
Barnes, David J. (1992) Observations and Recommendations on the Internationalisation 
of Software.  Technical report. , University of Kent, Canterbury, UK 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21049/ The University of Kent's Academic Repository KAR 

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/21049/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Observations and Recommendations on the Internationalisation

of Software

David Barnes

The Computing Laboratory

The University

Canterbury

Kent� CT� �NF

June ��� ����

Abstract

As computer programs enter the lives of more and more people worldwide� it is becoming

increasingly unacceptable to assume that software with a user interface designed for an

indigenous English speaking market will be acceptable outside its country of origin simply

by changing the currency symbol� Developers of software who are serious about expanding

sales into new markets must consider many issues when giving thought either to the creation

of new software or the modi�cation of existing software to work within the linguistic and

cultural constraints of these new markets�

The purpose of this paper is to examine the task of preparing software to be used in

countries and cultures other than that in which it is created� We do this by reviewing some

of the most important localisation issues that have been identi�ed� and some of the tools

and practices that are available to the software designer to deal with them� We shall also

consider some of the areas of the software development process that are currently less well

understood and supported� Our major emphasis is in non�graphical applications targeted

at European markets�

Keywords� Internationalisation� I��N� Localising� Enabling� Multi�lingual�

Part I

Cultural Di�erences

� Text Strings

For developers intending their software to interact with human users in di�erent cultures� the
most obvious obstacle to be overcome is one of language� Ideally� all textual communication
between the program and the user should take place in his or her own language�

�



� CHARACTER SET �

��� Text output by the Program

Text output by a program often constitutes a large proportion of the user interface� command
prompts� items in a menu� error messages� help� general information� and so on� Such text that
would be presented by a program must be identi�ed� and an equivalent translation prepared
that can be used as the output of a localised program� This process is often mistakenly thought
of as being both relatively simple and the only signi�cant e�ort required in the migration
process� However� it is our contention that this purely 	string
handling� view of the task is
quite mistaken� and will often actually require little e�ort when compared with that required
to deal with some of the more subtle cultural and dynamic aspects of a program�s behaviour�
Rather� it is the task of maintaining the cultural elements in a form that will enable a quali�ed
translator to create a satisfactorily localised program that is one of the major hurdles to be
overcome in the area of internationalisation�

Nevertheless� in later sections we shall discuss various methods for achieving the identi�cation�
separation� and translation of program text as a necessary �rst step�

��� Text supplied by the User

Where a user interacts with a program via textual responses� handling of such input must be
isolated and appropriate translations found� as with output text� On input� there is a slightly
di�erent set of considerations� the layout problems associated with output become issues of
handling multi
format input� for instance�

� Character Set

Migration to most languages other than English requires the use of a character set other than
the commonly used 

bit ASCII� For the most common European languages it is su�cient to
employ the �
bit ISO
����
� �ISO Latin
�� but for migration to other markets� most notably
Japan� it will be necessary to consider the implications of multi
byte character sets� such as
Kanji�

Typically� a localised application will be used with only a single interface at a given site� where
keyboards and output devices will be appropriate for that locale and in the rest of this paper
we shall concern ourselves with this scenario� However� multi
lingual working environments do
exist� and here it may be necessary to make adequate provision for the generation of input and
output not typical of that locale � such as generating accented characters from a UK keyboard
����

� Collating Sequence

Many applications rely upon the underlying values within a character set to impose an ordering
on alphabetic data� This will often fail to take account of the distinctive ways in which some
countries properly order such data� Del Galdo ��� shows the collating sequences for English�



� CHARACTER CLASSIFICATION AND CONVERSION �

German� and Swedish� noting that 	�a�� 	�o�� and 	�u� in German are grouped with their unaccented
equivalents� whereas Swedish groups 	�u� with 	y� and places 	�a� and 	�o� at the end of the alphabet�
Sprung ���� adds that sorting 	o� before 	�o� and vice
versa are both common in German� Some
languages sort particular pairs of letters as a singleton� 	ch� and 	ll� in Spanish after 	c� and 	l��
respectively� for instance�

� Character Classi�cation and Conversion

Many applications need to classify characters into groups� such as upper case� lower case� digits�
white space� and so on� Such classi�cations need to recognise the place of accented characters
within such groupings� Di�erent cultures also have di�erent conventions about whether a
character retains it accent when converted to upper case ��
� p������ and it cannot be assumed
that simply 	�ipping a bit� will convert between upper and lower case�

� Hyphenation

Writers of text formatters recognise that hyphenation rules are often highly speci�c to individual
languages ���� p����� In addition� sometimes changes in spelling are required when a word is
broken ���� p����� ��
� p������

� Monetary Information

Currency symbols vary from country to country� as do their lengths and positions� for instance�
������p� ��FF� US���� etc� Formatting of monetary items must take this into account�

	 Numbers

Separators for thousands and decimals vary considerably� Del Galdo ��� p��� suggests allowing
for thousands a comma� period� space� apostrophe� and no separator� In addition a period�
comma� and centre dot should be allowable as radix characters� These issues a�ect both the
output of information and what the user is allowed to supply as input� It is essential that the
conventions are made clear to the user and that sanity checks� feedback� and opportunity for
con�rmation provide the necessary safeguards against incorrect data�


 Dates

Numeric day�month ordering is a potential source of error� particularly where the day is within
the range �
��� Di�erences between the UK day�month�year and the US month�day�year
orderings have even provided a fertile ground for clues within detective �ction� A third common



� TIME �

form of year�month�day o�ers an acceptable alternative� as long as four digits are used for the
year as after the year ���� two digit years will render this form indistinguishable from the
others� Where ambiguity might arise� an alphabetic month with four digit year is always to be
preferred on output� and user supplied numeric dates should be con�rmed�

Further considerations are found in Taylor ��
� p������ who notes that the Western Gregorian
calendar is by no means ubiquitous� and in Beyls ��� p����� who describes some of the unique
demands of the Arabic lunar calendar�

� Time

Although the ordering problem associated with dates does not arise with time formats there is
a need to clearly distinguish between twelve and twenty
four hour representation� AM and PM
strings may be needed� for instance� Where the time displayed is not local time� or the context
demands it� reference to a recognised time zone should be included� Del Galdo ��� suggests that
typical three letter abbreviations of this information are not appropriate�

�� Units

Not all countries regularly use SI �Syst�eme International� units� In the UK� where the metric
system has been part of the education system for a long time� the older Imperial system of miles�
gallons� pounds� and ounces� still �ourishes in every day life� In addition� there are di�erences to
be found between countries with similarly named units � pints and billions between the US and
UK� for instance� Failure to agree on the right units could have life threatening consequences�
typi�ed by the notorious failure to distinguish between land miles and nautical miles during
WWII ����

�� Telephone Numbers

A great deal of �exibility is required in handling telephone numbers � particularly in recognising
what is acceptable as input� Numbers of digits vary� as do the typical separators and lengths of
groups within a number� Provision should be made to accept abbreviated local forms� as well
as full national and international formats� where appropriate�

�� Names and Addresses

As with telephone numbers� no standard format can be assumed to be available� Some countries
order the most local information �rst� others order it last� Names are also an area where care
must be exercised� and can be a source of much personal annoyance ����� Provision should
be made for people with single letter names� hyphenated names� no forenames� and so on�



�� THINGS THAT NIGGLE �

Nielsen���� page iv� points out that simply initials and surname are insu�cient to identify a
person in Denmark since three surnames alone account for nearly �� of the Danish population�

�� Things that Niggle

A program with an interface developed in one country and then made available in another where
the same language is spoken might not be an obvious candidate for the skills of a translator�
but seemingly minor cultural di�erences can create a sense of unease that may signi�cantly
a�ect a user�s perception of whether or not an interface really has been tailored to their needs�
Examples between the UK and US markets might be the di�erent spelling of common words
�such as colour�color�� the use of di�erent terms for the same thing �bonnet�hood�� as well as
the date ordering problems that have already been mentioned�

Part II

Support for Internationalisation

� Where it happens

The multiplicity of examples within the literature demonstrates that there is no single accepted
method for creating and maintaining a piece of software in a form that will enable its adaptation
to national variations ��� �� !� ��� ��� �
�� In addition� there are di�erent points within the source
or binary form of a program where diversi�cation might take place� Taylor ��
� identi�es all
three phases of program building � compile
time� link
time� run
time � as being potential points
for this� To illustrate the essential di�erences between these points we shall use the program
fragment in Figure �� which is written in ANSI C ����

The purpose of the function is to prompt the user with a question and return 	�� or 	�� for a
	Yes� or 	No� response� Our goal is to write a French language version that will do the same
thing� We shall concentrate on the purely textual aspects of the di�erences�

��� Compile�Time

With this approach� no signi�cant attempt is made to isolate the language speci�c elements of
the program from the rest� A French version might look like that in Figure �� therefore�

The position usually taken is that the compile time solution is impractical for all but the
simplest of applications� Its use results in having to maintain multiple versions of what is�
essentially� the same software� Bug �xes and enhancements in one version must be carried over
to all others and it is very easy for even just two versions to eventually diverge to the extent
that they become di�erent pieces of software� Nielsen� however� does give an example of a
commercial application that used this approach at one stage ���� p��!���



� WHERE IT HAPPENS !

int
ask a question�const char "question�
f char "answer�

�" Keep going until we �nd a valid answer� "�
int answer found # ��
int result�
�" Prototypes of functions called to break down the task� "�
char "read a reply�void��
int samestring�const char "�const char "��

�" Repeatedly ask the question until either Yes or No is given� "�
dof

�" Ask the question� "�
puts�question��
�" Accept a reply from the user� "�
answer # read a reply���
if�samestring�answer�$Yes$��f

answer found # ��
result # ��

g
else if�samestring�answer�$No$��f

answer found # ��
result # ��

g
elsef

puts�$Please reply Yes or No�$��
g

g while��answer found��
return result�

g

Figure �� English version of ask a question



� WHERE IT HAPPENS 


int
ask a question�const char "question�
f char "answer�

�" Keep going until we �nd a valid answer� "�
int answer found # ��
int result�
�" Prototypes of functions called to break down the task� "�
char "read a reply�void��
int samestring�const char "�const char "��

�" Repeatedly ask the question until either Oui or Non is given� "�
dof

�" Ask the question� "�
puts�question��
�" Accept a reply from the user� "�
answer # read a reply���
if�samestring�answer�$Oui$��f

answer found # ��
result # ��

g
else if�samestring�answer�$Non$��f

answer found # ��
result # ��

g
elsef

puts�$R%epondez avec Oui ou Non� s�il vous pla&'t�$��
g

g while��answer found��
return result�

g

Figure �� French version of ask a question



� EXISTING SUPPORT FOR INTERNATIONALISATION �

��� Link�Time

This approach consists of isolating into distinct modules those cultural elements that require
translation� When a program is prepared for a new locale� new versions of only these modules
need to be prepared� These are substituted for the original locale
speci�c modules and linked
in with the common modules of the application�

Following this method� our example must be split into two� a shared part �Figure ��� and a
locale
speci�c part �Figure ���

The locale
speci�c part is simply a data structure� question strings holding the possible
answer strings and the error message�

Access to this information is granted to the shared part via the module interface� question�h
that is included in both parts �Figure ���

The French version of the language
dependent module is shown in Figure !�

��� Run�Time

This method involves the complete removal of the cultural elements from the source of the
program to external �les� Whereas the other two methods produce a di�erent binary version
for each interface� this method produces a single binary whose interface will depend upon
the external environment in which it is run� The external �les containing the environmental
information are variously known by designations such as resource �les ����� message �les �!�� and
catalogs ��� �
�� In their simplest form they contain the texts of the di�erent user interfaces�
Following the conventions of ��� the message �les from which the catalogs of our example are
created might look like those in Figure 
 and Figure ��

Catalogs are prepared from these message �les� and at run
time� the required catalog is opened
for that locale� The language
dependent strings are then retrieved via calls to the catgets

function� and our ask a question function would look something like that in Figure ��

The run
time approach is usually associated with a degradation in execution speed� when
compared with the other two approaches� because of the need to access external data� This
may be an important factor� especially if an existing base of users would �nd a signi�cant
decrease in speed unacceptable ���� p������ However� if it is possible to load a heavily used
catalog into memory at runtime then the degradation may not be a factor ����

� Existing Support for Internationalisation

As we saw earlier� there is a good deal more to localisation than simply translating text from
one language to another� Several vendors have addressed many of these issues and provided
support for them� DEC Ultrix NLS� Hewlett
Packard HP
UX NLS� IBM and Microsoft�s OS���
and Microsoft�s Windows are all examples that do so to a greater or lesser extent� The areas
covered typically include the infra
structure facilities listed below�



� EXISTING SUPPORT FOR INTERNATIONALISATION �

(include $question�h$

int
ask a question�const char "question�
f char "answer�

�" Keep going until we �nd a valid answer� "�
int answer found # ��
int result�
�" Prototypes of functions called to break down the task� "�
char "read a reply�void��
int samestring�const char "�const char "��

�" Repeatedly ask the question until an appropriate answer is given� "�
dof

�" Ask the question� "�
puts�question��
�" Accept a reply from the user� "�
answer # read a reply���
if�samestring�answer�question strings�YES STRING���f

answer found # ��
result # ��

g

else if�samestring�answer�question strings�NO STRING���f
answer found # ��
result # ��

g

elsef
puts�question strings�ERROR STRING���

g

g while��answer found��
return result�

g

Figure �� Locale
independent shared components

(include $question�h$

const char "question strings� � # f

$Yes$�
$No$�
$Please reply Yes or No�$�

g�

Figure �� Locale
speci�c data structure for the English version



� EXISTING SUPPORT FOR INTERNATIONALISATION ��

�" Provide access to the language
dependent strings� "�
extern const char "question strings� ��

�" De�ne the index for each string in question strings��� "�
(de�ne YES STRING �
(de�ne NO STRING �
(de�ne ERROR MESSAGE �

Figure �� Module interface to the locale
speci�c information �question�h�

(include $question�h$

const char "question strings� � # f
$Oui$�
$Non$�
$R%epondez avec Oui ou Non� s�il vous pla&'t�$�

g�

Figure !� Locale
speci�c data structure for the French version

�english question�msf
�Messages for the English version of the ask a question function�
�quote $

�set ASK QUESTION
YES ANSWER $Yes$
NO ANSWER $No$
ERROR MESSAGE $Please reply Yes or No$

Figure 
� English message catalog

�french question�msf
�Messages for the French version of the ask a question function�
�quote $

�set ASK QUESTION
YES ANSWER $Oui$
NO ANSWER $Non$
ERROR MESSAGE $R%epondez avec Oui ou Non� s�il vous pla&'t�$

Figure �� French message catalog



� EXISTING SUPPORT FOR INTERNATIONALISATION ��

(include $nl types�h$
(include $question�h$

int
ask a question�const char "question�
f char "answer�

�" Keep going until we �nd a valid answer� "�
int answer found # ��
int result�
�" Prototypes of functions called to break down the task� "�
char "read a reply�void��
int samestring�const char "�const char "��
�" A catalog descriptor is needed� "�
nl catd catd�

�" Open the catalog for the strings required� "�
catd # catopen�$question�cat$����
�" Repeatedly ask the question until an appropriate answer is given� "�
dof

�" Ask the question� "�
puts�question��
�" Accept a reply from the user� "�
answer # read a reply���
if�samestring�answer�catgets�catd�ASK QUESTION�YES STRING�$$���f

answer found # ��
result # ��

g
else if�samestring�answer�catgets�catd�ASK QUESTION�NO STRING�$$���f

answer found # ��
result # ��

g
elsef

puts�catgets�catd�ASK QUESTION�ERROR STRING�$$���
g

g while��answer found��

catclose�catd��

return result�
g

Figure �� Locale
independent version of ask a question



� ENABLING TOOLS ��

� run
time access to locale
speci�c text�

� character sets� including multi
byte characters�

� collating sequence�

� character classi�cation�

� monetary format�

� numeric format�

� date and time format�

These provide a good base upon which to develop the higher
level aspects of internationalisation
that we shall be dealing with in Part III�

� Enabling Tools

Many software developers will want to take an existing program and convert it for use in other
cultures� In order to facilitate this� some tools have been developed to eliminate much of the
repetitive nature of part of this task� The Ultrix and HP
UX NLS ��� �� have a great deal
in common� both leaning towards the X�Open Portability Guide ����� Both provide broadly
similar facilities to extract text from existing software into text message �les� from which the
run
time catalogs are then created� Ultrix NLS provides both an interactive program� extract�
and a batch program strextract� These tools make use of directives to determine which strings
to match and which to ignore during this process� When a string is matched and placed in the
message �le� its occurrence in the source can be automatically replaced by the appropriate call
to retrieve it from a catalog at run
time� For example the line in Figure � above

if�samestring�answer�$Yes$��f

would be converted automatically to something of the form

if�samestring�answer�catgets�catd�set number�item in set�$Yes$���f

by the extraction process� The values in the places set number and item in set are simply
numbers allocated by the tool� Their purpose is to allow catalogs to be organised into di�erent
sets of messages� The �nal argument to catgets is a default string in case the requested value
cannot be retrieved� for some reason� It serves the additional purpose of documenting the code�
Peterson�s method ���� retains the original message text for this purpose� too� but instead of
the set�item principle he uses the original text as an argument to a hashing function in order
to retrieve the translated version from an external �le�

It is important to note that the service o�ered by such tools as these is simply a cut
and
paste
exercise� The tools only save the programmer from a large amount of hand editing� No attempt



��

const char "menu strings� � # f
$Edit$�
$List$�
$Print$�
$Quit$�
$Save$�

g�

Figure ��� Command menu data structure

const char "menu strings� � # f

catgets�catd�����$Edit$��
catgets�catd�����$List$��
catgets�catd�����$Print$��
catgets�catd�����$Quit$��
catgets�catd�����$Save$��

g�

Figure ��� Incorrectly enabled command data structure

is made to logically group the items into di�erent sets� or provide symbolic names for sets and
items� for instance� In addition� the tools contain no understanding of where these replacements
are inappropriate� Faced with the data structure in Figure �� that might represent a menu of
commands to be presented to the user� the Ultrix NLS extract tool can only convert this into
an equivalent of Figure ���

This is no use because data structures in C may not be initialised in this way� Rather� what is
needed is an additional function that performs the run
time initialisation �Figure ����

The reason that existing tools do not handle this situation properly is that� typically they
are little more than pattern
match and replacement utilities� they do not take account of the
program context in which the text occurs�

Part III

Exploring the Di�culties

Having examined some of the areas for which there is existing support it is now necessary to
look at some of the areas that do not yet have ready made solutions�



� THE GOAL ��

�" De�ne how many menu items there are� "�
(de�ne NUM MENU ITEMS �
�" De�ne an array to hold the menu items� "�
char "menu strings�NUM MENU ITEMS��

�" De�ne a function to initialise the menu� "�
void
init menu�void�
f

int item number�
�" A function to make a copy of each string read� "�
char "copy string�const char "��

for�item number # �� item number ) NUM MENU ITEMS� item number**�f
�" Copy each string read into some new space� "�
menu strings�item number� #

copy string�catgets�catd���item number*��$$���
g

g

Figure ��� Function necessary to initialise the command data structure

� The Goal

The ultimate goal of the software developer who is working towards a localised product must
be to have the new users feel as comfortable with it as with a home
grown product� Nielsen
says�

+an interface which is used in another country than the one where it was designed
is a new interface � � �translating the text strings and icons in the software is not
enough � one has to translate the total user interface including manuals$ ���� p�����

Implementation of such a goal� with a commitment to the design of the total user interface�
will require the involvement of a translator who

� is a native speaker of the intended language�

� who has a good knowledge of the target user population� and

� who has a good knowledge of the operation of the program�

Such a combination is likely to be hard to �nd but it is probable that the �rst two requirements
will be more readily met than the third� particularly if localisation actually takes place outside
the development company and�or the country of origin� If this is so then the development
and enabling process must provide as much information as possible to support its localisation



� DYNAMIC CONTEXT ��

outwith its basic linguistic and cultural aspects� Unfortunately� this sort of support is completely
lacking for the general developer of localised software�

� Dynamic Context

Much of our previous discussion has focussed on the removal of text in order that it might be
translated� It would be simplistic to assume that dealing with such text is analogous to the
translation of a technical paper� A good accurate translation of anything depends signi�cantly
upon contextual information� and as Nielsen again says�

+dialogue elements cannot be seen in isolation since they form part of a dynamic
interactive context$ ���� p�����

However� the text extraction process that we have looked at does precisely this � removing text
to a static external �le devoid of all dynamic context�

As an example� Nielsen�s analysis of an initial Danish version of MacPaint shows how� when
seen in context� the translation of eject as aflever �	hand
over�� caused a user to think the
button�s purpose was for saving a �le� rather than ejecting a disc� A similar problem can exist
when translating text representing toggles� without giving the translator the context� it might
not be apparent that two isolated texts should be translated as opposites so that the linkage is
clear to the user ���� p����� Sukaviriya and Moran ��!� p����� point out that direct translation
of some words simply does not make sense when placed in context � box and bar in the Thai
version of a word processor� for instance � where the direct translations refer to unrelated
physical objects�

A translator� therefore� must have available information that covers the general application
area� as well as the static� dynamic� and relational contexts of the text to be translated� This
will often have to be directly provided by the enabler�

� Dynamic Text

It is likely that not all text output by a program is �xed at the point of binding� Error
messages typically include portions of the input deemed to have been responsible for causing
the associated errors� for instance� Such dynamic text creates two challenges

� providing the translator with enough information to make the static components of a
parameterised text translatable�

� providing a mechanism whereby the runtime arguments may be appropriately substituted�

The C programming language ��� uses the 	 � character to introduce parameter speci�cations
into text strings� The formatted print statement



� FORMAT �!

printf��The �s command requires �u parameter�c��command�name�

num�parameters��num�parameters �� 	
 � ���s�

�

tries to print a grammatically correct message requiring three arguments to be substituted for
the parameter speci�cations� a string �	 s��� an unsigned integer �	 u��� and a single character
�	 c��� What the translator is likely to see is simply

The �s command requires �u parameter�c

Is this su�cient to yield something with the equivalent meaning in the target language, Cer

tainly the translator will need to know what the various parameters mean� and likely values of
the runtime arguments�

Furthermore� translations of some parameterised texts will require the order of argument sub

stitutions to be changed in order to make good grammatical sense� ANSI C� by itself� does
not provide this capability� Hence the HP
UX NLS environment extends the range of param

eter speci�cations to include those of the form 	 d��� where d is a digit in the range �
� that
refers to the required argument�s position in the argument list� These allow arguments to be
reordered when formatted and so provide greater scope for producing a good translation� A
similar feature is found in OS���s DosGetMessage API �!� p���� and INFOFLEX ���� p��
���

� Format

One piece of advice often quoted is the need to allow for translations producing longer text
than the original� The recommendation usually involves simply making sure that array sizes
de�ned within the program are large enough to cover this possibility� How much extra space
to allow depends on who you read

� allow up to �� more when translating English ���

� at least !� more ���

� for strings of ���� characters allow ��� 
��� � for strings of over 
� characters allow
�� �with percentages for intermediate lengths� �
�

The INFOFLEX project ���� went further� Believing that �xed layouts lead to +absurd and
meaningless abbreviations$ they incorporated explicit formatting information along with the
text held in their resource �les� This enabled them to create WYSIWYG translations of screens
and reports using a custom built resource editor to design them� Doubtless their task was made
easier by the fact that the application was directed to ��x�� character terminals� nevertheless
they successfully tackled an important issue not addressed by most other projects�

� Menus
 Macros
 and Accelerators

A common feature of menus is that an option may often be selected via an accelerator � typically
a keystroke combination involving the �rst character of its name� This can lead to awkward



� PROGRAM EVOLUTION �


naming of items� even in the original version� to keep these characters distinct� A translator
needs to be made aware of those places where this feature must be present in the new version�
Furthermore� where these accelerator characters di�er between the versions there is a danger
of thwarting users who switch between them ���� p����� A related problem with macros in early
versions of Lotus �
�
� is noted by Sprung ���� p���� where US macros could not be used by
French users because of di�erent key bindings� Support for developers of software to be shared
across cultures needs to be provided� therefore�

� Program Evolution

Successful programs rarely remain static but undergo continuous improvement and develop

ment� Established user bases are likely to want to reap the bene�ts of improvements as soon
as a new version is released in the country of origin� This means that the development process
must be supported in such a way that the bene�ts of an original enabling are not lost� and
the release of a new version to a wider market only requires the merging of translations of
the new features with those that exist already� Tools that support these requirements are few�
The ARRIS project built their own ���� p���
�� but environments whose enabling tools e�ec

tively yield multiple versions of the same program produce potential con�icts� which version
to develop � the original or the enabled ��� p�!
���, The latter� surely� but typically the tools
available are most suited for the initial enabling process� and not the long term development
and maintenance of a program� Catalogs become out of date as code is changed� yet it may be
unsafe to remove redundant messages lest existing translations become unsynchronised� There
are no formal mechanisms for tracing the linkage between di�erent translations�

Part IV

The Way Ahead

We have seen that there is far more to the internationalisation of a program than simply �nding
all embedded text strings and replacing them with alternatives in a new language� Many of
the issues to be considered have to do with the infrastructure of the locale � character set�
date and numeric formats� collating sequence� etc� The importance of dealing with these at
the base language and operating system level has now been recognised by several operating
systems manufacturers� and reasonably well catered for� However� there are at least two major
higher
level areas still lacking

� The provision of a framework in which su�cient contextual information is made available
to a linguistically competent translator to allow him or her to create an accurate and
complete localisation� �It must be borne in mind that such a person is unlikely to be fully
versed in the technical implementation of the program��

� Support of evolution and maintenance of a program that has already been enabled�



REFERENCES ��

The implementation of suitable mechanisms in support of these would permit the removal of the
enabling and localising processes out of the ad hoc home
grown arena of current practice into one
that is rigorous� professional� and generally applicable� It is our belief that both of these areas
can be dealt with by the development of appropriate software tools that build upon the existing
infrastructure support to create a programming environment for the internationalisation of
software�

References

��� American National Standards Institute� 	American National Standard for Informa

tion Systems � Programming Language � C�� ANSI X�����
�����

��� David Barnes and Tim Hopkins� 	Experience with Adapting Software for use in a
Multi
Lingual Workplace�� submitted to Information and Software Technology� �����

��� Pascal Beyls� 	The Arabisation of UNIX�� EUUG Conference Proceedings� Autumn �����
pp ���
�!��

��� Elisa del Galdo� 	Internationalization and Translation� in Designing User Interfaces for
International Use Ed� Jakob Nielsen� Elsevier ����� pp �
���

��� Digital Equipment Corporation� 	Guide to Developing International Software�� Ultrix
Software Development Manual� Volume �� June �����

�!� Asmus Freytag and Michael Leu� 	Using the OS�� National Language Support Services
to Write International Programs�� Microsoft Systems Journal� ���� Mar ����� pp �
�!�

�
� William S� Hall� 	Adapt Your Program for Worldwide Use with Windows International

ization Support�� Microsoft Systems Journal� !�!� Nov
Dec ����� pp ��
���

��� Hewlett�Packard Company� 	Native Language Support� User�s Guide� HP ���� Com

puters�� Jan� �����

��� J�E� Johnson� 	The Story of Air Fighting�� Arrow� London� ����� page �!�
�!��

���� Leslie Lamport� 	LaTEX User�s Guide and Reference Manual�� Addison
Wesley� ���!�

���� Jakob Nielsen� 	Usability Testing of International Interfaces� in Designing User Interfaces
for International Use� Ed� Jakob Nielsen� Elsevier� ����� pp ��
���

���� Jakob Peter Nielsen� 	International User Interface for Info�ex� in Designing User Inter

faces for International Use� Ed� Jakob Nielsen� Elsevier ����� pp ���
��
�

���� M�C� Peterson� 	ARRIS� Redesigning a User Interface for International Use� in Designing
User Interfaces for International Use� Ed� Jakob Nielsen� Elsevier� ����� pp ���
����

���� Gene Spa�ord� 	O� Oh� what a di�cult name�� in USENET comp�risks� Volume ��� Issue
��� �� August �����

���� Robert C� Sprung� 	Two Faces of America� Polyglot and Tongue
Tied� in Designing
User Interfaces for International Use� Ed� Jakob Nielsen� Elsevier� ����� pp 
�
����



REFERENCES ��

��!� Piyawadee Sukaviriya and Lucy Moran� 	User Interface for Asia� in Designing User
Interfaces for International Use� Ed� Jakob Nielsen� Elsevier� ����� pp ��������

��
� Dave Taylor� 	Creating International Applications� A Hands
On Approach using the
Hewlett
Packard NLS Package� in Designing User Interfaces for International Use� Ed�
Jakob Nielsen� Elsevier� ����� pp ���
����

���� X�Open Consortium� 	The X�Open Portability Guide�� release �� April �����


