University of

"1l Kent Academic Repository

Li, Huiging and Thompson, Simon (2015) Safe Concurrency Introduction
through Slicing. In: Proceedings of the 2015 Workshop on Partial Evaluation
and Program Manipulation. PEPM Partial Evaluation and Program Manipulation
. ACM, New York, USA, pp. 103-113. ISBN 978-1-4503-3297-2.

Downloaded from
https://kar.kent.ac.uk/46579/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2678015.2682533

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/46579/
https://doi.org/10.1145/2678015.2682533
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Safe Concurrency Introduction through Slicing

Huiqing Li

Simon Thompson

School of Computing, University of Kent, UK

h.li@kent.ac.uk

Abstract

Traditional refactoring is about modifying the structure of existing
code without changing its behaviour, but with the aim of making
code easier to understand, modify, or reuse. In this paper, we in-
troduce three novel refactorings for retrofitting concurrency to Er-
lang applications, and demonstrate how the use of program slicing
makes the automation of these refactorings possible.

Categories and Subject Descriptors D. Software [D.2 SOFT-
WARE ENGINEERING]: D.2.3 Coding Tools and Techniques

Keywords refactoring; slicing; Erlang; functional programming;
concurrency; parallelisation

1. Introduction

Erlang [3| [7] is a functional programming language with built-
in support for concurrency based on share-nothing processes and
asynchronous message passing. With Erlang, the world is modelled
as sets of parallel processes that can interact by exchanging mes-
sages. Erlang concurrency is directly supported in the virtual ma-
chine, rather than indirectly by operating system threads. Erlang
processes are very lightweight, and as a result a program can be
made up of thousands or millions of processes that may run on a
single processor, a multicore processor or a many-core system.

The advent of the multicore era and the demise of Moore’s Law
have persuaded programmers to build more parallelism into their
programs. However, for the majority of existing Erlang applica-
tions, especially those legacy applications written before Erlang’s
support for symmetric multi-processing (SMP), despite the fact that
a certain amount of concurrency is built into the application, the
amount of parallelism exhibited is insufficient to keep all the Erlang
schedulers as busy as possible. The performance of these applica-
tions could therefore be improved by introducing more parallelism
to those parts of the application where multi-core resource utilisa-
tion is low. Detecting where more parallelism should be introduced
to an Erlang application is supported by profiling tools such as Per-
cept2 [20] and etop [2]].

The need to retrofit parallelism to existing Erlang applica-
tions has given rise to a collection of new Erlang refactorings.
Unlike traditional Erlang refactorings, which are mostly struc-
tural transformations aiming to make code easier to understand,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PEPM ’15, January 13-14, 2015, Mumbai, India.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3297-2/15/01. .. $15.00.
http://dx.doi.org/10.1145/2678015.2682533

s.j.thompson@kent.ac.uk

modify, or reuse, parallelisation-related refactorings are mostly
performance-driven; furthermore, some parallelisation refactor-
ings might well make code harder to understand. Another differ-
ence we observed between traditional structural refactorings and
parallelisation-related refactorings for Erlang is the program anal-
ysis techniques needed in order to carry out refactorings; in par-
ticular, the use of program slicing is essential for a number of the
refactorings that we have automated.

Program slicing is a general technique of program analysis for
extracting a part of a program, also called the slice, that influences
or is influenced by a given point of interest, i.e. the slicing criterion.
Static program slicing is generally based on program dependency
analyses including both control dependency and data dependency.
Backward intra-function slicing, which extracts the program slice
that influences a particular variable/expression, is the kind of slic-
ing used by the implementation of the refactorings proposed.

While there are a number of refactoring tools available for Er-
lang programs, such as Wrangler [[17,127] and RefactorEx] [21]], the
number of refactorings for retrofitting concurrency is limited. The
major contribution of this paper is a set of parallelisation/process-
related refactorings for Erlang programs, through which we demon-
strate how the use of program slicing techniques makes the automa-
tion of these refactorings possible. All these refactorings have been
automated, and are supported through the Erlang refactoring tool
Wrangler developed by the authors.

It has been observed that the refactorings presented here com-
plicate the code, making it more difficult to read and maintain, and
that these transformations should be left to a compiler to perform
automatically. While this is possible, we prefer the approach pre-
sented here for three reasons.

e First, the refactorings can be seen as one component of the
general process of program development, and as such they
should be an explicit part of the history held in a repository,
to be maintained together with other development steps.

It may well be that an automated approach would not lift pre-
cisely the code that a user would wish, and so that the approach
presented here may need some manual assistance to “tune” the
transformation.

Complex compiler transformations are notoriously “fragile”,
with a small syntactic change to a program changing the trans-
formation radically: this is clearly undesirable when the results
of the transformation are not visible to the programmer.

The rest of the paper is organised as follows. In Section[2] we give a
brief introduction to Erlang and its support for concurrent program-
ming. In Section [3| we give an overview of the existing refactoring
and slicing support for Erlang programs. Our slicing-based concur-
rency introduction refactorings are presented in Section[d} and the
facilities used in their implementation are covered in Section[3] In
Section [6] we discuss the handling of side-effects in Erlang, as it
relates to the work here. Related work is covered in Section[7} and

finally, Section [8| concludes the paper and briefly discusses future
work.

2. Introducing Erlang

Erlang [1] is a strict, dynamically typed, functional programming
language with support for higher-order functions, pattern match-
ing, concurrency, distribution, fault-tolerance, and dynamic code
reloading. Erlang’s data types include atoms, numbers and process
identifiers, and the compound data types of tuples and lists.

2.1 Syntax: functions, pattern-matching and assignment

The principal definition form in an Erlang module is the function.
Each function has a fixed number of arguments, its arity, and when
we need to denote ‘the foo function with arity 2°, we write foo/2.
The same name can be used for functions of different arities, and
these are seen as completely separate definitions: a typical case
is where the definition of a function like foo/2 has an auxiliary
function defined by tail recursion, and this would be named foo/3.

A function definition consists of a number of clauses where
each clause consists of a head and a body, separated by an arrow
‘=>’; the gsort example in Figure[6]has two such clauses. Clauses
are separated by semi-colons, ‘;’, and the final clause (and so the
definition itself) is terminated with a full stop (period), *.".

The head of each clause consists of the function name applied to
a pattern for each argument, (this may be followed by an optional
guard, indicated by the keyword when). In the gsort (Figure [6)
the head of the first clause consists of the function applied to an
empty list, ‘[1’. The pattern in the second clause, ‘ [Pivot |Rest]’
matches any non-empty list, with Pivot matching the first element
(or head) of the list, and Rest matching the remainder (or tail).
Thus, [...|...] isthe cons operation for lists (following Prolog).

When a function is applied to some actual parameters, the first
clause that matches the parameters is used. As well as variables,
patterns can contain the wild-card ‘_’, and indeed any variable of
the form ‘_Foo’ acts as a wild-card, and cannot be used in the body.

