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Abstract

Directional changes (DC) is a recent technique that summarises physical time data (e.g.
daily closing prices, hourly data) into events, offering traders a unique perspective of the
market to create novel trading strategies. This paper proposes the use of a genetic algorithm
(GA) to optimize the recommendations of multiple DC-based trading strategies. Each trading
strategy uses a novel framework that combines classification and regression techniques to
predict when a trend will reverse. We evaluate the performance of the proposed multiple
DC-strategy GA algorithm against nine benchmarks: five single DC-based trading strategies,
three technical analysis indicators, as well as buy-and-hold, which is a popular financial
benchmark. We perform experiments using 200 monthly physical time datasets from 20
foreign exchange markets—these datasets were created from snapshots of 10 min intervals.
Experimental results show that our proposed algorithm is able to statistically significantly
outperform all DC and non-DC benchmarks in terms of both return and risk, and establish
multi-threshold DCs as an effective algorithmic trading technique.

Keywords Genetic algorithms - Directional changes - Algorithmic trading - Financial
forecasting

1 Introduction

Predicting foreign exchange (Forex) rate is an important step in understanding the rela-
tionship among global currencies to evaluate the benefits and risks attached to cross-border
trading. The prediction of Forex rate was relatively straightforward up to the early 1970s
(Chang and Huang 2014). It was mostly determined by the balance of payments of countries
and their level of importation and exportation of goods and services. In 1973, the floating
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exchange rate was adopted by the world major currencies and in recent times, Forex trad-
ing is primarily done electronically (Cheung and Chinn 2001). These changes in currency
policy and trading location opened the market to more participants, which led to an increase
in market activities. The higher number of participants coupled with local and international
supply—demand factors, such as economic, political and psychological, makes Forex fore-
casting a challenging task (Spero and Hart 2009; Nassirtoussi et al 2011; Frieden 2014; Bilgin
et al 2020; Pascual-Ezama et al 2014; Petropoulos et al 2017). These challenges include: (i)
short-term pronounced price fluctuation; (ii) a high trading volume of over 6.6 trillion USD
per day as of 2019 (Wooldridge 2019) in a market open 24 h/day from Sunday 20:15 GMT
to Friday 22:00 GMT across the globe (Sobol and Szmelter 2020); (iii) low profit margin
in comparison to fixed income trading (Petropoulos et al 2017); and (iv) noisy and chaotic
signals, making separation of uninteresting features from trends difficult (Abu-Mostafa and
Atiya 1996; Kamruzzaman et al 2003).

Majority of approaches to predict Forex rates use historic market data captured using a
physical time scale (Brabazon et al 2020). A drawback of using a physical time scale is that it
makes the flow of physical time discontinuous, exposing market participants to some degree
of risks due to ignorance of market activities between discrete time points. An alternative
approach is to utilise intrinsic time scale which summarises data by capturing significant
activities in the market. In this work, we use directional changes (DCs)—a form of intrinsic
time scale to summarise significant market movement. DCs presents an alternative way of
sampling data. Instead of taking snapshots of historical data in constant intervals, snapshots
are taken when there is a change in price by a predetermined threshold 6. The threshold value
is decided in advance by a trader according to their belief of what a significant price change
is, either upwards or downwards. Price summaries are thus divided into alternate upward and
downward trends. Each of these trends consists of a DC event, which is usually followed by
an overshoot (OS) event. Using different threshold values allows the detection of different
events and, as a consequence, the creation of different trend summaries. Therefore, the DC
framework focuses on the size of a price change as time varies, while under physical time,
the time interval is fixed (e.g. daily closing prices). This concept provides traders with new
perspectives for price movements analysis and allows them to focus on key price movements,
blurring out other price details which could be considered irrelevant. Furthermore, DCs have
enabled researchers to discover new regularities in markets, which could have been ignored
by the interval-based summaries (Glattfelder et al 2011). Therefore, these new regularities
give rise to opportunities for traders and open a whole novel area for research.

As a result, an increasing number of works have been using the DC concept for trading
purposes (e.g., Aloud 2020, 2021). Furthermore, Gypteau et al (2015) proposed a genetic
programming (GP) based multi-threshold DC (MTDC) strategy, where the terminal nodes of
the GP trees were composed of the trading actions (buy/sell/hold) recommended by each DC
threshold, and the inner nodes were logical operators for combining the above recommen-
dations. Bakhach et al (2016) proposed a classification algorithm that uses information from
event series sampled using smaller threshold to forecasts DC events in DC summary sampled
with a larger threshold. Ye et al (2017) proposed a mathematical equation for anticipating the
magnitude of OS events. Their result shows that trading based on DC trend (DCT) reversal
forecasting techniques yields profitable positive returns at comparatively low risk. Alkhamees
and Fasli (2017a) highlighted a problem with summarising price movements based on single
fixed threshold over a long physical time period. They argued that if a threshold of 0.01% is
used in summarising events and over time significant events level drops to 0.009%, the new
types of events will not be captured. Based on this finding, they recommended to trade with
event summary sample taken over shorter physical time frame and to recalibrate threshold

@ Springer



Algorithmic trading with directional changes

size at intervals to identify the most significant event. They proposed to generate event series
daily with dynamically adjusted thresholds size according to current and previous day price
movement. Comparison results showed that trading on event series generated in shorter time
period with dynamic threshold was more profitable than trading on event series generated
using fixed threshold over longer periods. A similar conclusion was reached by Alkhamees
and Fasli (2017b) having explored the same idea of generating event series using dynamically
adjusted thresholds in data stream. Salman et al (2022) proposed several new DC-based trad-
ing strategies and optimised their recommendations using a genetic algorithm (GA). Lastly,
Long et al (2022) was the first to combine different DC indicators under a GP algorithm.

A particular branch of DC trading research has been to identify the reversal point of a
trend. Kampouridis and Otero (2017) and Kampouridis et al (2017) attempted to do this by
estimating the length of the DCT. To achieve this, they calculated the average length of DCTs
for each dataset in the training set, and then used this value to predict when a trend would
end in the test set. Adegboye et al (2017) extended Kampouridis and Otero (2017) by using
a symbolic regression GP (SRGP) algorithm to evolve equations that calculated the average
DC-0S event length ratio which was thus used to predict the duration of a trend. They
identified both linear and non-linear relationships between DC and OS events, which they
embedded into a trading strategy and yielded higher returns. Adegboye and Kampouridis
(2021) further extended the above work, by observing that trends in DC datasets did not
consistently have both DC and OS events. They observed that it was possible to have as little as
14.77% of DC events having a corresponding OS event. Although the number of OS events in
a DC summary is threshold dependent, the maximum number of DC-OS event pair observed
was 52.46%. To address this issue, they proposed a DCT reversal forecasting algorithm that
combined classification with symbolic regression. A tailored classifier distinguished between
DCTs composed of OS and DC events and others having only DC event. They then used
a tailored SRGP to estimate OS event length of DCTs classified to have an OS event in
their training set. Their results showed their approach significantly improved DCT reversal
forecasting. The model was embedded in a single threshold-based strategy and tested on
1000 DC datasets created from a 10-min physical time-series from 20 major Forex markets.
The trading strategy outperformed other DC and technical analysis-based strategies including
buy-and-hold (BandH). Similar results were obtained in Adegboye et al (2021), which applied
the above classification technique to a number of different DC algorithms.

