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A Memetic Fingerprint Matching Algorithm
Weiguo Sheng, Gareth Howells, Michael Fairhurst, and Farzin Deravi

Abstract—Minutiae point pattern matching is the most common
approach for fingerprint verification. Although many minutiae
point pattern matching algorithms have been proposed, reli-
able automatic fingerprint verification remains as a challenging
problem, both with respect to recovering the optimal alignment
and the construction of an adequate matching function. In this
paper, we develop a memetic fingerprint matching algorithm
(MFMA) which aims to identify the optimal or near optimal
global matching between two minutiae sets. Within the MFMA,
we first introduce an efficient matching operation to produce an
initial population of local alignment configurations by examining
local features of minutiae. Then, we devise a hybrid evolutionary
procedure by combining the use of the global search functionality
of a genetic algorithm with a local improvement operator to
search for the optimal or near optimal global alignment. Finally,
we define a reliable matching function for fitness computation.
The proposed algorithm was evaluated by means of a series of
experiments conducted on the FVC2002 database and compared
with previous work. Experimental results confirm that the MFMA
is an effective and practical matching algorithm for fingerprint
verification. The algorithm is faster and more accurate than a tra-
ditional genetic-algorithm-based method. It is also more accurate
than a number of other methods implemented for comparison,
though our method generally requires more computational time
in performing fingerprint matching.

Index Terms—Alignment, fingerprints, genetic algorithms
(GAs), matching, memetic algorithms, minutiae.

I. INTRODUCTION

F INGERPRINTS are graphical ridge and valley patterns on
the tips of human fingers. Owing to their uniqueness and

permanence, the use of fingerprints is considered to be one of
the most reliable methods of personal verification. Fingerprints
are today among the most popularly used biometric modalities
in automatic verification systems. Due to the continuing needs
of law enforcement and interest from the developers of civilian
applications, automated fingerprint verification systems are be-
coming increasingly widespread and are being extensively re-
searched by the pattern recognition and image processing com-
munities. Although fingerprints possess much discriminatory
information, and although significant progress in automating the
verification process has been made, reliable automatic finger-
print verification is still a challenging problem [8].

The uniqueness of fingerprints has been well established [40]
and is determined by the overall pattern of ridges and valleys
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as well as the local ridge discontinuities called “minutiae.” It is
widely believed that the minutiae are the most discriminating
and reliable features [29], [51] present in the fingerprints. For
this reason, they are the most important and common features
used in automatic fingerprint verification systems. The two
prominent types of minutiae used in automatic fingerprint
verification are ridge endings and ridge bifurcations. A minutia
detected in a fingerprint image can be characterized by a list
of attributes that includes the minutia position, the minutia
direction, and the type of minutia (ending or bifurcation).
The representation of a fingerprint pattern thus comprises the
attributes of all detected minutiae in a so-called minutiae set.

By representing the minutiae set as a point pattern, the fin-
gerprint verification problem can be reduced to a minutiae point
pattern matching problem. In the ideal case that two identical
point patterns are exactly aligned with each other, fingerprint
verification is a trivial task of counting the number of spatially
overlapping pairs between the two minutiae sets. However, in
practice, such a situation is generally not encountered. Due to
variations that may occur between two minutiae sets extracted
from different impressions of the same finger [23], determining
whether they indeed represent the same finger can be an ex-
tremely difficult problem. The difficulty can be attributed to
the following commonly encountered factors. First, no minu-
tiae correspondence between the two minutiae sets is known
beforehand. Second, both minutiae sets may suffer from false,
missed, and displaced minutiae, caused by poor fingerprint
image quality and imperfections in the minutiae extraction
stage. Third, two fingerprints may be translated, rotated, and
scaled with respect to each other. Fourth, fingers may exert
an unevenly distributed pressure across the acquisition sensor
resulting in local nonlinear deformations due to the elasticity
of the skin. A fifth problem is that there may be only a small
amount of overlap between the two fingerprints such that
several minutiae are not “visible” in both instances. In the light
of these complicating factors, the design of powerful matching
algorithms is necessary to establish a realistic model of the
variations to recover alignment configurations and to automat-
ically obtain minutiae correspondences among minutiae sets
of mated pairs. Generally, finding the best match between two
point patterns can be challenging, even if minutiae are exactly
located and no deformations exist between these two point
patterns [22].

