
Lins, Rafael D. (1992) A Multi-Processor Shared Memory Architecture.
Technical report. UKC, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21067/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21067/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Multi�Processor Shared Memory Architecture for

Parallel Cyclic Reference Counting

Rafael D� Lins

Dept� de Inform�atica � Universidade Federal de Pernambuco � Recife � Brazil

Computing Laboratory � The University of Kent � Canterbury � England�

Introduction

In ���� Steele ��� proposed what was possibly the 	rst algorithm for parallel garbage collec

tion� In his architecture two processors share the same memory space� One of the processors�
called the mutator� is responsible for graph manipulation while the other� called the collector�
performs garbage collection� In this algorithm mark
scan and computation occur simultane

ously�

Another parallel mark
scan algorithm is presented in �
�� Kung and Song developed an
improved mark
scan algorithm ��� based on the algorithm by Dijkstra et al �
�� Based on the
same algorithm Ben
Ari gave ��� several parallel mark
scan algorithms with a much simpler
proof of correctness then the ones presented in ���
�� All the algorithms mentioned above
for parallel mark
scan seem to spend a lot of time colouring non
garbage cells and scanning
the whole heap� Lamport ��� generalised the architecture described in �
� for using multiple
processes� with two aims� to speed up the performance of the architecture and to analyse the
process of parallelising a sequential algorithm�

As an alternative to mark
scan algorithms Lins presents a shared memory architecture
for parallel cyclic reference counting ���� based on the algorithm presented in ����� In this
paper we generalise this architecture in such a way that multiple mutators and collectors
share the same workspace� This generalisation is simple and keeps the properties of the
one
mutator
one
collector architecture ����

� A Shared Memory Architecture

In this section we describe the architecture presented in ��� for Parallel Cyclic Reference
Counting with Lazy Mark
Scan ���� There are two processors P� and P�� which will perform
graph rewriting and garbage collection simultaneously�

Both processors share the same memory area� the working space which is organised as a
heap of cells� We assume that the mutator will never point at a garbage node� However� by
changing edges the mutator can turn reachable nodes into garbage� In case of simultaneous
access from both processors to a given cell� semaphores are used such as to guarantee that
processor P� will have priority over processor P�� There is also another shared data structure�
the Delete�queue� which is organised as a FIFO� Processor P� is only allowed to push data
onto the Delete
queue� Conversely� processor P� is only allowed to dequeue data from the
Delete
queue� Processor P� has two internal registers called top�free�list� which stores a
pointer to the top cell in the free
list� and top�del�queue� which stores a pointer to the top
of the Delete
queue� Processor P� has also two internal registers called bot�free�list� which
stores a pointer to the last cell in the free
list� and bot�del�queue� which stores a pointer to
the bottom of the Delete
queue�

�

P�

top�del�queue

top�free�list

P�

bot�del�queue

bot�free�list

heap

root

�

�

�

�

�

�

�

�

free�list

�
�

�

�

�

�

�

Delete�queue

For the sake of simplicity we ignore the synchronisation that must be done when P� attempts
to remove a node from an empty free
list or P� tries to get a reference from an empty Delete�

queue� These situations should happen infrequently and any convenient synchronisation
primitive can be used� In addition to the information of number of references to a cell� there
is an extra 	eld which keeps the colour of the cell� Four colours are used� green� red� blue�
and black� Colours are used to control the status of cells� As initial condition one has all
cells painted green and every cell except root is on the free�list� Green is the stable colour
of cells� Red� blue� and black are transient colours which indicate that we are not sure of
whether these cells are needed or not�

��� Processor P� Instruction Set

Processor P� will be in charge of rewritings of the graph� Its instruction set comprises three
basic operations� New� Copy� and Del�

New tests if there are free cells on the free
list� If not empty it reads the information in
register top
free
list and links it to the graph� New also gets the address of the new top of
the free
list and saves it in register top
free
list� These operations are described as�

New �R� � if top�free�list not nil then

make pointer �R�top�free�list�

top�free�list 	�
top�free�list

else New�R�

where
A means the information stored in A�
Copy copies information between cells� No special care is needed in order to keep the correct
management of the data structures� If processor P� wants to copy some information� i�e� to
make a pointer to a cell then this cell must be transitively connected to root� Copy increments
the reference count of T � Algorithmically we have�

Copy �R� �S�T�� � make pointer �R�T�

increment RC�T�

Del deletes pointers in the graph� it pushes a reference to a cell onto the top of the Delete

queue� �Processor P� will perform the remaining operations for the e�ective re
adjustment
of the graph�� Thus�

Del ��R�S�� � remove �R�S�

top�del�queue 	� S

increment top�del�queue

��� Processor P� Instruction Set

Processor P� is the processor in charge of the deletion of pointers and feeding free cells onto
the free
list� The main routine in P� is called Delete a routine which will run forever as the
kernel of the operating system of processor P��

Delete � if Delete�queue not empty then

S 	� bot�del�queue

increment bot�del�queue

Rec�del �S�

else

if control�stack not empty then

scan�stack

else

Delete

If the Delete
queue is not empty Delete calls Rec�del� as follows

Rec�del �S� � if RC �S� � � then

set colour �S� 	� green

for T in Sons �S� do

Rec�del �T�

link�to�free�list �S�

else

decrement RC �S�

if colour �S� not black then

set colour �S� 	� black

top�of�control�stack 	� S

The linking of a cell to the free
list is performed by the operations�

link�to�free�list �S� �
S 	� bot�free�list

bot�free�list 	� S

The lazy algorithm uses a stack as an extra control structure to avoid performing the local
mark
scan every time we delete a pointer to a cell with multiple references� A reference to
these cells is placed on the control stack� We paint these cells black�

Processor P� only analyses the control stack when the Delete
queue is empty� by calling
scan�stack�

scan�stack � S 	� top�of�control�stack

pop�control�stack

if colour �S� is black then

mark�red�S�

scan�S�

collect�blue�S�

else if control�stack not empty then

scan�stack

�

scan�stack pops the cell from the top of the control stack and test its colour� If it remains
black this means that we are still not sure if we have deleted the last pointer to a cycle�
�Note that a cell painted black and pushed onto the control stack may be sent to the free
list
by another call to delete� From the free
list it may be recycled while it still has a reference
from the control stack�� If the cell from the top of the stack is black then we perform a local
mark
scan� The algorithm works in three phases� In the 	rst phase we scan the graph below
the deleted pointer� rearranging counts due to internal references and marking the nodes as
possible garbage� In phase two� the sub
graph is re
scanned and any cells to which there are
external references are remarked as ordinary cells� and their counts reset� All other nodes
are marked as garbage� Finally� in phase three all garbage cells are collected and returned
to the free
list� mark�red paints the transitive closure of S red and decrements the counts of
these cells� as follows�

mark�red �S� � if colour �S� is green or black then

set colour �S� 	� red

for T in Sons �S� do

decrement RC �T�

mark�red �T�

scan searches for external pointers to the subgraph under inspection� If found the tran

sitive closure of these cells will be painted green�

scan �S� � if colour �S� is red then

if RC �S� �
 then

scan�green �S�

else set colour �S� 	� blue

for T in Sons �S� do

scan �T�

scan�green paints green all the subgraph below its calling point and increases the reference
count of the cells visited� to take into account the internal pointers within the subgraph
�which had been set to zero by mark�red��

scan�green �S� � set colour �S� 	� green

for T in Sons �S� do

increment RC �T�

if colour �T� is not green then

scan�green �T�

collect�blue recovers all the blue cells in the subgraph below its calling point �garbage� and
links them to the free�list�

collect�blue �S� � if colour �S� is blue then

for T in Sons �S� do

collect�blue �T�

remove �S�T�

set RC �S� 	� �

set colour �S� 	� green

link�to�free�list �S�

�

� A Multi�Mutator Architecture

In this section we generalise the architecture we presented in the last section to work with any
number of mutators� The mutators must be synchronised in some way so they do not interfere
with one another� This synchronisation mechanism must enforce some partial ordering on
mutator�s operations� which are viewed as atomic actions� This means that if a processor
P i
�
has started an operation before a processor P j

�
then operations will actually take place

following this order� This partial ordering must be enough to guarantee that the mutators
correctly execute some sequential mutator algorithm� This avoids problems such as sending
to the free
list cells still in use by performing the deletion of a pointer to a cell before a copy
operation to the same cell� We will not concern ourselves with the implementation of this
synchronisation� since it will depend upon the details of the individual application�

Synchronization is also needed amongst mutators when removing nodes from a common
free
list� The use of several separate free
lists associated with each mutator can reduce
synchronisation delays� This can be implemented without any di�culty� but we will not
consider it further�

The picture below sketches our architecture�

P
�

�

�

�

�

P
n

�

top�del�queue

top�free�list

P�

bot�del�queue

bot�free�list

heap

root

�

�

�

�

�

�

�

�

free�list

�
�

�

�

�

�

�

Delete�queue

As we can observe in the picture above� instead of pointing directly to the top of the
Delete
queue now each processor will keep a reference to an external register which points at
the top of the Delete
queue� Similarly for the top of the free
list�

The instruction set for the mutators is the same as we had before with only one mutator�
We will change the way we work with Copy� Now Copy �R� �S�T�� tests the colour of T � If
black we reset it as green� Algorithmically we have�

Copy �R� �S�T�� � make pointer �R�T�

increment RC�T�

if colour �T� is black then set colour �T� 	� green

The optimisation above also works in the case of the one
mutator
one
collector architecture�
In both cases all it does is to assure that the cell� which had uncertain status �black�� was
actually needed �green�� If a mutator accesses a cell this means that cell is transitively
connected to root� therefore it is in use� Painting the target cell of a Copy operation green
avoids the possibility of unnecessary calls to the mark
scan�

�

� Using Multiple Collectors

There is a number of possible ways we can extend the architecture presented in the last
section to work with more than one collector� Our idea is to keep the philosophy of the
one
mutator
one
collector architecture presented above as much as possible� in which�

� mutators and collectors do not talk directly to each other�

� interfaces are simple and well de	ned�

� synchronisation between mutators and collectors when addressing interfaces is kept to
a minimum�

If we have the points above in mind the multi
mutator architecture we presented in the
last section can be pictured as�

P
�

�

�

�

�

P
n

�

top�del�queue

top�free�list

P
�

�

�

�

�

P
n

�

bot�del�queue

bot�free�list

heap

root

�

�

�

�

�

�

�

�

free�list

�
�

�

�

�

�

�

Control�stackDelete�queue

The instruction set of each collector should be modi	ed in order to avoid confusion during
mark
scan� In the distributed architecture presented in ��� there is a broadcast of a suspen�
sion message in the processor network when one of the processors starts to mark
scan� This
condition is largely relaxed further on to allow processors to proceed with computation during
mark
scan� In the multi
processor shared memory architecture presented above we synchro

nised all collectors in such a way as to all of them to run the mark
scan simultaneously� The
kernel routine which runs on the collectors P i

�
is Delete�

Delete � if Delete�queue not empty then

S 	� bot�del�queue

increment bot�del�queue

Rec�del �S�

else

if control�stack not empty then

scan�stack

else

Delete

In which the mark
scan process is activated by calls to scan�stack

�

scan�stack � S 	� top�of�control�stack

pop�control�stack

if colour �S� is black then

mark�red�S�

scan�S�

collect�blue�S�

else

if control�stack not empty then

scan�stack

Our control strategy for synchronisation is such as when one of the collectors start to run
scan�stack� because the Delete
queue is empty� all the other collectors can do is to either
	nish or suspend their operation and run scan�stack also� Thus Delete performs the following
operations�

Delete � if Delete�queue not empty then

S 	� bot�del�queue

increment bot�del�queue

Rec�del �S�

else

if control�stack not empty then

broadcast�all�scan�stack

scan�stack

else

Delete

Once collectors 	nd a cell whose colour is black it can start to run mark�red immediately�
When all processors have 	nished this phase synchronisation is needed before collectors are
allowed to start with scan� Again� before collect�blue all processors must have stopped with
scan or its ancilliary function scan�green� After all collectors have 	nished with collect�blue

they are allowed to resume their tasks�
In order to stress this synchronisation mechanism we will rewrite scan�stack as�

scan�stack � S 	� top�of�control�stack

pop�control�stack

if colour �S� is black then

mark�red�S�

synchronise�end�mark�red

scan�S�

synchronise�end�scan

collect�blue�S�

synchronise�end�collect�blue

else if control�stack not empty then

scan�stack

We should stress that scan�stack is activated by the lack of cells in the Delete
stack� not by
the lack of cells in the free
list� Therefore mutators are still independent of collectors� At
no moment there is any loss of parallelism in our architecture� On the contrary� having all
collectors doing mark
scan simultaneously brings the advantage of accelerating this process�
in the case the mark
scan area is split between collectors�

�

Proof of Correctness

Formal proofs of the correctness of parallel algorithms are� in general� not simple ���
�� We
give here an informal proof of the correctness of the architectures presented�

The approach Lamport uses ��� for assuring the correctness of his multi
processor archi

tecture is the parallelisation of the sequential algorithm presented in �
� with the addition
of some synchronisation elements� This was exactly the strategy adopted by the author
in the development of his one
mutator
one
collector shared memory architecture ���� which
was based on the sequential algorithms for uniprocessors presented in ���� ��� The architec

tures presented herein also follow the same philosophy� we parallelise the original mutator
algorithm and then we apply the same technique to the collector algorithm�

The Multi�Mutator Architecture

The existence of a partial ordering on the synchronisation of mutator operations is the key
for the correctness of this architecture� This ordering must be such as to guarantee that
mutators correctly execute some sequential algorithm� i�e� the sequence of operations is the
same as the performed in the one
mutator architecture�

The Multi�Collector Architecture

In this architecture� if the Delete
queue is not empty then each collector will fetch a cell from
the back of the delete
queue� if not empty� by calling Delete� Rec�del is called on it� If the
value of the count of this cell is one then it is painted green� has its Sons analysed recursively
and then it is sent to the free
list� Synchronization is used to avoid simultaneous access to a
given cell�

If the Delete
queue is empty and the control
stack is not then the 	rst processor which tries
to fetch a cell from the control
stack will call scan�stack� Now� it the top cell is black mark

scan will take place� A new synchronisation mechanism is used to avoid confusion between
phases of mark
scan amongst collectors� This synchronisation makes the work cooperative
and increases the parallelism of the architecture� Assume each collector is allowed to fetch
only one cell from the control
stack before mark
scan� Synchronization after each phase of
mark
scan assures that if we have n collectors in our architecture and if the top n cells on the
control
stack point at s cells with shared subgraph then after mark
scan the graph obtained is
equal to n�s�� sequential calls to scan�stack of the one
mutator
one
collector architecture�

Conclusions

We presented a multi
processor shared memory architecture for parallel garbage collection
which is a extension of a one
mutator
one
collector architecture based on cyclic reference
counting� In our opinion� this architecture is simpler and more time e�cient than Lamport�s
Garbage Collection with Multiple Processors� which is based on mark
scan� This is still to
be born out by experimental results�

�

Acknowledgements

Research reported herein was sponsored jointly by the British Council and C�N�Pq� �Brazil�
grants No ������������� and ������
������

References

��� D�Gries� An exercise in proving parallel programs correct� Communications of ACM�

���
���
������ December �����

�
� E�W�Dijkstra� L�Lamport� A�J�Martin� C�S�Scholten � E�M�F�Ste�ens� On
the
�y
garbage collection� an exercise in cooperation� Communications of ACM�
����������
���� November �����

��� G�L�Steele� Multiprocessing compactifying garbage collection� Communications of ACM�
��������������� September �����

��� H�T�Kung and S�W�Song� An e�cient parallel garbage collection system and its correct

ness proof� In IEEE Symposium on Foundations of Computer Science� pages �
������
IEEE� �����

��� L�Lamport� Garbage collection with multiple processes� an exercise in parallelism� In
Proc� of IEEE Conference on Parallel Processing� pages ������ IEEE� �����

��� M�Ben
Ari� Algorithms for on
the
�y garbage collection� ACM Transactions on Pro�

gramming Languages and Systems� ������������� July �����

��� R�D�Lins� Cyclic reference counting with lazy mark
scan� Technical Report ��� UKC
Computing Lab� Report� The University of Kent at Canterbury� July ����� to appear
in Information Processing Letters�

��� R�D�Lins� A shared memory architecture for parallel cyclic reference counting� Micro�

processing and Microprogramming� �
������� August �����

��� R�D�Lins and R�E�Jones� Cyclic weighted reference counting� Technical Report ���
UKC Computing Lab� Report� The University of Kent at Canterbury� December �����
submitted for publication�

���� A�D�Martinez� R�Wachenchauzer and R�D�Lins� Cyclic reference counting with local
mark
scan� Information Processing Letters� ��������� �����

�

