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Abstract
Capture-recapture (CR) data and corresponding models have been used exten-
sively to estimate the size of wildlife populations when detection probability is
less than 1. When the locations of traps or cameras used to capture or detect
individuals are known, spatially-explicit CR models are used to infer the spatial
pattern of the individual locations and population density. Individual locations,
referred to as activity centers (ACs), are defined as the locations around which
the individuals move. These ACs are typically assumed to be independent, and
their spatial pattern is modeled using homogeneous Poisson processes. How-
ever, this assumption is often unrealistic, since individuals can interact with
each other, either within a species or between different species. In this article, we
consider a vector of point processes from the general class of interaction point
processes and develop a model for CR data that can account for interactions,
in particular repulsions, between and within multiple species. Interaction point
processes present a challenge from an inferential perspective because of the
intractability of the normalizing constant of the likelihood function, and hence
standard Markov chain Monte Carlo procedures to perform Bayesian inference
cannot be applied. Therefore, we adopt an inference procedure based on the
Monte Carlo Metropolis Hastings algorithm, which scales well when modeling
more than one species. Finally, we adopt an inference method for jointly sam-
pling the latent ACs and the population size based on birth and death processes.
This approach also allows us to adaptively tune the proposal distribution of new
points, which leads to better mixing especially in the case of non-uniformly
distributed traps. We apply the model to a CR data-set on leopards and tigers col-
lected at the Corbett Tiger Reserve in India. Our findings suggest that between
species repulsion is stronger than within species, while tiger population density
is higher than leopard population density at the park.
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1 INTRODUCTION

Conservation scientists, researchers, and charities, as well as government organizations worldwide, are interested in
monitoring sizes of populations, distributions of species in the landscape and spatial patterns of individuals in the wild.
Capture-recapture (CR) is one of the most commonly employed surveying tools to achieve this goal. According to the
CR protocol, an attempt is made to capture individuals on repeated sampling occasions at one or more traps, and all
newly caught individuals are uniquely marked. Several models have been developed for estimating population sizes
(Royle, 2004), arrival and departure patterns (Diana et al., 2020; Pledger et al., 2009) or survival patterns (Brownie, 1985)
using CR data. When more than one trap or camera are used to sample individuals, and the locations of these traps are
known, then spatially-explicit CR (SCR) models (Borchers & Efford, 2008; Efford, 2004; Royle & Young, 2008) can be used
to infer the activity centers (ACs) of individuals, defined as the locations around which the individuals move when per-
forming their daily activity (Royle et al., 2013). Even in cases when the spatial pattern is not of main interest, SCR models
can provide more reliable estimates of population density, as they account for the fact that individuals are more likely to
be caught in traps that are in close proximity with their AC (Reich & Gardner, 2014). For a nice review of the literature
on SCR models see Borchers and Fewster (2016).

When using SCR models, the locations of the individual ACs are latent, which gives rise to challenges from an infer-
ential perspective. SCR models can be developed in a classical (Borchers & Efford, 2008) or Bayesian (Royle et al., 2013)
framework. The classical approach relies on maximizing the likelihood function after integrating out the ACs, while the
Bayesian approach relies on sampling from the posterior distribution of the ACs as well as of the other parameters of
interest. Estimation in the frequentist case has been performed in the case where the ACs are assumed to come from a
tractable distribution, which makes the computations analytically possible. However, in cases where individuals are not
independent in terms of the locations of their ACs, that is, when there is interaction between individuals, the resulting
processes are quite complex, and the likelihood function is intractable. Hence, the classical approach to inference is not
available, and instead a Bayesian approach needs to be considered.

A common assumption in SCR models is that the spatial pattern of ACs is assumed to be described by a homogeneous
Poisson point process (PP), which is equivalent to assuming no interaction between individuals. In this context, when
individuals interact then the probability density of a given point (i.e., the AC of one member of the species) depends on the
location of the other points (the AC of the other members). This dependence can manifest either as repulsion, where the
presence of a point at a particular location decreases the probability of another point at a nearby location, or as attraction,
where the opposite is true and points tend to be clustered. To our knowledge, the only SCR models that do not assume a
Poisson process are presented in Reich and Gardner (2014) and McLaughlin and Bar (2021). Reich and Gardner (2014)
used a Strauss process (Strauss, 1975) to model the ACs of a single species while accounting for interaction within the
species, while McLaughlin and Bar (2021) assume no interaction between individuals but instead assume interaction
between the ACs of each individual over time. As shown by Reich and Gardner (2014), it is important to account for
interaction since failing to account for it can lead to biases in the estimate of the population size. In this article we focus
on the case of repulsion between as well as within species.

Spatial PPs are a major area of research in spatial statistics and a useful modeling tool when the objects of interest are
locations of objects in space (Cressie, 1993; Ripley, 1977). The simplest example of a PP is the Poisson process, where the
locations of the individual points are drawn independently of each other and do not exhibit interaction. One extension of
the Poisson process is the class of Cox processes, which are processes for clustered or aggregated point patterns (Neyman
& Scott, 1958). Another extension of point processes is the class of interaction PPs (Preston, 1976; Ruelle, 1969), which are
especially suited to modeling interactions between points. Interaction PPs are more suited to modeling repulsion, which
is the focus of this article, whereas Cox processes are more suited to modeling attraction.