A way of tackling this problem is to use stochastic optimiza-
tion schemes, among which is the genetic-algorithm (GA) ap-
proach. The GA, first developed by Holland [20], is biologically
inspired and incorporates many mechanisms mimicking natural
evolution. It has a great deal of potential in scientific and engi-
neering optimization or search problems. Furthermore, the GA
is naturally applicable to minutiae point pattern matching since
it has an exponential search space. More recently, many hybrid
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GA-local search methods, which incorporate local searches with
traditional GAs, have been proposed and applied successfully
to solve a wide variety of optimization problems [3], [8], [30],
[36], [47]. These studies show that pure GAs are not well suited
to fine-tuning the search in complex search spaces, and that hy-
bridization with other techniques can greatly improve their ef-
ficiency. GAs that have been hybridized with local searches are
also known as memetic algorithms (MAs). Since we are con-
cerned here with a GA where the local search plays a significant
role throughout the process, the term MA [35], [38], [39] is used
in this paper.

In this work, we develop a memetic fingerprint matching
algorithm (MFMA) that follows the scheme of a point pattern
matching approach. The proposed algorithm can be divided
into two stages: the first stage tries to efficiently produce an
initial population of local alignment configurations, and the
second stage proceeds by means of a hybrid evolutionary
procedure which aims to identify the optimal or near optimal
global matching between two minutiae sets. In the first stage,
we introduce a local matching operation to obtain an initial
population of alignment configurations by examining local fea-
tures of minutiae which are rotation and translation invariant.
After the initialization, a GA-based search procedure is then
launched and tries to identify the optimal or near optimal global
matching by generating hypothetical alignment configurations
based on the GA’s stochastic rules. In order to improve the
matching efficiency, a local improvement operator is designed
and hybridized with the GA search to fine-tune the solutions
within the population. The fitness of solutions is computed
using a reliable and discriminating matching function which is
defined by combining the globally matched minutiae pairs with
the result of the minutiae’s local feature similarity based on the
product rule. Thus, solving the fingerprint matching problem is
equivalent to finding the maximum number of matched minu-
tiae points with the maximum average local feature similarity.

The organization of the paper is as follows. In Section II,
we formulate fingerprint verification as a minutiae point pattern
matching problem and provide a review of previous minutiae
point pattern matching methods. Then, in Section III, we present
the details of our proposed algorithm—MFMA. Section IV de-
scribes the data sets employed in this work and this is followed
by a discussion of the parameter settings of the MFMA. In the
experiments described in Section V, we assess the performance
of the MFMA. We conclude the paper with some final remarks
and an outline of future directions in Section VI.

II. PROBLEM FORMULATION AND RELATED WORK

Automatic fingerprint verification has been approached using
a variety of different strategies, as reported in the literature [34].
Most existing fingerprint verification systems are based around
a minutiae point pattern matching operation. This is a natural
approach since a fingerprint’s minutiae embody much of its in-
dividuality. In this section, we first formulate fingerprint veri-
fication as a minutiae point pattern matching problem and then
provide a review of previous minutiae point pattern matching
methods.

A. Problem Formulation

Suppose a minutiae template set is composed of points
, and a query minutiae set is composed

of points . Each minutia is usually de-
scribed by parameters , where are the pixel coor-
dinates of the minutia with respect to the image frame and is
the orientation of the minutia, which is defined as the angle that
the ridge associated with the minutia makes with the horizontal
axis [29]. Typically, ridge orientations are restricted to the range

, so that directions and have the same orientation.
It should be noted that most minutiae representation schemes
do not distinguish endings from bifurcations since the type of
minutia can be easily interchanged by acquisition noise or pres-
sure differences during acquisition. However, the orientation re-
mains the same when this occurs. By representing the minu-
tiae as point patterns, fingerprint verification can be viewed as
a minutiae point pattern matching problem. The alignment be-
tween a template and a query minutiae set can be simplified as an
affine transformation , composed of four parame-
ters , , , and , where and are the translations along
the and directions, respectively, is the rotation angle, and
is a scaling factor. Thus, the transformation
of a minutia can be written as follows:

The fingerprint verification process can then be defined as the
problem of finding the transformation between the template
and query minutiae sets which can optimize a given matching
function.

B. Related Work

Due to the large number of possible translations, rotations,
and scalings, aligning two minutiae point patterns is an ex-
tremely difficult problem. A number of algorithms have been
proposed in the literature. A common technique for these
algorithms is to use local features associated with minutiae
and/or their spatial properties to reduce the exponential number
of search paths.

