F(a*~'z), where a is
a positive constant, then { X%,k =1,2,...} is called an SGP.

1. The extended geometric process (EGP)

[17] considered that some failures are slight and the
influence of such failure after repair can be totally eliminated,
which means that the system is not degenerative. The defini-
tion of the EGP is following.

Definition 11: [17] Given a sequence of non-negative ran-
dom variables { X,k = 1,2, ...}, if they are independent and
the cdf of X is Fy = pFx_1(x) + qFy—1(ax), where a, p,
q are all positive constants, and p+¢ =1 for k = 1,2,...,
then { X,k =1,2,...} is called an EGP, and py, is called the
extended factor.

J. Geometric Polya-Aeppli process (GPAP)

The geometric Pélya-Aeppli process (GPAP) is proposed
by [23], which is a combination of the GP and Pdlya-Aeppli
process. The definition of the GPAP is given by

Definition 12: [23] Given a sequence of non-negative ran-
dom variables {X;,k = 1,2,...}, if they are independent
and the cdf of X is given by Fj(z) = 1 — (—p)ere
for k = 1,2..., where aj, is positive parameters and p is the
expectation of the exponential underlying distribution of Xj.
Then { X,k =1,2,...} is a geometric P6lya-Aeppli process.

K. Double ratio geometric process (DRGP)

The double ratio geometric process (DRGP) is proposed by
[20]. Suppose that the hazard function of X} is denoted by
ri(z) and that { X,k =1,2,...} for follows the GP, then

hi(z) = ahk—1(ax), ()

where the two a’s play different roles in and have different
implications in describing maintenance effectiveness: the first
a describes the effectiveness on how the hazard function is
affected and the second a (i.e., the one multiplying = in the



parentheses) describes the effectiveness on how the age of the
item under maintenance is affected. Therefore, the following
definition of the DRGP can be given.

Definition 13: [20] Given a sequence of non-negative ran-
dom variables { X,k = 1,2, ...}, if they are independent and
the cdf of X}, is given by Fy(z) = 1 — (1 — Fy(agx))’*/
for k = 1,2..., where aj, and by, are positive parameters and
a; = by = 1. Then {Xy,k = 1,2,...} is a double-ratio
geometric process.

L. Alternating geometric process (Alternating GP)

The alternating geometric process (alternating GP) is pro-
posed by [24]. It combines the ideas of the GP and the
alternating renewal process [21]. The following definition of
the alternating GP is given by [24].

Definition 14: [24] {Xi}3° and {Y;}$° are indepen-
dent sequences, if {X;}° is a stochastically decreasing
GP with parameters {a, Fx,(t)}, a > 1 and {Y3}5° is
stochastically increasing GP with parameters {b, Fy, (¢)},0 <
b < 1. then the sequence of pairs of random variables
{(X1,Y1),(X2,Y2),...,} is called an alternating GP with
parameters {a, Fx, (2); b, Fy, (z)}.

The alternating GP denotes X, as the kth operational time
with cdf Fx, and Y} as the kth repair time with cdf Fy,.
Therefore, comparing with other GP-like models, the main

failure) and the estimation methods of parameters. This section
reviews several methods for parameter estimation, probability
distributions for the time to first failure, methods for assessing

model performance in the existing research.

A. Parameter estimation

The two following tables show the abbreviation of several
parameter estimations, the type of GP-like models, and the
distribution of the time to first failure.

TABLE II
ABBREVIATION OF PARAMETER ESTIMATION METHODS
Abbreviation Parameter estimation methods Times
ML Maximum likelihood estimation 15
MML Modified maximum likelihood estimation 2
MM Modified moment estimation 7
MLS Modified least square 5
MLM Modified L-moments estimation 3
LSE Least squared estimation 3
MMS Maximum spacing estimation 3
BE Bayesian estimation 2

TABLE III
DISTRIBUTIONS AND PARAMETER ESTIMATION METHODS

. . . . . Model First i P ter estimati thod | Ref
difference of the alternating GP is that it describes both GOPe lr“,sei;)lfﬁ“(;::ilgsﬁgr?e e K,rﬂ\f[s ;m;;,(;f e e[ezznce
working times and repair times between failures. GP Gamma distribution ML & MML 27]

: . : : GP Weibull distribution BE [28]
The following table summarizes the GP and its extensions. P Rayleigh distribution T 0]
GP Lindley distribution ML & BE [30]
GP Hjorth marginal distribution ML & MM & LSE & MMS [31]
TABLE I GP Scaled Muth ML & MM & LSE & MMS [32]
s GP GP Exponential distribution ML & MM & MLS [33]
UMMARY OF THE GF AND ITS EXTENSIONS GP Lindley distribution ML & MLS & MM & MLM 341
. — . GP Inverse gaussian distribution ML & MM [35]
Survival ‘]:lsm"“t“m Model Reference GP Power lindley distribution ML & MLS & MM & MLM 0361
F(a*~1lz) GP (1] GP Exponential distribution ML & MM & MLS [33]
Fi.(2) = (g(k)x) GRP [25] DGP Weibull distribution ML [37]
F(akfl z+aF T (k —1)d) AGP [12] DPG Exponential distribution ML [38]
F(k“x) Q-series [13] a-series Rayleigh Distribution MLl\iLMMg:[?\/[‘[gfl\iALs 9]
E—1T;
F];(fl 92)71 TGP (141 «-series Truncated normal distribution ML & LSE [40]
F((aa®" " +pb" ")z) EPP [15] r-series Lognormal distribution ML & MM @1
1— F(aF=Tx) BGP [22]
F(abkx) EEGP [16]
F= e
F(a*~'z) SGP [19] The ML estimation is the most frequently used for es-
Fy, =pFj_ Fy_ EGP 1 . . .
k = PP (2) + 9Py (az) G L17] timating parameters of the GP-like models. Then, the MM
F(ak—1g(1+1o0g(k))”y DGP [18] . - .
e estimation method is the second frequently used.
Frp(z) =1— (—p)eH® GPAP [23]
1— (1 — F(agx))*/% DRGP [20] B. Model performance
{(X1, Y1), (X2,Ya),...,} Alternating GP 24]

III. THE ESTIMATION METHODS OF THE GP AND ITS
EXTENSIONS

The estimation of the parameters of the GP-like models, and
the performance of the GP-like models are important. Besides,
the distribution of the time to the first failure is another
important issue. The choose of such a distribution influences
the number of parameter in a GP-like model. Therefore, the
statistical inference of the GP-like models would be influenced
by the different distributions (for first occurrence time of

Table IV shows some common methods for assessing model
performance of the GP-like models.
Bias and the MSE are most frequently used for discussing
the statistical inference of the GP-like models.

IV. THE APPLICATION OF THE GP

The GP-like models are normally used for modelling the
working times after the repairs and the repair times for each
maintenance activities. Commonly, the GP-like models can
be applied into the reliability and maintenance and warranty
analysis for estimating the repair or replacement interval
time, planning the corrective and preventative maintenance



TABLE IV
METHODS FOR ASSESSING MODEL PERFORMANCE

Abbreviation Model performance Reference
AIC Akaike information criterion [18]
AlCc Corrected AIC [18]
BIC Bayesian information criterion [42], [43]
Bias Bias [28], [29], [31], [32],
[34], [36]-[38], [41]
MSE Mean squared error [26]-[29], [31]-[34],
[36]-[38], [40], [41],
[43]-[45]
MPE Mean percentage error [44], [45]
ML Maximum likelihood [22], [34]
LSE Least squared error [22]
AMSE Adjusted mean squared error [14]
DIC Deviance information criterion [42], [45], [46]
APB Absolute percentage bias [42]
RMS Root mean square error [42]
CP Coverage percentage [42]

and predicting the number of warranty claims etc. Several
existing research publications have reviewed [7], [47]. In this
article, we would like to focus on other applications of the
GP-like models. The following table shows a summary of
the application of the GP-like models beyond reliability and
maintenance.

TABLE V
SUMMARY OF THE APPLICATIONS OF THE GP-LIKE MODELS

Application GP-like model Problems
Recruitment policy GP Loss of recruitment [48]
Crime analysis GP Cannabis offenses [49]
Crime analysis GP Number of arrests [46]
Electricity price TGP Forecasting [45]
Recruitment GP Forecasting & Recruitment policy [43]
Coal mining disasters BGP Simulation [22]
Coal mining disasters GP Simulation [44]
Market stock TGP High-low stock price [42]
SARS epidemic TGP Forecasting epidemic [14]

[14] proposed the TGP, which can be considered a collec-
tion of several GPs with different ratio parameters a; based
on the moving windows. The moving windows can separate a
group of data into different subsets of fixed length starting
from the first window with ratio a;. In this research, the
SARS data of Hong Kong, Singapore, Toronto and Taipei were
separated into several subsets based on their moving windows.
The model performance were be estimated by log-LSE and
LSE method, respectively.

[45] used the TGP to modelling the changes of electricity
market prices over time. One characteristic of the electricity
market prices is that it is floating with high spikes at different
time period for a whole day. The threshold of the TGP
corresponds to the high spikes of the electricity price. This
is the reason why the TGP had a good performance on this
case.

[49] used the GP to analyse the cannabis offences in New
South Wales of the Australia. According to their data analysis,
they found that there exists underdispersed and overdispersed

data, which shows a non-monotonicity trend. The Markov
chain Monte Carlo was used introduced to overcome such
problems. Besides, they discussed the model performance
under both underdispersed and overdispersed data and used
the result of an equidispersion situation as comparison.

Other research face to similar problems, such as [46]. It
proposed the multivariate generalized poisson log-t geometric
process to analyse the number of arrests due to the use of
two illicit drugs. [44] and [22] used the data of coal mining
disasters to compare the model performance among several
times series models and their extended GP-like models.

From the above-reviewed papers, the GP-like models can
be applied into other fields such as the business analysis and
health analysis. Besides, due to the properties of the GP-like
models, we consider that they can be used in the fields where
data can be described by the counting process such as the
queuing problem and the transportation.

V. CONCLUSIONS

This article briefly reviewed the GP and its extensions. Rele-
vant statistical methods for estimating parameters and methods
for assessing model performance were reviewed for the GP-
like models. Besides, the application beyond the reliability
and maintenance were reviewed with corresponding problems,
such as the forecasting problem of the electricity price, the
simulation of the coal mining disasters, and the predication of
arrests etc.

We propose that the GP-like models can be used in more
fields beyond the reliability and maintenance. As long as the
data itself has a trend over time, which can be considered
as a counting process, it may be modelled by the GP-like
models. Furthermore, parameter estimation, assessment of
model performance, and the distribution of X; of the GP-like
models should be investigated and compared.
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