
Utting, Ian (1992) Postscript Tutorial and Reference. Technical report. ,
University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21051/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21051/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A POSTSCRIPT Tutorial and Reference

Ian Utting

Computing Laboratory, UKC

ABSTRACT

POSTSCRIPT is the de facto standard Page Description Language produced by
Adobe Systems Corporation and supported as a printer interface language by many
manufacturers of laser printers and phototypesetters. This document provides an illus-
trated introduction to the major features of the language, it should contain enough infor-
mation to enable potential users of POSTSCRIPT to determine how much effort is required
to perform a task they have in mind, and for some purposes it will serve as a
programmer’s guide to the language. It will never replace the Adobe Systems books, but
then it’s nowhere near as expensive.

1. Overview

POSTSCRIPT is a stack-based general purpose programming language (using a postfix notation) with many
built-in graphical features. A POSTSCRIPT program typically consists of a number of procedure definitions
(a prologue) followed by a set of independent program fragments (a script), each of which use the
definitions from the prologue to produce a page of output. The primitive actions in the language are per-
formed by operators, built-in procedures or functions.

Operators which require operands take them from the operand stack, where they have been placed as the
results of other operators or functions, or by explicit action taken by the program. There is also a dictionary
stack and a graphics state stack, both of which are described in detail below.

POSTSCRIPT views a page as a rectangular grid onto which opaque ink of various colours (including white)
may be sprayed, each new coat obscuring the underlying ones. Positions on the page are specified in
POSTSCRIPT using a coordinate system (the default user space) which is independent of the resolution of
the particular printer being used. This is a normal Cartesian space with the origin at the bottom left hand
corner of the page and a resolution of 1/72 of an inch (close to the traditional printers point of 1/72.27
inches). Coordinates are specified as x and y values, where x and y are real numbers which increase right-
wards and upwards respectively. The position of the origin, orientation of the axes, resolution and even the
relative direction of the axes can be changed via coordinate transformations, see below.

In this document, operators are described (in an informal fashion) in terms of their expected operands and
the result of applying an operator to them. In general, the line:

operand(s) operator fi result(s)

implies that operator expects to find operand(s) on the operand stack, with the top-of-stack at the right
hand end. After it has completed, the stack will contain result(s) in place of the operands. An operand or
result of ‘‘–’’ is used to indicate that no operands are required, or that no result is returned.

In examples (set in Courier), the symbol => is used to separate an example from the result of executing
it, so that

3 4 add => 7

indicates that 7 is the result of executing the POSTSCRIPT fragment 3 4 add.

- 2 -

2. Syntax

POSTSCRIPT programs are written in printable (ASCII) form and are interpreted directly by the printer.
There are six distinct syntactic constructs in POSTSCRIPT, delimited by spaces, tabs and newlines. Delim-
iters are otherwise ignored (outside of strings). These constructs are:

Numbers Both real and integer, with an optional sign. Eg. 123 -98 274.3 -0.0002 1E27
-123.6E10. Integers may also be specified in the form radix#number, indicating that the
number is in base radix. Eg. 16#7FFF, 8#377, 2#1011110 and 36#7B45Z (the last
being in base 36!).

Strings Strings are sequences of ASCII characters contained in balanced parentheses. All the usual
UNIX-like† escape sequences (\n, \t, \037 etc) are recognised, along with \) and \(to
provide for unbalanced parentheses. Examples are:

(This is a string)
(This contains a newline
but is still one string)
(This contains (balanced) parentheses)
()

the last of which was the empty string.

Comments Anything between the character % and the end of the line is ignored by the POSTSCRIPT inter-
preter. Some comments starting with %% are conventional—used by other processors to
preserve useful information of no use to the POSTSCRIPT interpreter.

Names Any string of non-special characters outside a string or comment and not containing a delim-
iter is interpreted as a name (unless it’s a number). So: abc, Offset, 23A, 13-456
and @pattern are all names. The ‘‘/’’ (slash) character is used to indicate a literal name, ie.
one that is not to be interpreted.

Procedures Procedures in POSTSCRIPT are sequences of tokens enclosed in curly brackets (‘‘{’’ and
‘‘}’’). For example the POSTSCRIPT code fragment:

/average { add 2 div } def
4 6 average

defines (using the def operator) a procedure whose name is average (note the use of the
literal character when defining a name) and whose body consists of the code to add the top
two elements on the operand stack and divide the result by two, leaving it on the operand
stack. In the second line, the numbers 4 and 6 are pushed onto the stack, and the average
procedure executed (by naming it without the literal character).

Arrays Arrays are heterogeneous collections of POSTSCRIPT objects delimited by square brackets. For
example, the array:

[23 45.2 (a string) /aName [(abc) 16#7e] { 2 div }]

consists of six elements:

An integer number: 23
A real number: 45.2
A string: containing the characters a string
A literal name (not evaluated at this point): /aName
An array, itself containing a string and an integer
A procedure body: { 2 div }

The POSTSCRIPT interpreter scans its input (ignoring comments) looking for tokens which are acted upon
according to their type. Numbers, strings, arrays, procedure bodies and literal names are simply pushed

† UNIX is a trademark of AT&T Bell Laboratories in the USA and other countries.