Jain et al. [22], [23] use ridge information associated with
minutiae as an aid for alignment. Minor modifications of this
matching algorithm have been suggested by other researchers
[11], [19], [26], [31]. The methods proposed in [12], [18], [24],
and [25] use local structural features among several minutiae
close to each other for alignment. Chen et al. [12] defined
a feature vector which describes the relationship between a
minutia and its neighbors circled within a radius . Jiang and
Yau [25] and Jea and Govindaraju [24] used features derived
from minutia triplets. He et al. [18] built a minutia simplex that
contains a pair of minutiae as well as their associated textures.
These minutiae local feature representations may not be robust
due to their reliance on the interdependency of minutiae, which
can be missed or erroneously detected by a minutia extraction
algorithm. The methods proposed by Hrechack [21], Wahab
et al. [46], Kovács-Vajna [27], Germain et al. [16], as well as
Tan [42] also use groups of minutiae to define local structural
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features. These local structural features are directly used for
verification or identification, which is performed based on the
pairs of corresponding local structures that are found between
a query fingerprint and a template fingerprint or template fin-
gerprint database. However, the local structural feature is less
distinct because it is determined only by a small subset of the
minutiae. Fingerprints from different fingers may have many
similar local structures and fingerprints from the same finger
may only have a few similar structures due to the presence
of spurious minutiae and the absence of genuine minutiae.
Therefore, fingerprint matching/identification based only on
local structural features is less reliable.

The approach presented in [41], [44], and [45] is based on
information sampled around minutiae for alignment. Tico and
Kuosmannen [44] built a minutia descriptor for each minutia,
which consists of the original minutia point and a set of ridge
orientation information. Similar to the minutia descriptor, Qi et
al. [41] defined a feature vector for each minutia by integra-
tion of ridge orientations. Tong et al. [45] proposed an adjacent
feature vector which consists of four adjacent relative orienta-
tions and six ridge counts of a minutia. In contrast to the local
structural features proposed in [12], [18], [24], and [25], the rep-
resentations proposed in these methods are independent of any
other minutia detected in the fingerprint. Hence, they could be
more robust to the erroneous outcomes of the minutia detec-
tion algorithm (i.e., missing and spurious minutiae). Since core
points of fingerprints are common, they can also be used as an
aid for fingerprint alignment. Zhang [48] and Chan et al. [10]
have explored this possibility. However, it is impossible to al-
ways guarantee locating the core point precisely, and sometimes
the core point cannot be detected at all due to poor image quality
or only a partial finger image being obtained via the sensor.

The above methods typically recover the transformation by
choosing a reference minutia or minutia group (in which minu-
tiae are close to each other) from the template and the query fin-
gerprint, respectively. The two sets of minutiae are then aligned
according to local structures of the two references. We refer to
these methods as single-reference-based approaches. This ap-
proach can guarantee satisfactory alignments of regions adja-
cent to the reference minutia or minutia group. However, align-
ments of regions far away from the reference minutia or minutia
group are usually not so satisfactory. This is largely because the
alignment which tends to be found is locally strong, yet poor in
areas distant to the local structure it has matched. Naturally, re-
searchers have explored the use of a size-changeable bounding
box [19], [22], [23], [31].

Another alternative approach is to find a transformation
in order to reduce the difference between two minutiae sets
after alignment. That is to say, this alternative approach aims
to globally align two sets of minutiae. This approach tends
to evenly align two sets of minutiae and, thus, one can use a
size-fixed bounding box to identify corresponding minutiae.
Zhu et al. [50] have proposed a method which aligns two sets
of minutiae based on multiple pairs of reference minutiae. This
method is highly dependent on the initialization of the minutiae
pairs. Since the global alignment is a computationally in-
tractable problem, naturally inspired evolutionary optimization
algorithms have recently been a source of interest for minutiae

point pattern matching [28], [43] as well as for general point
pattern matching [1], [2], [49]. Tan and Bhanu [43] proposed
the use of a traditional GA for fingerprint matching. Le et al.
[28] employed the technique of fuzzy evolutionary program-
ming to match two sets of minutiae. Ansari et al. [2], Agrawal
et al. [1] and Zhang et al. [49] presented GA-based methods
for the general point pattern matching problem. These methods
try to identify the optimal or near optimal global alignment
between two minutiae sets and their experimental results are
promising. However, they may take a large amount of time
to converge, mainly because these methods employ either the
simple evolutionary algorithm or its variants, which are not
well suited to fine-tuning the search in complex search spaces.

III. MEMETIC FINGERPRINT MATCHING ALGORITHM

In this paper, we develop a memetic fingerprint matching
algorithm which aims to identify the optimal or near optimal
global matching between two minutiae sets. In contrast to pre-
vious minutiae point pattern matching methods, our proposed
algorithm combines the use of a global search via a GA with
a local improvement operator. Additionally, we introduce an
efficient local matching operation for population initialization
by examining local features of minutiae which are rotation and
translation invariant. Finally, we define a reliable and discrimi-
nating matching function to compute the fitness of individual so-
lutions by combining the globally matched minutiae pairs with
the result of the minutiae’s local feature similarity based on the
product rule.

The proposed algorithm can be divided into two stages: popu-
lation initialization and hybrid evolution. The initialization stage
aims efficiently to produce an initial population of local align-
ment configurations, which generally can satisfactorily align re-
gions adjacent to the reference local structures. Using the ini-
tial population, GA-based hybrid evolution is then launched and
tries to identify the optimal or near optimal global matching. The
hybrid evolutionary procedure consists of selecting parents for
reproduction, performing a modified arithmetic crossover with
the parents, applying mutation to the offspring, running the local
improvement operator on each offspring, and carrying out com-
petition replacement. The evolution is terminated when one of
the following two stopping criteria is met: 1) the fitness value
of the best population individual has not changed for gen-
erations or 2) the fitness value of the best population exceeds
a certain threshold value, which means the two fingerprints are
verified as having been from the same finger. The output of the
algorithm is the best solution encountered during the evolution.
The flow of the algorithm is as follows:

Algorithm 1. A memetic fingerprint matching algorithm.

Step 1) Apply a local matching operation (see Section III-B)
to initialize sets of chromosomes, which encode
alignment configurations, based on a real-parameter
representation (see Section III-A).

Step 2) Calculate the fitness value for each individual
chromosome in the initial population (see
Section III-E).
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Step 3) Repeat the following substeps (a)–(e) until a
stopping criterion is met.

a) Select the pairing individuals based on the
-fold tournament selection method [17]. This

procedure is repeated until parent pairs
are selected.

b) Generate intermediate offspring by applying
a modified arithmetic crossover and then
perform Gaussian mutation on the offspring
(see Section III-C).

c) Run the local improvement operator on the
offspring (see Section III-D).

d) Calculate the fitness value for each of the
offspring according to the method described
in Section III-E.

e) Create a new generation of size from the
best individual of the previous generation and
the best offspring that resulted from crossover,
mutation, and local improvement operations.

Step 4) Provide the alignment configuration for the terminal
population individual with the best fitness.

In the following sections, we describe in more detail how the
solutions are initially created, how they evolve during the opti-
mization process, how the local improvement operator works,
and how to measure the fitness of the solutions.

A. Representation

Our representation of the individual solution
consists of a vector of four real numbers,

where the first two positions represent translations along the
and directions, respectively; the next position represents

the rotation angle; and the last position represents the scaling
factor. In previous work based on using evolutionary algorithms
for point pattern matching applications, the binary representa-
tion [17] is commonly used. However, in most cases, a binary
representation suffers from the problems of redundancy and
context insensitivity with traditional crossover and mutation
operators [14]. In our approach, a real parameter representation
is applied. In this context, Michalewicz [37] showed that a
real parameter representation moves the problem closer to the
problem representation and offers higher precision with more
consistent results across replications.

B. Local Structure Matching and Population Initialization

The local feature of a minutia describes the characteristics
of the minutia in its neighborhood. This information can be
used to find potential matches in another minutiae set when the
local feature is distinctive. Here, we introduce an efficient local
matching operator to produce an initial population by examining
local features of minutiae which are rotation and translation
invariant. The resulting initial population can help reduce the
search space for recovering the optimal or near optimal global
transformation.

The minutiae local feature representation proposed by Tico
and Kuosmanen [44] has been used for designing the local
matching operator. In this representation, each minutia defines
a local structure, which is called a minutia descriptor. The
minutia descriptor comprises information about the orientation

field sampled in a circular pattern in a broad region around the
minutia point. The circular pattern consists of concentric
circles of radii ( ), each one comprising sam-
pling points , ( ), equally distributed along its
circumference. The minutia descriptor is invariant to rotation
and translation [44] and, hence, it can characterize the minutia
location with respect to the fingerprint pattern regardless of the
position and orientation of the finger on the acquisition sensor.
Due to the fact that the orientation field is a relatively stable
feature of fingerprint images, the minutia descriptor can be
robust in regards to image quality and local changes in images.
Let and be two minutia descriptors. The
similarity between and is computed as

(1)

where , , and are the local ridge orienta-
tions estimated at for descriptors and , respectively, and

is the orientation distance between angles, which
takes values between 0 and 1.