The body of a function consists of a sequence of statements,
separated by commas, ‘,’. These expressions are evaluated in turn,
and the result returned by the function is the value of the final
expression in the sequence. Expressions can be assignments of the
form Pat = Expr, where Pat is a pattern.

Erlang binding is single assignment, so that each (instance of a)
variable has a single value. When there is an attempt to re-bind a
variable this becomes an attempt to pattern match against a variable
that is already bound: this succeeds if the ‘new’ value is the same
as the ‘old’ and fails otherwise.

Within a module foo the function bar/1 may be called like this

bar (Argument)
but within another module it must be called in fully-qualified form:
foo:bar (Argument)
(and indeed it may be called in this way within foo itself too). In
order to understand some of the finer details of the examples, some
other notations are seen in Figures[I] [2] B]and[6]

e Erlang contains records, and these are signalled by the use of
‘#’. In the fragment
#child{pid = Pid, ...}
the value of the pid field of a child record is assigned the
value (or indeed has its value matched with) the variable Pid.

In line with a number of languages, Erlang has list comprehen-
sions that define lists by a combination of generate, test and
transform. This is seen in the example

[X || X <- Rest, X<Pivot]
from Figure [6} this describes the list built by running through

-module (echo) .
-export ([start/0, loop/0]).

start() ->
Pid = spawn(echo, loop, [1),
Pid ! {self(), hello},
receive
{Pid, Msg} ->
io:format("~“p\n", [Msgl)

end,

Pid ! stop.
loop() —>

receive

{From, Msg} ->
From ! {self(), Msg},
loop();
stop ->
true
end.

Figure 1. A concurrent Erlang program

the elements X of Rest and including only those that meet the
test X<Pivot.

e Finally, Figures 2] and 3] contain an anonymous function intro-
duced by fun. The function
fun(P1 -> B1; P2 -> B2; ...)
has exactly the same behaviour as the function
anon(P1) -> B1;
anon(P2) -> B2;

except that is it unnamed. In these examples it is mapped along
a list by means of the library function 1ists:map/2.

2.2 Concurrency: processes and message passing

Processes and message passing are fundamental to Erlang. A pro-
cess is a self-contained unit of computation which executes concur-
rently with other processes in the system. The primitives spawn, ‘!’
(send) and receive allow a process to create a new process and to
communicate with other processes through asynchronous message
passing.

The example code in Figure [I] demonstrates process creation,
execution and interaction in Erlang. The function start initiates
a process whose first action is to spawn a child process. This
child process starts executing the loop function from the module
echo (with an empty list of parameters, []) and is immediately
suspended in the receive clause waiting for messages of the
right format. The parent process, still executing start, uses the
identifier of the child process (Pid) to send the child a message
containing a tuple with the parent’s process identifier (given by
calling self ()) and the atom hello.

Once the message is sent, the parent suspends in the receive
clause. The child, upon receiving the message from the parent pro-
cess, sends the message, tupled with its own process identifier, back
to the parent. Once the parent has received the echoed message, it
prints the message, sends the stop message to the child, and termi-
nates. The child receives the stop, returns true, and terminates.

The main implementation of Erlang is the Erlang/OTP sys-
tem [[1]], an open source implementation supported by Ericsson AB.
This was first equipped with symmetric multi-processing (SMP)
capabilities in 2006, and this support has been improved continu-
ously since then. In the current release (R17), the Erlang Virtual
Machine (VM) detects the CPU topology automatically at startup,
and creates a scheduler for each CPU core available. Each sched-

uler has it own process run-queue, and processes are migrated be-
tween run-queues if scheduler loads need to be balanced [22} 24].

2.3 Erlang/OTP

In addition to the language itself, Erlang comes with the OTP
(Open Telecom Platform) middleware library. OTP provides a set
of generic behaviours, most notably a generic server implementa-
tion, together with a supervisor behaviour that supports robustness
through a hierarchical restart model in the face of component fail-
ure.

One of the generic design patterns supported by Erlang/OTP is
gen_server. A gen_server implements a client-server model which
is characterized by a central server and an arbitrary number of
clients. The server is responsible for managing a common resource
shared by different clients. This common resource is represented as
the internal state held by the server process.

Two kinds of requests can be sent from client processes to a
server process: asynchronous requests and synchronous requests.
When an asynchronous request is received, the gen_server process
only needs to process the request and update its internal state
accordingly; no reply needs to be sent back to the client process.
On the other hand, when a synchronous request is received, the
gen_server process needs to calculate two things: the reply which
should be sent back to the client — for which the client will wait —
and the new value for the state of the gen_server.

When implementing a client-server model using Erlang’s gen_server

component, the user needs to define a number of interface func-
tions and callback functions. The callback function for handling
synchronous requests must have the following signature:

handle_call(Request, From, State)->Result

where Result is an Erlang tuple. This result typically has the for-
mat {reply, Reply, NewState}, and uses the Erlang conven-
tion that an atom in the first field — here reply — identifies or
‘tags’ the data. The field Reply is the value to be sent back to the
client, and NewState the updated value of the state of the server.
The handle_call function will typically consist of a number of
clauses, each matching a different Request pattern in its head.

3. Refactoring and Slicing Support for Erlang

There are a number of refactoring tools for Erlang. Wrangler [17,
19] (https://github.com/RefactoringTools/Wrangler) is
an interactive refactoring and code inspection tool for Erlang de-
veloped by the authors. It is implemented in Erlang, and integrated
with (X)Emacs and with Eclipse. One of the features that dis-
tinguish Wrangler from most other refactoring tools is its user-
extensibility. Wrangler provides a high-level template- and rule-
based API [17], so that users can write their own refactorings,
or general program transformations, in a concise and intuitive
way without having to understand the underlying Abstract Syn-
tax Tree (AST) representation and other implementation details.
User-defined refactorings can be invoked via the Emacs interface
to Wrangler, in exactly the same way as built-in refactorings, and
so their results can be previewed and undone. Wrangler also pro-
vides a domain-specific language (DSL) for composing large-scale
refactorings from elementary refactorings.

Complementing Wrangler, RefactorErl [21]] is another interac-
tive refactoring tool for Erlang. RefactorErl takes a database ap-
proach to store the syntactical and semantical information of the
application under refactoring. More recent developments to Refac-
torErl concentrate on its facilities for program analysis rather than
transformation [28]).

ParTE [3] is a new refactoring tool built on top of Wrangler
and RefactorErl. In particular, Wrangler’s APl and DSL support

for scripting is used in ParTE to build refactorings [6l], whereas
RefactorErl’s program analysis support is used to find parallelisable
code candidates. The approach used by ParTE to introducing con-
currency is to use an abstract skeleton library called Skel (skel.
weebly.com). Skel is a collection of common patterns of paral-
lelism that hide explicit process manipulation behind the scene.

