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A Multi�Processor Shared Memory Architecture for

Parallel Cyclic Reference Counting

Rafael D� Lins

Dept� de Inform�atica � Universidade Federal de Pernambuco � Recife � Brazil

Computing Laboratory � The University of Kent � Canterbury � England�

Introduction

In ���� Steele ��� proposed what was possibly the 	rst algorithm for parallel garbage collec

tion� In his architecture two processors share the same memory space� One of the processors�
called the mutator� is responsible for graph manipulation while the other� called the collector�
performs garbage collection� In this algorithm mark
scan and computation occur simultane

ously�

Another parallel mark
scan algorithm is presented in �
�� Kung and Song developed an
improved mark
scan algorithm ��� based on the algorithm by Dijkstra et al �
�� Based on the
same algorithm Ben
Ari gave ��� several parallel mark
scan algorithms with a much simpler
proof of correctness then the ones presented in ��� 
�� All the algorithms mentioned above
for parallel mark
scan seem to spend a lot of time colouring non
garbage cells and scanning
the whole heap� Lamport ��� generalised the architecture described in �
� for using multiple
processes� with two aims� to speed up the performance of the architecture and to analyse the
process of parallelising a sequential algorithm�

As an alternative to mark
scan algorithms Lins presents a shared memory architecture
for parallel cyclic reference counting ���� based on the algorithm presented in ����� In this
paper we generalise this architecture in such a way that multiple mutators and collectors
share the same workspace� This generalisation is simple and keeps the properties of the
one
mutator
one
collector architecture ����

� A Shared Memory Architecture

In this section we describe the architecture presented in ��� for Parallel Cyclic Reference
Counting with Lazy Mark
Scan ���� There are two processors P� and P�� which will perform
graph rewriting and garbage collection simultaneously�

Both processors share the same memory area� the working space which is organised as a
heap of cells� We assume that the mutator will never point at a garbage node� However� by
changing edges the mutator can turn reachable nodes into garbage� In case of simultaneous
access from both processors to a given cell� semaphores are used such as to guarantee that
processor P� will have priority over processor P�� There is also another shared data structure�
the Delete�queue� which is organised as a FIFO� Processor P� is only allowed to push data
onto the Delete
queue� Conversely� processor P� is only allowed to dequeue data from the
Delete
queue� Processor P� has two internal registers called top�free�list� which stores a
pointer to the top cell in the free
list� and top�del�queue� which stores a pointer to the top
of the Delete
queue� Processor P� has also two internal registers called bot�free�list� which
stores a pointer to the last cell in the free
list� and bot�del�queue� which stores a pointer to
the bottom of the Delete
queue�
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For the sake of simplicity we ignore the synchronisation that must be done when P� attempts
to remove a node from an empty free
list or P� tries to get a reference from an empty Delete�

queue� These situations should happen infrequently and any convenient synchronisation
primitive can be used� In addition to the information of number of references to a cell� there
is an extra 	eld which keeps the colour of the cell� Four colours are used� green� red� blue�
and black� Colours are used to control the status of cells� As initial condition one has all
cells painted green and every cell except root is on the free�list� Green is the stable colour
of cells� Red� blue� and black are transient colours which indicate that we are not sure of
whether these cells are needed or not�

��� Processor P� Instruction Set

Processor P� will be in charge of rewritings of the graph� Its instruction set comprises three
basic operations� New� Copy� and Del�

New tests if there are free cells on the free
list� If not empty it reads the information in
register top
free
list and links it to the graph� New also gets the address of the new top of
the free
list and saves it in register top
free
list� These operations are described as�

New �R� � if top�free�list not nil then

make pointer �R�top�free�list�

top�free�list 	� 
top�free�list

else New�R�

where 
A means the information stored in A�
Copy copies information between cells� No special care is needed in order to keep the correct
management of the data structures� If processor P� wants to copy some information� i�e� to
make a pointer to a cell then this cell must be transitively connected to root� Copy increments
the reference count of T � Algorithmically we have�

Copy �R� �S�T�� � make pointer �R�T�

increment RC�T�

Del deletes pointers in the graph� it pushes a reference to a cell onto the top of the Delete

queue� �Processor P� will perform the remaining operations for the e�ective re
adjustment
of the graph�� Thus�






Del ��R�S�� � remove �R�S�


top�del�queue 	� S

increment top�del�queue

��� Processor P� Instruction Set

Processor P� is the processor in charge of the deletion of pointers and feeding free cells onto
the free
list� The main routine in P� is called Delete a routine which will run forever as the
kernel of the operating system of processor P��

Delete � if Delete�queue not empty then

S 	� bot�del�queue

increment bot�del�queue

Rec�del �S�

else

if control�stack not empty then

scan�stack

else

Delete

If the Delete
queue is not empty Delete calls Rec�del� as follows

Rec�del �S� � if RC �S� � � then

set colour �S� 	� green

for T in Sons �S� do

Rec�del �T�

link�to�free�list �S�

else

decrement RC �S�

if colour �S� not black then

set colour �S� 	� black

top�of�control�stack 	� S

The linking of a cell to the free
list is performed by the operations�

link�to�free�list �S� � 
S 	� bot�free�list

bot�free�list 	� S

The lazy algorithm uses a stack as an extra control structure to avoid performing the local
mark
scan every time we delete a pointer to a cell with multiple references� A reference to
these cells is placed on the control stack� We paint these cells black�

Processor P� only analyses the control stack when the Delete
queue is empty� by calling
scan�stack�

scan�stack � S 	� top�of�control�stack

pop�control�stack

if colour �S� is black then

mark�red�S�

scan�S�

collect�blue�S�

else if control�stack not empty then

scan�stack
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scan�stack pops the cell from the top of the control stack and test its colour� If it remains
black this means that we are still not sure if we have deleted the last pointer to a cycle�
�Note that a cell painted black and pushed onto the control stack may be sent to the free
list
by another call to delete� From the free
list it may be recycled while it still has a reference
from the control stack�� If the cell from the top of the stack is black then we perform a local
mark
scan� The algorithm works in three phases� In the 	rst phase we scan the graph below
the deleted pointer� rearranging counts due to internal references and marking the nodes as
possible garbage� In phase two� the sub
graph is re
scanned and any cells to which there are
external references are remarked as ordinary cells� and their counts reset� All other nodes
are marked as garbage� Finally� in phase three all garbage cells are collected and returned
to the free
list� mark�red paints the transitive closure of S red and decrements the counts of
these cells� as follows�

mark�red �S� � if colour �S� is green or black then

set colour �S� 	� red

for T in Sons �S� do

decrement RC �T�

mark�red �T�

scan searches for external pointers to the subgraph under inspection� If found the tran

sitive closure of these cells will be painted green�

scan �S� � if colour �S� is red then

if RC �S� � 
 then

scan�green �S�

else set colour �S� 	� blue

for T in Sons �S� do

scan �T�

scan�green paints green all the subgraph below its calling point and increases the reference
count of the cells visited� to take into account the internal pointers within the subgraph
�which had been set to zero by mark�red��

scan�green �S� � set colour �S� 	� green

for T in Sons �S� do

increment RC �T�

if colour �T� is not green then

scan�green �T�

collect�blue recovers all the blue cells in the subgraph below its calling point �garbage� and
links them to the free�list�

collect�blue �S� � if colour �S� is blue then

for T in Sons �S� do

collect�blue �T�

remove �S�T�

set RC �S� 	� �

set colour �S� 	� green

link�to�free�list �S�
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� A Multi�Mutator Architecture

In this section we generalise the architecture we presented in the last section to work with any
number of mutators� The mutators must be synchronised in some way so they do not interfere
with one another� This synchronisation mechanism must enforce some partial ordering on
mutator�s operations� which are viewed as atomic actions� This means that if a processor
P i
�
has started an operation before a processor P j

�
then operations will actually take place

following this order� This partial ordering must be enough to guarantee that the mutators
correctly execute some sequential mutator algorithm� This avoids problems such as sending
to the free
list cells still in use by performing the deletion of a pointer to a cell before a copy
operation to the same cell� We will not concern ourselves with the implementation of this
synchronisation� since it will depend upon the details of the individual application�

Synchronization is also needed amongst mutators when removing nodes from a common
free
list� The use of several separate free
lists associated with each mutator can reduce
synchronisation delays� This can be implemented without any di�culty� but we will not
consider it further�

The picture below sketches our architecture�
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As we can observe in the picture above� instead of pointing directly to the top of the
Delete
queue now each processor will keep a reference to an external register which points at
the top of the Delete
queue� Similarly for the top of the free
list�

The instruction set for the mutators is the same as we had before with only one mutator�
We will change the way we work with Copy� Now Copy �R� �S�T�� tests the colour of T � If
black we reset it as green� Algorithmically we have�

Copy �R� �S�T�� � make pointer �R�T�

increment RC�T�

if colour �T� is black then set colour �T� 	� green

The optimisation above also works in the case of the one
mutator
one
collector architecture�
In both cases all it does is to assure that the cell� which had uncertain status �black�� was
actually needed �green�� If a mutator accesses a cell this means that cell is transitively
connected to root� therefore it is in use� Painting the target cell of a Copy operation green
avoids the possibility of unnecessary calls to the mark
scan�
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� Using Multiple Collectors

There is a number of possible ways we can extend the architecture presented in the last
section to work with more than one collector� Our idea is to keep the philosophy of the
one
mutator
one
collector architecture presented above as much as possible� in which�

� mutators and collectors do not talk directly to each other�

� interfaces are simple and well de	ned�

� synchronisation between mutators and collectors when addressing interfaces is kept to
a minimum�

If we have the points above in mind the multi
mutator architecture we presented in the
last section can be pictured as�
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The instruction set of each collector should be modi	ed in order to avoid confusion during
mark
scan� In the distributed architecture presented in ��� there is a broadcast of a suspen�
sion message in the processor network when one of the processors starts to mark
scan� This
condition is largely relaxed further on to allow processors to proceed with computation during
mark
scan� In the multi
processor shared memory architecture presented above we synchro

nised all collectors in such a way as to all of them to run the mark
scan simultaneously� The
kernel routine which runs on the collectors P i

�
is Delete�

Delete � if Delete�queue not empty then

S 	� bot�del�queue

increment bot�del�queue

Rec�del �S�

else

if control�stack not empty then

scan�stack

else

Delete

In which the mark
scan process is activated by calls to scan�stack
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scan�stack � S 	� top�of�control�stack

pop�control�stack

if colour �S� is black then

mark�red�S�

scan�S�

collect�blue�S�

else

if control�stack not empty then

scan�stack

Our control strategy for synchronisation is such as when one of the collectors start to run
scan�stack� because the Delete
queue is empty� all the other collectors can do is to either
	nish or suspend their operation and run scan�stack also� Thus Delete performs the following
operations�

Delete � if Delete�queue not empty then

S 	� bot�del�queue

increment bot�del�queue

Rec�del �S�

else

if control�stack not empty then

broadcast�all�scan�stack

scan�stack

else

Delete

Once collectors 	nd a cell whose colour is black it can start to run mark�red immediately�
When all processors have 	nished this phase synchronisation is needed before collectors are
allowed to start with scan� Again� before collect�blue all processors must have stopped with
scan or its ancilliary function scan�green� After all collectors have 	nished with collect�blue

they are allowed to resume their tasks�
In order to stress this synchronisation mechanism we will rewrite scan�stack as�

scan�stack � S 	� top�of�control�stack

pop�control�stack

if colour �S� is black then

mark�red�S�

synchronise�end�mark�red

scan�S�

synchronise�end�scan

collect�blue�S�

synchronise�end�collect�blue

else if control�stack not empty then

scan�stack

We should stress that scan�stack is activated by the lack of cells in the Delete
stack� not by
the lack of cells in the free
list� Therefore mutators are still independent of collectors� At
no moment there is any loss of parallelism in our architecture� On the contrary� having all
collectors doing mark
scan simultaneously brings the advantage of accelerating this process�
in the case the mark
scan area is split between collectors�
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Proof of Correctness

Formal proofs of the correctness of parallel algorithms are� in general� not simple ��� 
�� We
give here an informal proof of the correctness of the architectures presented�

The approach Lamport uses ��� for assuring the correctness of his multi
processor archi

tecture is the parallelisation of the sequential algorithm presented in �
� with the addition
of some synchronisation elements� This was exactly the strategy adopted by the author
in the development of his one
mutator
one
collector shared memory architecture ���� which
was based on the sequential algorithms for uniprocessors presented in ���� ��� The architec

tures presented herein also follow the same philosophy� we parallelise the original mutator
algorithm and then we apply the same technique to the collector algorithm�

The Multi�Mutator Architecture

The existence of a partial ordering on the synchronisation of mutator operations is the key
for the correctness of this architecture� This ordering must be such as to guarantee that
mutators correctly execute some sequential algorithm� i�e� the sequence of operations is the
same as the performed in the one
mutator architecture�

The Multi�Collector Architecture

In this architecture� if the Delete
queue is not empty then each collector will fetch a cell from
the back of the delete
queue� if not empty� by calling Delete� Rec�del is called on it� If the
value of the count of this cell is one then it is painted green� has its Sons analysed recursively
and then it is sent to the free
list� Synchronization is used to avoid simultaneous access to a
given cell�

If the Delete
queue is empty and the control
stack is not then the 	rst processor which tries
to fetch a cell from the control
stack will call scan�stack� Now� it the top cell is black mark

scan will take place� A new synchronisation mechanism is used to avoid confusion between
phases of mark
scan amongst collectors� This synchronisation makes the work cooperative
and increases the parallelism of the architecture� Assume each collector is allowed to fetch
only one cell from the control
stack before mark
scan� Synchronization after each phase of
mark
scan assures that if we have n collectors in our architecture and if the top n cells on the
control
stack point at s cells with shared subgraph then after mark
scan the graph obtained is
equal to n�s�� sequential calls to scan�stack of the one
mutator
one
collector architecture�

Conclusions

We presented a multi
processor shared memory architecture for parallel garbage collection
which is a extension of a one
mutator
one
collector architecture based on cyclic reference
counting� In our opinion� this architecture is simpler and more time e�cient than Lamport�s
Garbage Collection with Multiple Processors� which is based on mark
scan� This is still to
be born out by experimental results�
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