While the above classification and regression GPs were novel and effective algorithms,
they only used a single DC threshold, i.e., each trading strategy was based on a single
DC summary. Therefore, the strategy is constrained by the information provided by that
specific DC threshold—this is a major limitation. Besides, it is not easy to know which DC
threshold results return a more informative DC summary. To overcome the above drawback,
in this paper we propose using a MTDC trading algorithm. As a result, many thresholds
will be used simultaneously, and thus at each point in time, there will be multiple buy—
sell-hold recommendations. To overcome the conflicting recommendations, we will use a
GA to optimise the weights of each DC threshold. The rationale for combining predictions
stems from the fact that different kinds of events drive price volatility and a threshold is
capable of summarising only one type of such events. Using multiple thresholds will enable
us summarise concurrent events, thus, increasing the total number of DC events over the
profiling period, consequently providing more opportunities to trade profitably.

We will run experiments on 200 datasets from 20 different Forex currency pairs. The
proposed MTDC strategy will be compared against a total of nine benchmarks: five single-
threshold DC (STDC) strategies; three technical analysis indicators under physical time; and
a BandH strategy. The rest of this paper is organised as follows. Section 2 presents a brief
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overview of the concept DCs, and Sect. 3 presents our proposed GA-based multi-threshold
trading strategy. Section 4 presents the experimental setup, and Sect. 5 presents and discusses
the results. Lastly, Sect. 6 concludes this article and discusses future work.

2 DC background

A DC event is identified by price changes defined by a user-specified threshold value. DC
events are divided into upturn and downturn events. Once a DC event is confirmed, the
price series usually continue moving towards the same direction (upwards or downwards,
depending on what the current DCT is), and they form an OS event. An OS event finishes once
a DC event in the opposite direction is confirmed. A DCT, upward or downward, consists
of the combination of a DC and an OS events. Different thresholds generate different event
series. Smaller thresholds create higher number of DC events than larger thresholds, which
produce fewer events.

Let us now look at Fig. 1, where we present how we can summarise a physical-time price
series into DC and OS events. In this example, we summarise price movements with two
different thresholds, namely 6 = 0.01% (lines in red) and & = 0.018% (lines in blue). Price
changes below 6 are not considered a significant event. Price changes above 6 are considered
significant events, and divide the market into uptrends and downtrends. Solid lines represent
DC events, and dashed lines represent OS events. For example, under & = 0.01%, between
Points A and B we have a downturn DC event followed by a downward OS event from Point
B to C; when a trend reversal occurs, an upturn DC event starts from Point C to D. Lastly,
between Point D and E it is an upward OS event. The price point where a DCT begins or ends
is called DC extreme point (DCE); under 6 = 0.01%, Points A, C, and E are DCE points.

Under 0 = 0.018% (lines in blue), we obtain a different set of events: from A to B”: a
downturn event; from B’ to C: a downward OS; from C to E: an upturn DC event; lastly, from
Point E to E’ we have an upward OS trend.

Note that we can only confirm a DC event in hindsight, i.e., after there has been a price
change of 6. For instance, under 6 = 0.01% we would not know we are in an upward trend
until we have reached Point D. This point is called a DC Confirmation point (DCC). Before
Point D, one would consider that the market has been in a downward trend since Point A.
Similarly, we would not know the trend has reversed from upward to downward until we
have reached the DCC Point F. It is therefore crucial to be ablel to accurately predict when
a trend reversal will take place. Algorithm 1 presents the pseudocode for the transformation
of physical time series to event-based (DC) series.

3 Methodology

Our proposed method, which we refer to as multi-threshold DC (MTDC), is a new algorithm
for trading under the DC paradigm. This novel algorithm will overcome the limitations from
Adegboye and Kampouridis (2021) and Adegboye et al (2021), which were constrained in
using a single threshold to generate DC summaries. MTDC allows for multiple DC thresholds
and DC summaries to be used. This allows for multiple view of the data. Thus combines the
use of different threshold values in an attempt to take advantage of the different characteristics
of smaller and larger event kinds that cause price movement. Furthermore, since there are
multiple thresholds, there can be multiple recommendations (buy/sell/hold) at any point in

@ Springer



Algorithmic trading with directional changes

1 1 1

Fig. 1 Directional changes for the GBP/JPY FX currency pair. The red lines represent events created by a
threshold 6 = 0.01%, and the blue lines events created by a threshold & = 0.018%. DC events are denoted
by solid lines, and OS events by dashed lines. Under 6 = 0.01%, we summarise data as follows: Downturn
DC event: Point A — B; Downward OS event: Point B — C; Upturn DC event: Point C + D; Upward OS
event: Point D — E; Downturn DC event: Point E — F.Under 6 = 0.018%, we summarise data as follows:
Downturn DC event: Point A — B’; Downward OS event: Point B’ — C; Upturn DC event: Point C +— E;
Upward OS event: Point E +— E . DC extreme points (DCE): Points A, C, E, and E ’. DC confirmation points
(DCC): Points B, B/, D, E, and F

time. To resolve the conflicting recommendations, we use a GA to decide how much weight
we should assign to each DC threshold.

Our trading algorithm can be broken into two main parts: a STDC algorithm and MTDC,
which essentially optimises the recommendations from the multiple STDC algorithms. STDC
was first presented in Adegboye and Kampouridis (2021), and its main components are
summarised in Sect. 3.1. Afterwards, in Sect. 3.2, we discuss the main contribution of this
article, namely the MTDC algorithm.

3.1 Singe threshold-based DC strategy

The aim of the single threshold-based DC strategy (STDC) is to predict when the current
trend will reverse (trend reversal point) and subsequently use this information during trading.
The trend reversal point can be predicted via regression algorithms, where the relationship
between the DC and OS lengths is estimated. However, early work in Adegboye et al (2017)
showed that simply regressing the above relationship has a major drawback: the resulted
function f that describes this relationship does not take into account that many DC events
are not followed by an OS event, as they can often be followed by another DC event of the
opposite direction. Thus any regression algorithm will learn a DC-OS length relationship
by using inaccurate data. To overcome this issue, we first use a classification step, which
predicts whether a DC event is followed by an OS event. Introducing this classification step
allows us to only perform regression on data that contain consecutive DC and OS events,
thus creating more accurate regression models, which itself enables us to predict the end of
a trend. This information is then used by a trading strategy.
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Algorithm 1 Pseudocode for generating directional changes events given threshold 6.

Require: Initialise variables (event is Upturn event, p" = p! =p(10), Axg.(Fixed) > 0, ff)h‘ = ffh‘ =" =
195 =15 )
1

1: if event is Upturn Event then

2: if p(t) < p" x (1 —6) then

3: event < Downturn Event

4: Pl — p(t) //Price at end time for a Downturn Event

5: e g //End time for a Downturn Event

6: 705 —t+1 //Start time for a Downward Overshoot Event
7. else
8: if p/" < p() then

9: ph < p(t) //Price at start of Downturn event

10: e //Start time for Downturn event

11: t?” «—tr—1 //End time for an Upturn Overshoot Event
12: end if

13:  endif

14: else

15:  if p(1) > p! x (1+6) then

16: event <— Upturn Event

17: Ph p(t) //Price at end time for upturn event

18: et //End time for an Upturn Event

19: 1t +1 //Start time for an Upturn Overshoot Event
20:  else

21: if p’ > p(r) then

22: pl <« p(t) //Price at start time for upturn event

23: lgc <t //Start time for an Upturn Event

24: 1 1 —1 //End time for a Downturn Overshoot Event
25: end if

26:  endif

27: end if

Thus, STDC has three main steps: a classification step; a regression step; and a trading
step. The process flowchart is illustrated in Fig. 2. Next we briefly present each step. For a
more detailed description, the reader is referred to Adegboye and Kampouridis (2021).