- 3 -

onto the operand stack. Evaluated names (those not preceded by a literal character) are converted into the
corresponding POSTSCRIPT object, and that object is either pushed onto the operand stack or, if it is execut-
able (ie. it is a procedure body or built-in operator), then it is immediately executed.

3. General Purpose Operators

Many of the operators supported by PostScript are general in nature, used to calculate operands for graphi-
cal operations and to control the action of the program.

3.1. Arithmetic Operators

All the usual arithmetic operators are supported, as indicated in the following list.

num1 num2 add fi (num1 + num2)
num1 num2 sub fi (num1 – num2)
num1 num2 mul fi (num1 · num2)
num1 num2 div fi (num1 / num2)
num1 num2 exp fi num1num2

num sqrt fi � ���num
num abs fi | num|
num neg fi –num

The functions sin, cos, atan, ln and log are also supported.

3.2. Relational and Boolean Operators

The following relational operators are defined. Relational operators can be applied to numbers or strings. In
the case of numbers they have the expected effect, strings are compared for ASCII lexicographic ordering.
Any other types of objects can be compared only for (in)equality, that is whether or not they are references
to the same object.

any1 any2 eq fi (any1 = any2)
any1 any2 ne fi (any1 <> any2)
obj1 obj2 ge fi (obj1 >= obj2)
obj1 obj2 gt fi (obj1 > obj2)
obj1 obj2 le fi (obj1 <= obj2)
obj1 obj2 lt fi (obj1 < obj2)

The following boolean operators are defined, along with the boolean constants true and false.

bool1 bool2 and fi (bool1 ANDbool2)
bool1 bool2 or fi (bool1 OR bool2)
bool1 bool2 xor fi (bool1 XORbool2)
bool not fi not(bool)

3.3. Flow Control

bool proc if fi –
Executes the procedure body proc if bool is true, otherwise ignores it.

bool tproc fproc ifelse fi –
Executes the procedure body tproc if bool is true, otherwise executes the procedure body fproc.

n proc repeat fi –
The procedure body proc is executed n times. Both n and proc are removed from the operand stack
before any execution takes place.

4 {(abc)} repeat => (abc) (abc) (abc) (abc)
8 4 {1 sub} repeat => 4

- 4 -

init inc limit proc for fi –
The equivalent of the C-like for loop:

for (i = init; i <= limit; i += inc)
proc;

(if inc is negative, the <= relationship is replaced by >=). The current value of the loop counter (i)
is pushed onto the operand stack before each execution of the body proc.

0 1 1 4 {add} for => 10
3 -0.5 1 {} for => 3.0 2.5 2.0 1.5 1.0

3.4. Operand Stack Handling

any pop fi –
Discard the top element of the operand stack.

any1 any2 exch fi any2 any1
Exchange the top two elements of the operand stack. For example:

(a) (b) exch => (b) (a)

or:

/xdef { /x exch def } def
2 xdef

Which associates the value 2 with the name x in the current dictionary. This technique is commonly
used for capturing arguments to procedure bodies, see below.

any dup fi any any
Duplicates the top element of the operand stack.

/cube { dup dup mul mul } def
3 cube => 27

any
N–1

... any
0

N J roll fi any
(J–1) mod N

... any
0

any
N–1

... any
J mod N

(Easier than it looks). Circularly shift the top N elements of the operand stack (treated as a sub-stack)
up (towards the top-of-stack) J places. If J is negative, the shift will be down.

(a) (b) (c) 3 -1 roll => (b) (c) (a)
(a) (b) (c) 3 1 roll => (c) (a) (b)
(a) (b) (c) 3 2 roll => (b) (c) (a)

any == fi –
Destructively but intelligently print the top element of the operand stack onto the job log (not the
output page). Useful for debugging.

4. Dictionaries

Dictionaries are associative arrays: that is they contain names (keys) with which are associated data
(values), they are used in POSTSCRIPT for storing variables. When a name is mentioned, it is first searched
for in the current dictionary, and then in the other dictionaries on the stack in top-down order.

4.1. Dictionary Operators

int dict fi dict
Creates a dictionary with a capacity of int key-value pairs and leaves it on the operand stack.

dict begin fi –
Takes dict from the operand stack, pushes it onto the dictionary stack and makes it the current dic-
tionary.

- 5 -

– end fi –
Discards the top element of the dictionary stack, making the new top element the current dictionary.

key val def fi –
Associates val with key in the current dictionary, overwriting any existing definition. If key is not
currently defined, a new entry known as key and containing val is created in the current dictionary.

key val store fi –
Associates val with key in whatever dictionary on the dictionary stack has key defined. If key is not
currently defined, a new entry is created in the current dictionary.

dict key known fi boolean
Result is true if key is known in dict, false otherwise.

key load fi val
Result is the (uninterpreted) val associated with key in the current context.

– currentdict fi dict
A copy of the current dictionary is placed on the operand stack.