In the area of program slicing for Erlang programs, M. Té6th et
al. [4,29] have investigated the use of data, behaviour and control
dependency information to carry out inter-function forward slicing.
Their aim was to detect the impact of a change on a certain point
of the program so as to reduce the number of regression test cases
to be rerun after the change. In [26], J. Silva et al. investigated the
use of a system dependence graph (SDG) to support inter-function
backward slicing of sequential Erlang programs.

Comparing with program slicing for imperative programs, pro-
gram slicing for functional programs has its own peculiarities. For
instance, Erlang does not contain loop commands such as while,
for or repeat. All loops are implemented through recursion. In
Erlang, variables can only be assigned once, and pattern matching
is used to control the execution flow of a function.

Intra-function backward slicing is supported by Wrangler, and
used by the implementation of the refactorings to be introduced in
this paper. Since the slicing is within the scope of a function clause,
only control and data dependency are used. Instead of generating
a dependency graph for programming slicing purposes, Wrangler
uses the AST annotated with extra semantic and dependency in-
formation as the internal program representation. The advantage of
using an annotated AST is that we have a single internal represen-
tation for both program slicing and refactoring.

4. Slicing-based Concurrency Refactorings

In this section, we propose three slicing-based refactorings for in-
troducing concurrency to Erlang applications. We would like to
point out that there are many other ways for introducing concur-
rency to an Erlang application. For instance, the use of the sequen-
tial map operation over a list of data can be refactored to use paral-
lel map instead; server processes can be replicated to handle client
requests, and so on. In this paper, we focus only on those new refac-
torings in which the use of slicing plays an important role. We ex-
plain these refactorings one by one in more detail now.

4.1 Spawning a worker process for handle call

As we noted earlier, one of the generic design patterns supported
by Erlang/OTP is gen_server, and two kinds of request can be
sent from client processes to a server process: asynchronous re-
quests and synchronous requests. In this section we show how syn-
chronous requests can be transformed to asynchronous ones under
certain circumstances.

Requests sent to a gen_server process are handled sequentially.
Depending on the amount of computation a gen_server needs to do
when handling a request, there can be situations when a gen_server
process is overloaded with request messages. Hence it is good
practice to check the clauses of the handle_call function and see
whether any of them can be divided into two parts: one that must
be executed on the main gen_server process because it affects the
state, and the another that does not affect the server state and may
be executed in a worker process spawned for it. For instance, the
handle_call clause shown in Figure[2]can be refactored to that in
Figure 3|using our tool Wrangler.

In the code after refactoring, a new worker process is spawned,
using spawn_link, to carry out the computation of Resp. The
result is then sent back to the client through a different mechanism,
namely:

https://github.com/RefactoringTools/Wrangler
skel.weebly.com
skel.weebly.com

handle_call(which_children, _From, State) ->

Resp = lists:map(fun(#child{pid = ?restarting(_), name = Name,
child_type = ChildType, modules = Mods}) ->
{Name, restarting, ChildType, Mods};

(#child{pid = Pid, name = Name,
child_type =

end,
State#state.children),
{reply, Resp, Statel};

ChildType, modules = Mods}) ->
{Name, Pid, ChildType, Mods}

Figure 2. Introduce a worker process to handle_call (code before refactoring).

handle_call(which_children, From, State) ->
spawn_link(

child_type = ChildType, modules = Mods}) ->
{Name, restarting, ChildType, Mods};

Name,

child_type = ChildType, modules = Mods}) ->

fun) ->
Resp =
lists:map(fun(#child{pid = ?restarting(_), name = Name,
(#child{pid = Pid, name
{Name, Pid, ChildType, Mods}
end,
State#tstate.children),
gen_server:reply (From, Resp)
end) ,

{no_reply, State};

Figure 3. Introduce a worker process to handle_call (code after refactoring).

gen_server:reply(From, Res)

Note also that the pattern match in the head of the handle_call
has changed, since in this case the value of this parameter is used
in the body of the function, unlike the case before the refactoring.

The gen_server process itself does not wait for the child process
to finish, instead it returns immediately from this handle_call
function with the return value of {no_reply, State}. Thus itcan
be seen that that the two components of the {reply,...,...}are
returned by the transformed code, but in this case by two separate
mechanisms.

In the particular example showing Figures [2] and [3] the state
was not modified by the handle_call function; it is possible to
perform the refactoring even in the case that the state is modified, so
long as this calculation can be separated from the calculation of the
reply. Once the new state computation is complete, the gen_server
can process the next message: note that here we’re performing
parallelisation within the processing of a single message; we are
not parallelising the implementation of the gen_server itself, which
would be substantially more of a challenge.

This refactoring makes the assumption that the last expres-
sion of the handle_call function clause has a particular for-
mat, namely {reply, Reply, NewState}, where Reply and
NewState are both variables. If that isn’t the case, it is straightfor-
ward to refactor the code so that it has this format before invoking
the transformation.

Slicing is used by this refactoring to decide which part of the
computation of a handle_call function clause can be moved to
a new process. We will use Sr and Sn to represent the program
slices regarding the slicing criteria Reply and NewState respec-
tively. Both Sr and S consist of a list of top-level expressions
from the function clause body, and those expressions do not have
to be contiguous. The expressions that can be computed in a worker
process are those included in the set difference Sr \ Sn. The

spawning of the new process is placed just before the last expres-
sion of the handle_call clause.

4.2 Introduce a new process

The refactoring Spawn a worker process for handle_call handles
a special case of introducing concurrency, as it can only be applied
to a handle_call function defined in a gen_server implementa-
tion. A more general case is to spawn a new process to execute a
task in parallel with its parent process, with the computation result
of the new process being sent back to the parent process, which will
consume it.

As an example, Figure[d]shows a function that sequentially per-
forms image processing on data from two files; Figure [5]shows the
result of refactoring to introduce a new process to calculate the val-
ues of R1 and F'1 of the code from Figure[d] The highlighted code
in Figure [is the program slice of the slicing criterion selected,
that is the expression sequence: Ri, Fi. In order not to block the
execution of the parent process, the receive expression is placed
immediately before the point where the result is needed, ‘as late as
possible’ in the computation.

If the task to be executed by the new process consists of a
sequence of contiguous expressions, the user could just highlight
this block of expressions, and apply the refactoring. However this
refactoring process could also be driven by the target of the task,
in which case a user may want to move into a new process only
those parts of the computation that influence the value of the target.
In this case, a backward slice of the target could reveal the code
fragments, which may or may not be contiguous, that influence the
value of the target expression. In order to move those parts of the
slice that only influence the target selected, i.e. have no influence on
any other code, a static analysis of the annotated AST presentation
of the slice is then carried out to remove those expressions that
have influence beyond the slicing criterion selected. We place the
spawn_link expression right after the last expression on which the

readImage (FilelName, FileName?) ->
{ok, #erl image{format=F1l, pizmaps=[PM1]}}
= erl img:load{FileName),
Colsl =PMl#er]l pizmap.pixels,

{ok, #erl image{format=F2, pizmaps=[FM2]}}
= erl img:load(FileNameZ2),
ColsZ=PMZ#erl pixmap.pixels,

b
]

Figure 4. Introduce a new process (before)

readImage (FileName, FileName2) ->
Self = self(),
Pid = spawn_link(
fun) ->
{ok, #erl_image{format=F1,
pixmaps=[PM1]}}
= erl_img:load(FileName),
Colsl =PMi#erl_pixmap.pixels,
R1 =[B1]||{_A1, Bi}<-Cols],
Self ! {self(), {R1, F1}}
end),

{ok, #erl_image{format=F2, pixmaps=[PM2]}}
= erl_img:load(FileName2),

Cols2=PM2#erl_pixmap.pixels,

R2 = [B2|[|{_A2, B2}<-Cols2],

receive {Pid, {R1, F1}} -> {R1, F1} end,

{R1, F1, R2, F2}.

Figure 5. Introduce a New Process (after)

gsort([1) -> [I;

gsort ([Pivot|Rest]) —->
gsort([X || X <- Rest, X<Pivot]) ++
[Pivot] ++
gsort ([X||X<-Rest, X>=Pivot]).

Figure 6. Quicksort in Erlang

slice has a dependency, and the receive expression immediately
before the expression where the result slice is used so that there is
the maximum computation time for the new process to complete
before its result is needed.

4.3 Parallelise tail-recursive functions

Iteration, or looping, in functional languages is in general imple-
mented via recursion. Recursive functions invoke themselves, al-
lowing an operation to be performed repeatedly until a base case
is reached. For example, Fig |§| shows a recursive implementation
of quicksort. A parallel version of this quicksort function can be
implemented as shown in Figure[7} In order to control the granu-
larity of parallelism, a new parameter P is added, which specifies
the maximum number of processes that can be spawned. The value
of P is generally decided by the number of cores available on the
machine. Granularity control is especially useful for parallel recur-
sive functions, to avoid spawning too many processes. Note that the

par_gsort(List) -> par_sort(P, List).

par_gsort(0, List) -> gsort(List);
par_gsort(P, [1) -> [1;
par_gsort (P, [Pivot|Rest]) ->
Parent = self(),
spawn_link(fun() ->
Parent ! par_gsort(P-1, [X || X<-Rest, X>=Pivot])
end),
par_gsort(P-1, [X||X<-Rest, X<Pivot]) ++
[Pivot] ++
receive Result -> Result end.

Figure 7. Parallel Quicksort in Erlang

fac(N) -> fac(N, 1).

fac(0, Acc) -> Acc;
fac(N, Acc) when N>0 -> fac(N-1, Nx*Acc).

Figure 8. Tail-recursive factorial

do_grouping([]l, _, _, _, Acc) -> {ok, Acc};
do_grouping(Nodes, _Size, 1, Counter, Acc) ->
{ok, [make_group(Nodes, Counter)|Accl};

do_grouping(Nodes, Size, NumGroup, Counter, Acc) ->
Group = lists:sublist(Nodes, Size),
Remain = lists:subtract(Nodes, Group),
NewGroup = make_group(Group, Counter),
NewAcc = [NewGroupl|Acc],

do_grouping(Remain, Size, NumGroup-1, Counter+l, NewAcc).

Figure 9. An example tail-recursive list processing function

sequential definition of gsort is still needed even with the parallel
version.

The gsort example represents one style of writing recursive
functions, i.e. general recursion, where the recursive call to itself
can happen anywhere in the function body. Another style of writing
recursive functions is called fail recursion. A recursive function is
tail-recursive if the recursive call is the last thing the function does
(before returning). Tail-recursive functions often use an accumu-
lating parameter to hold the partial results of the calculation. As
an example, Figure 8] shows a tail-recursive implementation of the
factorial function. Two functions are defined in this example,
namely fac with the arities of 1 and 2, since in Erlang different
arities mean different functions. The parameter Acc to the second
function is the accumulating parameter, which holds the result of
the function as it is calculated.

While some tail-recursive list processing functions can be auto-
matically refactored to an explicit map, or map-reduce operation,
many are not straightforward without knowledge of the domain.
For instance, the example shown in Figure[J]does a recursion over
the list Nodes while accumulating results to the accumulator vari-
able Acc. Each recursive call processes a number of elements in
Nodes, and the values of NumGroup and Counter depend on their
values in the previous recursion. The recursion reaches its base
case when either the list Nodes becomes empty or the value of
NumGroup becomes 1.

Suppose the computation of make_group (Group, Counter)
is expensive, and there is a need for performance improvement,
then simply spawning a new process to do this computation, as
shown in the previous examples in Figure [5] and Figure [7] would
not help, as the result returned by this computation is immediately

needed by the next expression. Spawning a new process in this
case will immediately put the current process into a waiting state.
In order to handle this kind of situation, we examined a set of
direct tail-recursive functions that meet certain constraints, and
developed a new refactoring, parallelise tail-recursive function,
for automating the parallelisation of such functions.

The rationale behind this refactoring is to identify the computa-
tion component that is independently repeated in every recursion,
and delegate the computation task to a worker process so that the
main recursion can be run in parallel with a number of worker pro-
cesses. The pre-condition analysis and transformation of this refac-
toring are described in more detail in what follows.

This refactoring takes a function definition as input, and carries
out a sequence of static analyses to decide whether the function
meets the pre-conditions of the automatic parallelisation refactor-
ing. These steps are:

Step 1 is to check whether the function is a direct tail-recursive
function with one or more base case clauses, and the only recursive
calls appear as the last expression of the function clause body. For
simplicity, in this paper we assume the tail-recursive function is of
the following form:

fun_name (Arg_11, ., Arg_1in) -> Body1l;

fun_name (Arg_m1, ., Arg_mn) ->
BodyExpri,
BodyExpr2,
fun_name (NewArg_mi, ., NewArg_mn).

where the last function clause is the recursive function clause, and
all the other function clauses handle base cases. The approach de-
scribed here can equally well be applied to tail-recursive functions
with multiple recursive clauses, and so the assumption here is with-
out loss of generality.

Step 2 is to distinguish accumulating parameters from non-
accumulating parameters. In this step, data dependency is used as
a heuristic to decide whether or not a parameter is an accumulating
parameter. We assume that a parameter is an accumulating param-
eter if

e its value is influenced by its own value and (possibly) the value
of some other parameters,

e the parameter itself does not influence the value of any other
parameters, and

e the value of the parameter is not used as a base case condition
to terminate the recursion.