The computational challenge that arises when working with interaction PPs is that the normalizing constant of the
likelihood function is usually unavailable in closed form apart from trivial cases (Møller & Waagepetersen, 2003). Distri-
butions of this kind are known in the literature as doubly-intractable distributions, as both the marginal likelihood of the
data, with parameters integrated out, and the likelihood function are intractable. In a frequentist setting, this is usually
dealt with by replacing the likelihood function with a pseudo-likelihood (Besag, 1978), for which asymptotic results are
available (Jensen & Møller, 1991). However, in the SCR case where the ACs are latent, the use of the pseudo-likelihood
does not overcome the challenge of integrating out the ACs from the likelihood function, since integrals with respect to
interaction point processes cannot be computed in closed form (Møller & Waagepetersen, 2003). In a Bayesian setting,
the problem usually involves computing a ratio of normalizing constants, as the ratio arises naturally when using a
Metropolis–Hastings (MH) algorithm for sampling from the posterior distribution of the parameters of the PP. Popular
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inference procedures include the auxiliary variable method of Møller et al. (2006), path sampling (Ogata & Tanemura,
1984), exchange sampling (Murray et al., 2012) and the Monte Carlo MH (MCMH) algorithm (Liang & Jin, 2013).

When working with several species, it is necessary to work with vectors of PPs instead of a single PP, since each PP
corresponds to a single species. Although an extensive literature exists for univariate interaction PPs, vectors of interaction
PPs have only recently gained attention in the literature (Rajala et al., 2018; Waagepetersen et al., 2016). For example,
Waagepetersen et al. (2016) developed a model that takes into account correlation between more than one process using
a Log-Gaussian Cox process, while Rajala et al. (2018) proposed a model to take into account interactions between many
processes using a Gibbs model, which is a particular case of interaction PPs.

In this article, we extend the model of Reich and Gardner (2014) by developing a model for more than one species.
To this end, we introduce a vector of PPs for modeling the locations of the ACs and build a multi-species SCR model
based on this newly defined vector of PPs. Working with vectors of PPs brings additional challenges from an inferential
perspective that cannot be overcome by the inferential methods used in Reich and Gardner (2014) as they do not scale
for vectors of PPs. Hence, we propose to use the MCMH algorithm, as this approach is easily scalable as the number of
parameters grows.

The type of PPs with which we work in this article assume a joint distribution between the number of points and their
locations and are known in the literature as unconditional PPs (Møller & Waagepetersen, 2003), as opposed to conditional
PPs, which assume a generic distribution for the number of points and model the locations of the points conditional
on their number. Although inference in SCR models is usually performed using data augmentation (DA) (Converse &
Royle, 2012; Royle, 2009), this approach is not an option when working with unconditional PPs and therefore we consider
an alternative approach relying on a general algorithm for sampling spatial PPs introduced by Geyer and Møller (1994).
This algorithm samples from the joint posterior distribution of the latent ACs by either moving existing points, adding
new points or deleting existing points from the PP. We tune this approach in two ways. First, we choose the number of
proposed and removed points adaptively in order to achieve the optimal mixing of the algorithm. Second, we adaptively
learn the distribution of the locations of the newly proposed points.

We apply our new model to CR data-sets on tigers and leopards, collected in the Jim Corbett National Reserve in India.
We are interested in estimating population density of the two species, which are known to be territorial and hence repulse
each other within and between species, although this has never been quantified using CR data before.

The article is organized as follows. In Section 2, we briefly summarize the theory of PPs, as well as the extension to
vectors of PPs and the main approaches available for performing inference. In Section 3, we define the spatial model for
CR data. In Section 4, we present results of a simulation study and in Section 5 we apply the model to the tiger and leopard
CR data-sets. Section 6 concludes the article and introduces some potential future directions.

2 INTERACTION POINT PROCESSES

A spatial PP on a space S is a random variable whose realizations are sets of points in S. A PP can be defined conditional
on a fixed number of points, in which case it is said be a conditional PP, or the number of points can be sampled together
with their locations, in which case it is said to be an unconditional PP.

The most basic example of a PP is the Poisson process, which is defined by an intensity that models the expected
number of points in each region. A Poisson process is said to be homogeneous if the intensity is constant over the space,
and inhomogeneous otherwise. The Poisson process is an unconditional PP, and its conditional equivalent is the binomial
PP, where the number of points is fixed in advance. According to the Poisson or binomial process, points are independent
of each other, in the sense that the location of a point does not affect the location of another point.

PPs can be defined by a general intensity function f (x1, … , xn) where x1, … , xn are the locations of the observed
points. The normalizing constant of the intensity f is

⎧
⎪
⎨
⎪
⎩

∫Sn f (x1, … , xn)dx1, … , dxn conditional case
∑∞

n=0
exp(−|S|)

n!
∫Sn f (x1, … , xn)dx1, … , dxn unconditional case,

which are both intractable (except in the case of a Poisson or binomial process) and hence f is usually expressed up to
proportionality f ∝ h.
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4 of 15 DIANA et al.

F I G U R E 1 Interaction function g(|x − y|) = 𝜙2(x, y) for a Strauss process with parameters 𝜆 = 0.6, R = 1 (a) and soft-core process with
parameter 𝛾 = 2 (b).

Additionally, in the unconditional case, the marginal distribution on the number of points is

P(n(X) = n) =
exp(−|S|)

n! ∫Sn
f (x1, … , xn)dx1, … , dxn. (1)

Expression (1) is also intractable and hence it is necessary to resort to simulation to evaluate the distribution on the
number of points. This is an advantage of the conditional case, as the distribution of the number of points can be chosen
explicitly and independently on the locations of the points.