3.1.1 The classification step

As there are numerous classification algorithms that can be used for the classification task,
STDC uses Auto-WEKA (Thornton et al 2013), an automated machine learning (AutoML)
framework.! Using Auto-WEKA allows for a tailored classification algorithm and tailored
hyperparameters for each dataset. The model classifies a DCT as either composed of DC and
OS events (¢ DC) or only DC event (8 DC). If a trend is classified as 8 DC, then the trading
action will be taken at the DCC point (more about this in Sect. 3.1.3). Conversely, if a trend
is classified as a« DC, the trend is expected to reverse at the end of a sum of the DC event
length, known at the DCC point and the OS event length, estimated with a regression model,
which is presented in the next section (Sect. 3.1.2).
Lastly, the attributes used for classification are DC-related features, namely:

e DC event price, which is the price difference between the upturn/downturn point and the
DCC point.

e DC event time, which is the time difference between the upturn/downturn point and the
DCC point.

e Speed, which is the speed at which price change from the start of a trend to the DCC
point.

e Previous DC event price, which is the price at the previous confirmation point.

! Auto-WEKA is a framework with 39 classification algorithms uses high-dimensional stochastic optimisation
to fully automate the creation and tuning of tailored classification models.
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Fig. 2 Predicting trend reversal in DC. A DC trend classified to compose of only DC event is expected to
reverse at DCC, while DC trend classified to compose of DC and OS events is expected to reverse at estimated
DCE, which is the sum of DC event length at DCC and the OS event length predicted by the SRGP. Once the
trend reversal point has been determined, we embed it into a trading strategy and perform trading

e Previous OS, which is a boolean variable that indicates whether the immediately previous
DCT has an OS event.

e Flash event, which is a boolean variable indicating whether the DC event start and end
times are equal.

3.1.2 The regression step

Once the classification step is complete, STDC aims to learn the relationship between the
DC and OS lengths for each dataset. This is actually a symbolic regression step, which aims
to find both the shape of the solution/equation, as well as the value of its parameters. The
target solution can be expressed by the generic equation 1, which essentially tells us that the
length of an OS event is a function of the length of the DC event.

0S; = f(DC)), 0
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where O is the length of an OS event, DC; is the length of a DC event.

To find the form of the equation, Algorithm 2, a tree-based SRGP algorithm” (SRGP)
proposed by Adegboye et al (2017) is used. SRGP is able to evolve scale variant linear and
non-linear equations that best express the relationship between DC and OS events lengths in
a DC event summary.

Algorithm 2 Pseudocode for evolving SRGP i.e., equation to estimate OS event length after
the DC event length is known.

Require: Initialise variables (PopulationSize= 500; GenerationSize= 35; TournamenteSize = 3; Crossover-
Rate = 0.98; MutationRate = 0.02; MaximumDepth = 3; ElitismRatio = 0.1; Prune = True )

: Initialise population: P < Generate PopulationSize individuals (Candidate programs) using ramped half-
and-half

2: Evaluate: for each p in P, calculate Fitness with Equation 2

3: while termination condition not satisfied do

4: Py < Initialise new population for generation g

5:  Getelite individuals in P: ER[1,...,( ElitismRatio x PopulationSize)]

6:  Add elite individuals to Pg

7. fori=ER+1to Py do

8: if RandomNumber < CrossoverRate then

9: Select parentl: probabilistically select TournamenteSize individuals from P
10: Select parent2: probabilistically select TournamenteSize individuals from P
11: Py : < Perform crossover between parentl and parent2

12: end if

13: if RandomNumber < MutationRate then

14: Py; @ < Perform mutation on Py;

15: end if

16:  end for

17: Update: P < Py

18:  Evaluate: for each p in P, calculate Fitness with Equation 2

19: end while

20: Return the individual (i.e., equation) with the highest fitness from P

To evolve the equation, SRGP is configured to use 2-arity functions {addition, subtraction,
division, multiplication, power} and 1-arity functions {sine, cosine, power, logarithm, expo-
nential } as the function set. The terminal nodes are composed of attribute that represented DC
event length and ephemeral random constants (ERC).? SRGP is initialised using the ramped
half-and-half method. During evolution the fittest 10% of the tree population are copied to
the next generation and the rest are evolved with subtree crossover and mutation operators.
The fitness of the trees in the population is measured using Eq. 2. It calculates the regression
error € between actual OS length (O S;) and SRGP estimated OS length. After evolution, the
tree with the least regression error in the final generation is selected as the regression model.

N —08)2
) :\/zilwfé 05" o

where N is the sample size, ¢ is the root mean squared error.

A concurrent step with the creation of the regression model is the selection of appropriate
thresholds. A pool of 100 thresholds is created with real value numbers from 0.005 with a
step size of 0.0025. The SRGP model described above is created for each threshold in the

2 SRGP searches a space of mathematical expressions to create a symbolic regression model that best expresses
the relationship between DC and OS event lengths in an event series.

3 ERC is a set of randomly generated terminals that retain their values across the population at initialisation
and during evolution.
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pool. The regression errors of the 100 thresholds’ best SRGPs are then measured. The SRGP
with the least error with the associated threshold is selected for backtesting.*

For backtesting, Adegboye et al (2021) selected the best five thresholds and their SRGPs
and traded with them independently. A characteristic of a single threshold-based trading strat-
egy is its obliviousness to slight changes to price movement that are lower than the specified
threshold even though the change could also be relevant. For example, if a trader considers
a price change of 0.1 to be significant, price changes of 0.0999 are ignored. This inherent
limitation of single threshold-based strategy can be addressed by combining information
from multiple thresholds (Fernald et al 2021). In Sect. 3.2, we present a multi-threshold trad-
ing strategy that combined and optimised information from multiple thresholds using GA
(Holland 1992), a well-known technique for solving optimisation problems.

3.1.3 The trading step

As explained earlier, the classification step predicts if a trend is composed of DC and OS
events («DC) or only a DC event (8DC). In the former case, the trend reversal point is
predicted to be the end of the OS event as predicted by the SRGP algorithm, while in the
former case it is the DCC point.

In order to decide how to trade, we differentiate between opening (sell the base currency
and buy the quoted currency) and closing a position (buy the base currency and sell the
quoted currency). In order to open a position, there are two requirements: (i) there is not an
already open position, and (ii) the return from opening the position would be positive, after
accounting for transaction costs. If the above requirements hold, we open a position at the
extreme point of an upward DCT. Similarly, to close a position, there are two requirements:
(i) there is an existing open position, and (ii) the return from closing the position would be
positive after accounting for transaction costs. If these conditions hold, we close the position
at the extreme point of a downward DCT.

The extreme point in both of the above cases can be either at a «DC or BDC, depending
on the prediction of the classification model. When the above requirements are not met, no
trading takes place. All transactions take place by using the entire capital. Transaction cost
is 0.025% per transaction.

3.2 Multi-threshold DC strategies using a genetic algorithm
3.2.1 Overview

This strategy builds on the single-threshold strategy by combining market trends and predic-
tions from multiple thresholds. As discussed in Sect. 2, a DC event is identified by a change in
the price by a given threshold value. Each DC threshold summarises the data in a unique way:
smaller thresholds allow the detection of more events and, as a result, actions can be taken
promptly; larger thresholds detect fewer events, but provide the opportunity of taking actions
when bigger price variations are observed. This proposed trading strategy combines the use
of different threshold values in an attempt to take advantage of the different characteristics
of smaller and larger thresholds.

4 This idea of dynamically selecting thresholds has also been explored by Alkhamees and Fasli (2017a,b),
where a dynamic DC threshold was calculated on a daily basis. In our framework, we do not do this on a
daily basis, but instead we simultaneously consider 100 different thresholds and select the one that returns the
lowest regression error.
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Thus, at one point in time the trading strategy under one threshold could be recommending
a buy action, while a different threshold recommending a sell action. In addition, even if all
strategies are recommending the same trading action, there might not be consensus on where
the trend reversal point is, as each DC summary uses its own SRGP algorithm and thus has
different predicted reversal points.

