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THE INVARIANTS OF THE SECOND SYMMETRIC

POWER REPRESENTATION OF SL2(Fq)

ASHLEY HOBSON AND R. JAMES SHANK

Abstract. For a prime p > 2 and q = pn, we compute a finite
generating set for the SL2(Fq)-invariants of the second symmetric
power representation, showing the invariants are a hypersurface
and the field of fractions is a purely transcendental extension of the
coefficient field. As an intermediate result, we show the invariants
of the Sylow p-subgroups are also hypersurfaces.

1. Introduction

Consider the generic binary quadratic form over a field F of charac-
teristic not 2:

a0X
2 + 2a1XY + a2Y

2.

Identifying

X =

[

0
1

]

and Y =

[

1
0

]

induces a left action of the general linear group GL2(F) on the second
symmetric power

V := Span
F
[ Y 2, 2XY,X2 ]

and a right action on the dual V ∗ = Span
F
[a2, a1, a0]. For example

σc =

[

1 c
0 1

]

acts on V ∗ as





1 2c c2

0 1 c
0 0 1





with a2 = [1 0 0], a1 = [0 1 0], a0 = [0 0 1]. The action on V ∗ extends to
an action by algebra automorphisms on the symmetric algebra F[V ] =
F[a2, a1, a0]. For any subgroup G ≤ GL2(F), we denote the subring of
invariant polynomials by F[V ]G.
Throughout we assume that F has characteristic p > 2, q = pn and

Fq ⊆ F. Thus SL2(Fq) ≤ GL2(F). Our primary goal is to describe

Date: February 24, 2010.
1991 Mathematics Subject Classification. 13A50.
The research of the first author was supported by grants from EPSRC.

1

http://uk.arxiv.org/abs/1002.4318v1
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F[V ]SL2(Fq). Our work generalises and is inspired by L.E. Dickson’s
solution to the q = p case [4, Lecture II, §8-9].
Let P denote the subgroup {σc | c ∈ Fq}. P is a Sylow p-subgroup

of SL2(Fq). The orbit products

β :=
∏

a1P =
∏

c∈Fq

(a1 + ca0) = aq1 − aq−1
0 a1

and, for k ∈ Fq,

γk :=
∏

(a2 − ka0)P =
∏

c∈Fq

(

a2 + 2ca1 + (c2 − k)a0
)

are clearly P -invariant. The discriminant, ∆ := a21 − a0a2, is a well-
known SL2(Fq)-invariant. In Section 2, we show that F[V ]P is the
hypersurface generated by a0,∆, β, γ0 subject to the relation

β2 = aq0γ0 +∆(∆
q−1

2 − aq−1
0 )2.

Let Q denote the set of quadratic residues in Fq and let Q denote
the set of quadratic nonresidues, i.e., if ω is a generator for F

∗
q, then

Q consists of the even powers of ω and Q consists of the odd powers.
Define

Γ :=
∏

k∈Q

γk,

B := β
∏

k∈Q

γk,

J := a0γ0.

In Section 3, we show that F[V ]SL2(Fq) is the hypersurface generated by
∆, J,Γ, B subject to a relation of the form

B2 = ∆qΓ2 + JΦ(∆, J,Γ)

for some polynomial Φ.
Throughout we use the graded reverse lexicographic (grevlex) order

with a0 < a1 < a2. We will see that the given generating sets for F[V ]P

and F[V ]SL2(Fq) are SAGBI bases with respect to this order. A SAGBI
basis is the Subalgebra Analogue of a Gröbner Basis for Ideals. The
concept was introduced independently by Robbiano-Sweedler [9] and
Kapur-Madlener [6]; a useful reference is Chapter 11 of Sturmfels [10]
(who uses the term canonical subalgebra basis). For background mate-
rial on the invariant theory of finite groups, see Benson [1], Derksen-
Kemper [3] or Neusel-Smith [8].
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2. P -invariants

For ω ∈ F
∗
q, the diagonal matrix

ρω =

[

ω 0
0 1

]

acts on V ∗ as





ω2 0 0
0 ω 0
0 0 1



 .

This motivates the definition of a multiplicative weight function on
monomials by

wt(ai) = i.

Thus for any monomial β, we have (β)ρω = ωwt(β)β. Since ωq−1 = 1,
it is convenient to assume that the weight function takes values in
Z/(q − 1)Z.

Lemma 2.1. If f is an isobaric polynomial of weight λ and |fP | = |P |
(i.e., the stabiliser subgroup of f is trivial), then

∏

fP is isobaric of
weight λ.

Proof. Note that P is normal in the subgroup of upper-triangular ma-
trices. Thus, for ω ∈ F

∗
q,

(

∏

fP
)

ρω =
∏

σ∈P

fσρω =
∏

σ′∈P

fρωσ
′

=
∏

σ′∈P

ωλfσ′ = ωλ
∏

fP.