In this article, we choose f from the class of pairwise interaction functions, which have the form

f ({x1, … , xn}) ∝
n∏

i=1
𝜙1(xi)

∏

i<j
𝜙2(xi, xj|𝜃), (2)

where 𝜙1 is the intensity function and 𝜙2 is the interaction function. Whenever 𝜙2 < (>) 1, there is repulsion (attraction)
between points. In the following, we set 𝜙1 equal to a constant 𝛽.

Pairwise interaction PPs can thus be defined by simply specifying the function 𝜙2 that determines the interaction
between two points. For example, the Strauss process (Strauss, 1975) is obtained when𝜙2(x1, x2|𝜆,R) ∝ 𝜆1[|x1−x2|<R], where
1[A] = 1 if condition A is satisfied and 0 otherwise. The interpretation of this process is that points interact only if they
are at a distance less than R. The Strauss process is well-defined only for 𝜆 ≤ 1 (for 𝜆 = 1 it corresponds to the Poisson
process), since if 𝜆 > 1 the number of points explodes. The limit of the Strauss process as 𝜆 → 0 is termed the hard-core
process and is a process where there are no two points at distance < R. Another example of interaction PP is the soft-core
process (Ogata & Tanemura, 1984), defined by the interaction function

𝜙2(x1, x2|𝛾) ∝ 1 − exp
(

−(x1 − x2)2

𝛾

)

, (3)

which, as opposed to the Strauss process, allows points to interact at any distance. Examples of interaction functions for
the two processes are shown in Figure 1.

2.1 Vectors of point processes

Similarly to a single PP, a vector of D PPs can be defined as a set of D different point processes. Analogously to a single
PP, we will define a vector of PPs (X1, … ,XD) with density f = (f1, … , fD).
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DIANA et al. 5 of 15

If f can be factorized as f (X1, … ,XD) = f1(X1) … , fD(XD), the vector of PPs reduces to a product of D independent
single interaction PPs. We consider, as before, pairwise interaction functions w.r.t. a vector of independent unit rate
Poisson processes, that is, we choose f as

f (x1, … , xD) ∝
D∏

d=1

Nd∏

i=1
𝜙1(xd

i )

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

single point intensities

D∏

d=1

Nd1∏

i=1

Nd2∏

j=i+1
𝜙2(xd

i , x
d
j |𝜃

1
d)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

within PP interactions

D∏

d1=1

d1−1∏

d2=2

Nd1∏

i=1

Nd2∏

j=1
𝜙2(x

d1
i , x

d2
j |𝜃2

d1,d2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

between PP interactions

,

where (x1, … , xD) = ((x1
1 , … , x1

N1
), … , (xD

1 , … , xD
ND
)), 𝜃1

d is the parameter of the within-points interaction of xd and 𝜃2
d1,d2

is the parameter of the between-points interaction between xd1 and xd2 . For example, 𝜙2 can be taken as the interaction
function of the Strauss or soft-core process. Similarly to the Strauss process, a sufficient condition to guarantee that the
PP does not explode is 𝜙2(x1, x2) < 1 ∀x1, x2. A similar construction to the one provided above is given in Nightingale
et al. (2015).

In CR data, individual ACs are latent. Additionally, CR data can be sparse, with only a small number of individuals
being observed more than once. Hence, it is important to consider parsimonious models and limit the number of param-
eters that need to be estimated. For this reason, we choose to work with the soft-core instead of the Strauss process. For
comparison, we note that when D = 2, using a Strauss process requires eight parameters (each pair (𝜆,R) is repeated for
the two between and the within species interactions plus the two intensities 𝛽), as opposed to the five required for the
soft-core process.

If D = 2 and the interaction function is taken to be the one of the soft-core process, we term the resulting PP a bivariate
soft-core process and we use the notation BivSC(𝛾1, 𝛾2, 𝛾12, 𝛽1, 𝛽2) for the distribution of this process. In this case, f takes
the form

f
({

x1
1 , … , x1

n
}
,

{
x2

1 , … , x2
m
}
|𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝛾12

)

∝ 𝛽n
1 𝛽

m
2

∏

i<j

{

1 − exp

(

−
(x1

i − x1
j )

2

𝛾1

)}
∏

i<j

{

1 − exp

(

−
(x2

i − x2
j )

2

𝛾2

)}
∏

i,j

{

1 − exp

(

−
(x1

i − x2
j )

2

𝛾12

)}

, (4)

where 𝛾1 and 𝛾2 model the interaction within each of the two species and 𝛾12 models the interaction between the
species. Similarly to what was described in the previous section for univariate PPs, the process defines marginally a joint
distribution on the number of points n1 and n2 of x1 and x2, respectively.

In Figure 2, we show several sets of simulations from the process with D = 2. Increasing the interaction parameters
leads to a reduction in the number of points that can be located within a given area. Hence, to show how the pattern of
points changes as the interaction parameters vary, we simulate from a conditional point process. The first column shows
samples with minimal within-species interaction, while in the second column the interaction is at least as strong as the
between-species interaction. As the parameter 𝛾12 increases (first row to second row), the points of different colors become
more separated. The bottom right plot is equivalent to a single realization from a single soft-core PP, as the interaction is
the same for each pair of points, regardless of color.