Program slicing is used to decide the dependency between parame-
ters in the recursive function clause. In particular, each argument to
the recursive function call, i.e. NewArg_mi, is selected as a slicing
criterion, and its backward slice is calculated. We say that argument
Arg mi depends on argument Arg_mj if Arg_mj is included in the
backward slice of NewArg_mi.

Taking the do_grouping example shown in Figure] as an ex-
ample, the program slices for some of the recursive call arguments
are shown in Figure[T0] From the slicing result, together with fur-
ther analysis of the base cases, we are able to conclude that Acc is
the accumulating parameter of do_grouping.

Step 3 is to partition the recursive function clause body. Once
the accumulating parameter has been identified, the refactoring
needs to decide which part of the computation should be delegated
to worker processes, and which part should stay in the main loop.
With our approach, the part of the computation that can be moved
to a worker process is extracted from the program slice of the

do_grouping ([1, _,
do_grouping (Nodes, _.

{0k, [make_group (Nodes,
do grouping (Nodes, Size, Num

Group = lists:sublist (Nodes, Size),
Remain

= lists:subtract (Nodes, Group),
1p = make group (Group, Counter),
= [NewGroup|Ac
do_grouping (Remain,

NumGroup-1, C

(a) program slice for Remain
do grouping([], , Acc) -> {ok, Acc};

do_grouping(Nodes, _S5i
{ok, [make group (N , Co
do_grouping (Nodes, Size, NumGro —>
Group = lists:sublist (Nodes,
R i lists:subtract(
N > = make group
Newv = [NewGroupl|A
do_grouping(Remain, Size, NumGroup—ll Counter+l, NewAcc).

(b) program slice for NumGroup-1

do_grouping([], _, _, _, Acc)

do_grouping (Nodes, _ 1
{ok, [make_group (1ter) |Acc]}

do grouping(Nodes, Size, NumGroup, Counter, Acc) —>
Group = lists:sublist (Nodes, Size),

nter,

Remain = lists:subtract(Nodes, Group),

NewGroup = make group{Group, Counter),

NewAcc = [NewGroup|Acc],

do_grouping(Remain, Size, NumGroup-1, Counter+l, NewAch.

(c) program slice for NewAcc

Figure 10. Program slices

accumulating parameter. To be more precise, only the part of the
slice that does not depend on the value of the accumulator itself,
and does not overlap with the slices of other parameters is to be
moved to the worker process.

With the go_grouping example, the piece of computation that can
be delegated to worker processes is:

NewGroup=make_group (Group, Counter).

So, up to this point, this refactoring will proceed only if the code
fragment that can be moved to a worker process is not empty. Of
course, the user could also abort the refactoring process if s/he
thinks that the computation to be delegated to worker processes
is not the critical part of the computation.

The remaining clause body is further partitioned into two parts.
A part for evaluating the new values of recursion control parame-
ters, and a part for evaluating the new value of the accumulating
parameter. The former is executed before a task is dispatched to a
worker process, and the latter is executed after a result has been
received from a worker.

To illustrate how the transformation part of this refactoring
works, we continue with the do_grouping example. The par-
allelised version of do_grouping resulting from this refactor-
ing is shown in Fig [T} As this example shows, the original
tail-recursive function is replaced with a non-recursive function
with the same interface. The function do_grouping starts by
spawning a number of worker processes executing the function
do_grouping_worker_loop/1. The number of worker processes
to be spawned is the same as the number of schedulers available on
the Erlang VM. After that, another process is spawned by the entry
function do_grouping dispatch_and collect_loop/5. As its
name indicates, this function is in charge of dispatching new tasks
to worker processes, collecting results from worker processes in a
specific order, and handling the base cases. We refer to this as the
dispatch and collect process.

do_grouping(Nodes, Size, NumGroup,Counter, Acc) ->
Parent = self(),
Workers = [spawn(fun() ->
do_grouping_worker_loop(Parent)
end)
|l _ <- lists:seq(l, erlang:system_info(schedulers))],
Pid = spawn_link(
fun() ->
do_grouping_dispatch_and_collect_loop(Parent, Acc, Workers, 0, 0)
10. end),
11. Pid ! {Nodes, Size, NumGroup, Counter},
12. receive

© 0 N O WN -

13. {Pid, Acc} ->

14. [P ! stop || P <- Workers],
15. Acc

16. end.

17.

18. do_grouping_dispatch_and_collect_loop(Parent, Acc, Workers, RecvIndex, CurIndex) ->
19. receive

20. {[], Size, NumGroup, Counter} when RecvIndex == CurIndex ->
21. Parent ! {self(), {ok, Accl}};

22. {[], Size, NumGroup, Counter} when RecvIndex < Curlndex ->
23. self() ! {[], Size, NumGroup, Counter},

24. do_grouping_dispatch_and_collect_loop(

25. Parent, Acc, Workers, RecvIndex, CurIndex);

26. {Nodes,_Size, 1, Counter} when RecvIndex == CurIndex ->

27. Parent ! {self(), {ok, [make_group(Nodes, Counter) |Acc]}};
28. {Nodes, Size, 1, Counter} when RecvIndex < CurIndex ->

29. self() ! {Nodes, Size, 1, Counter},

30. do_grouping_dispatch_and_collect_loop(

31. Parent, Acc, Workers, RecvIndex, CurIndex);

32. {Nodes, Size, NumGroup, Counter} ->

33. Group = lists:sublist(Nodes, Size),

34. Remain = lists:subtract(Nodes, Group),

35. Pid = oneof (Workers),

36. Pid ! {self(), Group, Size, Counter},

37. self () ! {Remain, Size, NumGroup-1, Counter+1},

38. do_grouping_dispatch_and_collect_loop(

39. Parent, Acc, Workers, RecvIndex, CurIndex+1);

40. {{worker, _Pid}, RecvIndex, NewGroup} ->

41. NewAcc = [NewGroup|Acc],

42. do_grouping_dispatch_and_collect_loop(

43. Parent, NewAcc, Workers, RecvIndex+1, CurIndex)

44. end.

45.

46. do_grouping_worker_loop(Parent) ->

a7. receive

48. {Group, Size, Counter, Index} ->

49. NewGroup = make_group(Group, Counter),

50. Parent ! {{worker, self()}, Index, NewGroup},

51. do_grouping_worker_loop(Parent) ;

52. stop —>

53. ok

54. end.

55.

56. oneof (Workers) ->

57. ProcInfo = [{Pid, process_info(Pid, message_queue_len)} || Pid <- Workers],
58. [{Pid, _}|_] = lists:keysort(2, ProcInfo),

59. Pid.

Figure 11. A parallel implementation of the do_grouping function

The initial computing task in then sent to the dispatch and collect
process as shown in line 11, after that the parent process is sus-
pended in a receive clause waiting for the final result to come.
Once the final result has been received, the parent process sends a
stop signal to each worker process to terminate them, then termi-
nates itself and returns the final result to its caller.

