
Grzes, Marek and Hoey, Jesse (2013) On the Convergence of Techniques
that Improve Value Iteration. In: Neural Networks (IJCNN), The 2013 International
Joint Conference. Proceedings of International Joint Conference on Neural
Networks (IJCNN). . pp. 1-8. ISBN 978-1-4673-6128-6.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/48658/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/IJCNN.2013.6706982

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/48658/
https://doi.org/10.1109/IJCNN.2013.6706982
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

On the Convergence of Techniques that Improve Value Iteration

Marek Grześ and Jesse Hoey

Abstract— Prioritisation of Bellman backups or updating
only a small subset of actions represent important techniques
for speeding up planning in MDPs. The recent literature
showed new efficient approaches which exploit these directions.
Backward value iteration and backing up only the best actions
were shown to lead to a significant reduction of the planning
time. This paper conducts a theoretical and empirical analysis of
these techniques and shows new important proofs. In particular,
(1) it identifies weaker requirements for the convergence of
backups based on best actions only, (2) a new method for
evaluation of the Bellman error is shown for the update that
updates one best action once, (3) it presents the theoretical
proof of backward value iteration and establishes required
initialisation, (4) and shows that the default state ordering of
backups in standard value iteration can significantly influence
its performance. Additionally, (5) the existing literature did
not compare these methods, either empirically or analytically,
against policy iteration. The rigorous empirical and novel
theoretical parts of the paper reveal important associations
and allow drawing guidelines on which type of value or policy
iteration is suitable for a given domain. Finally, our chief
message is that standard value iteration can be made far more
efficient by simple modifications shown in the paper.

I. INTRODUCTION AND MOTIVATION

We consider the problem of finding an optimal policy in
discrete time, finite state and action, discounted (by factor
γ < 1) as well as undiscounted (γ = 1) Markov Decision
Processes [1]. The optimal policy, π∗, can be sought by
means of the optimal state, V ∗, or state-action, Q∗, value
function where V ∗(x) is the expected (discounted) reward
when the execution of policy π∗ starts in state, x, or Q∗(x, a)
the analogous reward when the execution starts in state, x,
the first action is a and policy π∗ is followed thereafter.
The best policy can be determined as follows: π∗(x) =
arg maxaQ

∗(x, a).
A large body of research in MDP planning is on algorithms

which iteratively compute estimates V̂ or Q̂ of V ∗ or Q∗ until
the maximum difference between two successive iterations
satisfies the termination condition, i.e., the difference, known
as the Bellman error, is sufficiently small. For example,
value iteration (VI) applies the following operator—defined
as Bellman backup, backup or update for short—to all states
in every iteration:

V̂ ′(x) = max
a

{
Q̂(x, a) = Rx(a) + γ

∑
x′

Tx,a(x′)V̂ (x′)

}
(1)

and stops when the Bellman error satisfies ||V̂ ′ − V̂ || <
ε. In this paper, we adhere to this practical approach and
we assume that planning algorithms stop under the above

Marek Grześ and Jesse Hoey are with the School of Computer Science,
University of Waterloo, Canada (email: {mgrzes, jhoey}@cs.uwaterloo.ca).

condition, and we call the resulting V̂ the ε-optimal value
function. The value function, V π , of the greedy policy, π,
derived from ε-optimal V̂ satisfies ||V π−V ∗|| < 2εγ/(1−γ)
when γ < 1 [2], [3]. Rx(a) is the immediate reward function
and Tx,a(x′) the conditional probability P (x′|x, a) [1].

The basic idea that has been motivating MDP research for
decades already is that the rate of converge of value iteration
depends on how states are ordered for their updates (using
Equation 1 for every state) and in particular some states
can be updated many times before other states are updated
once. A number of directions were considered which include
prioritised sweeping [4], [5], [6], RTDP [7] and its variations
[8], and also methods which exploit the topology of the state
space [9], [10]. It is important to note that some approaches,
such as RTDP, focus on anytime performance and in effect
they may be slower than value iteration in converging through
all states. Bonet and Geffner [11] discuss these properties of
RTDP in detail. RTDP is not considered in our paper because
we investigate algorithms that return polices which do not
depend on the initial state.

The ordering of backups can be crucial for achieving fast
convergence, but it comes at a certain price. For example, pri-
oritised sweeping methods have to maintain a priority queue
whereas backward value iteration has to perform backward
search from the goal state in every iteration. These operations
yield additional computational cost. Thus, other ways of
speeding up the planning process can prove themselves to
be powerful. One such approach is based on reducing the
number of actions updated in every backup of Equation 1. For
example, policy iteration methods [12], [13] take advantage
of this fact. This direction, in a different flavour, was recently
exploited also in [14] where it allowed for an exponential
scale-up of the R-max algorithm which requires frequent
MDP replanning. In our work on general MDP planning, we
found that since ordering may have its cost, action reduction
techniques when applied to standard VI methods can turn
out to be competitive even against sophisticated ordering
methods. For this reason, the goal of this paper is to take
a close, analytical look at these kinds of algorithms, show
novel theoretical findings, deepen understanding and draw
guidelines via rigorous empirical comparisons.

Our contributions can be summarised as follows: (1) it is
shown that updating only best actions is valid under relaxed
conditions compared to those required in our previous work
[14] where their advantage was demonstrated, (2) a new
method for evaluation of the Bellman error is shown for
one of the updates that focuses on best actions, (3) the
proof of backward value iteration that establishes required
initialisation is derived, (4) it is shown that the default
state ordering of backups in standard value iteration can

In Proceedings of the International Joint Conference on Neural Networks (IJCNN) 2013

significantly influence its performance and hence should be
reported in empirical comparisons in the literature; we also
show how a good order can be derived in various conditions
and (5) an empirical analysis is shown that demonstrates
significant improvements on standard value iteration with-
out considering any sophisticated prioritisation methods or
referring to policy iteration.

The paper is organised as follows: Section II reviews
relevant concepts. After that our contributions are presented.
First, Section III proves relaxed requirements for the con-
vergence of backups that do not update all actions of ev-
ery state in one iteration of the value iteration algorithm.
In addition, Section IV shows that the calculation of the
Bellman error for obtaining an ε-optimal value function
has to be modified when one of the investigated types of
updates from Section III is considered. These two sections
are on improving Bellman backups. Next, Section V shows
a new proof that guarantees the correctness of backward
value iteration, and Section VI highlights the importance
of the static order of states in value iteration that competes
with more sophisticated algorithms such as backward value
iteration discussed in Section V. These two sections are
on improving the state order in value iteration. The core
contribution of this paper should be sought in the theoretical
results, however, Section VII shows additional empirical
results that provide a deeper insights into analysed concepts
and show evidence that they are useful. The paper concludes
in the final section.

II. BACKGROUND

In this section, relevant algorithms and definitions are
reviewed.

A. Policy Iteration

The problem associated with Equation 1 is the need to
evaluate all actions in every update. Policy iteration methods
avoid this issue by maintaining a specific policy, π, and al-
ternating between policy evaluation and policy improvement.
The policy evaluation step can be done iteratively according
to the formula:

V̂ ′π(x) = Rx(π(x)) + γ
∑
x′

Tx,π(x)(x
′)V̂ π(x′). (2)

When the number of actions is large, this evaluation is
naturally more efficient than the full backup of Equation 1.
The policy iteration algorithm starts with a policy, π0, (which
has to be proper when stochastic shortest path (SSP) prob-
lems are considered, i.e., the goal state has to be reachable
from any state with probability 1), evaluates the policy via
computing V̂ π where evaluation is carried out until the
Bellman error drops below ε, and then the algorithm tries to
improve the policy and computes the next policy, π′, using
the formula:

π′(x) = arg max
a

{
Rx(a) + γ

∑
x′

Tx,a(x′)V̂ π(x′)

}
. (3)

The algorithm stops when π′ = π.

The above is the original formulation of policy iteration
(PI) which evaluates each policy until ||V̂ ′π− V̂ π|| < ε [12].
It was observed in the literature that the policy evaluation
step does not have to be carried out until the above condition
is satisfied. Instead, in every iteration, k, a specific fixed
amount, mk, of policy evaluation steps can be performed.
This is known as the modified policy iteration (MPI) algo-
rithm [13]. In our comparisons, MPI is used according to the
pseudo-code in [1, pp. 186–187].

B. Review of Relevant Concepts

The following definitions from the existing literature [8]
are considered:

Definition 1: Q is pessimistic if Q(x, a) ≤ Q∗(x, a) and
optimistic if Q(x, a) ≥ Q∗(x, a).

Definition 2: Q is monotone pessimistic if Q(x, a) ≤
Rx(a) +γ

∑
x′ Tx,a(x′)V (x′) and monotone optimistic if

Q(x, a) ≥ Rx(a) + γ
∑
x′ Tx,a(x′)V (x′) for all x and a,

where V (x) = maxaQ(x, a).
Theorem 1: If Q is monotone pessimistic (optimistic),

then Q is a lower (upper) bound on Q∗.
The proof can be found, for example, in [14] and is based on
the intuitive fact that if the monotonicity condition is satisfied
for all states, it will remain satisfied after all future Bellman
backups until convergence to Q∗. The reader should note
that this is a different property than the monotonicity lemma
of the Bellman backup—Lemma 2.1 in [15] or the proof of
Theorem 3 in [7].

III. UPDATING BEST ACTIONS ONLY

The deficiency of backups based on a straightforward
application of Equation 1 is that all actions have to be
backed up. Policy iteration methods avoid this by evaluating
a particular, single policy. In this section, another method is
considered which is based on a simple intuitive idea, that
if all Q-values are optimistic then it is sufficient to keep
updating only best actions. We exploited this idea recently
in [14] where a particular version of this operation was
proposed, named best actions only update (BAO). BAO, as
specified in Algorithm 4 in [14], keeps updating the best
actions of the current state until the Bellman error is smaller
than ε and then moves to the next state in the same iteration.
This approach in conjunction with several MDP planning
algorithms allowed for exponential speed-up of the R-max
algorithm [16] which performs frequent MDP replanning.
An alternative idea to BAO is to update the best action (or
all best actions) of a given state once and move to the next
state immediately after one best action was updated. We call
this simpler approach best action once (BAOnce) and analyse
it jointly with the BAO method.

The proof of the BAO type of updates which was presented
in [14] requires monotone optimistic initialisation according
to Definition 2. We show below a new proof that a more
general optimistic initialisation (Definition 1) is sufficient.

Theorem 2: Planning based on backups which, in every
state, update one or all best actions only once (BAOnce) or
keep updating all best actions until the Bellman error of best

actions is smaller than ε (BAO) converges to the optimal
value function when the initial value function is optimistic.

Proof: First, we use the monotonicity lemma [15,
Lemma 2.1] which shows that V 0 ≥ V ∗ guarantees V k ≥
V ∗ where V k is obtained by applying either Equation 1 or
Equation 2 k times to V 0. The fact that the monotonicity
lemma holds for Equation 2, allows us to consider updates
of individual actions separately, and it shows that V k ≥ V ∗
when in every of k state updates an arbitrary single action
is updated and V 0 ≥ V ∗.

Second, we have to justify that non-best actions do not
have to be updated before currently better actions are up-
dated. Let’s assume that a is a non-best action of a particular
state x. The update of a could make its Q-value become
higher than its current value (this could happen because we
do not require Definition 2 to be satisfied). However, the
above argument showed that since the current Q-value of
that action is definitely higher than its Q∗, there is no reason
in performing the backup which would increase its value
even further. If, on the other hand, the update of a would
make its value lower then there is no reason to update that
action as well, because there is another action already better
than a. Both cases show that the non-best action a does not
have to be updated.

BAOnce was applied in [11], however it was not men-
tioned in that paper explicitly, and one can read this fact
from the pseudo-code of the algorithm which updates only
one best action in every backup of a particular state. Their
approach satisfies our above theorem because RTDP uses
optimistic initial values. Another approach which has similar
flavour to BAOnce updates is found in Sampled RTDP in
[17] where only a subset of actions that are ‘likely’ to be
the best is sampled and updated. Since, the best actions
cannot be identified certainly in that case (the concurrent
MDP with an exponential growth of parallel actions is
considered), Mausam and Weld [17] framed their solution
as an approximate approach. If, for every update, they could
identify the best greedy action, their algorithm would satisfy
the above theorem and would become exact. In [14], we
proposed an extension to this approach that we named BAO
and since it yielded a significant improvement when planning
in R-max, it was important to analyse it deeper in this paper.

Value iteration with BAO and BAOnce updates can be seen
as a special case of modified policy iteration, in which every
backup is performing a continuous evaluation of the policy
that is greedy according to the current Q̂. Full backups of
policy iteration never happen since the policy update step is
implied by selection or memorization of arg maxaQ(x, a).
Thus VI with BAO or BAOnce is like MPI with implicit but
continuous policy updates without the use of full backups,
and continuous evaluation of the greedy policy induced by
Q̂. This indicates that there may be domains where VI with
BAO can work better than policy iteration since the latter
has to do full backups in its policy update step.

V*

Q(a)-Q(a)<ε

a1

Q(a)i
∆Q(a)1 1 3

a2 a3

Fig. 1. The diagram is for one state, s, of the MDP. The horizontal axis
represents actions and the vertical axis Q-values of actions. Current values
of actions are represented with bold lines that end with a circle. The square
point in the value of action a1 represents the new value after the update of
action a1.

IV. PERFORMANCE BOUNDS WHEN UPDATING BEST
ACTIONS ONCE

The previous section has shown that updates that focus on
best actions guarantee convergence when initial values are
optimistic. As noted in the introduction, value iteration or
related methods are usually stopped when the Bellman error
is within arbitrarily small ε. The resulting value function is
named ε-optimal, and the value function, V π , of the greedy
policy, π, derived from such a value function satisfies ||V π−
V ∗|| < 2εγ/(1−γ) when γ < 1 [2], [3]. The problem is that
in order to apply this bound to BAOnce updates, a slightly
modified stopping condition is needed or more precisely a
different way of computing the Bellman error is required.
The problem is explained using Fig. 1. In the figure, initially
Q(a1)−Q(a3) < ε, hence, if a1 is the only updated action
when the considered state, s, is updated in one iteration of
value iteration, then, even though the value of a1 can change
by ∆Q(a1) >> ε, the Bellman error can wrongly indicate
convergence in the state because ∆V (s) = |V (s)−V (s′)| =
|Q(a1) − Q(a3)| < ε. Such an error (that we refer to here
as ∆V because it is computed as |V (s) − V ′(s)|) cannot
be used for stopping the algorithm because as the image
shows the values in state s have not converged after update
of only action a1. This situation requires a modified notion
of an error for updates that update only one action in every
update of the state. In order to address this requirement, we
introduce a new error:

∆V u(s) = max
[
|V (s)− V ′(s)|,max

a
(|Q(s, a)−Q′(s, a)|)

]
(4)

that is an upper bound on ∆V where maxa in the equation
is for those actions that were updated. Since ∆V u is an
upper bound on ∆V , it will cope with problems exposed in
Fig. 1 when only one action of a state is updated in every
iteration of the value iteration algorithm. This analysis is
important from the theoretical point of view as it has never
been investigated according to the best of our knowledge.
It is also required in practice if one wishes to obtain an ε-
optimal value function and not to update all actions in every
state.

We indicate further that this requirement does not concern

BAO updates which can still use error ∆V , because they
update all best actions until the best action does not change
more than ε, hence the problem depicted in Fig. 1 does not
apply.

V. BACKWARD VALUE ITERATION

The prioritization of Bellman backups without the priority
queue was investigated in [9] where backward value iteration
(BVI) was proposed. The BVI algorithm is characterised as
follows: it performs iterations of state updates where, in every
iteration, states are traversed starting from the goal state and
the policy predecessors of every state are visited after the
state is backed up. Each node is visited and updated exactly
once in each iteration.

It was recently shown in [14] that the original BVI
algorithm can fail in computing a correct value function. If,
after any iteration of the BVI algorithm, the policy induced
by the current value function has a loop (which means that
the policy is not proper), the states involved in the loop will
not be updated in any of the future iterations. This will leave
at least the states involved in the loop with incorrect values.
This can happen because states in the loop have only loop
states among their policy successors, and the goal state is not
reachable from the loop using policy actions (the policy is not
proper). The problem is discussed in [14] and the example
is provided which shows how this situation can arise.

The above problem indicates that the following ‘loop
invariant’ [18] for the main loop of BVI should be considered
in the analysis of correctness of this algorithm: after every
iteration, the policy induced by the current value function
is proper. Below we show the BVI proof which identifies
required initialisation of the value function which guarantees
that the above loop invariant is satisfied after every iteration.