2.2 Bayesian inference for interaction point processes

As mentioned in the introduction, posterior inference for the parameters 𝜃 =
({
𝜃

d
1
}

d=1,… ,D,
{
𝜃

d1,d2
2

}
d1,d2=1,… ,D

)
of an inter-

action PP X is complicated as the normalizing constant is not available in closed form. Given a sample from a PP y ∼ X|𝜃

and a prior 𝜋 for 𝜃, posterior inference can be performed using a MH sampler to sample from the posterior distribution
p(𝜃|y) = 𝜋(𝜃) h(y|𝜃)

Z
𝜃

, where we have written the likelihood of the PP in an unnormalized form f (y|𝜃) = h(y|𝜃)
Z
𝜃

. The MH ratio
for the parameter 𝜃 takes the form

H(𝜃′|𝜃) =
𝜋(𝜃′)h

(
y|𝜃′

)
q
(
𝜃|𝜃′

)

𝜋(𝜃)h(y|𝜃)q
(
𝜃
′|𝜃

)
Z
𝜃

Z
𝜃
′
, (5)
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6 of 15 DIANA et al.

F I G U R E 2 Simulations from a conditional BivSC process with N1 = N2 = 100, where 𝛾1 and 𝛾2 are the within-species interaction
parameters for the two processes and 𝛾12 is the between-species interaction parameter. The top row and bottom represent cases of low and high
between-species interaction, respectively. The first and second column represent cases of low and high within-species interaction, respectively.

where q is the proposal distribution. The unavailability of the ratio Z
𝜃

Z
𝜃
′

makes the use of standard Markov chain Monte
Carlo (MCMC) techniques infeasible and thus a different sampling procedure has to be used. For ease of notation, we
express f (y|𝜃) and h(y|𝜃) as f

𝜃
(y) and h

𝜃
(y), respectively.

An interesting method to avoid calculating the ratio is the approach of Møller et al. (2006), which relies on the intro-
duction of an auxiliary variable to simplify the ratio of normalizing constants (RNC). However, the method requires
knowledge of the density of the auxiliary variable, which is known only if the auxiliary variable takes standard forms,
and hence it is difficult to apply in practice. A more applicable generalization is the exchange sampling algorithm of
Murray et al. (2012), which only requires simulating from the process of interest.

Another interesting inference procedure is path sampling (Ogata & Tanemura, 1984), which is also used in the CR

model of Reich and Gardner (2014). Path sampling is based on the identity log
(

Z
𝜃i

Z
𝜃

′
i

)

= ∫ 1
0 Gi(𝜃(s))s(t)dt where Gi(𝜃(s)) is

a function of 𝜃 and s(t) is a path connecting 𝜃 and 𝜃′. By computing the function Gi(⋅) on a grid of values of 𝜃 in advance,
the integral can be approximated numerically and used in (5). However, this quickly becomes infeasible if the dimension
of the parameter 𝜃 is greater than 2, as for example in the case of vectors of PPs, as the grid becomes prohibitively large.

A more scalable approach is based on the MCMH algorithm of Liang and Jin (2013) (LJ13), which is based on replacing
the RNC with an importance sampling estimate. LJ13 propose three versions of the MCMH algorithm and we adopt here
the algorithm termed MCMH-I, summarized in Algorithm 1.

The MCMH algorithm can be seen as a generalization of the exchange sampling algorithm, as the latter is obtained
when M = 1 in the MCMH-III algorithm of LJ13. However, the advantage of the MCMH over the exchange sampling
algorithm is that by drawing the samples X1, … ,XM in parallel, the MCMH can run at comparable speed to the exchange
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DIANA et al. 7 of 15

Algorithm 1. Monte Carlo MH algorithm-I

1. Sample 𝜃′ ∼ q(⋅|𝜃).
2. Accept 𝜃′ with probability min(1,H(𝜃′|𝜃)) where

H(𝜃′|𝜃) =
𝜋(𝜃′)h(y|𝜃′)q(𝜃|𝜃′)
𝜋(𝜃)h(y|𝜃)q(𝜃′|𝜃)

1
RM(𝜃, 𝜃′,X)

,

where RM(𝜃, 𝜃′, y) = 1
M

∑M
m=1

h(Xm|𝜃
′)

h(Xm|𝜃)
and M is the number of samples used to compute the Monte Carlo approximation.

3. If 𝜃′ is accepted, sample (X1,… ,Xm) from f (x|𝜃′).

sampling algorithm, while providing a substantially better estimate of the RNC. A further advantage of the MCMH is that
it does not depend on the dimension of 𝜃, which makes it useful for application to vectors of PPs.

The samples (X1, … ,Xm) in step 3 can be obtained through either MH (Geyer & Møller, 1994) or through perfect
simulation (Kendall & Møller, 2000). A review of the existing algorithms for simulating interaction PPs is presented in
Møller and Waagepetersen (2003). We choose to use an MH algorithm as, when a new 𝜃

′ is accepted, the current samples
(X1, … ,Xm) from f (x|𝜃) can be used as a warm start for the MH algorithm to sample from f (x|𝜃′), significantly reducing
the burn-in period. In fact, if 𝜃 and 𝜃′ are sufficiently close, we also expect samples from PPs with densities f

𝜃
′ and f

𝜃
to be

close. On the other hand, perfect simulation is computationally very intensive and hence not feasible to perform at each
iteration. We describe the MH algorithm to obtain samples from an interaction PP in the Appendix.

3 SPATIAL CAPTURE-RECAPTURE MODEL

We now define the spatial model for CR data collected on two or more species. The prior for the ACs of individuals is
defined using the soft-core model introduced in Section 2. For simplicity, we present here a model for two species but we
note that the case of more than two species is constructed similarly.

We assume that there are K traps, placed in the study area at locations (x1, … , xK), and that sampling is performed
for T sampling occasions in each trap. For two species, the data can be summarized in two matrices, H1 and H2, where
Hl

ik is the number of times individual i of species l is captured at trap k.
Each individual is assumed to have an AC sl

i for the duration of the study. Given the AC sl
i, the probability of cap-

turing individual i of species l at trap k is a decreasing function of the distance between the location of the AC of the
individual, sl

i, and the trap location xk. We choose here an exponential function, which leads to probability of capture
p(s, x) = p0 exp(− 1

2𝜎2 ||s − x||2) between AC s and trap location x, where p0 is the baseline probability of detection if the
distance is 0, and 𝜎 is a scale parameter. We assume that the two populations are closed during the study, that is, there
is no mortality or recruitment and there is no immigration or emigration, and we define by N1 and N2 the number of
individuals in the first and second population, respectively. The two vectors of ACs (s1

, s2) = ((s1
1, … , s1

N1
), (s2

1, … , s2
N2
))

are assumed to have a BivSC(𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝛾12) prior. Since this process is an unconditional PP, this also defines a prior for
N1 and N2, given by Equation (1) in the case of single PP. As stated in Section 2, we resort to simulations to evaluate the
prior. We assume gamma prior distributions for 𝛾1, 𝛾2, 𝛾12, and 𝜎l and beta prior distributions for pl

0. The model can be
summarized hierarchically as

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

Hl
ik = Binomial(T, pl

ik) i = 1, … ,Nl, k = 1, … ,K l = 1, 2

pl
ik = pl

0 exp
(

− 1
2𝜎2

l
||sl

i − xk||2
)

i = 1, … ,Nl, k = 1, … ,K l = 1, 2

(s1
, s2) ∼ BivSC(𝛾1, 𝛾2, 𝛾12, 𝛽1, 𝛽2)

𝛽j ∼ Gamma(a
𝛽
, b
𝛽
) j = {1}, {2}

𝛾j ∼ Gamma(a
𝛾
, b
𝛾
) j = {1}, {2}, {12}

pl
0 ∼ Beta(ap, bp)
𝜎l ∼ Gamma(a

𝜎
, b
𝜎
).
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8 of 15 DIANA et al.

We emphasize that comparing within-species interactions across different species, that is, comparing the absolute values
of 𝛾1 and 𝛾2 is not meaningful. Interpretation of the strength of a within-species interaction does not only depend on
the value of the corresponding 𝛾 parameter, but also on the population density for a given area size. For example, in a
high-density population, even a small 𝛾 value can lead to substantial repulsion between individuals, as space is limited.
On the other hand, in a sparse population, the same value of 𝛾 will have a much smaller effect, as individuals are further
away from each other. Nonetheless, the within species interaction parameters, 𝛾1 and 𝛾2, can still be compared to the
between species interaction parameter, 𝛾12, to determine whether the between species interaction is stronger than the
within species interaction. For this reason, in what follows we focus on the log ratios log

(
𝛾12
𝛾1

)
and log

(
𝛾12
𝛾2

)
.

3.1 Inference

We sample from the posterior distribution of the parameters
(
s1
, s2
, pl

0, 𝜎l, 𝛽j, 𝛾j
)

by using an MCMC approach. The param-
eters pl

0, 𝜎l can be sampled straightforwardly from their full conditional, while the PP parameters (𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝛾12) can be
sampled using the MCMH algorithm described in Section 2.2.

For the remaining set of parameters, (s1
, s2), we note that since we use an unconditional PP prior, the DA scheme,

used for example in Reich and Gardner (2014) and McLaughlin and Bar (2021), cannot be used for inference, as the DA
scheme assumes a Binomial prior on the population size independently on the point locations. Hence, we sample the
latent ACs (s1

, s2) from their full conditional by generalizing the algorithm for simulating PPs of Geyer and Møller (1994),
according to which, in each step, one of the following moves is proposed: changing the location of the existing points,
proposing a random number nb of new points and deleting a random number nd of existing points. The full algorithm is
described in the Appendix.

We propose two additional strategies to tune the algorithm. First, the distribution of the number of new points pro-
posed can be learnt adaptively in order to target an optimal acceptance rate. Second, we adaptively learn the distribution
of the locations of newly proposed points, qb, in order to propose points where they are more likely to be accepted.

To achieve the former, we assume that the number of proposed points to add/remove follows a Pois(𝜆) distribution,
and we learn 𝜆 adaptively using a Robbins–Monro update (Robbins & Monro, 1951). More specifically, every nc iterations,
we update 𝜆 according to 𝜆(t+1) = 𝜆(t) + 1

t
w(h − h⋆), where h is the average value of the MH ratio over the previous nc

iterations, h⋆ is the targeted acceptance rate and w is a fixed step size. In our case, we set nc = 50, h⋆ = 0.4 and w = 10.
This procedure is repeated separately for each PP. We note that we divide the step size by the number of updates t in order
to obtain decreasing to 0 step sizes and satisfy the diminishing adaptation condition necessary to maintain ergodicity
(Andrieu & Thoms, 2008).