On the other hand, the dispatch and collect process is imme-
diately suspended in a receive clause after its creation. The first
message it receives represents the initial computation task sent by
the parent process in line 11. This message is then pattern-matched
in turn with each pattern in the receive expression. If the initial
task does not match any of the base cases, then it should match the
non-base case clause in line 32. The body of this receive clause
first executes the program slice (lines 33-34) whose result affects
the initial value passed onto the worker process, as well as the next
iteration, then selects a worker process from the list of available
worker process identifiers: Pids.

With the current implementation of this refactoring, the process
with the shortest message queue is selected, as defined in the
function oneof (lines 56-59). Once a worker process has been
selected, a message containing the initial parameters for the new
task is then sent to the worker process. Instead of waiting for the
worker process to return the result, the dispatch and collect process
continues to run in parallel with the worker process. It sends the
remaining task to itself, and iterates the process.

Once a worker process has finished the computation of a task,
it sends the result back to the dispatch and collect process, and
waits for the next message to come. This is defined in the function
do_grouping worker_loop in lines 46-54. The dispatch and col-
lect process uses indices to track each job dispatched and collected.
Results from worker processes are received in the expected order,
that is the order in which jobs are dispatched. Once an expected
result has been received, this process takes the new result and the
current value of the accumulator, calculates and updates the accu-
mulator’s value accordingly as shown in lines 40-43. Note that in
the tail recursive call in line 43 the RecvIndex parameter is in-
cremented: stepping this through by single increments ensures that
the results are collected in the same order as the sub-tasks are dis-
patched, which is crucial for preserving the semantics of the com-
putation.

When a base case message has been received, the process first
checks if all the expected results have been received by checking if
the two indices RecvIndex and CurIndex have the same value. If
the result is true, then the final result is calculated and sent back
to the parent process, otherwise the process will have to wait until
all the results have been collected. To do so, it sends the base case
message to itself so that it will eventually be processed.

As this refactoring shows, the transformation process is rather
complex and error prone if done manually. With this refactoring
support, the user is able to experiment with the parallel version with
little effort.

5. Implementation

Wrangler is a mature refactoring tool for Erlang, written in Erlang,
and we have used the facilities of Wrangler to implement the
refactorings discussed here. We briefly discuss these here, and refer
readers to the articles cited for more information about the details.

5.1 Wrangler in a nutshell
Architecture. Wrangler consists of a pipeline of stages:
e parsing, to give an abstract syntax tree (AST);

e semantic analysis, to give an annotated AST (AAST);
o transformation of the AAST, and

e pretty-printing to file.

and as it presents the top-level functions from each of the stages to
build refactorings through the api_interface. More details of the
architecture can be found in the overview [27].

Syntax. Erlang comes with a syntax_tools library that encap-
sulates various aspects of the syntax including macros; we have
extended the tokeniser used by syntax_tools to include column
information and preserve white spaces and comments.

Analysis. Information from the static semantic analysis is stored
in the AAST, and this can be accessed directly or through API
functions. These include operations to give the free and bound
variables in syntactic components, as well as — for example —
allowing the generation of ‘fresh’ identifiers on demand.

The analyses here are also supplemented with the slicing tech-
nology described in the previous section.

Wrangler extensibility. Wrangler supports user extension [18] in
two complementary ways.

The API [17] allows users to define new refactorings ‘from the
bottom up’. It provides templates that can describe fragments of
(A)AST through fragments of Erlang concrete syntax, augmented
with meta-variables that range over syntactic elements. On top of
these templates it is possible to build rules explaining how code is
to be transformed, when the code meets appropriate pre-conditions.
In the work presented here, we use templates in the code synthesis
needed in building transformed programs.

The DSL [19] supports complex scripting of refactorings, with
control on their transactional nature, their interactivity, tracking of
(renamed) names etc. It can be used in this context to present the
facilities in a more exploratory way, allowing uses choices between
possible variants of parallelisation refactorings, for instance.

Wrangler is written in Erlang. Functional languages — with pat-
tern matching over structured data, and higher-order functions — are
particularly well suited as metalanguages for transformation and
analysis, and we leverage that here.

5.2 Implementing Refactorings Using Wrangler

The refactorings presented in this paper are implemented using
Wrangler’s API, in particular these refactorings implement a be-
haviour, named gen_refac, exposed by Wrangler. In Erlang, a be-
haviour is an application framework that is parameterised by a
call-back module. The behaviour implements the generic parts of
the solution, while the callback module implements the specific
parts. A number of pre-defined behaviours are provided through
Erlang/OTP. In the same spirit, the gen_refac behaviour imple-
ments those parts of a refactoring that are generic to all refac-
torings, such as the generation and annotation of ASTS, the out-
putting of refactoring results, the collection of change candidates
and the workflow of the refactoring processes. To implement a
refactoring using gen_refac, the user only needs to implement a
number of callback functions, of which the two most important are
check_pre_condition and transform.

To illustrate how these refactorings are implemented, we take
the transformation part of introduce a worker process to handle call
as an example. While the implementation of tail-recursive function
parallelisation is more complex due to the amount of analysis
involved, the methodology used is the same.

The implementation of the callback function transform of in-
troduce a worker process to handle call is as shown in Fig[T2] This
function applies a transformation rule defined by function rulel
to the current file under refactoring. The function rulel imple-
ments a transformation that modifies a handle_call clause at a
given position to introduce parallelism. ?RULE is a macro defined

transform(_Args=#args{current_file_name=File,
cursor_pos=Pos}) ->
?STOP_TD_TP([rulel(Pos)], [Filel).

rulel(Pos) ->
?PRULE(?T("handle_call(Args@@) when Guard@@->
Body@@,{reply, Res@, State@};"),
gen_new_handle_call(_This@, Res@, StateQ@,
{Args@@, Guard@@, Body@@, State@}),
begin
{S, E} = api_refac:start_end_loc(_This@),
S=<Pos andalso E>=Pos
end) .

gen_new_handle_call(C, Res, State,
{Args, Guard, Body, Statel}) ->
{Slicel, _}=wrangler_slice_new:backward_slice(C, Res),

{Slice2, _}=wrangler_slice_new:backward_slice(C, State),

ExprLocs = Slicel -- Slice2,
Exprs =[B||B<-Body,
lists:member(
api_refac:start_end_loc(B), ExprLocs)],
NewBody = Body -- Exprs,
api_refac:subst(
?T("handle_call(Args@@) when Guard@@ ->
Bodya@@,
spawn_link(
fun()->
Resp= begin Exprs@@ end,
gen_server:reply(From, Resp)
end),
{no_reply, State@};"),
[{’Args@@’, Args}, {’Guard@@’, Guard},
{’Body@@’, NewBody}, {’State@’, State},
{’Exprs@@’, Exprs}]).