Theorem 3: In the backward value iteration algorithm
specified in [9], the policy induced by the current value
function is proper after every iteration when:

1) the initial value function is monotone pessimistic, i.e.,
the conditions of Definition 2 are satisfied

2) the initial policy is proper, i.e., at least one goal state
is in the policy graph of each state

Proof: Since the initial/previous policy is proper, all
states will be updated in the current iteration. We need to
show that the policy remains proper in all states which were
updated within the current iteration and that this will hold
also after remaining states—not updated till now—will be
updated. In this way, the policy will remain proper after all
states are updated. Hence, the proof is by induction on the
number of backups within one iteration. The base case holds
after the backup of the first state because the first state has
the goal state as its successor and the policy action of the
first state has to lead to the goal state since its remaining—
non-goal—successors are initialised pessimistically. Next, we
assume satisfiability after updating k states. In the k + 1
update, state x is updated. The next states, x′, reachable
from x by the new greedy action of x may or may not have
been updated before x. (1) If they have been updated then

we already know that x is on the path to the goal state in
the next iteration because by the induction assumption its
next states are (and will remain) in the policy graph of the
goal state. (2) If any of the next states x′ of x has not been
updated in the current iteration then we have to show that
all such x′ have to have their values (after their forthcoming
update of the same iteration) higher than x, and in this way x
cannot become the only successor of x′. This will be indeed
the case because V (x′) is (monotone) pessimistic and the
forthcoming update can make V (x′) only higher or in the
worst case the update can leave the current value the same in
the current iteration1. The current—monotone pessimistic—
V (x′) has already made x′ to be the successor of x (after the
current k+ 1st update of x), and the current V (x′) is better
(and can become even better after the forthcoming update
of x′) than the value which would be obtained by x′ having
x as its only successor. This means, that x cannot become
a successor of x′ when x′ will be updated, the policy loop
will not appear (i.e., the policy will remain proper), and x
is guaranteed to have the goal state in its policy graph after
update k+ 1 and after updates of its all successors x′ which
still need to be updated in the same iteration. This shows
that the policy is proper for all states which were updated,
will remain proper after other states are updated, and that the
policy remains proper after the iteration ends.

When the loop invariant of Theorem 3 is satisfied, the
BVI algorithm is valid because it implements standard value
iteration where the only extension is a special ordering of
updates, and the satisfiability of the invariant will guarantee
that all states are backed up in each iteration until the
Bellman error meets the convergence criterion on all states.

The monotone pessimistic initialisation required by The-
orem 3 is more challenging to obtain than arbitrary pes-
simistic initialisation. This difficulty was investigated in
detail in [8] where an algorithm to find monotone pessimistic
initialisation was proposed and is named Dijsktra Sweep
Monotone Pessimistic Initialisation (DS-MPI). Since this
algorithm guarantees monotonicity, we suggest that it could
be used in order to obtain an initial value function for
BVI and the combination of these two algorithms will be
used in our empirical evaluation. Another way of satisfying
our new requirements of the BVI algorithm is to use non-
monotone pessimistic initialisation, and apply single-sided
backups [19]. These backups compute a new value which is
then ignored when the current value is higher—monotonicity
is enforced and values can only increase.

The previous sections showed that BAO updates could
be considered a special case of MPI. BVI however does
not have this property when full backups are used. The
current policy is used only for determining the order in
which states are updated. Since the policy implied by the

1We note that this is not the case when initialisation is non-monotone
pessimistic or optimistic. We cannot guarantee in the optimistic case that x′
after its update cannot be a policy predecessor of x, and we cannot exclude
the policy loop—this is exactly what is happening in the example in our
previous work in [14] and our proof agrees with that example.

Q-function is never explicitly improved or checked, BVI has
requirements of proper policies indicated in Theorem 3 and
the corresponding loop invariant. This observation suggests
one improvement to BVI, which could make it applicable
with any initialisation of its value function. The idea is to add,
like in policy iteration, the policy check/improvement step
using a full backup on all states after BVI ends and repeat
BVI when the Bellman error of the policy improvement step
does not satisfy ||V̂ ′ − V̂ || < ε. This algorithm could be
easily proven by observing the fact that the post-BVI error
check is checking all states present in the state space, and
the algorithm will terminate only when ε is satisfied for all
states. The reader should note that such a stopping condition
would be equivalent to the one which is in VI.

VI. THE ORDER OF BACKUPS IN VALUE ITERATION

Algorithms, such as backward value iteration [9], topolog-
ical value iteration [10], prioritised sweeping [4], or heuristic
search value iteration [20] in partially observable MDPs aim
at improving the order of state updates. As long as these
methods explicitly and dynamically adjust the order of state
updates, the importance of another implicit static ordering is
usually left unmentioned in existing empirical comparisons
of these kinds of algorithms. In this paper, we bring to the at-
tention of the community the fact that when standard Gauss-
Seidel value iteration (GSVI) is applied, there exists also
some default (i.e., implied by particular implementation),
static state ordering that, when easily adjusted, can have
a huge impact on the speed of convergence of GSVI. We
indicate that in the case of domains with a terminating goal
state, the states of the domain can be ordered beforehand by
applying breath-first search (BFS) from the goal state. Intu-
itively, states closer to the goal state should be updated first
and the breath-first order is particularly convenient because
it can additionally deal—to some extend—with unintended
stochastic outcomes of actions (i.e., outcomes that do not
lead towards the goal state). The order in which states are
visited during BFS represents a static order of updates that,
as shown in our experiments below, is very competitive
against more sophisticated dynamic ordering methods that
are time consuming because they require additional resources
to adjust the order dynamically.

VII. EXPERIMENTAL RESULTS

Having presented our theoretical results, we now show
experiments on five domains that have different properties:
the first two are discounted with two actions in every state,
the third one has many actions, the fourth one has interesting
realistic properties that allow for determining a better upper
bound on initial values of states, and the fifth one represents a
class of stochastic shortest path problems where an informed
admissible bound can be easily computed. The purpose of
experimental results is to demonstrate the significance of
those concepts that were investigated theoretically but also
to give methodological guidance on how these kinds of
algorithms could be compared in the literature in the future.