To deal with the above issues, we assign a weight for each DC threshold. Thus, if there

are Ny thresholds, there will be Ny DCs summaries and as a result Ny recommendations.
Each threshold makes the two following recommendations: (i) what action to take, and (ii)
where is the trend reversal point, i.e. when to take the recommended action.
What action to take. A majority vote is performed, based on the thresholds’ weights: the
weights of the same actions (e.g., buy, buy, ...) are summed up and the action with the largest
weight is followed. For example, if N9 = 5 and the sum of weights for the buy actions is
0.65, while the sum of weights for the sell action is 0.35, the action to be taken will be buy.
It is worth noting here that the deciding factor is the sum of weights, rather than the number
of thresholds recommending an action.

Overall, there are three possible actions that can be recommended by each threshold: buy,

sell, and hold. If the action to be taken is a buy, we buy all available base currency in exchange
for the quoted currency. If the action to be taken is a sell, we sell all available base currency
in exchange for the quoted currency. Therefore, there is no situation where we have both
base currency and quoted currency in our portfolio. With regards to a hold action, this can
happen in three specific situations: (1) when the action is “sell” and there isn’t enough base
currency available to sell, (2) when the action is “buy” and there isn’t enough base currency
to buy and, (3) when the return is negative after deducting transaction costs.
When to act. As each DC summary (each derived by a different DC threshold) can predict a
different trend reversal point, there is no consensus as to what point to take a buy/sell/hold
action. To alleviate this, we act at the weighted average of the predicted reversal points of
the recommended action. To better understand this, let us go back to the previous example
of Ng = 5, where the sum of weights for buy was greater than the sum of weights for sell,
and as a result the action to be taken is buy. Let us assume that it was only two thresholds
recommending the buy action, with weights w; = 0.3 and wy = 0.35, respectively. Let us
also assume that the first threshold predicts that the trend will reverse at point t = 10, and
that the second threshold predicts point # = 20. Thus, the buy action will be taken according
to Eq. 3:

(€)

where w; is each weight value, and #; is each predicted trend reversal point. Plugging in the
above values would give W ~ 15. Thus the buy trading action will take place
at point t = 15. By following the above method we take into account the threshold weights
both in terms of what action to take and when to act.

The above is a brief introduction of the multi-threshold strategies. Apart from what has
been discussed above, everything else is similar to the single-threshold strategy. Thus, the
MTDC framework consists of four steps: (1) classification step; (2) symbolic regression step;
(3) optimised strategy by a GA; and (4) trading step. Steps (1), (2), and (4) follow the same
approach as in STDC described in Sect. 3.1. The differentiating step in MTDC is step (3),
which is what we have discussed above and is necessary for dealing with the multiple trend
reversal points that are returned by each individual threshold’s process. Thus, after predicting
the trend reversal point per threshold, we assign weights to represent each threshold. Figure
3 presents a high-level overview of the MTDC strategy.
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Fig.3 Our proposed multi-threshold strategy framework. It uses a majority vote system to sum similar trade
action recommendations from thresholds and it follows the action with the highest sum. The action is taken
after calculating the weighted average of the forecasted trend reversal point of thresholds that recommended
the winning action

The only part we have not discussed yet is how the weights are decided. This is an important
step, because we do not know how much weight we should give to each threshold. Simply
assigning an equal weight of 1 to all of the thresholds might be a naive approach. Some
thresholds might be more useful than others, hence we should give them more weight. Thus
we use a GA to evolve real values for the weight of each DC threshold. We present the GA
next.

3.2.2 Genetic algorithm

GAs are well-known evolutionary algorithms to find solutions to hard optimization problems
(Goldberg 1989; Michalewicz 2002; Mitchell 1996). GAs use a population of individuals
(candidate solutions) and subject them to an evolutionary process: individuals are evaluated
according to how well they solve the problem and combined to generate individuals using
genetic operators. In this process, individuals are selected based on their quality, where
individuals with a higher quality have a higher chance to be selected and their genetic material
to contribute to the creation of the next population.

Representation. Each GA chromosome consists of Ny genes, where Ny is the number of
thresholds used in the multi-threshold strategy. Each gene is assigned a weight value during
population initialisation. The weight is a measure of the importance of a threshold’s recom-
mendation in the trading decisions. The weights are real values where the maximum weight
value is 1 and the minimum value is 0. We initialise the first gene in the first chromosome
with the maximum weight value and initialise the rest of the genes with minimum weight
value. We initialise the second gene in the second chromosome with the maximum weight
value and initialise the rest of the genes with minimum weight value. We initialise the third
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Fig.4 Illustration of GA population initialisation for Ng = 5 thresholds

gene in the third chromosome with the maximum weight value and initialise the rest of the
genes with minimum weight value. We repeat this initialisation of weights for the first Ny
chromosomes in our GA population. The idea is to ensure that in the worst case scenario, the
trading result of our strategy is as good as the result of the best performing single threshold.
The genes of the rest of the chromosome in our GA population are randomly assigned real
values between the minimum and maximum weights inclusive. The pseudocode presented
in Algorithm 3 summarises this procedure and Fig. 4 illustrates the initialisation step. The
GA then evolves real value weights for each threshold over a number of generations. At the
end of the evolution process our optimisation model is created.

Algorithm 3 Pseudocode for initialising chromosome weight in GA population

for i=0;i < numberOfThresholds; i++ do
for j=0;j < chromosomeInPopulation[i]; j++ do
if index i is threshold position in chromosome then
w; < 1.0
else
w; < 0.0
end if
end for
end for
for i=numberOfThresholds; i < chromosomelnPopulation; i++ do
for j=0;j < chromosomeInPopulation[i]; j++ do
w; < RandomNumber Function(0.0, 1.0)
end for
end for

Genetic operators. We use three operators namely elitism, uniform crossover and uniform
mutation. For elitism, we copy the chromosome with the best fitness value into the next
generation. For uniform crossover and uniform mutation, individuals from the population
are selected into a mating pool. From the pool, through tournament selection, individuals
that best favour the optimisation goal are selected as parents of individuals for the next
generation. In this work we select as parent, individual in the pool with highest fitness. In
uniform crossover both parents contribute their genes where each gene has a fixed probability
of 0.5 of being swapped. In uniform mutation operation, the selected parent’s gene have a
fixed probability of 0.5 of being swapped as well. Figures 5 and 6 illustrate uniform crossover
and uniform mutation, respectively.

GA model evaluation. We measure the quality of our GA individual using Sharpe ratio
presented in Eq. 6 where R is the return, Q is the quantity traded , 7' C is the transaction cost
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Fig.5 A sample uniform

crossover operation by our GA.
Either of the children is randomly _—

selected for the next generation —
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Fig.6 A sample uniform

mutation operation by the GA m m
parent child

discounted from a transaction, F Xrate is the FX rate of the relevant currency pair R F R the
risk-free rate which we assume to be zero for Forex trading and o the standard deviation of
the return over the trading period. We choose Sharpe ratio because it is an aggregate metric
of risk-adjusted return, as it measures how well the return compensates an investor for the
risk of following the trades strategy.

TC=0 0.025 @)
= * —_,
100
R=(Q—-TC) % FXrate, (®)]
. R — RFR
Sharpe Ratio = ——— . 6)
OR

Algorithm 4 summarises the procedure of optimising trading actions and trend reversal
points. Algorithms 5 and 6 summarise the trading rules applied at optimised trend reversal
point at optimal trade action buy and sell respectively.

4 Experimental setup
4.1 Data

We use 10-min interval high frequency data from March 2016 to February 2017 for 16
currency pairs and from June 2013 to May 2014 for 4 currency pairs.’ These pairs are
presented in Table 1.

We consider each month as a separate physical-time dataset. In the tuning phase, we use
40 physical-time datasets (i.e., 20 currency pairs X first 2 months of our physical-time data)
to create 200 DC datasets (40 physical-time datasets x 5 thresholds). In the non-tuning phase,
200 datasets (i.e., 20 currency pairs x last 10 months of our physical-time data) are used in
creating 1000 DC datasets (i.e., 5° thresholds x 20 currency pairs x remaining 10 months of
our physical time datasets). In both tuning and non-tuning phases, the DC datasets are split
in 70:30 ratio for training and testing respectively.

5 Data was purchased by OANDA (http://www.oanda.com). Thus the datasets analysed during the current
study are not publicly available, but are available from the corresponding author on reasonable request.

6 We have experimented in aprevious work (Kampouridis and Otero 2017) with the number of thresholds and
found that five thresholds is optimal. Higher number of thresholds do not appear to make significant impact
on trading performance, while at the same time they significantly affect the computational cost of running the
algorithm.
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Algo

rithm 4 Pseudocode for Multi-threshold Optimisation

Require:

Require:

Require:
Require:

: Initialise base_quantity = budget, quote_quantity = 0.0

current_price = 0.0, LastUpPrice = 0.0

: Initialise weight values Wy, Wa, W3 ... Wy, according to Algorithm 3
: Get forecast model Fy, Fa, F3 ... Fyy, for each threshold

for i=0;i < dataset_length ; i++ do
Initialise forecast and action dictionary: Dict = empty
Initialise weights for buy and sell: Wp = Wy =0
Initialise buy and sell trend reversal list: Listp = Listg = empty

for
I

j=0;j < Ny:j++ do
nitialise trend reversal point: TRP = 0.0

if event is upturn && DCC_point then

TRP < F;
Insert TRP into Listg
Ws < W+ W;

else if event is downward trend && DCC_point then

TRP < F;
Insert TRP into Listg
Wp < Wg+W,;

end if

end

for

if Wg > Wp then
TRPoptimal; < optimise Listg according to Equation 3
Insert T RPopiimal; and Sell into Dict at position i

else

TRPopiimal; < optimise Listp according to Equation 3
Insert TR Poptimal; and Buy into Dict at position i

end

if

if Dict[i] is not empty then
if Dict[i] == Sell then

el

e
end

current_price < dataset_length;,sk)
Trade with Sell Rule [See Algorithm 5]
Ise if Dict[i] == Buy then
current_price < dataset_lengthi(piq)
Trade with Buy Rule [See Algorithm 6]
nd if
if

end for
Wealth < base_quantity — budget

Return < 100 x

Wealth
budget

Algorithm 5 Trading rules used for selling the base currency

Require: Sell rule
if base_quantity > 0 then
base_quantity < base_quantity - transaction_Cost
quote_quantity < base_quantity X current_price
base_quantity < 0.0
LastUpPrice < current_price
else Hold

end if

Algorithm 6 Trading rules used for buying the base currency

Require

: Buy rule

if quote_quantity > 0 && current_price < LastUpPrice then
quote_quantity < quote_quantity - transaction_Cost

bas

quote_quantity

e_quantity < current_price

quote_quantity < 0.0
else Hold

end if

4.2 Parameter tuning

For the classification step, the only parameter of Auto-WEKA that required tuning was its
execution time. This is because Auto-WEKA requires to be given enough time to search
its algorithms and hyperparameter space for a classification model that is best in predicting
our two class labels («DC, BDC). We experimented with different runtime configurations
namely 15 min, 30 min, 45 min 60 min, 75 min. We chose a runtime of 60 min based on
average f-measure, which we observed to diminish at a runtime of 75 min. Depending on
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Table 1 FX currency pairs used Currency pairs

in our experiments March 2016 to February 2017
AUD/IPY Australian $/Japan. Yen
AUD/NZD Australian $/N. Zeal. $
AUD/USD Australian $/US $
CAD/IPY Canadian $/Japan. Yen
EUR/AUD Euro/Australian $
EUR/GBP Euro/British Pound
EUR/CAD Euro/Canadian $
EUR/CSK Euro/Czech Krona
EUR/NOK Euro/Norwegian Krona
GBP/AUD British Pound/Australian $
NZD/USD New Zealand $/US $
USD/CAD US $/Canadian $
USD/NOK US $/Norwegian Krona
USD/IPY US $/Japan. Yen
USD/SGD US $/Singaporean Dollar
USD/ZAR US $/South African Rand
June 2013 to May 2014
EUR/USD Euro/US $
EUR/IPY Euro/Japan. Yen
GBP/CHF British Pound/Swiss Franc
GBP/USD British Pound/US $

Table2 Regression GP

. Parameter

experimental parameters for

detectir‘lg DC—.OS relationship, Population 500

determined using I/F-Race .
Generation 37
Tournament size 3
Crossover probability 0.98
Mutation probability 0.02
Maximum depth 3
Elitism 0.10

the number of CPU cores available, it is possible to execute Auto-WEKA in serial or parallel
mode. For our experiment we executed Auto-WEKA in serial mode, using 1 CPU core.

With regards to the regression step, we tuned the GP parameters using the I/F-Race package
(Lopez-Ibanez etal 2011). I/F-Race package is based on an iterated racing procedure, which is
an extension of the Iterated F-race procedure. It implements racing methods for the selection
of the best configuration for an optimisation algorithm by empirically selecting the most
appropriate settings from a set of instances of an optimisation problem. Table 2 presents the
GP configuration to evolve the five symbolic regression models for estimating the OS event
length.
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Table 3 GA experimental

P t

parameters for multi-threshold arameter

trading strategy determined using Population size 500

I/F-Race . .
Generation size 50
Tournament size 7
Crossover probability 0.90
Mutation probability 0.10
Elitism 0.1

With regards to the optimisation part of the DC weights, we again used the I/F-Race
package to determine the optimal GA parameters. Table 3 presents the value of the tuned
parameters.

4.3 Trading experimental setup
4.3.1 DC-related benchmarks

As a reminder, the aim of this study is to demonstrate that by optimising recommendations
from multiple thresholds using ML techniques we can improve profitability and risk, statis-
tically outperforming single threshold-based strategies. To do this, we compare the trading
performance from a trading strategy that draws recommendations under a five-threshold DC
setup, against five individual strategies, where each strategy draws recommendations from a
single DC threshold setup. Each single threshold DC strategy will from now on be denoted as
STDC; since we are testing five individual thresholds, we thus have STDC1 (single threshold
DC trading strategy 1), STDC2, STDC3, STDC4, and STDCS. It is worth re-iterating that
the five individual thresholds can be different per dataset, as they are dynamically chosen.
The MTDC strategy will be referred to as MTDC and consists of the same five individual
thresholds in a given dataset.

4.3.2 Financial (non-DC) benchmarks

Technical analysis trading strategy Technical analysis is a very popular approach in trading. It
uses technical indicators, for insight into when to make trading decisions. We experiment with
three trading strategies that utilise the relative strength index (RSI) indicator, the exponential
moving average indicator (EMA), and the moving average convergence divergence (MACD).
Buy and hold Buy and hold (BandH) is a well-known benchmark for trading algorithms.
Under this trading strategy we buy the quoted currency in the first month of the non-tuning
data, and then sell it in exchange for the base currency after the 10 month period.