To adaptively learn qb, we model qb = 𝜋U(S) + (1 − 𝜋)
∑K

k=1wkN(𝜇k,Σk) where U(S) is the uniform distribution over
the sample space S and 𝜋 is the weight of the mixture, thereby using an inhomogeneous Poisson process to sample the
new locations. The weight of the mixture has been chosen equal to 0.95. The mixture

∑K
k=1wkN(𝜇k,Σk) is fitted on the

locations on the accepted points during the burn-in phase of the MCMC using a k-means algorithm, with the number
of clusters chosen using the Akaike information criterion (Akaike, 1974). Since adaptation can perturb the ergodicity
properties of the MCMC, we perform this step only at the end of the burn-in phase. Further details are presented in the
Appendix. A similar approach for adaptive estimation of mixture of normals is presented in Giordani and Kohn (2010).

Adapting the proposal for the population size is necessary for large population sizes, since only proposing a single
point at a time could lead to a very slow mixing rate, whereas learning the proposal distribution is particularly efficient
when a large number of traps is used, since as the number of traps becomes larger, when using a uniform proposal it is
more likely that a point is proposed close to a trap, where it is less likely to be accepted since only uncaptured individuals
are proposed (as captured individuals are already known to be in the population).

4 SIMULATION STUDY

In order to assess the performance of the model and the sensitivity to changes in study design and model parameters,
we performed several simulations by varying the following parameters. First, we have simulated 100 or 200 individu-
als, whose locations are sampled from a conditional BivSC process (Equation 4) with 𝛾1 = 𝛾2 = exp(−100) and 𝛾12 set to
exp(−6) (high) or exp(−7.5) (low). Next, we set the number of traps to 102 or 152, placed uniformly in the unit square
and simulated capture histories using a baseline capture probability p0 of 0.03 or 0.3 and T = 10 sampling occasions. For
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DIANA et al. 9 of 15

F I G U R E 3 Simulation study. We vary the interaction strength in the rows and the number of traps in the columns. The dashed and solid
lines represent the simulations with 200 and 100 individuals, respectively. The baseline capture probability is reported on the x-axis. In each
plot, we report the percentage of times the true effect, log

(
𝛾1
𝛾12

)
< 0 and log

(
𝛾2
𝛾12

)
< 0, was identified over the 10 runs and over the 2 effects.

T A B L E 1 Simulation study. Effective sample size per second for the MCMC algorithm with adaptation and without adaptation

Run Without adaptation With adaptation

1 0.032 0.308

2 0.013 0.250

3 0.009 0.219

4 0.015 0.288

each of the previous 16 scenarios, we have ran the model 10 times and reported the proportion of times the 95% posterior
credible interval (PCI) of log

(
𝛾1
𝛾12

)
(or log

(
𝛾2
𝛾12

)
) is below 0.

Results are presented in Figure 3. As expected, the power increases as the capture probability increases. In the
low interaction scenario, the model is rarely able to detect the effect, except if number of traps, capture probability
and number of individuals are at their highest setting. As expected, in the high interaction case, the power is always
greater. Therefore, detection of interaction effects is possible only if the effect is strong and the capture probability is not
very low.

We perform an additional simulation study to check the improvements to the mixing brought by the adaptation
techniques described in Section 2.2. For simplicity, we work with only one species and without interaction. We have
simulated the locations of 200 traps at random over the unit square and simulated the location of individuals from
a homogeneous Poisson process with intensity 𝛽 = 300 and capture histories using p0 = 0.02 and 𝜎 = 0.05 and com-
pared the MCMC algorithm without using any adaptation techniques to the one we have devised by comparing the
effective sample size of the Markov chain obtained for N divided by the total time to run the algorithm. Results are
presented in Table 1, where it can be seen that the effective sample size per second is substantially higher using
adaptation.
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10 of 15 DIANA et al.

F I G U R E 4 Case study. 95% PCI of the log ratios log
(
𝛾1
𝛾12

)
and log

(
𝛾2
𝛾12

)
(top left), where the index 1 refers to leopards and 2 refers to

tigers. 95% PCI of the population densities (top right). 95% PCI of p0 (bottom left). 95% PCI of 𝜎 (bottom right).

5 CASE STUDY: CR DATA ON LEOPARDS AND TIGERS

We apply the model to two CR data of leopards (Panthera pardus fusca) and tigers (Panthera tigris tigris), collected at
the Corbett Tiger Reserve in northern India’s Uttarakhand State spanning an area of approximately 1100 km2. The study
area has been obtained by considering the region of the park of at most 8 km distant from the closest trap. Camera
traps were placed in 529 locations. We define each sampling occasion as a 24 h interval in which the trap was active.
The number of sampling occasions varies by trap but 90% of the traps were active for more than 40 days. All the sam-
pling occasions belong to a single season. A total of 123 leopards and 231 tigers have been detected at least once during
the study.

We set the following prior distributions log(𝛾) ∼ N(−30, 202) and 𝛽1,2 ∼ Gamma(250, 1002). The marginal prior distri-
butions on N1 and N2 are obtained through simulations, performed via first sampling 𝛽 and 𝛾 from their priors and next
via generating a sample from a BivSC with the sampled parameters 𝛽 and 𝜃. The resulting distribution has 95% central
interval equal to (94,450) and median equal to 232.