Using the minutia descriptor, we introduce a local matching
operator as follows to produce an initial population. Suppose
the two minutiae sets and to be matched are composed
of and points ( ), respectively. The operator selects
a random minutia descriptor from and compares it to each
minutia descriptor in . The value of the similarity between
the two minutia descriptors serves as a clue for identifying po-
tential corresponding pairs. The minutia pair which generates
the largest similarity value is considered to be correspondent.
The transformation is calculated by translating and rotating the
query fingerprint to align this correspondence and then using
it to initialize an individual solution. The scaling factor is con-
structed by random assignment of a real number to the last at-
tribute. The initial value is constrained to be in the predefined
range but is otherwise random. Each individual in the pop-
ulation is constructed in this way, but by selecting a minutia
descriptor in that has not been considered before. In the
case that is less than the number of individuals within the
population to be initialized, translation and rotation parameters
of the remaining individuals are constructed within the prede-
fined ranges of , , , respectively, in the same way as the
scaling factor. All of these range values are determined empir-
ically from the experimental data sets. Their values, however,
are not critical for the initialization since the population is usu-
ally dominated by the solutions that are constructed by the local
matching operator.

After each individual has been initialized, a population of
local alignment parameters, which generally can satisfactorily
align regions adjacent to the reference minutia descriptors, is
obtained. Note that this population does not contain all appro-
priate transformations and that inclusion in this population does
not necessarily indicate an appropriate transformation since the
local matching phase for initialization does not consider global
minutiae information, and is based only on the similarity of
minutia descriptors. However, even if a population contains
many inappropriate transformations (which lead to poor or
wrong alignment in areas distant to the reference minutia
descriptors), it is not expected to have a detrimental effect on
the proposed evolutionary-based algorithm. This is because the
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Fig. 1. Minutiae detection process described in [15].

inappropriate transformations will be unlikely to be selected
for reproduction in the next generation. Using this initial popu-
lation, a hybrid evolutionary procedure is then launched which
tries to identify the optimal or near optimal global matching
between the two minutiae sets. This local structure-based pop-
ulation initialization, together with the global structure-based
evolution, is likely to provide a more solid basis for reliable
fingerprint matching.

C. Crossover and Mutation

Crossover is a probabilistic process that exchanges informa-
tion between a pair of parents to generate two offspring. The
arithmetic crossover technique [17] has been used as the repro-
duction operator in the MFMA. Traditional arithmetic crossover
linearly combines two parent chromosomes to produce two new
offspring according to the following equations:

(2)

(3)

where is a random weighting factor. In our approach,
we apply either (2) or (3) randomly to produce only one single
offspring. This helps to save time in processing the other similar
offspring.

After crossover, a low probability of Gaussian mutation is ap-
plied to the offspring. Gaussian mutation adds a unit Gaussian-
distributed random value to the chosen attribute value. The new
attribute value is clipped if it falls outside lower or upper bounds
of that attribute.

D. Local Improvement Operation

GAs can escape from local optima by means of crossover
and mutation operators. However, they are not well suited for
fine-tuning structures which are close to optimal solutions [17],
and this results in exhibiting a large execution time. To improve
this situation, incorporation of local searches into the regenera-
tion step of GAs is essential. GAs, which have been hybridized
with local search techniques, are often called memetic algo-
rithms (MAs) [35], [38], [39] and have been shown to be very
effective for many combinatorial optimization problems [3], [8],
[30], [36], [47]. In this subsection, we present a local improve-
ment operator to effectively design an MA for the minutiae point
pattern matching problem.

The local improvement operator is inspired by the iterated
closest point (ICP) algorithm [6]. The ICP is a widely used
heuristic for the alignment of 3-D geometric models. It utilizes

Fig. 2. Average fitness values of the best two individuals versus number of
generations of the four algorithms corresponding to typical genuine matching.

the nearest-neighbor relationship to assign a binary correspon-
dence at each step. This estimate of the correspondence is then
used to refine the transformation, and vice versa. This iterative
scheme is known to converge fast [13], but it is sensitive to its
initial rotations and translations, and susceptible to local optima.
Its performance degenerates quickly with outliers (point fea-
tures existing in one pointset that have no corresponding points
in the other), which is common in the fingerprint minutiae point
pattern matching problem.

In order to improve computational efficiency, we design a
local improvement operator based on one iteration of the ICP
to fine-tune new offspring during each generation, after the re-
generation step. This is achieved by first extracting the trans-
formation information encoded in an offspring and applying the
transformation to the query minutiae set. After that, we compute
the closest point pairs between the two minutiae sets and collect
corresponding pairs using the geometric constraints. (Note that
by employing the geometric constraints, we are also trying to
exclude the outliers for pairing). Finally, we calculate the new
transformation and update the offspring. The operator is sum-
marized as follows:

Algorithm 2. A local improvement operator.

Step 1) Extract the transformation information encoded in
an offspring. Apply the transformation to the query
minutiae set.