The following algorithms are considered:

Nr Time [ms] Backups Algorithm
1 6562.8 ± 19.4 7594965.0 ± 9269 VI-V(0)-random
2 4814.6 ± 14.4 6324696.0 ± 0 VI-V(0)-BFS
3 1855.2 ± 6.7 2073292.2 ± 5330 VI-V(1)-random
4 1331.8 ± 5.1 1687770.0 ± 0 VI-V(1)-BFS
5 769.0 ± 1.7 942630.0 ± 0 VI-V(1)-BAO-BFS
6 6581.5 ± 16.5 5542988.0 ± 0 PS-V(0)
7 1036.8 ± 1.0 871662.0 ± 0 PS-V(1)
8 2913.9 ± 11.9 3407518.8 ± 11859 MPI(15)-V(0)-BFS
9 1135.2 ± 13.0 1073066.4 ± 11063 MPI(5)-V(1)-BFS
10 8425.1 ± 14.6 6269990.0 ± 0 BVI-V(0)-SS
11 1406.3 ± 444.7 942374 ± 298004.8 LBVI-V(1)-BAO

TABLE I
RESULTS ON THE MOUNTAIN CAR.

• VI: standard Gauss-Seidel value iteration [21]
• MPI(k): modified policy iteration [13] where k is the

constant number of iterations in policy evaluation
• PI: policy iteration [12]
• PS: prioritised sweeping with priority based on the

Bellman error [4]
• BVI-SS: BVI with single sided updates [19]
• BVI-DS-MPI: BVI with monotone pessimistic initiali-

sation using DS-MPI [8]
• BVI-PC: BVI with policy check
• LBVI: BVI with backward search to all predecessors as

introduced in [14]
If BAO or BAOnce are applicable, they are used as one of
the options and added to the name of the algorithm in the
results. V (i) and Vmax mean that the value function of a
particular algorithm was initialised with i or Rmax/(1− γ)
correspondingly. All flavours of BVI are applicable exclu-
sively to domains with a terminating state. The fact whether
the domain is discounted or not does not matter as long as
there is a goal state or states from which BVI can start. When
applicable, BFS state ordering was evaluated and compared
against random ordering, and random ordering used when
BFS did not apply. Each domain was evaluated 10 times,
for every randomly generated domain 10 instances were
generated and solved, the precision ε was 10−5, and the
standard error of the mean (SEM) is shown in the results
which display the planing time and the number of performed
backups. In all cases, the final result was verified whether the
Bellman error indeed satisfied ε = 10−5 when the algorithm
terminated. For all algorithms, either the result with the best
parameter configuration is presented, or several results are
shown when the influence of different factors is investigated.
All algorithms were implemented in C++ and executed on
the same machine.

One could argue that some of the domains evaluated
below are relatively small. We clarify that all algorithms
are thoroughly evaluated on the same set of domains and
the difference between algorithms would be comparable and
particular values scaled up appropriately when compared on
larger domains with the same properties. We believe that this
fact does not diminish the importance of properties that we
show in our comparisons.

The first set of experiments is on the mountain car
(MCar) and single arm pendulum (SAP) where the exact

Nr Time [ms] Backups Algorithm
1 27924.0 ± 57.1 26584000.0 ± 29333 VI-V(0)-random
2 7842.0 ± 22.7 9360000.0 ± 0 VI-V(0)-BFS
3 33366.2 ± 105.5 30992000.0 ± 48000 VI-V(1)-random
4 10059.0 ± 21.4 11680000.0 ± 0 VI-V(1)-BFS
5 10486.6 ± 25.7 12690283.0 ± 0 VI-V(1)-BAO-BFS
6 26273.5 ± 83.4 18218230.0 ± 0 PS-V(0)
7 18684.2 ± 41.2 12855608.0 ± 0 PS-V(1)
8 6256.7 ± 20.8 5260000.0 ± 13663 MPI(5)-V(0)-BFS
9 6867.2 ± 21.3 4719884.0 ± 0 BVI-V(0)-SS
10 13061.3 ± 15.8 9359768.0 ± 0 LBVI-V(0)
11 18012.9 ± 49.1 12689973.0 ± 0 LBVI-V(1)-BAO

TABLE II
RESULTS ON THE SINGLE ARM PENDULUM.

implementation was taken from the source code accompany-
ing publication of [22]. For the description of these domains
the reader is referred to Sections 3.1 in [22]. We used the
discretisation into 100×100 states in MCar, and 200×200 in
SAP. γ was set to 0.99. Both tasks have two actions in every
state, and the reward of 1 only upon entering the goal state,
hence Vmin = 0 and Vmax = 1. The detailed evaluation
is in Tables I and II, and we discuss the key insights: (1)
the comparison of lines 1 and 2 in both tables shows that
default/static state ordering has an important influence on the
performance of VI and significant savings can be achieved
with the use of the BFS order as we indicated in Section VI.
Additionally in Table II, VI with random order (line 1) is
slower than PS (lines 6 and 7), but is faster than PS when
the BFS state order is used in line 2 (NB: the time to
initialise the BFS order before VI starts is counted). (2)
the comparison of line 1 against line 3 or line 2 against
line 4 in both tables shows the impact of the initialisation
on performance of VI. Specifically, initialisation with 0
increases the planning time of VI over 3.5 times in Table I.
The impact in Table II is reversed where initialisation with 0
yields faster planning. (3) the previous dependency extends to
all algorithms within each table, which means that in Table I
algorithms initialised with 1 are faster, whereas in Table II
initialisation with 0 is better. This explains the performance
of BVI algorithms because LBVI-BAO requires initialisation
with a value of 1 (optimistic), hence it is relatively good
in Table I and BVI requires initialisation with a value of
0 (pessimistic), hence it is very good in Table II. (4) the
two previous comments explain why BAO was the best on
the MCar in Table I, and not the best one in Table II. This
is because optimistic initialisation is very good in MCar
and pessimistic is better in SAP whereas BAO cannot use
pessimistic initialisation. (5) the comparison of lines 5 and
11 in Table II confirms our initial hypothesis that algorithms
such as BVI or PS may spend a significant amount of time
on arranging the prioritisation/search through the state space.
LBVI-BAO performs almost exactly the same number of
backups as VI-BAO however the time of LBVI is two times
longer than that of VI-BAO because VI has a fixed, BFS
in that case, order of states, determined only once before
planning starts, and can focus on doing actual updates. VI
static state ordering was critical for this improvement. This
is an empirical evidence of our claim in Section VI and also

Nr Time [ms] Backups Algorithm
1 3545.9 ± 147.0 7526000.0 ± 310506 VI-V(0)
2 3024.4 ± 127.4 6305000.0 ± 255679 VI-Vmax
3 170.9 ± 4.6 172349.5 ± 5251 VI-Vmax-BAO
4 166.3 ± 2.7 127223.5 ± 1900 VI-Vmax-BAOnce
5 6958.2 ± 142.7 7819750.0 ± 155515 PS-Vmax
6 1963.9 ± 72.2 96840.0 ± 3460 MPI(2)-V(0)
7 431.8 ± 14.2 98630.0 ± 3279 MPI(10)-V(0)
8 250.6 ± 6.8 102980.0 ± 2862 MPI(20)-V(0)
9 101.1 ± 4.8 209310.0 ± 10885 MPI(500)-V(0)
10 111.4 ± 5.4 251550.0 ± 12444 PI-V(0)

TABLE III
RESULTS ON NON-TERMINATING MDPS AND γ = 0.99

shows that the literature should report how states are ordered
in standard value iteration in order to make fair comparisons
against more sophisticated methods.

Since the savings due to policy iteration or BAO updates
can be more evident when the number of actions is high, in
the second experiment, the methodology from [1] was used
and non-terminating MDPs with 100 states and 100 actions in
each state were randomly generated. Each action could lead
to three randomly selected states with a probability sampled
from a uniform distribution. Rewards were sampled from a
uniform distribution [1-100]. The result is in Table III. The
key observation is that value iteration enhanced with BAO
updates (line 3 in Table III) can perform almost as well as
policy iteration methods, which by definition work well on
domains with many actions, with the best tuning of their
parameters (the importance of this feature of VI is stressed in
conclusion). There is no terminating state in these discounted
MDPs so prioritised sweeping had to assign initially non-zero
priority to all states as required in [23] and its performance
turned out to be weak. Also the main gain here is achieved
by selecting good actions to update instead of prioritising
states.

Car replacement is a scenario with realistic properties
where many actions are required (there are 41 states and 41
actions in this domain). Results are in Table IV and are for
γ = 0.97 which is is taken from [12] where it is justified
as having a real meaning of around 12% annual interest
rate. Rewards have a high variance in this domain, but this
time there is another property which strongly influences the
performance of evaluated algorithms. Specifically, a short
horizon policy is very sub-optimal when compared with
a long horizon policy, because actions which yield high
instantaneous reward are very sub-optimal in the long term
(selling a good car now and buying a very cheap one may
result in getting money now but is not good in the long term).
Hence, BAO first learns actions which seem promising in
short term and then has to unlearn them. Similar problems
are encountered by MPI. Specifically, when k is small, MPI
is slower than with higher values of k. With sufficiently
large k, policies are evaluated ‘almost’ exactly, and this helps
avoiding short horizon policies. This also explains why MPI
with lowest k is even slower than BAO because MPI applies
full backups during policy improvement. An explanation is
required why V (0) could be used to initialise the value

Nr Time [ms] Backups Algorithm
1 126.3 ± 6.2 500601.8 ± 23357 VI-V (0)
2 112.4 ± 0.9 172302.0 ± 1095 VI-BAO-Vmax

3 47.5 ± 0.7 78500.1 ± 1172 VI-BAO-V (0)

4 25.8 ± 0.5 46239.7 ± 998 VI-BAO-V +

5 108.7 ± 0.6 158153.4 ± 284 VI-BAOnce-Vmax

6 42.5 ± 0.5 63849.3 ± 439 VI-BAOnce-V (0)

7 23.4 ± 0.3 36588.4 ± 412 VI-BAOnce-V +

8 245.8 ± 2.0 590875.6 ± 2190 PS-V (0)
9 66.9 ± 1.8 14645.2 ± 348 MPI(2)-Vmin

10 51.3 ± 1.9 11184.8 ± 420 MPI(2)-V (0)

11 41.0 ± 1.4 9003.6 ± 313 MPI(2)-V −

12 30.7 ± 1.0 15420.1 ± 483 MPI(5)-Vmin

13 22.0 ± 1.0 11275.0 ± 521 MPI(5)-V (0)

14 20.4 ± 0.9 10541.1 ± 423 MPI(5)-V −

15 16.9 ± 0.4 15379.1 ± 388 MPI(10)-Vmin

16 12.7 ± 0.3 11562.0 ± 257 MPI(10)-V (0)

17 13.0 ± 0.6 11586.6 ± 409 MPI(10)-V −

18 13.4 ± 0.2 16465.6 ± 226 MPI(15)-Vmin

19 10.5 ± 0.3 12509.1 ± 328 MPI(15)-V (0)

20 9.9 ± 0.5 12349.2 ± 579 MPI(15)-V −

21 11.2 ± 0.4 16145.8 ± 448 MPI(20)-Vmin

22 9.2 ± 0.3 13763.7 ± 470 MPI(20)-V (0)

23 9.2 ± 0.3 13771.9 ± 382 MPI(20)-V −

24 19.7 ± 0.5 74013.2 ± 2712 MPI(500)-Vmin

25 19.3 ± 0.5 72832.4 ± 2140 MPI(500)-V (0)

26 18.5 ± 0.3 70044.4 ± 1477 MPI(500)-V −

27 20.5 ± 0.6 77982.0 ± 2065 PI-Vmin

28 21.1 ± 0.7 79318.6 ± 2131 PI-V (0)

29 19.4 ± 0.6 74669.2 ± 2402 PI-V −

TABLE IV
RESULTS ON CAR REPLACEMENT

function in BAO. This is the result of the observation that
in this domain there is never a positive long term reward
because the possession of a car always incurs costs. With this
knowledge, BAO can be competitive even on this challenging
domain. If the bound can be improved, BAO gains further
speed-up. Thus, V (0), Vmax, and V + yields optimistic
initialisation required by BAO.

Admissible, i.e., optimistic heuristics are the main driving
force of informed search methods [24]. In some cases,
such heuristics which upper bound V ∗ can be identified
in MDP domains. The last experiment aims at evaluating
considered algorithms when such an admissible heuristic
is available. A 50× 50 maze was used where each position
is blocked with probability 0.15, there is one terminating
state, and there are 8 actions in every state. An action has its
expected effect with probability 0.8 and slips to one of the 4
adjacent transitions with the remaining mass of probability
uniformly distributed among those transitions. All actions
yield reward of -1 and γ is 1, hence this is a standard
stochastic shortest path problem. The Euclidean distance to
the goal was used to derive an informed upper bound on
V ∗, and, when used, V (Eucl) was added to the name of the
algorithm in results in Table V. The key observations: (1)
again, standard VI improves dramatically when BFS instead
of random state ordering is used together with informed
Euclidean initialisation (line 4 in Table V). (2) enhanced with
BAO updates, VI was the best among all algorithms (line 5).
NB: Euclidean initialisation is valid with BAO updates due to
Theorem 2. (3) Prioritized sweeping, for which initialisation
-100 (a lower bound on V ∗) was the best, was worse than
all other algorithms on this domain. (4) MPI did not beat VI

Nr Time [ms] Backups Algorithm
1 889.8 ± 2.1 1186660.8 ± 2254 VI-V(0)-random
2 862.6 ± 1.8 1183280.0 ± 0 VI-V(0)-BFS
3 648.9 ± 3.9 867175.2 ± 3608 VI-V(Eucl)-random
4 323.8 ± 3.8 422600.0 ± 0 VI-V(Eucl)-BFS
5 163.1 ± 1.2 202274.0 ± 0 VI-V(Eucl)-BAO-BFS
6 295.1 ± 0.5 345545.0 ± 0 VI-V(Eucl)-BAOnce
7 1493.6 ± 4.0 1529072.0 ± 0 PS-V(-100)
8 211.6 ± 0.5 69729.0 ± 0 MPI(2)-V(Eucl)-BFS
9 200.5 ± 0.5 107763.0 ± 0 MPI(5)-V(Eucl)-BFS
10 228.5 ± 0.3 175379.0 ± 0 MPI(10)-V(Eucl)-BFS
11 405.9 ± 0.8 464437.4 ± 282 MPI(100)-V(Eucl)-BFS
12 869.2 ± 1.4 1289352.6 ± 1035 MPI(500)-V(Eucl)-BFS
13 565.0 ± 1.1 456200.0 ± 0 BVI-V(-100)-SS
14 611.5 ± 0.9 544074.0 ± 0 BVI-V(DS-MPI)
15 819.4 ± 1.4 680856.0 ± 0 BVIPC-V(-100)
16 528.3 ± 2.1 422408.0 ± 0 LBVI-V(Eucl)
17 366.8 ± 2.0 202122.0 ± 0 LBVI-V(Eucl)-BAO

TABLE V
RESULTS ON THE NAVIGATION MAZE

with BAO updates as well, even with its best combination of
parameters and initialisation. (5) BVI methods were better
than the most naı̈ve VI, but lost against VI enhanced with
BAO updates as well as with BFS ordering and Euclidean
initialisation.

An important lesson learned form our experiments is that
the state ordering of VI (MPI as well) should always be
reported in evaluations that involve this algorithm. As shown
in our experiments, it would be easy to put VI in a dis-
advantaged position through specific state orderings during
planning. Our experiments show that more intelligent, such
as BFS, state orderings reduce the gap between standard VI
and methods such as prioritised sweeping or backward value
iteration. Also the gap between MPI and VI is significantly
reduced on a challenging case with many actions.

BAOnce was reported only in Table III (line 4) and
Table IV because this was the only experiment where it
outperformed BAO. In all other experiments, BAO was better.
A general observation (also from experiments not shown in
the paper) was that BAO is more robust against different
domain properties. This can explain why BAOnce, even
though found in the earlier literature, never displayed more
pronounced improvements. BAO exploits the advantages of
this idea further, which, for general MDPs, were shown in
our experiments.

VIII. CONCLUSION

The research presented in this paper had shown that
standard value iteration is able to perform much faster with
better static state ordering and more efficient backups. The
specific contributions are:

• We proved that updates of only best actions can be
applied when initialisation is optimistic, which is easier
to meet than monotone optimistic initialisation, and
allows using bounds derived from admissible heuristics
which displayed significant speed-up in our experiments

• We showed that in order to obtain an ε-optimal value
function, the error evaluation of updates that update best
actions only once has to be modified

• We identified the loop invariant of the main loop of
the BVI algorithm and derived the proof and the initial
conditions which guarantee that the BVI algorithm will
converge

• We argued that state ordering should be reported in
empirical evaluations of value and policy iteration al-
gorithms, especially when they are compared against
prioritisation methods, and we showed empirical evi-
dence that better ordering can make value iteration very
competitive or better than more sophisticated methods
such as prioritised sweeping or backward value itera-
tion. We proposed the BFS static state ordering in VI
and showed its advantage empirically. This creates an
important methodological guidance

• The initialisation of the value function was shown
to be another factor which improves performance of
standard algorithms, and (admissible) heuristics should
be used in the same vain as in informed heuristic search.
This observation has again methodological significance,
because the initialisation can speed up standard value
iteration and this fact should be considered in empirical
evaluations

• The importance of BAO updates was shown in general
MDP planning, whereas the existing work has shown
results in reinforcement learning which is based on
constant replanning of a slightly changing MDP

Many similar MDPs are usually solved when inverse re-
inforcement learning (IRL) is considered [25]. By arranging
the search process of the IRL algorithm in a special way
(i.e., preserving optimism), BAO updates could yield very
significant speed-up for the same reason as in R-max [14].
Our theoretical analysis in this paper increases understanding
of such improvements.

Policy iteration in a distributed fashion is still a challenge
[26] whereas VI (also with BAO updates) easily satisfies
requirements for convergence when implemented in a parallel
or distributed architecture [27], yet yielding performance
competitive with policy iteration methods as was shown
in our comparisons even in a challenging case with many
actions.

Planning in MDPs can be improved using another orthogo-
nal approach that eliminates sub-optimal actions using lower
and upper bounds or other metrics computed for the purpose
of eliminating actions [1], [28]. One disadvantage of those
action elimination procedures is that (in most cases) they
require two copies of the value function. On the positive
side, they can permanently eliminate sub-optimal actions. In
the case, when such methods need to maintain an upper
bound, our BAO backup could lead to improvements of
those methods and it would be interesting to investigate this
interrelationship in future work.

ACKNOWLEDGMENT

This work was supported by the Ontario Ministry of
Research and Innovation, Toronto Rehabilitation Institute and
the Alzheimer’s Association grant ETAC-10-173237.

REFERENCES

[1] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., 1994.

[2] R. Williams and L. C. Baird, “Tight performance bounds on greedy
policies based on imperfect value functions,” Northeasterm University,
Tech. Rep. NU-CCS-93-14, 1993.

[3] S. Singh and R. Yee, “An upper bound on the loss from approximate
optimal-value functions,” Machine Learning, vol. 16, no. 3, pp. 227–
233, 1994.

[4] A. W. Moore and C. G. Atkenson, “Prioritized sweeping: Reinforce-
ment learning with less data and less time,” Machine Learning, vol. 13,
pp. 103–130, 1993.

[5] D. Andre, N. Friedman, and R. Parr, “Generalized prioritized sweep-
ing,” in Proc. of NIPS, 1997, pp. 1001–1007.

[6] H. B. McMahan and G. J. Gordon, “Fast exact planning in markov
decision processes,” in Proc. of ICAPS, 2005.

[7] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to act using
real-time dynamic programming,” Artificial Intelligence, vol. 72, no.
1-2, pp. 81–138, 1995.

[8] H. B. McMahan, M. Likhachev, and G. J. Gordon, “Bounded
real-time dynamic programming: RTDP with monotone upper bounds
and performance guarantees,” in Proc. of ICML, 2005, pp. 569–576.
[Online]. Available: http://doi.acm.org/10.1145/1102351.1102423

[9] P. Dai and E. A. Hansen, “Prioritizing Bellman backups without a
priority queue,” in Proc. of ICAPS, 2007.

[10] P. Dai and J. Goldsmith, “Topological value iteration algorithm for
markov decision processes,” in Proc. of IJCAI, 2007, pp. 1860–1865.

[11] B. Bonet and H. Geffner, “Labeled RTDP: Improving the convergence
of real-time dynamic programming,” in Proc. of ICAPS-03, 2003, pp.
12–21.

[12] R. A. Howard, Dynamic Programming and Markov Processes. Cam-
bridge: MIT Press, 1960.

[13] M. L. Puterman and M. C. Shin, “Modified policy iteration algorithms
for discounted Markov decision problems,” Management Science,
vol. 24, pp. 1127–1137, 1978.

[14] M. Grześ and J. Hoey, “Efficient planning in R-max,” in Proc. of
AAMAS, 2011.

[15] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[16] R. I. Brafman and M. Tennenholtz, “R-max - a general polynomial
time algorithm for near-optimal reinforcement learning,” JMLR, vol. 3,
pp. 213–231, 2002.

[17] Mausam and D. S. Weld, “Solving concurrent markov decision pro-
cesses,” in Proc. of AAAI, 2004.

[18] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[19] S. Singh and V. Gullapalli, “Asynchronous modified policy iteration
with single-sided updates,” University of Massachusetts, Tech. Rep.,
1993.

[20] T. Smith and R. G. Simmons, “Heuristic search value iteration for
POMDPs,” in Proc. of UAI, 2004.

[21] D. P. Bertsekas, Dynamic Programming and Optimal Control (2 Vol
Set). Athena Scientific, 3rd ed., 2007.

[22] D. Wingate and K. D. Seppi, “Prioritization methods for accelerating
MDP solvers,” Journal of Machine Learning Research, vol. 6, pp.
851–881, 2005.

[23] L. Li and M. L. Littman, “Priorioritized sweeping converges to the
optimal value function,” Rutgers University, Tech. Rep., 2008.

[24] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach
(2nd Edition). Prentice Hall, 2002.

[25] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proc. of ICML, 2000, pp. 663–670.

[26] D. P. Bertsekas and H. Yu, “Distributed asynchronous policy itera-
tion in dynamic programming,” in Proc. of Allerton Conference on
Communication,Control, and Computing, 2010.

[27] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed compu-
tation: numerical methods. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

[28] N. M. A. Jaber, “Accelerating successive approximation algorithm via
action elimination,” Ph.D. dissertation, University of Toronto, 2008.