The posterior distributions of the log ratios between interaction parameters are shown in Figure 4. The distributions
suggest that leopards and tigers tend to repulse each other more than they repulse individuals of the same species. This
is expected since top carnivores often cause declines in the second-order carnivores by direct killing and out-competing
them for resources (Kumar et al., 2019; Odden et al., 2010; Seidensticker, 1976). However, it is important to note that the
simulation study suggests that power to detect this effect is expected to be small with low detection probabilities.
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DIANA et al. 11 of 15

F I G U R E 5 Case study. Maps of posterior densities of the locations of ACs of leopards (left) and tigers (right). Darker regions represent
higher density. The black region is the part of the habitat not considered in the study area as is more than 8 km distant from the closest trap.
The white area in the middle corresponds to a lake.

In Figure 4, we also present the estimates of the baseline capture probability, p0, and of 𝜎. Tigers were observed to have
a larger 𝜎 than leopards which is in agreement with larger energy demands of tigers that as a consequence have larger
territory sizes compared to leopards (Kumar et al., 2019). Also, the camera trap deployment was designed to maximize
captures of tigers and this is reflected in a higher capture probability of tigers compared to leopards.

In Figure 5, we show maps of posterior densities of the locations of ACs for both species. The prime habitats consisting
of flat broad valleys, and undulating hills, that constitute the central, southern, and eastern parts of the Corbett Tiger
Reserve have higher tiger densities, while leopards can achieve higher densities only in marginal tiger habitat that is, the
more rugged Himalayan foot-hills on the northern boundary of the reserve.

6 DISCUSSION

We have developed a SCR model for CR data collected on two or more species accounting for interactions between and
within the species using a vector of PPs. Inference for the parameters of the PP is performed using the MCMH algorithm
of Liang and Jin (2013), which we think provides the best balance in terms of speed, accuracy and scalability in the context
of vectors of PPs. Additionally, we present an efficient inferential approach that adaptively learns the population size and
the locations of the individuals never caught.

Although the model is developed for CR data, it is in theory possible to extend it to other sampling protocols where
individual information is not present. The most popular sampling method for monitoring species with individuals that
are not uniquely identifiable is the collection of count data. Chandler & Royle (2013) defined a Bayesian spatial model
for count data, which works by inferring the latent capture histories of individuals as well as the latent individual ACs.
However, this is highly inefficient in practice as reconstructing all these latent variables is computationally expensive
and can lead to slow mixing. A possible alternative is to use a likelihood-free approach such as approximate Bayesian
computation (Sisson et al., 2018).

We used the soft-core process for modeling the interaction between individuals, as this process is summarized using
a single parameter and is able to model repulsion, but not attraction between points. It is generally difficult to model
attraction using interaction PPs because if the interaction function𝜙2 in Equation (2) is greater than 1 there is the potential
for the number of points to explode. Being able to model attraction and repulsion at the same time is useful in the case
of particular wildlife populations, as some species present attraction in small groups, such as for example within a family
of individuals, and repulsion in bigger groups, such as between different families. This suggests for example a modeling
approach where a pairwise and a triple-wise interaction function are considered together in the interaction function, and
hence the process is bounded from exploding as the two interaction functions balance each other. An alternative modeling
approach is to work with a conditional PP, since this issue does not arise in a conditional PP. However, assuming that the
number of points is independent of the spatial structure of the process is often unrealistic.
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12 of 15 DIANA et al.

We have assumed population closure and fixed ACs for the duration of the study. This short duration study does
not motivate a model that relaxes these assumptions. However, in studies with longer duration or species that change
AC frequently, a spatio-temporal approach were the locations of the points are allowed to change over time is worth
considering. Although spatio-temporal models for log-Gaussian Cox process are available (Brix & Diggle, 2001; Brix &
Møller, 2001), analogous models for Markov point process are not available.
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APPENDIX A

A.1 Simulation algorithm for point processes
We can easily extend the algorithm for sampling interaction point processes of Geyer and Møller (1994) by adding or
deleting more than one points at a time. Let X be a point process with density f w.r.t. the homogeneous Poisson process
with intensity 1. We can sample X with the following procedure.

Given the value at time m, Xm = {x1, … , xn}, generate Xm+1|Xm by applying with equal probability one of the
following steps:

1. Move: Draw i ∼ Uniform({1, … ,n}), propose 𝜉 ∼ qi(Xm, ⋅), where qi is the proposal distribution for the ith point and
set

Xm+1 =

{
{x1, … , xi−1, 𝜉, xi+1, … , xn} if U([0, 1]) ≤ ri(Xm, 𝜉)
Xm otherwise,

where ri(X , 𝜉) is the Hastings ratio

ri(X , 𝜉) =
f ((X ⧵ xi) ∪ 𝜉)qi({x1, … , xi−1, 𝜉, xi+1, … , xn}, xi)

f (X)qi(X , 𝜉)
.

2. Add: Propose N ∼ Pois(𝜆1) new points (𝜉1, … , 𝜉N), with 𝜉i ∼ qb(⋅) independently and set

Xm+1 =

{
Xm ∪ (𝜉1, … , 𝜉N) if U([0, 1]) ≤ rb(Xm, 𝜉)
Xm otherwise,

where rb(X , 𝜉1, … , 𝜉N) is the Hastings ratio

rb(X , (𝜉1, … , 𝜉N)) =
f
(

X ∪ (𝜉1, … , 𝜉N)
)
Pois(N, 𝜆2)

∏N
i=1qd(𝜉i)

f (X)Pois(N, 𝜆1)
∏N

i=1qb(𝜉i)
.
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3. Delete: Sample N ∼ Pois(𝜆2) existing points xi with probability proportional to qd(⋅) and set

Xm+1 =

{
Xm ⧵ (x1, … , xN) if U([0, 1]) ≤ rd(Xm, (x1, … , xn))
Xm otherwise,

where rd(X , 𝜉) is the Hastings ratio

rd(X , 𝜉) =
1

rb(X ⧵ (x1, … , xN), (x1, … , xN)
.

The generalization to a pair of point processes is straightforward.

A.2 MCMC algorithm

A.2.1 Update sil
Similarly to the previous section, we update the pair of point processes (s1

, s2) = (s1
1, … , s1

N1
), (s2

1, … , s2
N2
) by using with

equal probability a move/add/delete step for each of the two processes.
The posterior distribution of (s1

, s2) can be written as

p
(
s1
, s2|𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝛾12,H1

,H2
, p1

0, 𝜎1, p2
0, 𝜎2

)
∝ p

(
s1
, s2|𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝛾12

)
p
(

H1|s1
, p1

0, 𝛼
1)∕p

(
H2|s2

, p2
0, 𝛼

2)
,

where

p
(
s1
, s2|𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝛾12

)

∝ 𝛽N1
1 𝛽

N2
2

∏

i<j
1 − exp

(

−
(s1

i − s1
j )

2

𝛾1

)
∏

i<j
1 − exp

(

−
(s2

i − s2
j )

2

𝛾2

)
∏

i,j
1 − exp

(

−
(s1

i − s2
j )

2

𝛾12

)

, (A1)

and p(Hl|sl
i) is the probability of the captures locations, which is equal to

( D∏

i=1

K∏

k=1
p(Hl

ik|s
l
i, xk, pl

0, 𝛼
l)

)
( N

N − D

) ND∏

i=1

K∏

k=1
p
(

H0|sl
i, xk, pl

0, 𝛼
l)
,

where H0 is a capture history of an individual never captured. The first term is the contribution of the captured individual
and the second is the contribution of the uncaptured individuals.

We can update (s1
, s2) using the algorithm explained in the previous section by taking f (s1) ∝

p(s1|s2
, 𝛽1, 𝛽2, 𝛾1, 𝛾2, 𝛾12) p(H1|s1

, p1
0, 𝛼

1).
We choose 𝜆1 = 𝜆2 and we select the points to delete with equal probability, which implies qd(𝜉1, … , 𝜉n) = 1

n
.

At each step, we update the point process s1 by choosing one of the next three steps with equal probability (s2 is
updated analogously):

• Move
For each point si, propose 𝜉 ∼ N(si, diag(𝜎1

2 , 𝜎
2
2 )) and accept with probability

p
((

s1 ⧵ s1
i

)
∪ 𝜉, s2|𝛾

)

p(s1
, s2|𝛾)

p
(

H1|
(
s1 ⧵ s1

i

)
∪ 𝜉, p

)

p(H1|s1
, s2)

=
f
((

s1 ⧵ s1
i

)
∪ 𝜉, s1)

f (s1
, s2)

⋅
p
(

H1
i |𝜉, p

)

p
(

H1
i |s

1
i , p

) .

• Add
Propose m ∼ Pois(𝜆1) new points (𝜉1, … , 𝜉m), with 𝜉i ∼ qb(⋅) independently and accept the points with probability

p
(
s1 ∪ (𝜉1, … , 𝜉m)|s2

, 𝛽1, 𝛾1, 𝛾2, 𝛾12
)

p
(
s1|s2

, 𝛽1, 𝛾1, 𝛾2, 𝛾12
)

(∏m
l=1

(N1+l)
(N1+l−D1)

p(H0|𝜉l, pl
0, 𝜎)

)

∏m
l=1qb(𝜉l)

∏m
l=1(N + l)

,

where H0 is the capture history of an individual never captured.
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• Delete
Sample m ∼ Pois(𝜆2) existing points xi and set

p
(
s1 ⧵ (𝜉1, … , 𝜉m)|s2

, 𝛽1, 𝛾1, 𝛾2, 𝛾12
)

p(s1|s2
, 𝛽1, 𝛾1, 𝛾2, 𝛾12)

∏m
l=1qb(𝜉l)

(∏m
l=1

(N1−m+l)
(N1−m+l−D1)

p(H0|𝜉l, pl
0, 𝜎)

)∏m
l=1(N −m + l)

.

A.2.2 Update 𝜸j and 𝜷j
These variables are updated using the MCMH algorithm described in Section 2.2.

A.2.3 Update pl
0 and 𝜶l

We update these variables using a simple Metropolis–Hastings update.

A.2.4 Adaptation of the proposal parameters 𝝀 and qb
• 𝜆.

Every k iterations, we compute the acceptance rate p̂ and we update 𝜆 using the Robbins–Monro update as

𝜆

⋆ = 𝜆 + (p̂ − p⋆)w
kc
,

where kc is the number of updates performed so far and p⋆ is the targeted acceptance rate.
The values used were w = 10, p⋆ = 0.3 and k = 50.

• qb
We term as x = (x1, … , xn) the set of all the accepted points during the burn-in. At the end of the burn-in phase,

we fit several mixture models
∑K

k=1wkN(𝜇k,Σk) on the set of all the accepted points x for various values of K and we
choose the model with the best AIC. We set qb =

∑ ̂K
k=1wkN(𝜇k,Σk) where ̂K is the optimal value of K.
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