Figure 12. Transform a handle_call function clause

in Wrangler used to define transformations. It takes three parame-
ters: a template characterising the program fragment to transform, a
description of the new program fragment that replaces the old one,
and a pre-condition on the application of the rule; the call takes the
form ?RULE (Template, NewCode, Cond).

The function gen new_handle_call is the one that generates
the new code. This function first calculates the fragment of code
to be executed by the new process as well the part that remains in
the main process, then generates the new code using a template as
indicated by the macro call 7T.

6. Side-effect Analysis

Being side-effect free plays an important part in functional pro-
gramming languages. In a side-effect free language, the same ex-
pression always produces the same value when evaluated multiple
times. This referential transparency feature makes program anal-
ysis, comprehension and transformation easier. Unlike other func-
tional programming languages such as Haskell and Clean, which
have a substantial pure subset, Erlang has controlled side-effects to
support communication amongst other features.

Erlang is pure in having immutable data structures and single
assignment variables; it is not pure due to its support for concur-
rency, Erlang built-in Term Storage (ETS), process dictionary, etc.
In an Erlang program, both pure functions and impure functions
can be used in any context (except function guards).

For refactorings that do not change the execution context of the
code under refactoring — i.e. the process in which the code is ex-

print_list(0) -> ok;

print_list(N) ->
io:format ("x");
print_list(N-1).

test) ->print_list(3).
(a) Code before generalisation

print_list(F, 0) -> ok;
print_list(F, N) ->
FO,
print_list(F, N-1).

test() ->
print_list(fun() ->io:format("*") end, 3).

(b) Code after generalisation

Figure 13. Generalisation over an expression with side-effects

ecuted — there are some workarounds when side-effects are a con-
cern. For example, naively generalising a function over an expres-
sion that has side-effects could potentially change the behaviour
of the function. The solution to this problem is to wrap the side-
effecting expression up as a closure, as shown in the generalisation
example in Fig where the function print_list is generalised
over the expression io:format ("*").

Concurrency-related refactorings are vulnerable to side-effects
due to the fact that very often a concurrency-related refactoring
needs to migrate some computation from one process to another,
and this potentially affects those execution-context-aware opera-
tions. For instance, the Erlang built-in function self () returns the
process identifier of the calling process, hence care has to be taken
if a refactoring changes the execution context of self (), because
in a new process the same expression will return a different process
identifier. On the other hand, it might be perfectly ok to migrate
some code with side-effects into another process.

In order to support safe concurrency introduction refactorings,
side-effect analysis of the code affected by a refactoring is a ne-
cessity. With the knowledge that side effects in Erlang are due to a
small number of known reasons, but not to single assignment, we
are able to identify an initial set of functions whose side-effects are
predefined. This hard-coded information indicates not only that a
function has side-effects, but also specifies the kind of side-effects
associated with it.

With this pre-defined side-effect information, static AST-based
techniques are then used to establish function dependencies, and
side-effect information is then propagated over the dependency
graph until a fixed point is reached. To improve the efficiency of
side-effect analysis, side-effect information about library functions
is pre-computed, and stored in a persistent table.

In the case that the code to be migrated to another process
does have side-effects, the user is presented with the side-effect
information derived, and it is the user’s choice whether or not to
continue with the refactoring.

7. Related Work

Slicing. A direct application of program slicing in the field of
refactorings is slice extraction, which has been formally defined
by Ettinger [13] as the extraction of the computation of a set
of variables from a program as a reusable program entity, and
the update of the original program to reuse the extracted slice.
Ettinger’s study was not concerned about concurrency.

In [10], J. Cheng extends the notion of slicing for sequential
programs to concurrent programs and presents a graph-theoretical
approach to slicing concurrent programs. In addition to the usual
control and data dependencies, J. Cheng introduces three new types
of primary program dependences in concurrent programs, named
the selection dependence, synchronisation dependence and com-
munication dependence. The techniques developed aim to help the
debugging of concurrent programs by finding all the statements that
possibly or actually caused the erroneous behaviour of an execution
of a concurrent program where an error occurs.

A more precise slicing algorithm is proposed by J. Krinke: in
[L5] he proposes a context-sensitive approach to slicing concurrent
programs. This approach makes use of a new notation for concur-
rent programs by extending the control flow graph and program
dependence graph to their threaded counterparts.

In [14], M. Kamkar et al. propose a tracing-based algorithm for
distributed dynamic slicing on parallel and distributed message-
passing based applications. With this approach, the authors intro-
duce the notion of Distributed Dynamic Dependence Graph (DDDG)
which represents control, data and communication dependences in
a distributed program. This graph is built at run-time and used to
compute slices of the program through graph traversals.

Parallelisation. There is a substantial literature on parallelisation
of programs, the vast majority of which addresses parallel programs
in the object-oriented (typically Java, C++) and imperative (x10,
Fortran) paradigms. In common with our observation for Erlang,
Dig notes in [12] that “unlike sequential refactoring, refactoring
for parallelism is likely to make the code more complex, more
expensive to maintain, and less portable”.

Dig’s paper [12] exemplifies the main approach for OO lan-
guages in targetting thread-safe libraries and data structures within
a general-purpose language, which, once achieved, provides fur-
ther refactoring opportunities. Alternatively, programs can be tar-
geted at specialised hardware, such as GPUs [11] and multicore
systems [9]]. These approaches typically require pointer analyses to
identify access to mutable data structures, a problem which is not
evident in Erlang — which features single assignment — and other
functional languages. Working within parallel languages such as
x10, which embodies the partitioned global address space (PGAS)
model, some work has been done in loop parallelisation [23]], and,
while these are not included in the main release, there have been
some experiments in parallelisation in the Fortran refactoring tool
Photran [25]. Other work on loop parallelisation [16] notes the im-
portance of user input into the parallelisation process.

Work on parallelisation of functional programs has typically
taken two routes. First, skeletons have been used to identify po-
tential sites for parallelisation, and this forms the basis of the work
of the ParaPhrase project [6]]. Secondly, data parallel systems have
been developed — including Data Parallel Haskell [8]] — but to the
best of our knowledge there has been no work on refactoring for
data parallelism in a functional context.

8. Conclusions and Future Work

In this paper, we presented three novel slicing-based refactorings
for introducing concurrency to Erlang applications, and in that way
parallelising the systems. All these refactorings are automated in
the Erlang refactoring tool Wrangler. While there are other ways for
retrofitting concurrency to existing Erlang applications, such as the
use of skeletons/patterns, our refactorings complement the existing
ones. The application of program slicing to the refactoring field is
not new, but our work demonstrates its usefulness for supporting
concurrency introduction refactorings.

As we noted in the introduction, we have chosen to implement
these refactorings explicitly as part of the software development
process, rather than implicitly — and ‘invisibly” — inside a compiler.
We have done this to make the transformation a part of the software
development process, and also because we see that fully automated
transformations often need some modifications in application or
scope in order to deliver precisely what is required. In doing this we
agree with others working in the field [[16] who note that “automatic
parallelization of loops is a fragile process” and so include user
input in the process, rather than incorporating the transformation
within the internals of a compiler.

Our future work lies in a few directions. First, we will investi-
gate other refactorings, and code inspection functionalities, which
can benefit from program slicing techniques; second, we will ex-
tend Wrangler to support automatic discovery of candidates where
concurrency can be introduced; and finally we will connect Wran-
gler with concurrency profiling tools such as Percept2 [20] to pro-
vide feedback on the performance impact after concurrency intro-
duction.

Acknowledgments

This research is supported by EU FP7 project RELEASE, grant
number 287510, (www.release-project.eu); we thank our fun-
ders and colleagues for their support and collaboration.

References

[1] Erlang/OTP. http://www.erlang.org.

[2] ETop - The Erlang Top. http://www.erlang.org/doc/man/
etop.html.

[3] J. Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007.

[4] 1. Boz6 and M. Té6th. Building Dependency graph for slicing Erlang
Programs. In Periodca Politechnica, pages 372-390. 2010.

[5]1 1. Bozd, V. Fordds, et al. Discovering Parallel Pattern Candidates in
Erlang. In Proceedings of the Thirteenth ACM SIGPLAN Workshop
on Erlang, Erlang ’ 14, pages 13-23. ACM, 2014.

[6] C. Brown, K. Hammond, M. Danelutto, P. Kilpatrick, H. Schoner,
and T. Breddin. Paraphrasing: Generating Parallel Programs Using
Refactoring. In Formal Methods for Components and Objects, pages
237-256. Springer, 2013.

[7] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media,
Inc., 2009.

[8] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and
S. Marlow. Data parallel haskell: A status report. In Proceedings of the
2007 Workshop on Declarative Aspects of Multicore Programming,
DAMP 07, pages 10-18, New York, NY, USA, 2007. ACM.

[9] F. Chen, H. Yang, W.-C. Chu, and B. Xu. A Program Transformation
Framework for Multicore Software Reengineering. In Quality
Software (QSIC), 2012 12th International Conference on, pages 270—
275.1EEE, 2012.

[10] J. Cheng. Slicing Concurrent Programs - A Graph-Theoretical
Approach. In Proceedings of the First International Workshop on
Automated and Algorithmic Debugging, AADEBUG 93, pages 223—
240, London, UK, 1993. ISBN 3-540-57417-4.

[11] K. Damevski and M. Muralimanohar. A Refactoring Tool to Extract
GPU Kernels. In Proceedings of the 4th Workshop on Refactoring
Tools, WRT "11, pages 29-32, New York, NY, USA, 2011. ACM.

[12] D. Dig. A Refactoring Approach to Parallelism. /[EEE Software, 28
(1):17-22, 2011.
[13] R. Ettinger. Refactoring via Program Slicing and Sliding. In 23rd

IEEE International Conference on Software Maintenance, pages 505—
506, Paris, France, 2007.

[14] M. Kamkar, P. Krajina, and P. Fritzson. Dynamic Slicing of Parallel
Message-Passing Programs. In PDP, pages 170-178. IEEE Computer
Society, 1996.

www.release-project.eu
http://www.erlang.org
http://www.erlang.org/doc/man/etop.html
http://www.erlang.org/doc/man/etop.html

[15]

[16

[17

[18]

[19

[20

[21]

J. Krinke. Context-sensitive Slicing of Concurrent Programs. In
Proceedings of the 9th European Software Engineering Conference
Held Jointly with 11th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 178-187, New York, NY,
USA, 2003.

P. Larsen, R. Ladelsky, J. Lidman, S. McKee, S. Karlsson, and A. Zaks.
Parallelizing more Loops with Compiler Guided Refactoring. In
Parallel Processing (ICPP), 2012 41st International Conference on,
pages 410-419. IEEE, 2012.

H. Li and S. Thompson. A User-extensible Refactoring Tool for
Erlang Programs. Technical Report 4-11, School of Computing, Univ.
of Kent, UK, 2011.

H. Li and S. Thompson. Let’s Make Refactoring Tools User-
extensible! In Proceedings of the Fifth Workshop on Refactoring
Tools, WRT *12, pages 32-39. ACM, 2012.

H. Li and S. Thompson. A Domain-Specific Language for Scripting
Refactorings in Erlang. 1In 15th International Conference on
Fundamental Approaches to Software Engineering(FASE), pages
501-515, 2012.

H. Li and S. Thompson. Multicore profiling for Erlang programs using
percept2. In Proceedings of the twelfth ACM SIGPLAN workshop on
Erlang, pages 33-42. ACM, 2013.

L. Lovei, C. Hoch, H. Koll6, T. Nagy, A. Nagyné-Vig, D. Horpécsi,
R. Kitlei, and R. Kirdly. Refactoring Module Structure. In Proceedings
of the 7th ACM SIGPLAN workshop on Erlang, pages 83—89, Victoria,
British Columbia, Canada, Sep 2008.

[22] K. Lundin. About Erlang/OTP and Multi-core Performance in
Particular. Erlang Factory London 2009.

[23] S. A. Markstrum, R. M. Fuhrer, and T. D. Millstein. Towards
Concurrency Refactoring for x10. SIGPLAN Not., 44(4):303-304,
2009.

[24] P. Nyblom. Erlang SMP Support. Erlang User Conference 2009.

[25] J. Overbey, S. Xanthos, R. Johnson, and B. Foote. Refactorings for
Fortran and High-performance Computing. In Proceedings of the
Second International Workshop on Software Engineering for High
Performance Computing System Applications, SE-HPCS 05, pages
37-39, New York, NY, USA, 2005. ACM.

[26] J. Silva, S. Tamarit, and C. Tomas. System Dependence Graphs in
Sequential Erlang. In J. de Lara and A. Zisman, editors, Fundamental
Approaches to Software Engineering, Lecture Notes in Computer
Science, pages 486-500. Springer Berlin Heidelberg, 2012.

[27] S. Thompson and H. Li. Refactoring tools for functional languages.
Journal of Functional Programming, 23(03):293-350, 2013.

[28] M. Téth and I. Bozé. Static Analysis of Complex Software Systems
Implemented in Erlang. In V. Zsdk, Z. Horvith, and R. Plasmeijer,
editors, Central European Functional Programming School, volume
7241, pages 440-498. 2012.

[29] M. Téth, 1. Bozé, et al. Impact Analysis of Erlang Programs
Using Behaviour Dependency Graphs. In Z. Horvith et al., editors,
Central European Functional Programming School, Lecture Notes in
Computer Science, pages 372-390. 2013.