5 Trading results

This section presents experimental results for our proposed MTDC algorithm.” We first
compare MTDC’s performance against five STDC strategies (Sect. 5.1), and afterwards to

7" As the focus of this paper is the effectiveness of the proposed MTDC algorithm, we do not present results
of its individual components, i.e., the classification and the regression steps. These components have been
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Table 4 Average return result (%) for trading strategies of individual single-threshold strategies and multi-
threshold strategy

Dataset STDC1 STDC2 STDC3 STDC4 STDC5S MTDC
AUD/IPY 0.9032 1.1177 1.0361 1.0132 1.2644 1.4018
AUD/NZD 0.4716 0.4831 0.3926 0.3365 0.2377 1.1877
AUD/USD 0.3970 0.5281 0.5813 0.7310 0.7253 0.8701
CAD/IPY 0.8736 0.8969 0.8264 0.7082 0.7935 1.3208
EUR/AUD 0.6808 0.5261 0.3586 0.3850 0.3508 1.0787
EUR/CAD 0.4677 0.3900 0.3471 0.4886 0.4250 0.9773
EUR/CSK 0.0232 0.0372 0.0025 0.0474 0.0432 0.3955
EUR/GBP 0.2132 0.2712 0.0583 0.2139 0.2121 0.8233
EUR/IPY 0.5475 0.5171 0.4380 0.5985 0.5385 0.8509
EUR/NOK 0.2632 0.4388 0.3222 0.6373 0.2553 0.8889
EUR/USD 0.2139 0.2427 0.1494 0.1022 0.0777 1.0474
GBP/AUD 0.5770 0.3854 0.5816 0.7964 0.6471 1.4298
GBP/CHF 0.2575 0.0779 0.6074 0.1904 0.3013 0.5371
GBP/USD 0.1141 0.1997 0.0648 0.2228 0.1140 0.8567
NZD/USD 0.5130 0.5937 0.7069 0.7858 0.5984 0.9422
USD/CAD 0.2078 0.1658 0.4274 0.3773 0.4194 0.8522
USD/JIPY 0.4411 0.6448 0.3829 0.3914 0.3428 1.2062
USD/NOK 0.3836 0.4253 1.0093 0.4595 0.4502 1.5360
USD/SGD 0.1525 0.1325 0.2305 0.2991 0.3777 0.7704
USD/ZAR 1.5811 1.4437 1.8097 1.7583 1.4155 4.1808
Average 0.4641 0.4759 0.5167 0.5271 0.4795 1.1577

10-min interval out-of-sample data. 20 Different currency pairs and 10 calendar months each representing the
physical dataset. Five DC dataset were generated using five dynamically generated thresholds tailored to each
DC dataset. Best value for each row (currency pair) is shown in boldface

financial benchmarks (Sect. 5.2). Then, in Sect. 5.3 we discuss computational times. Lastly,
we summarise the main findings of our results in Sect. 5.4.

5.1 Summary statistics

Table 4 presents returns of single-threshold and multi-threshold trading strategies calculated
monthly. In this table, cases where 0.00 is reported as return indicates that the strategy is
passive (i.e., hold action). Trading return results show that the multi-threshold strategy has
the highest return (1.15%), which is over 100% better than the best single threshold-based
strategy that recorded return of 0.53%. The result of the multi-threshold strategy was also the
best per currency pair. Table 5 presents the non-parametric Friedman test with the Hommel
post hoc test to determine if the differences in performance are statistically significant. The
null hypothesis is that the strategies come from the same continuous distribution. As we can
observe, the best ranking strategy is the multi-threshold strategy, and it statistically outranks
the 5 single-threshold strategies at the 5% significance level in all pairs.

thoroughly examined in the past, over a total of 1000 datasets by Adegboye and Kampouridis (2021) and
Adegboye et al (2021).
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Table 5 Statistical test results for
average returns according to the
non-parametric Friedman test MTDC (c) 1.0000
with the Hommel post hoc test of

Trading strategies Average rank AdjustyHomm

multi-threshold (c) vs. other STDC4 3.3000 1.4284E—4
single-threshold based trading STDC2 3.9999 1.2302E—6
strategies STDC3 4.1000 7.5910E—7
STDCI 4.2500 2.5353E-7
STDCS 4.3000 1.5846E—7

10-min interval out-of-sample date. Significant differences between the
control algorithm [denoted with (c) and the algorithms represented by a
row at the o = 5% level are shown in boldface indicating that the adjusted
p value is lower than 0.05]

We also evaluated the risk adjusted return (Sharpe ratio) over the transactions that occurred
in the 10-min monthly dataset. Table 6 presents the result, and it shows that multi-threshold
strategy outperformed single threshold-based strategy in all 20 currency pairs. The Sharpe
ratio of 0.78 is over 200% better than the Sharpe ratio of the best single threshold-based
strategy. We also tested the statistical significance of the Sharpe ratio result using Friedman
non-parametric test. The null hypothesis is that the strategies come from the same continuous
distribution. We reject the null hypothesis because the statistical test results presented in Table
7 shows that multi-threshold strategy outperformed the 5 single-threshold strategies.

We also performed risk analysis, measuring maximum drawdown and standard deviation
of our daily return. Table 8 presents the maximum drawdown results, where the lower the
drawdown the better the result. Our multi-threshold strategy recorded the lowest overall
average maximum drawdown (0.02). On average, the risk was 10 times lower than trading
using single-threshold strategies. We also perform Friedman test and Table 9 shows that
multi-threshold strategy statistically outperforms all single-threshold strategies at the 5%
significance level.

Finally, Table 10 presents the standard deviation results. The results are not as homogenous
as in the previous tables, where the multi-threshold strategy is ranking first across all datasets.
Nevertheless, MTDC strategy ranked the highest for the number of currency pairs (7 currency
pairs), it had the lowest average standard deviation (0.1638). We also performed Friedman
statistical test, presented in Table 11 and the multi-threshold strategy ranks first overall. The
performance was not statistically significant against any of the single-threshold strategies.
Nonetheless, the volatility risk was slightly lowered when trading with MTDC which is
noteworthy considering that the average return (see Table 4) more than doubled.

5.2 Financial benchmarks

Since MTDC was found to be the best algorithm in the above tests with other DC-based
strategies, we now proceed to compare it to financial benchmarks, namely the RSI, EMA and
MACD technical indicators, as well as the well-known BandH benchmark. Under BandH,
we buy on the first day of the first month and sell on the last day of the tenth month.

Table 12 compares the mean returns of MTDC and the other strategies. MTDC outperforms
the four benchmarks in 13 currency pairs with an overall average return of 1.1577% against
anegative average return of —0.128% under BandH, —0.0378% for RSI, 0.1117% for EMA,
and —0.1879% for MACD. In addition, MTDC'’s variance is 0.76; BandH’s is 6.91; RSI’s
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Table 6 Average Sharpe ratio result for trading strategies of individual single-threshold strategies and multi-

threshold strategy

Dataset STDC1 STDC2 STDC3 STDC4 STDCS MTDC
AUD/IPY 0.3469 0.2082 0.2335 0.2245 0.2451 0.7026
AUD/NZD 0.2565 0.2129 0.2289 0.1246 0.3348 0.7912
AUD/USD 0.2749 0.2183 0.3149 0.3396 0.3702 0.8014
CAD/IPY 0.2614 0.1879 0.3268 0.1664 0.2708 0.6804
EUR/AUD 0.2812 0.2310 0.2358 0.2855 0.2961 0.9101
EUR/CAD 0.3972 0.1807 0.2865 0.3229 0.2964 0.7496
EUR/CSK 0.0970 0.1190 0.0370 0.1893 -0.0555 1.2658
EUR/GBP 0.0845 0.0035 0.1589 0.1077 0.2287 0.7330
EUR/IPY 0.3539 0.3183 0.3371 0.4049 0.2846 1.0389
EUR/NOK 0.1292 0.2177 0.2578 0.2430 0.2778 0.5835
EUR/USD 0.2370 0.1381 0.1073 0.1328 0.1258 0.5673
GBP/AUD 0.2579 0.2179 0.2326 0.2619 0.3402 0.9387
GBP/CHF 0.2793 0.0216 0.3019 0.2840 0.2367 0.7413
GBP/USD 0.0779 0.2178 0.1344 0.2539 0.1855 0.6961
NZD/USD 0.1753 0.2463 0.2388 0.3418 0.2365 0.6223
USD/CAD 0.1780 0.3044 0.3232 0.3508 0.2181 0.6328
USD/IPY 0.2140 0.2205 0.0582 0.2940 0.2303 0.6499
USD/NOK 0.2614 0.2526 0.3395 0.1712 0.2156 0.7604
USD/SGD 0.0434 0.1260 0.1219 0.1236 0.1910 0.7305
USD/ZAR 0.2555 0.2741 0.2420 0.2576 0.2401 0.9430
Average 0.2231 0.1958 0.2259 0.2440 0.2384 0.7769