In the procedure defined below, each instance of the variables called x and y are stored in separate dic-
tionaries (created by the dict operator on every (recursive) call of the procedure). Note the use of exch to
capture the ‘‘arguments’’ to the procedure.

/pointless {
2 dict begin

/x exch def
/y exch def
x 1 add y 1 add pointless

end
} def

5. Fonts & Characters

Fonts are dictionaries which contain details of character shapes which are defined by POSTSCRIPT pro-
cedures stored therein. They are also expected to contain variables which are used by various operators to
decide how and where to place the shapes on the page. Many items in a font dictionary can be altered by
POSTSCRIPT programs.

Fonts are stored internally as though they had a ‘size’ of 1 unit in the current user coordinate system, and
must be scaled to a more appropriate size before they can be used.

5.1. Font Operators

name findfont fi fdict
The font dictionary fdict, associated with (literal) name is placed on the operand stack.

fdicta int scalefont fi fdictb
The font dictionary fdicta is transformed from its default size to be int units high in the current user
coordinate system. The resulting, modified, dictionary fdictb is left on the operand stack.

fdict setfont fi –
The font dictionary fdict is made the current font (part of the graphic state).

To select 10-point Times Roman as the current font:

/Times-Roman findfont 10 scalefont setfont

5.2. Character Operators

string show fi –
The characters in string are imaged using the current font, starting at the current position. After each
character has been imaged, the current position is shifted (usually right) by the ‘natural’ width of the
character as stored in the current font dictionary (actually a (Dx,Dy)vector).

- 6 -

string stringwidth fi wx wy
Places on the operand stack the amounts (wx and wy) by which the current position would be altered
in total if string were given to the show operator.

(this string) stringwidth => 39.73 0.0

Note that the y (vertical) component of the width is 0.0, not the height of the characters composing
the string.

numx numy char string widthshow fi –
As show, but every time that the character whose code is char is imaged, the current position is
altered by (numx,numy)units in the user coordinate system as well as by any ‘natural’ width it may
have.

numx numy string ashow fi –
As widthshow, but the extra movement is associated with each character as it is shown.

numax numay char numbx numby string awidthshow fi –
As both ashow and widthshow. Adds (numbx,numby)to the current position between every pair of
characters in string, and also adds (numax,numay) to the current position after every occurrence of
char.

proc string kshow fi –
Shows each character from string, adding its ‘natural’ width to the current position. Between every
two characters, executes the body proc with the integer codes for the two characters on the operand
stack.

For example:

{ myproc } (Text) kshow

Results in the body myproc being being executed 3 times, first with the integers 16#54 and 16#65
on the stack, then with 16#65 and 16#78, finally with 16#78 and 16#74.

6. String & array handling.

PostScript contains a number of operators for examining the contents of composite objects, usually strings
or arrays (called a comp-obj below).

int string fi string
Creates a string of (maximum) length int, leaving it on the operand stack. For example:

/mystring 8 string def

creates a new string of maximum length 8 characters, which initially contains 8 0s, and stores it in the
current dictionary under the name mystring. This is an alternative to the
(\0\0\0\0\0\0\0\0) notation.

int array fi array
Performs the same function for an array composite object. 6 array has the same effect as [0 0
0 0 0 0].

comp-obj length fi int
Returns the length of the composite object on top of the operand stack.

(abc\n) length => 4
mystring length => 8
[0 4.5 (hello) {add} mystring] length => 5

comp-objAcomp-objB copy fi subcomp-obj
Copies the contents of comp-objA into the start of comp-objB, leaving on the operand stack a refer-
ence to subcomp-obj, the portion of comp-objB containing the copy (comp-objB and subcomp-obj
share storage).

- 7 -

comp-obj index get fi element
Returns the indexth element (character or object) from comp-obj (which is indexed from 0).

/mystring (Show me) def
/myarray [0 4.5 (hello) {add} mystring] def
mystring 5 get => 16#6d (Hex 6d is the ASCII code for ‘m’).
myarray 1 get => 4.5

comp-obj index value put fi –
Makes the indexth element of comp-obj contain value. For instance:

mystring 5 16#68 put

Leaves mystring containing (Show he) (Hexadecimal 68 is the ASCII code for ‘h’).

myarray 3 {sub} put

Leaves myarray containing [0 4.5 (hello) {sub} mystring].

comp-obj beg len getinterval fi subcomp-obj
subcomp-obj is created as a reference to the portion of comp-obj starting at index beg and extending
on len elements.

myarray 1 3 getinterval => [4.5 (hello) {sub}]
/shortstring mystring 5 2 getinterval def

The latter defines shortstring to contain the me from mystring. Note that if mystring is
now changed, that shortstring will change with it. To create shortstring independently of
mystring, say something like:

/shortstring mystring 5 2 getinterval dup length string copy def

comp-objAindex comp-objB putinterval fi –
The inverse of getinterval, comp-objB is copied element by element into comp-objA starting at
index.

(Show me) dup 5 (it) putinterval => (Show it)

Note that there must be enough space in comp-objAto accommodate all of comp-objB:

myarray 3 [{div} shortstring (Oops)] putinterval

causes a fatal rangecheck error.

comp-obj proc forall fi –
Executes the procedure proc once for each element of comp-obj in order, having first placed the ele-
ment on the operand stack. If comp-obj is a string, the elements pushed are the codes of the indivi-
dual characters, not single character strings.

0 [13 29 3 -8 21] { add } forall => 58
myarray { } forall => 0 4.5 (hello) {sub} mystring

string seek anchorsearch fi
if found: s-post s-match true
else: string false

On strings only. If seek is an initial substring of string, then the substring (s-post) of string which fol-
lows seek is pushed onto the operand stack, followed by the matched string (s-match, always the
seek), followed by the boolean constant true. If not, string is left on the operand stack, followed by
the boolean constant false.

- 8 -

(abbc) (ab) anchorsearch => (bc) (ab) true
(abbc) (bb) anchorsearch => (abbc) false
(abbc) (bc) anchorsearch => (abbc) false
(abbc) (cc) anchorsearch => (abbc) false

string seek search fi
if found: s-post s-match s-pre true
else: string false

As anchorsearch, but seek is not anchored to the start of string. The substring of string occurring
before the matched string is also pushed onto the operand stack when the search succeeds.

(abbc) (ab) search => (bc) (ab) () true
(abbc) (bb) search => (c) (bb) (a) true
(abbc) (bc) search => () (bc) (ab) true
(abbc) (cc) search => (abbc) false

7. Simple Graphics

Drawing graphical objects using POSTSCRIPT is a two-stage process, first the shape of the object is defined
using commands like lineto and arcto, however this in itself won’t cause anything to appear on the page.
Objects are only ‘‘painted’’ by using the fill or stroke operators. When these are used, the current path
and the current point are cleared. Until then, everything drawn is added to the current path, which is kept
as part of the graphic state. The current path may consist of any number of sub-paths; that is, a path does
not need to be continuous, and can contain disjoint figures and lines scattered all over the page.

– currentpoint fi x y
Pushes the x and y coordinates of the current position onto the operand stack.

x y moveto fi –
Makes (x,y) the current point.

x y rmoveto fi –
Makes (current-position + (x,y)) the current point.

x y lineto fi –
Adds a line from the current position to (x,y) to the current path.

x y rlineto fi –
Adds a line from the current position to (current-position + (x,y)) to the current path.

width setlinewidth fi –
Sets the width of the line used by the stroke operator. A width of 0 generates the thinnest possible
line. The linewidth is part of the graphic state.

– stroke fi –
Draws a line of the current thickness around all of the current path.

– closepath fi –
Closes the current sub-path, by adding to it a line from the current point to the start of the current
sub-path. A new sub-path is started. (An entirely new path can be started by using the newpath
operator.) This is important, as it’s the only way to tell POSTSCRIPT that the point you end up at is
connected with the one you started from. Compare:

- 9 -

/inch { 72 mul } def
5 setlinewidth % thick lines

.5 inch .5 inch moveto
0 inch 1 inch rlineto
1 inch 0 inch rlineto
0 inch -1 inch rlineto
-1 inch 0 inch rlineto
stroke

where the current path starts and finishes coincidentally at the same point, with:

.5 inch .5 inch moveto
0 inch 1 inch rlineto
1 inch 0 inch rlineto
0 inch -1 inch rlineto
closepath
stroke

where the the final (bottom left hand) corner gets the same treatment as all the intermediate ones.

level setgray fi –
Sets the current grey-scale ‘‘colour’’ to level. A level of 0 (the default) corresponds to black, 1 to
white and intermediate values to a shade of grey in between. Remember that all shades of ‘‘ink’’ are
opaque so that a white object can overwrite a black one. All objects, including text, are imaged using
the current colour, which is part of the graphic state.

– fill fi –
Fills the interior of the current path with the current colour, after having closed any open sub-paths.
When done, fill implicitly executes the newpath operator.

string bool charpath fi –
Appends to the current path the outlines of the characters which would result if string were imaged
using show. Most fonts are defined by filled outlines, in which case this operator always appends a
series of closed sub-paths. In the case of fonts like Courier which are implemented using the
stroke operator, this may result in open sub-paths being generated. To combat this, if the resulting
path is to be stroked, then bool should be false, otherwise true.

Outline
/Helvetica-Bold findfont
30 scalefont setfont

0 0 moveto
0 setlinewidth

(Outline) true charpath stroke

– pathbbox fi llx lly urx ury
This operator returns the coordinates of the bottom left (llx,lly) and top right (urx,ury) corners of the
smallest box which could contain all of the current path. This can be useful for precisely fitting text,
as in the example below.

– gsave fi –
– grestore fi –

These operators always appear as a pair. Gsave makes a copy of the current graphic state, which then
becomes the current one. Grestore discards the current graphic state, revealing the saved copy. Ie.
they do for the graphic state stack what the dup and pop operators do for the operand stack.

- 10 -

The graphic state contains among other things the current:

• Transformation Matrix (see below),
• position (initially undefined),
• path (initially empty),
• font (initially undefined),
• line width (initially 1),
• colour (initially black).

In the example below, note the use of gsave/grestore to enable the current path to be both filled and
stroked. Also that it is the line width and colour in force when the stroke operator is invoked which
are used, rather than those in force during definition of the path. The indentation is purely for clarity.

g

/inchbox {
moveto
0 1 inch rlineto
1 inch 0 rlineto
0 -1 inch rlineto
closepath

} def

.25 inch .25 inch inchbox
fill

.75 inch .75 inch inchbox
gsave

.5 setgray fill
grestore
1 setlinewidth stroke

.75 inch .75 inch moveto
/Times-Roman findfont
100 scalefont setfont
1 setgray

% find size of "g"
gsave

newpath 0 0 moveto
(g) true charpath pathbbox

grestore
/ury exch def /urx exch def
/lly exch def /llx exch def

1 inch
urx llx sub % width
sub 2 div % horiz. centring
llx sub % x offset from here

1 inch
ury lly sub % height
sub 2 div % vertical centring
lly sub % y offset from here

rmoveto % go there
(g) show % and do it

- 11 -

In order to specify a circular arc (including a full circle), it is necessary to specify the centre point of
the arc, the radius and the start and end angles. The start and end angles are specified, rather than the
start and end points, to avoid problems with arcs which don’t pass through the specified points. Start
and end angles are measured in degrees counterclockwise from the x-axis (‘‘compass’’ east). An arc
which starts at 0˚ and ends at 360˚ is a circle.

In order that lines can be properly joined to arcs, two facts should be noted:

• Arcs are added to the current path by drawing a line from the current position to the start point
of the arc. In order to prevent this happening, start a new path immediately before invoking an
arc operator. See the example below.

• After an arc has been added to the current path, the end point of the arc becomes the current
position.

Between any two angles, there are two possible arcs and hence two arc drawing operators:

cx cy rad sang eang arc fi –
cx cy rad sang eang arcn fi –

arc draws an arc in a positive (anti-clockwise) sense from sang to eang. The arc has its centre at
(cx,cy)and its radius is rad.
arcn does just the same, but the sense of the arc is negative (clockwise).

newpath

0 0 1 inch 0 90 arc

0 0 0.5 inch 90 0 arcn

closepath

stroke

The newpath inhibits the joining of the (unspecified) current point to the start of the first arc, the start
point of this arc thus becomes the beginning of the current path. The absence of a newpath before the
arcn call means that the then current point (the end point of the first arc) is joined to the start point of
the second arc. The closepath joins the end of the second arc back to the start of the first and the
stroke causes the path to be painted.

– showpage fi –
Just as no graphical object will appear on the page unless filled or stroked, nothing at all will appear
on the output page unless the showpage operator is invoked.
Showpage prints a copy of the current page image, erases the contents of the page and resets the
graphic state to its initial values.

8. The Coordinate System

Since mentioning the existence of the default user space in the introduction, and hinting that it was flexible,
we have resolutely referred to the POSTSCRIPT coordinate system as being first quadrant Cartesian with a
resolution of 1/72 inches. Much of the graphical power of POSTSCRIPT comes from the ability to minutely
manipulate (transform) the coordinate system via a powerful matrix method.*

Below, we will use as an example a 2cm square ‘‘chunk’’ of coordinate system with a 50-point Times Italic
‘‘Z’’ positioned at the point (0.5cm, 0.25cm) within it. In order to emphasise the transformations taking
place, a grid has been drawn behind the character in black to represent the eventual coordinate system and
in various shades of grey to represent its predecessors. The POSTSCRIPT code used to generate the grid is
not shown.

* This approach is explained, in far more detail than here, in any reasonable book on Computer Graphics, eg. Foley &
van Dam: Fundamentals of Interactive Computer Graphics, Addison Wesley, 1982; or Newman & Sproull: Principles of
Interactive Computer Graphics, McGraw-Hill, 1981; etc.

- 12 -

0
0

1

1

2

2

x

y Z
/cm { 28.35 mul } def
/Times-Italic findfont
50 scalefont setfont

.5 cm .25 cm moveto

(Z) show

Fortunately, it is not always necessary to employ the matrix manipulation methods directly, there are a
number of ‘‘shorthand’’ operators to make simple and common alterations to the coordinate system. These
are the operations which rotate, stretch or shrink (scale) and shift (translate) the coordinate system.

angle rotate fi –
Rotate the current coordinate system through angle degrees relative to the current system. Angle is
measured counter-clockwise, as in the arc etc. commands above. All graphical operations, including
moves and character imaging, are performed in the current coordinate system.

0
0

1

1

2

2

x

y

00

11

22

xy Z

/cm { 28.35 mul } def
/Times-Italic findfont
50 scalefont setfont

45 rotate

.5 cm .25 cm moveto

(Z) show

xs ys scale fi –
Expand or shrink the coordinate system by xs in the x-direction and ys in the y-direction. Effectively,
after executing this operator, every x-coordinate value will be multiplied by xs and every y value by
ys. For instance, below, under the influence of the 2 1 scale operation, the Z becomes twice as
wide as before, and .5 cm .25 cm moveto has the effect of 1 cm .5 cm moveto in the
default coordinate system.

0
0

1

1

2

2

x

y

0
0

1

1

2

2

x

y Z
/cm { 28.35 mul } def
/Times-Italic findfont
50 scalefont setfont

2 1 scale

.5 cm .25 cm moveto

(Z) show

xt yt translate fi –
Shift the origin of the coordinate system to (xt,yt) (measured in the current system), eg.

0
0

1

1

2

2

x

y
0

0
1

1

2

2

x

y Z
/cm { 28.35 mul } def
/Times-Italic findfont
50 scalefont setfont

1 cm 1 cm translate

.5 cm .25 cm moveto

(Z) show

- 13 -

Note that translation does not alter the current physical position (although the numbers returned by
the currentpoint operator will alter), i.e. the translate operator does not perform an implicit 0 0
moveto.

Rotation and translation are often applied in succession, but are not necessarily commutative, compare:

0
0

1

1

2

2

x

y

0
0

1

1

2

2

x

y

0
0

1

1

2

2

x

y

Z
/cm { 28.35 mul } def
/Times-Italic findfont
50 scalefont setfont

-30 rotate
1 cm 1 cm translate

.5 cm .25 cm moveto

(Z) show

and:

0
0

1

1

2

2

x

y
0

0
1

1

2

2

x

y

0
0

1

1

2

2

x

y

Z
/cm { 28.35 mul } def
/Times-Italic findfont
50 scalefont setfont

1 cm 1 cm translate
-30 rotate

.5 cm .25 cm moveto

(Z) show

This mechanism can be used to ‘‘rotate’’ images so that the long edge of the apparent page lies in the posi-
tive x-direction, that is to produce a landscape rather than portrait page image. If the length of the pages
long edge is 297mm (A4), then the instructions:

21.0 cm 0 translate
90 rotate

will result in a landscape page with the origin in the bottom left corner.

The rotate, translate and scale operators all manipulate an underlying Current Transformation Matrix of
the form:

�
�
�
�
�

cx

bx

ax

cy

by

ay

1

0

0

�
�
�
�
�

which, in POSTSCRIPT is represented by the array [ax ay bx by cx cy]. The device coordinates x¢and y¢can
then be derived from the given coordinates x and y according to the following equations:

y¢

x¢
 =

 =
 ayx+byy+cy

axx+bxy+cx

The POSTSCRIPT concat operator multiplies the CTM by the ‘‘matrix’’ (six element array) which is given
as an argument, producing a new CTM. From the above equations, it can be derived that:

2 3 scale

is equivalent to:

[2 0 0 3 0 0] concat

and:

- 14 -

72 144 translate

is the same as:

[1 0 0 1 72 144] concat

With more effort, it should be apparent that:

45 rotate

is also expressible as:

[45 cos 45 sin -45 sin 45 cos 0 0] concat

Certain operations can be performed with concat which are not easily obtainable via the shorthand opera-
tors, such as coordinate flipping or mirroring. Below, the operation [0 1 1 0 0 0] concat sets up
the equations: x¢ = yand y¢ = x

0
0

1

1

2

2

x

y

0
0

1

1

2

2

x

y

Z
/cm { 28.35 mul } def
/Times-Italic findfont
50 scalefont setfont

[0 1 1 0 0 0] concat

.5 cm .25 cm moveto

(Z) show

Below a combination of mirroring and differential scaling (the equations are x¢ = x+2y and y¢ = -y) is used
to produce a stretched shadow effect (the old Z is shown for comparison).

0
0

1

1

2

2

x

y Z0 0 1

1

2

2

x

y
Z/cm { 28.35 mul } def

/Times-Italic findfont
50 scalefont setfont

[1 0 2 -1 0 0] concat

.5 cm .25 cm moveto

(Z) show

Such operations can be used to produce quite sophisticated graphics effects, note the use of gsave/grestore
to isolate the changes to the CTM.

ShadowShadow
/Helvetica findfont 45 scalefont setfont

gsave
.03 .09 rmoveto
[1 0 2 -1 0 0] concat
.7 setgray (Shadow) show

grestore

(Shadow) show

- 15 -

9. Structuring Conventions

It was noted above that POSTSCRIPT programs generally consist of a prologue, usually hand-written and
containing definitions of procedures and data to be used by a script, usually program-generated and contain-
ing definitions of page images. POSTSCRIPT does not enforce this structure (and indeed others are used) but
in order to enable inter-working between applications such as the inclusion of POSTSCRIPT fragments from
one source within programs generated by another, it is necessary to follow certain conventions as to the
structure of a program.

The POSTSCRIPT language is context dependent, that is the current state of a program’s environment is
dependent on it’s execution history. Although the graphical state is reset by the showpage operator, any
procedures defined or data items altered are available throughout the rest of the program. If these problems
are avoided and the program is cleanly divided into a defining prologue and independent page descriptions
in a script, then, for example, a general-purpose post-processor can select individual pages, or change the
order of page printing, with impunity. To this end, there exists a Document Structuring Convention, imple-
mented by a system of conventional comments, to mark the boundaries of the component parts of the pro-
gram and to signal its conformity.

The precise format of the comments described below is critical, the leading % must start a line, there must
be no space between the %% and the keyword, precisely one space between the : and the first value and one
space between values. A newline must immediately follow the last value.

Comments marked with a ‘‘†’’ are compulsory.

%!PS-Adobe-1.0 †
The first two characters of this comment (%!) must be the first two characters of any POSTSCRIPT

program. They are used to indicate to the operating system and sometimes to the printer itself that the
program is to be interpreted as POSTSCRIPT, rather than as some other data format to be translated
into POSTSCRIPT (cf. the idea of a ‘‘magic number’’ on UNIX). If these two characters are followed
by the string PS-Adobe-, then the program is taken to be minimally conforming, ie. it will contain
all the compulsory structuring comments noted here. The trailing 1.0 indicates that the program
conforms fully to version 1.0 of the structuring convention, ie. this one.

The following comments, called header comments, extend from the line after the above version identifier
to the first line not starting with %%. Their order of appearance is not significant. In some cases (marked
below with a *), the reporting of the values associated with a keyword may be deferred until the end of the
document. In this case the value (atend) should be given in the header comment, and the keyword
repeated with the correct values as part of the trailer comments (q.v.).

%%DocumentFonts: font1 font2 ... † *
Where font1, font2 etc. are the POSTSCRIPT names of the fonts used by the document. This
comment is used by systems which must down-load fonts which are not usually resident on the
printer.

%%Title: title
For identification purposes, the title of the document.

%%Creator: name
The name of the program or person responsible for the creation of the document.

%%CreationDate: date
The date and time on which this document were created. There is no particular format specified for
date.

%%For: name
The name of the intended recipient. If this is missing, the Creator is assumed.

%%Pages: number *
The total number of pages (number of showpage operations performed) produced by this document.
Must be ‡ 0.

%%BoundingBox: llx lly urx ury *
The coordinates (in the default user coordinate system) of the bottom left (llx,lly) and top right
urx,ury) corners of the notional box surrounding all the marks made on the page by this program.

- 16 -

This is used by systems such which attempt to include POSTSCRIPT programs in others to position the
contents on the page relative to the surrounding marks. If the document produces more than one page,
these coordinates should take the maximum values produced, or this comment should be omitted.

%%EndComments
Explicitly ends the header comments.

The following body comments are used to mark the boundaries between the various parts of a POSTSCRIPT

program.

%%EndProlog †
Marks the end of the prologue and the beginning of the script section of the document.

%%Page: label ordinal †
Signals the start of the script section for an individual page image. The page has number ordinal
in the sequence of pages in this document (ie. is an integer between 1 and n for an n page document),
but is known as label (eg. xiv or B.7) in the numbering scheme of the generating system.
Unknown values should be denoted by a ?.

%%PageFonts: font1 font2 ...
Specifies the fonts used on the current page, they should of course be a subset of those given in the
%%DocumentFonts list. If present, this comment should immediately follow a %%Page comment.

%%Trailer †
Marks the end of the last page of the document, any code which follows is assumed to be part of the
document itself rather than a particular page. Following any such code will be the header comments
for which the (atend) value was given.

10. Operator Reference

Below is an alphabetical listing of all portable POSTSCRIPT operators, together with a note of their expected
parameters and results (all on the operand stack).

abs num |num|
add num1 num2 (num1+num2)
aload array elem1..elem2.. array
anchorsearch string seek

found: spost smatch true
not found: string false

and a b aANDb (bitwise if a,b are integers)
arc x y r ang1 ang2 –
arcn x y r ang1 ang2 –
arcto x1 y1 x2 y2 r xt1 yt1 xt2 yt2
array int arry-of-size-int
ashow ax ay string –
astore elem1..elemk k arry[elem1..elemk]
atan a b angle-whose-tan-is-(a/b)
awidthshow cx cy char ax ay string –
begin dict –
bind proc proc
bitshift int shift int-shifted (right: +, left: -)
bytesavailable file int (-1 if indeterminate)
cachestatus – bsize bmax msize mmax csize cmax

maxbits
ceiling number least-integ-grtr-than-or-eq-to
charpath string strokepath-bool –
clear a..b..c.. –
cleartomark stuff mark a..b..c.. stuff
clip – –
clippath – –
closefile file –
closepath – –
concat matrix –
concatmatrix mtrx1 mtrx2 mtrx3 mtrx3

(=mtrx1·mtrx2)

copy a..b..c.. n a..b..c.. a..b..c.. (top n elem)
copypage – –
cos a cosine(a)
count a..b..c.. a..b..c.. count
countdictstack – count
countexecstack – count
counttomark mark a..b..c.. mark a..b..c..count
currentdash – array offset
currentdict – dict
currentfile – file
currentflat – number
currentfont – font-dict
currentgray – number
currenthsbcolor – hue satur bright
currentlinecap – integer
currentlinejoin – integer
currentlinewidth – number
currentmatrix matrix CTM-in-matrix
currentmiterlimit

– number
currentpoint – x y
currentrgbcolor – red green blue
currentscreen – freq rot spot-funct
currenttransfer – gray-trans-funct
curveto x0 y0 x1 y1 x2 y2 –
cvi num integ or strng int
cvlit any literal (not-exec)
cvn string name
cvr num real or strng real
cvrs num base string substring
cvs any string substring
cvx any executable

- 17 -

def key value –
defaultmatrix matrix def-matrix
definefont key dict font-dict
dict int dict (maximum-capacity: int)
dictstack array subarray
div num1 num2 (num1/num2)
dtransform x y xt yt or x y matrix xt yt
dup any any any
echo bool –
end – –
eoclip – –
eofill – –
eq a b bool (true if a=b)
erasepage – –
exch a b b a
exec any –
execstack array subarray
executeonly arry exec-only-arry (or string)
exit – –
exp num1 num2 num1-to-the-pwr-num2
false – false
file string1 string2 file (string2: r, w)
fill – –
findfont key font-dict
flattenpath – –
floor number greatest-int-less-than-or-eq-to
flush – –
flushfile file –
for init incr limit proc –
forall array proc –
ge num1 num2 bool (true if num1>=num2)
get array index elem or dict key value
getinterval arry beg len subarry (also strings)
grestore – –
grestoreall – –
gsave – –
gt num1 num2 bool (true if num1>num2)
identmatrix matrix id-transf-mtrx
idiv int1 int2 int-part-of(int1/int2)
idtransform xdt ydt xd yd (xdt ydt mtrx xd yd)
if bool proc –
ifelse bool true-proc false-proc –
image scan-len scan-lns bits/pixl mtrx proc –
imagemask scan-len scan-lns invrt mtrx proc –
index a1..a2..a3...ak t a1..a2..a3..ak a(k-t)
initclip – –
initgraphics – –
initmatrix – –
invertmatrix mtrx1 mtrx mtrx (inverted-mtrx1)
itransform xt yt x y (xt yt mtrx x y)
known dict key bool
kshow proc string –
le num1 num2 bool (true if num1<=num2)
length array length-of-arry (also strings)
lineto x y –
ln num natural-log-of-num
load key value
log num common-log-of-num
loop proc –
lt num1 num2 bool (true if num1<num2)
makefont font-dict matrix transformed-font-dict
mark – mark
matrix – matrix
maxlength dict int
mod int1 int2 int1MODint2
moveto x y –

mul num1 num2 num1·num2
ne num1 num2 bool (false if num1=num2)
neg num –num
newpath – –
not a NOTa (bitwise if a is integer)
null – null
or a b aORb (bitwise if a,b are integers)
pathbbox – llx lly urx ury
pathforall mveto-p lneto-p crveto-p clsepth-p –
pop any –
print string –
prompt – –
pstack a..b..c.. –
put array index value – (also strings)
putinterval arry1 beg arry2 arry1 (also strings)
quit – –
rand – int
rcheck array bool (true if readable)
rcurveto dx0 dy0 dx1 dy1 dx2 dy2 –
read file byte bool (false if EOF)
readhexstring file string substring bool
readline file string substring bool
readonly array ReadOnly-array
readstring file string substr bool (false if EOF)
repeat count proc –
restore save-objct –
reversepath – –
rlineto dx dy –
rmoveto dx dy –
roll a..b..c.. N R a..b..c.. (N rolled by R)
rotate angle – or angle mtrx mtrx
round num num-rounded
rrand – current-random-nr-seed-state
run string –
save – save-object
scale sx sy – or sx sy mtrx mtrx
scalefont font-dict number transformed-font-dict
search string seek

found: spost smatch spre true
not found: string false

setcachedevice wx wy llx lly urx ury –
setcachelimit maxbytes –
setcharwidth wx wy –
setdash array offset –
setflat num –
setfont font-dict –
setgray num –
sethsbcolor hue satur bright –
setlinecap integer –
setlinejoin integer –
setlinewidth num –
setmatrix matrix –
setmiterlimit num –
setrgbcolor red green blue –
setscreen freq rotation spot-function –
settransfer gray-transfer-funct –
show string –
showpage – –
sin num sine(num)
sqrt num square-root-of-num
srand int –
stack a..b..c.. a..b..c..
start – –
status file bool (true if open)
stop – –
stopped proc bool (false if proc stopped)

- 18 -

store key value –
string int string-of-length-int
stringwidth string wx wy
stroke – –
strokepath – –
sub num1 num2 num1-num2
systemdict – system-dict
token file any bool (true if found)
token string

found: spost token true
not found: false

transform x y xt xy or x y mtrx xt yt
translate tx ty – or tx ty mtrx mtrx
true – true
truncate num num-truncated
type any type-name-of-a
userdict – user-dict
usertime – time-in-msecs
version – soft-&-hard-version-string
vmstatus – save-level bytes-used bytes-avail
wcheck array bool (true if writeable)
where key

found: dict true
not found: false

widthshow dx dy char-code string –
write file int –
writehexstring file string –
writestring file string –
xcheck any bool (true if a is executable)
xor a b aXORb (bitwise if a,b are integers)
= a..b..c.. –
== a..b..c.. –