Step 2) Compute the closest point pairs between the
two minutiae sets by estimating the Euclidean
distance between the minutiae coordinates. Collect
corresponding pairs if they satisfy the following
geometric constraints: 1) the Euclidean distance
does not exceed a certain value and 2) the
angular difference between their directions is less
than a certain tolerance . To avoid a minutia
being doubly used for pairing, we mark the
minutiae that have already been paired.

Step 3) Compute the new transformation in the sense of
minimizing the sum of squared Euclidean distance
error among the collected corresponding pairs.

Step 4) Update the offspring with the new transformation.
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E. Fitness Computation

The fitness of an individual indicates the degree of suitability
of the solution it represents. A traditional way to calculate the
matching scores for a minutiae point pattern matching system
is , where and represent the num-
bers of minutiae in template and query minutiae sets, respec-
tively, and is the number of matched minutiae in both sets.
However, Bazen and Gerez [5] claimed that using the alterna-
tive to compute the matching scores will
give better results. In our observation, we found that neither
matching function may be reliable enough for fingerprint ver-
ification, especially when matching minutiae sets are extracted
from low-quality fingerprint images. Here, we define a reliable
and discriminating matching function by incorporating the sim-
ilarity based on a local feature (i.e., minutia descriptor) to com-
pute the fitness of individual solutions.

The local features of minutiae contain useful discriminatory
information. Additionally, local features can tolerate some de-
formation since they are formed from only a small area of the
fingerprint. Thus, the local feature similarity can be used to in-
crease the reliability of the matching between two minutiae sets.
Further, to make the matching function more discriminatory, we
combine the globally matched minutiae pairs with the result of
the minutiae’s local feature similarity based on the product rule.
Now the matching function can be defined as

fitness (4)

where and are the number of minutiae located inside the in-
tersection of the two fingerprint images for template and query,
respectively. The number of matched pairs is identified by
using the same geometric constraints as those described in
Section III-D.

For each individual, the transformation encoded within it is
first extracted, then subsequently we apply the transformation
onto the query minutiae set to obtain the set , comprising
the transformed minutiae set. Given the minutiae sets and

, the number of matched minutiae is first computed. If
is less than a threshold , then let the fitness of the individual
be ( ) or ( ). In this
case, it makes no sense to evaluate the matching function. Oth-
erwise, the fitness of the individual is defined according to (4)
so that maximization of the fitness is equivalent to finding the
maximum number of matched minutiae points with the max-
imum average local feature similarity.

IV. DATA SETS AND PARAMETER SETTINGS

In this section, we provide a description of the data sets used
in the experiments. This is followed by a description of the im-
plementation parameter settings for the proposed algorithm. The
proposed algorithm has been evaluated using the publicly avail-
able FVC2002 database [33], which consists of four collections
(labeled , , , and , respectively) of fingerprint
images. These fingerprint images were collected using three dif-
ferent scanners and the SFinGE synthetic generator [9] and con-
tain a wide variety of image qualities. Each of the four data col-
lections comprises 8 100 fingerprint images. The details of the
fingerprint image data-collection process can be found in [33].

The minutiae information of the data sets is derived by using
the method described in [15]. Fig. 1 lists the functional steps of
this method. It first performs image enhancement to improve the
contrast of ridges against valleys and then generates the image-
quality maps by determining the directional flow of ridges in the
image and detecting regions of low contrast, low ridge flow, and
high curvature. Next, a binary representation of the fingerprint
is constructed by applying a rotated grid on the ridge flows of
the fingerprint. Following this, minutiae are generated by com-
paring each pixel neighborhood with a family of minutiae tem-
plates. Finally, a series of heuristic rules is used to merge and
filter out the spurious minutiae.

The MFMA has a number of parameters which need to be set.
These include the GA parameters, the ranges used for popula-
tion initialization, and several thresholds. The values of GA pa-
rameters and ranges are determined experimentally on the above
data sets. To establish these values, all other variables were held
constant with only the one to be established changing, and five
runs were completed for a wide range of values in each case.
The results from each of the five runs were averaged and the
best average was selected. Both the matching accuracy and ef-
ficiency were used in determining the values of variables. The
crossover and mutation probabilities are set to be 0.9 and 0.02,
respectively. Generally, we have found that a crossover rate of
0.8–0.95 with a mutation rate of 0.01–0.05 offers the best re-
sults. The order of tournament selection controls how quickly a
population is “taken over” by dominant individuals in the popu-
lation [4]. We used a tournament order of three. The number of
generations used to terminate the evolution and the popula-
tion size are set to be 5 and 20, respectively. A larger value of
either or may lead to a longer running time, but without sig-
nificant improvement of the matching performance. The ranges
of , , , and are set to be , ,

and [0.9, 1.1], respectively, but their chosen values
are not critical for our population initialization. The threshold
of for fitness computation is set to be four. The minutiae
matching threshold values of and are set as 15 and 0.195,
respectively, which were established in [40].

V. EXPERIMENTS

In this section, we report a series of experiments performed
over the FVC2002 database. We initially examine the signif-
icance of local matching and local improvement operations
within the MFMA. Subsequently, we evaluate the MFMA
with differing matching functions for fitness computation.
Finally, we compare the performance of the MFMA with some
previous matching methods. All of the results reported in this
section were obtained with simulations on a PC with an Intel™
Pentium™ 4 processor at 2.1 GHz running under WindowsXP
Professional.

First, experiments were conducted to examine the signif-
icance of local matching and local improvement operations
within the MFMA. For this purpose, we examined and com-
pared the MFMA with three variants—MFMA without local
matching operation (MFMA_1), MFMA without local im-
provement operation (MFMA_2), and MFMA without either
of the above operations (MFMA_3). In the cases of MFMA_1
and MFMA_3, individuals within the initial population are ran-
domly initialized using the method described in Section III-B.
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Fig. 3. ROC curves estimated on (a) DB , (b) DB , (c) DB , and (d) DB when different matching functions are used for fitness computation.

These algorithms were compared based on the same parameter
settings. In order to investigate the convergence properties, the
terminal condition for all four algorithms is that the fitness
value of the best population individual has not changed for
generations with a relatively large parameter value .

Fig. 2 shows the fitness scores over generations corre-
sponding to typical genuine matching. It can be observed
that the convergence of MFMA_3 is slow and each opera-
tion improves the convergence of the algorithm in different
ways. MFMA_2 shows that the local matching operation helps
identify promising transformations. However, the algorithm be-
comes slow after the population initialization. MFMA_1 shows
that, compared with MFMA_3, the local improvement opera-
tion speeds up the convergence during the evolution. However,
it takes a significant number of generations to identify the
promising transformations. By incorporating both operations,
MFMA can significantly reduce the number of generations
needed to identify the optimal or near optimal global alignment.
In fact, this is the main reason for using these operations in the
MFMA.

Next, we report experiments to evaluate the proposed
matching function by comparing the MFMA with two alterna-
tive traditional matching functions

(5)

and

(6)

for fitness computation. We followed the experimental protocol
proposed in [33] to evaluate the algorithms. Fig. 3 shows the
receiver operating characteristic (ROC) curves obtained over
the four data sets when using different matching functions for
fitness computation. These results show that the MFMA with
the proposed matching function outperforms the MFMA with
traditional matching functions (5) and (6). The only difference
among the three algorithms consists of the matching function
used for fitness calculation. Consequently, the results reveal
that the proposed matching function, by combining the globally
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Fig. 4. ROC curves estimated on (a) DB , (b) DB , (c) DB , and (d) DB for Tan and Bhanu’s method, Jain et al.’s method, Tico and Kuosmanen’s method,
Jiang and Yau’s method and our proposed MFMA.

matched minutiae pairs with the result of the minutiae’s local
feature similarity based on the product rule, is able to more
reliably decide whether the two input fingerprint impressions
have been captured from the same finger.

Finally, we conduct a set of experiments to compare our
algorithm with some previously reported work, a traditional
genetic-algorithm-based method [43] and three single-refer-
ence-based methods [22], [25], [44]. Before discussing the
comparative results, we first briefly describe the methods to
be compared and their implementation details. The GA-based
fingerprint matching method is recently proposed by Tan and
Bhanu [43]. In this method, a GA with the traditional roulette
wheel selection, uniform crossover, and binary flip mutation
was used with a binary code representation, which represents
alignment parameters, for fingerprint matching. The fitness
function is based on the local properties of each minutia-triplet.
This method also aims to find the optimal or near optimal global
matching between two minutiae sets. For experiments on the
FVC2002 database, the range of the parameters , , , and
of the method is set to be identical to the , , , and ,
respectively, of the MFMA and all other parameter values are
set to be the same as in [43].

The three single-reference-based methods [22], [25], [44]
have been selected for comparison; each of which uses a
different strategy to align fingerprints. Jain et al.’s method
proposed in [22] is based on aligning ridges, Jiang and Yau’s
method [25] is based on the local structural features among
several minutiae, and Tico and Kuosmanen’s method is based
on the minutia descriptor. For experiments on the FVC2002
database, parameter values of the three methods are specified
or chosen according to the original papers with the best per-
formance. The minutiae matching threshold values of and

, which are not specified in Tico and Kuosmanen’s method,
are taken to be identical to those used in the MFMA. All five
fingerprint matching algorithms are implemented using the
C++ language. To make the comparisons more meaningful, the
same minutiae extraction method as described in Section IV is
used for all tested algorithms.

We compare the performance of the five methods with re-
spect to the criteria of the matching accuracy and efficiency.
Therefore, we report the ROC, equal error rate (EER), and av-
erage matching time estimated using the performance evalua-
tion method proposed in [33] over the four data sets. The EER,
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TABLE I
EERS AND AVERAGE MATCHING TIMES ESTIMATED ON THE FOUR DATA SETS FOR FIVE DIFFERENT METHODS

(TAN AND BHANU’S METHOD MFMA, JAIN ’S METHOD, TICO’S METHOD, AND JIANG ’S METHOD)

which is commonly used to summarize the accuracy perfor-
mance of a matching system, is defined as the error rate where
the system’s false match rate is equal to its false nonmatch rate.
Fig. 4 shows the estimated ROC curves. Table I lists the results
in terms of the EER values and average matching time.

Fig. 4 and Table I clearly show that, in comparison with Tan
and Bhanu’s method [43], the MFMA is able to achieve more
accurate matching results in all four data sets. For Tan and
Bhanu’s method, the EER of the ROC turned out to be 1.5%,
2.1%, 4.2%, and 3.4% on the four data sets, respectively. By
comparison, in our algorithm, the EER values are around 0.9%,
1.4%, 3.5%, and 2.4%, respectively. More important, matching
operations for our algorithm are faster than Tan and Bhanu’s
method. For example, Tan and Bhanu’s method needs 7.94 s
on , while our method takes about 3.59 s on average. The
improvement in matching efficiency of our proposed algorithm
is mainly due to the use of local matching and local improve-
ment operations. In comparison with the single reference-based
methods, the results reveal an interesting tradeoff between
the matching accuracy and efficiency. The three single-refer-
ence-based methods are computationally more efficient, but our
algorithm offers better matching accuracy performance, which
can be observed from the ROC curves in Fig. 4 and EER values
in Table I. The EERs, for example, on of Jain et al.’s
method, Tico and Kuosmanen’s method and Jiang and Yau’s
method are 3.5%, 2.2%, and 5.4%, respectively, while our
algorithm shows about 0.9%. It is also noted that both global
alignment methods (MFMA and Tan and Bhanu’s method)
generally outperform the three single-reference-based methods
in terms of matching accuracy. This result can be an indication
that global alignment is able to recover the transformation be-
tween two fingerprint impressions more accurately than single
reference-based alignment and, hence, global alignment-based
methods could perform more accurate matching.

VI. CONCLUSION

In this paper, we have reported on the design and imple-
mentation of a MFMA which seeks to identify the optimal or
near optimal global matching between two minutiae sets. A
GA-based evolution with a local matching startup routine and
local improvement hybridization is at the heart of our proposed
approach. This has been developed with the particular goal of
improving the efficiency of identifying optimal or near optimal
global matching between two fingerprint minutiae sets. Another

key aspect of the proposed algorithm is the use of a reliable
matching function for fitness computation. To evaluate the pro-
posed algorithm, we have conducted a series of experiments on
the FVC2002 database and made comparisons with other re-
ported work. Experimental results clearly show the effectiveness
of the local matching and local improvement operations within
the proposed algorithm. The results confirm that the MFMA
is a reliable and practical matching algorithm. The algorithm
can achieve accurate matching results faster than the traditional
GA-based global fingerprint matching method, and is also more
accurate in performing the matching operation than the single-
reference-based methods implemented for comparison.

There are several directions in which the work may be ex-
tended further. Genetic algorithms are extremely easy to adapt
to parallel computing and clustering environments [17]. As mas-
sively parallel computers become more common, parallel im-
plementations of the proposed algorithm can be exploited. Each
processor can be devoted to a pair of solutions because the algo-
rithm’s operations focus on them. As a result, the matching ef-
ficiency can be further improved as the entire population is pro-
cessed in parallel. Additionally, there are fundamental limits to
the accuracy that can be achieved when using rigid transforma-
tions. Therefore, another productive direction in which to extend
the research is to include an operation that models nonrigid fin-
gerprint deformations during the hybrid evolution search. This
could be accomplished by incorporating, for example, the thin-
plate spline model [5], which can model elastic distortions based
on the locations and orientations of the matched minutiae pairs.
Finally, the algorithm developed here can be suitably modified
and tailored so that it is applicable to ridge pattern-based finger-
print alignment and/or matching, which is another challenging
problem. In this regard, population initialization and local im-
provement operations based on the local ridge information may
also be developed.
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