10-min interval out-of-sample data. 20 Different currency pairs and 10 calendar months each representing the
physical dataset. 5 DC dataset were generated using 5 dynamically generated thresholds tailored to each DC
dataset. Best value for each row (currency pair) is shown in boldface

Table 7 Statistical test results for
average Sharpe ratio according to
the non-parametric Friedman test
with the Hommel post hoc test of
multi-threshold (c) vs. other
single-threshold based trading
strategies

Trading strategies Average rank AdjustyHomm
MTDC (c) 1.0000 -

STDC4 3.4500 3.4541E-5
STDCS 3.7000 1.0046E—5
STDC3 4.1000 4.8184E—7
STDC1 4.2000 2.5353E-7
STDC2 4.5500 9.8300E—9

10-min interval out-of-sample date. Significant differences between the
control algorithm [denoted with (c) and the algorithms represented by a
row at the o = 5% level are shown in boldface indicating that the adjusted
p value is lower than 0.05]

@ Springer



A. Adegboye et al.

Table8 Average maximum drawdown (%) result for trading strategies of individual single-threshold strategies
and multi-threshold strategy

Dataset STDC1 STDC2 STDC3 STDC4 STDC5S MTDC
AUD/IPY 0.7447 0.2441 0.2796 0.2773 0.5053 0.0262
AUD/NZD 0.3235 0.2914 0.2642 0.2910 0.1143 0.0177
AUD/USD 0.2810 0.1617 0.2001 0.3173 0.2748 0.0261
CAD/IPY 0.1864 0.2537 0.2720 0.1687 0.3897 0.0124
EUR/AUD 0.5627 0.4365 0.0977 0.2828 0.2400 0.0087
EUR/CAD 0.2956 0.3051 0.0928 0.0964 0.1094 0.0293
EUR/CSK 0.0007 0.0302 0.0076 0.0383 0.0706 0.0000
EUR/GBP 0.1635 0.2833 0.0445 0.1823 0.1492 0.0077
EUR/IPY 0.2932 0.3777 0.2856 0.3772 0.3927 0.0391
EUR/NOK 0.1774 0.2326 0.1978 0.4144 0.0894 0.0112
EUR/USD 0.1499 0.2006 0.0973 0.0832 0.0487 0.0303
GBP/AUD 0.3190 0.2690 0.4058 0.4627 0.3772 0.0074
GBP/CHF 0.1020 0.1239 0.4167 0.1069 0.0923 0.0035
GBP/USD 0.1311 0.1223 0.0753 0.1477 0.0598 0.0057
NZD/USD 0.1884 0.1971 0.2058 0.2131 0.1720 0.0342
USD/CAD 0.1451 0.0469 0.2685 0.1434 0.3030 0.0353
USD/IPY 0.2563 0.3516 0.2688 0.3132 0.1097 0.0160
USD/NOK 0.2655 0.3375 0.6848 0.3467 0.3476 0.0243
USD/SGD 0.0383 0.0354 0.1351 0.1351 0.1890 0.0071
USD/ZAR 1.1300 1.0217 1.3708 1.3680 1.0740 0.0196
Average 0.2877 0.2661 0.2835 0.2883 0.2554 0.0181

10-min interval out-of-sample data. 20 Different currency pairs and 10 calendar months each representing the
physical dataset. 5 DC dataset were generated using 5 dynamically generated thresholds tailored to each DC
dataset. Best value for each row (currency pair) is shown in boldface

Table 9 Statistical test results for

Trading strategies A k Adjust
average maximum drawdown rading strategies verage ran djustyHomm
according to the non-parametric MTDC (c) 1.0000 _

Friedman test with the Hommel

post hoc test of multi-threshold STDCS 3.7500 3.3460E—6
(c) vs. other single-threshold STDC3 3.9000 1.8983E—6
based trading strategies STDC1 3.9000 1.8983E—6

STDC2 4.0000 1.2655E—6

STDC4 4.4500 2.7455E—8

10-min interval out-of-sample date. Significant differences between the
control algorithm [denoted with (c) and the algorithms represented by a
row at the o = 5% level are shown in boldface indicating that the adjusted
p value is lower than 0.05]
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Table 10 % Average standard deviation (SD) result for trading strategies of individual single-threshold strate-

gies and multi-threshold strategy

Dataset STDC1 STDC2 STDC3 STDC4 STDC5S MTDC
AUD/IPY 0.4511 0.5528 0.5686 0.5502 0.4419 0.5334
AUD/NZD 0.2481 0.1745 0.1339 0.0882 0.0939 0.1048
AUD/USD 0.2142 0.2355 0.2512 0.2939 0.3751 0.1945
CAD/IPY 0.3759 0.3256 0.3656 0.2963 0.2130 0.3167
EUR/AUD 0.2798 0.2698 0.1849 0.1667 0.1491 0.1571
EUR/CAD 0.2184 0.1827 0.1910 0.2509 0.1993 0.2714
EUR/CSK 0.0144 0.0247 0.0087 0.0301 0.0380 0.0418
EUR/GBP 0.0898 0.1465 0.0250 0.0846 0.0802 0.0812
EUR/IPY 0.2309 0.2323 0.2104 0.2762 0.2718 0.1408
EUR/NOK 0.1155 0.1676 0.0993 0.1956 0.1349 0.0863
EUR/USD 0.0898 0.1326 0.0859 0.0577 0.0311 0.0884
GBP/AUD 0.2618 0.1671 0.2520 0.3044 0.2601 0.1867
GBP/CHF 0.1021 0.1575 0.2216 0.1277 0.1421 0.1647
GBP/USD 0.1104 0.1164 0.0841 0.1188 0.0993 0.1073
NZD/USD 0.2209 0.2201 0.2944 0.3090 0.2113 0.1483
USD/CAD 0.1218 0.0676 0.2414 0.1647 0.2023 0.1356
USD/JPY 0.2053 0.2749 0.2051 0.1725 0.1658 0.1186
USD/NOK 0.1543 0.1999 0.4327 0.1649 0.2033 0.1299
USD/SGD 0.0651 0.0721 0.0868 0.1636 0.1629 0.0925
USD/ZAR 0.4146 0.4244 0.5034 0.6268 0.3746 0.1764
Average SD 0.1992 0.2072 0.2223 0.2221 0.1925 0.1638

10-min interval out-of-sample data. 20 Different currency pairs and 10 calendar months each representing the
physical dataset. 5 DC dataset were generated using 5 dynamically generated thresholds tailored to each DC
dataset. Best value for each row (currency pair) is shown in boldface

Table 11 Statistical test results
for average standard deviation
according to the non-parametric
Friedman test with the Hommel
post hoc test of MTDC (c) vs.
other single-threshold based
trading strategies

Trading strategies Average rank AdjustyHomm
MTDC (c) 2.6999 -

STDCS 3.0500 0.5541

STDC1 3.5500 0.3016

STDC3 3.6500 0.2262
STDC2 3.8500 0.2010
STDC4 4.2000 0.0561

10-min interval out-of-sample date. Significant differences between the
control algorithm [denoted with (c) and the algorithms represented by a
row at the o = 5% level are shown in boldface indicating that the adjusted

p value is lower than 0.05]
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Table 12 Comparison of MTDC to RSI, EMA, MACD and buy-and-hold in terms of average return (%)

Trading strategies MTDC BandH RSI EMA MACD

AUD/JPY 1.4018 —6.278 0.0000 0.0000 0.0000
AUD/NZD 1.1877 —0.516 0.0558 0.0017 0.0047
AUD/USD 0.8701 —5.728 0.0464 —0.1452 —0.1473
CAD/JPY 1.3208 —4.109 0.0000 0.0000 0.0000
EUR/AUD 1.0787 —2.672 —0.0596 0.0566 —0.0916
EUR/CAD 0.9773 18.555 —0.0127 —0.2260 —0.3459
EUR/CSK 0.3955 7.770 —0.1382 —0.2327 —0.2812
EUR/GBP 0.8233 —0.292 —0.0275 —0.1347 —0.2398
EUR/JPY 0.8509 —6.211 —0.0222 0.0154 0.0135
EUR/NOK 0.8889 2.046 —0.0429 —0.1181 —0.2333
EUR/USD 1.0474 8.801 —0.1057 —0.4923 —0.4094
GBP/AUD 1.4298 3.936 —0.1595 —0.3021 —0.0606
GBP/CHF 0.5371 —2.395 0.0355 —0.2677 —0.3305
GBP/USD 0.8567 8.464 0.0080 —0.0755 —0.3612
NZD/USD 0.9422 —6.443 0.1238 —0.2339 —0.3662
USD/CAD 0.8522 2.345 —0.2991 —0.3056 —0.5711
USD/IPY 1.2062 —9.430 0.0000 0.0000 0.0000
USD/NOK 1.5360 —6.102 —0.1440 —0.0754 —0.1541
USD/SGD 0.7704 0.207 —0.0574 —0.0436 —0.2949
USD/ZAR 4.1808 —4.505 0.0439 —0.1118 —0.1879
Mean 1.1577 —0.128 —0.0378 0.1117 —0.1879

Table 13 Statistical test results

for average return according to Trading strategies Average rank AdjustpHomm

the non-parametric Friedman test  prpc © 1.3500 _

with the Hommel post hoc test of

MTDC (c) vs. RSL, EMA, RSI 2.8499 0.0027

MACD, and BandH EMA 3.3499 1.2668E—4
BandH 3.4499 8.0074E—5
MACD 4.0000 4.6321E—7

10-min interval out-of-sample date. Significant differences between the
control algorithm [denoted with (c) and the algorithms represented by a
row at the & = 5% level are shown in boldface indicating that the adjusted
p value is lower than 0.05]

is 0.09; EMA’s is 0.14; and MACD’s is 0.16. This indicates that MTDC is not only more
profitable, but also less risky than BandH. It is riskier to the technical indicators, but given
the significantly higher returns, it can be argued that MTDC’s performance is worth the
increased risk. These results were also confirmed by a Friedman statistical test (Table 13),
where MTDC ranks first with 1.35 and statistically outperforms all four benchmarks at the
5% level.
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Table 14 Average computational

. . Trading strategies Single threshold Multi-threshold

times per trend for single

threshold-based strategy and Classification ~ 65 min ~ 330 min

multi-threshold strategy L . .
Estimation ~ 5.45 min ~ 5.45 min
GA optimisation - ~ 7 min
Trading ~3s ~9s

5.3 Computational times

Table 14 presents the average computational time for multi-threshold strategy in comparison
to the single-threshold strategies. The results show an increase in computation time taken by
multi-threshold strategy. This is expected since it includes the time required to train multiple
classification models. Additional time is also used in training the GA-based strategy. The
computation time was measured on a non-dedicated® Red Hat Enterprise Linux (Maipo)
with a 24 core, 2.53 GHz processor and 24 Gigabit memory. Although Auto-WEKA, the tool
for our classification step can be executed using multiple threads of concurrent execution,
we chose to run in serial mode using a single CPU core due to limitation on hardware
resources. Besides the classification step, we acknowledge that improvements can be made
in computation time through parallelisation of the different steps that make up the trading
strategy framework (Brookhouse et al 2014; Ong and Schroder 2020). We do not consider
the additional time to be a significant drawback as the framework is used off-line. As a result,
training would not be happening at the same time as trading. Instead, one would train the
algorithm separately from the live trading process, and then when a best model is chosen, this
would be used during live trading. Therefore, we believe that the significant improvements
observed in trading results would likely outweigh the extra computational time needed, and
the final say would be for the user/trader to decide what is the impact of the computational
times of the MTDC algorithm.

5.4 Summary

We can summarise our findings as follows.

DC-based trading strategies embedded with an optimised multi-threshold trend reversal
Sforecasting algorithm improves profit at reduced risk. As we observed in Tables 4 and 6, profit
obtained trading using an optimised multi-threshold strategy outperformed single-threshold
based strategies two and four folds respectively. The statistical tests performed show that
that the increase in profit is statistically significant. In addition, having better insight into
price movement enables traders make better decisions without increasing risk. We were able
to achieve the aforementioned profit without increasing risk. As we discussed in Table 11,
multi-threshold strategy was unable to statistically outperform single thresholds in standard
deviation risk measure; however, it was ranked first, and we consider this a positive result.

Optimisation of individual threshold trading recommendation is beneficial. Optimising
trade action recommendations from multiple thresholds using a GA is an effective way of
determining the best action to take.

8 There were other processes unrelated to the experiment running on the server at the time the experiments
were performed.
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The paradigm of directional changes has a lot of potential. Although this is not a paper that
discusses and thoroughly compares DC to physical-time trading strategies, we can make two
general comments about DC-based trading strategies: (i) they can be profitable and low risk,
and (ii) they can outperform technical analysis indicators. In this paper we only compared the
DC performance to three popular indicators, so in future work we could further benchmark
the MTDC to more technical indicators.

6 Conclusion

To conclude, this paper presented an investigation of 200 monthly datasets from 20 different
Forex currency pairs to demonstrate that trading with a strategy that combines information
from multiple DC thresholds leads to significant improvements in profit and risk. We bench-
marked the results against single threshold DC strategies, as well as financial benchmarks,
such as technical analysis indicators and BandH. Our results confirmed that the optimal com-
bination of recommendations from multiple thresholds leads to a very strong performance
across the majority of metrics, which was further supported by strong statistical significance
results. These are significant results, because they indicate that the paradigm of DCs is able
to be competitive to the physical time paradigm. Lastly, the fact that we run extensive exper-
iments over 200 datasets leads us to believe that our results are not only significant, but also
widely applicable.

It is yet to be confirmed whether similar performance can be achieved in other markets
(i.e., commodities, bond, indices and stocks, cryptocurrency). It will therefore be relevant to
experiment our approach in other markets. In this work we experimented with data sampled
at 10 min interval. It will also be worth experimenting with data of higher frequency like
1-min physical time data and tick-data to further evaluate the robustness of the approach.
Furthermore, it would be interesting to experiment with the number of thresholds of the
MTDC algorithm. Currently, we use five thresholds, but it would be worth allowing the
algorithm to dynamically select the number of thresholds for each dataset, similarly to what
is already happening with the threshold values, which are dynamically selected from a given
pool of thresholds. Finally, it would be valuable performing classification features’ analysis,
to better understand the contribution of each feature to the classification task.
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