Thus
∏

fP is isobaric of weight λ. �

It is clear that ∆ is isobaric of weight 2. From the lemma, γ0 is
isobaric of weight 2 and β is isobaric of weight 1. Thus our proposed
generators for F[V ]P are all isobaric.

Lemma 2.2. The P -invariants a0,∆, β and γ0 satisfy the relation

β2 = aq0γ0 +∆(∆
q−1

2 − aq−1
0 )2.

Proof. Define ζ = aq0γ0+∆(∆
q−1

2 −aq−1
0 )2. We first show that ζ |a1=0 =

0, which implies a1 divides ζ .
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Substituting a1 = 0 in γ0 gives

γ0|a1=0 =
∏

t∈Fq

(t2a0 + a2) = a2
∏

t∈F∗

q

(

t2a0 + a2
)

= a2a
q−1
0

∏

t∈F∗

q

(

t2 +
a2
a0

)

= a2a
q−1
0

∏

s∈Q

(

−a2
a0

− s

)2

= a2a
q−1
0

(

(

−a2
a0

)
q−1

2

− 1

)2

= a2

(

(−a2)
q−1

2 − a
q−1

2

0

)2

.

Thus

ζ |a1=0 = aq0a2

(

(−a2)
q−1

2 − a
q−1

2

0

)2

+(−a2a0)
(

(−a0a2)
q−1

2 − aq−1
0

)2

= 0.

Therefore a1 divides ζ . However, ζ is isobaric of weight 2 and a1 is the
only variable of odd weight. Hence a21 divides ζ .
Suppose a1 divides f ∈ F[V ]P . Then a1σc = a1+ca0 divides f = fσc

for every c ∈ Fq. Therefore β =
∏

a1P divides f . Since a21 divides ζ ,
we see that β2 divides ζ . By comparing degrees and lead terms, we
conclude that β2 = ζ , as required. �

Lemma 2.3. F(V )P = F(a0, β,∆).

Proof. It is easy to verify that F[a0, a1]
P = F[a0, β] (see, for example, [3,

Theorem 3.7.5]). Since ∆ has degree 1 as a polynomial in a2, applying
[2, Theorem 2.4] gives F(V )P = F(a0, a1)

P (∆) = F(a0, β,∆) (see also
[5]). �

Lemma 2.4. {a0,∆, γ0} is a homogeneous system of parameters.

Proof. Using grevlex with a0 < a1 < a2, the lead monomials are a0, a
2
1

and aq2. Thus (a0,∆, γ0)F[V ] is a zero-dimensional ideal and {a0,∆, γ0}
is a homogeneous system of parameters. �

Theorem 2.5. B := {a0,∆, β, γ0} is a generating set, in fact a SAGBI
basis, for F[V ]P .

Proof. Let R denote the algebra generated by B. Using grevlex with
a0 < a1 < a2, there is a single non-trivial tête-à-tête, β2 − ∆q, which,
using the relation given in Lemma 2.2, subducts to 0. Thus B is a
SAGBI basis for R.
Using Lemmas 2.3 and 2.4, F[V ]P is an integral extension of R with

the same field of fractions. Thus to show R = F[V ]P , it is sufficient
to show that R is normal, i.e., integrally closed in its field of fractions.
Unique factorisation domains are normal; therefore it is sufficient to
show R is a UFD.
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Using the relation, we see thatR[a−1
0 ] = F[a0, a

−1
0 ][∆, β], with a0,∆, β

algebraically independent. Thus R[a−1
0 ] is a UFD. It follows from [7,

Theorem 20.2] (or [1, Lemma 6.3.1]) that if a0R is a prime ideal, R is
a UFD.
Suppose f, g ∈ R with fg ∈ a0R. Since R is graded, we may assume

f and g are homogeneous. Clearly a0F[V ] is prime. Therefore, without
loss of generality, we may assume f ∈ a0F[V ]. Hence the lead monomial
LM(f) is divisible by a0. B is a SAGBI basis for R and f ∈ R. Thus f
subducts to 0. Using the grevlex order with a0 small, every monomial
of degree deg(f), less than LM(f), is divisible by a0. Thus at each
stage of the subduction, there is a factor of a0. Hence f ∈ a0R and
a0R is prime. �

3. SL2(Fq)-invariants

The group element

τ =

[

0 1
−1 0

]

acts on V ∗ as





0 0 1
0 −1 0
1 0 0



 .

It is well-known and easily verified that {τ} ∪ P generates SL2(Fq).
Thus to show that f ∈ F[V ]P is SL2(Fq)-invariant, it is sufficient to
show (f)τ = f .

Lemma 3.1. J , Γ and B are SL2(Fq)-invariant.

Proof. By construction, J , Γ and B are P -invariant. A relatively
straightforward calculation shows that each of these polynomials is
fixed by τ and is therefore SL2(Fq)-invariant. It is perhaps more in-
structive to note that SL2(Fq) permutes the lines in V ∗ and that each
of J , Γ, and B is a projective orbit product. For example, the stabiliser
of the line a0Fq has order q(q − 1) and J is a product of q + 1 linear
factors, one taken from each line in the orbit of a0Fq. Similarly, the
stabiliser of a1F has order 2(q − 1) and B is the product of q(q + 1)/2
linear factors, each representing a line in the orbit. The linear factors
of Γ are of the form a2 + 2ca1 + (c2 − k)a0 for c ∈ Fq and k ∈ Q.
Applying τ gives

(a2 + 2ca1 + (c2 − k)a0)τ = a0 − 2ca1 + (c2 − k)a2

= (c2 − k)

(

a2 + 2a1
−c

c2 − k
+ a0

1

c2 − k

)

.

However
1

c2 − k
=

(

−c

c2 − k

)2

−
k

(c2 − k)2
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with k/(c2 − k)2 ∈ Q. Thus τ permutes the lines in V ∗ corresponding
to the linear factors of Γ.
Since SL2(Fq) acts on J , Γ and B by permuting the linear factors,

up to scalar multiplication, the action on each of these polynomials
is by a multiplicative character. However, for q 6∈ {2, 3}, SL2(Fq) is
simple (see, for example [11, 4.5]); hence the character is trivial and
the polynomials are invariant. The case q = 2 is inconsistent with our
hypothesis char(F) > 2. The q = 3 case was covered by Dickson’s work
[4] (and can be easily verified by computer). �

Lemma 3.2. {∆, J,Γ} is a homogeneous system of parameters for
F[V ]SL2(Fq).

Proof. Without loss of generality, we may assume F is algebraically
closed. We will show that the variety associated to (∆, J,Γ)F[V ], say
V, consists of the zero vector.
Suppose v ∈ V. Since J(v) = 0, there exits g ∈ SL2(Fq) such

that a0g(v) = 0. Replacing v with g(v) if necessary, we may assume

a0(v) = 0. Thus ∆(v) = a21(v), giving a1(v) = 0. Since Γ ∈ a
q(q−1)/2
2 +

(a0, a1)F[V ], we have Γ(v) = a
q(q−1)/2
2 (v), giving a2(v) = 0. �

Define A := F[∆, J,Γ].

Corollary 3.3. F[V ]SL2(Fq) is a free A-module of rank 2.

Proof. It is well known that the ring of invariants of a 3 dimensional
representation is Cohen-Macaulay (see [3, 3.4.2] or [8, 5.6.10]), i.e., a
free module over any homogeneous system of parameters (hsop). For a
faithful action, the rank is given by the order of the group divided by
the product of the degrees of the elements in the hsop (see [3, 3.7.1] or
[8, 5.5.8]). SL2(Fq) acts on V with kernel generated by −I and

deg(∆)deg(J)deg(Γ) = 2(q + 1)
q(q − 1)

2
= |SL2(Fq)|.

Thus F[V ]SL2(Fq) has rank 2 over A. �

Theorem 3.4. F[V ]SL2(Fq) is generated by ∆, J , Γ and B subject to a
relation of the form

B2 = ∆qΓ2 + JΦ(∆, J,Γ)

for some polynomial Φ. Furthermore, this generating set is a SAGBI
basis using the grevlex order with a0 < a1 < a2.

Proof. For any f ∈ F[V ] we can write f = fe + fo were fe is a sum
of terms of even weight and fo is a sum of terms of odd weight. If
f ∈ F[V ]P = F[a0,∆, γ0] ⊕ βF[a0,∆, γ0], then fe ∈ F[a0,∆, γ0] and
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fo ∈ βF[a0,∆, γ0]. It is clear that τ preserves weight-parity. Thus
if f is SL2(Fq)-invariant (fe)τ = fe and (fo)τ = fo, giving fe, fo ∈
F[V ]SL2(Fq). Every odd-weight term is divisible by a1. Hence, every
odd-weight SL2(Fq)-invariant is divisible by B. Thus F[V ]SL2(Fq) = E⊕
BE, were E denotes the subalgebra of even-weight SL2(Fq)-invariants.
Note that A ⊆ E.
Using Corollary 3.3, there exists a homogeneous SL2(Fq)-invariant,

say δ, such that F[V ]SL2(Fq) = A⊕δA. If deg(δ) < deg(B), then δ ∈ E;
hence F[V ]SL2(Fq) ⊆ E, giving a contradiction. If deg(δ) > deg(B),
then B ∈ A; hence F[V ]SL2(Fq) ⊆ A ⊆ E, again giving a contradiction.
Therefore deg(δ) = deg(B). Comparing Hilbert series, i.e., dimensions
of homogeneous components, we see that A = E and F[V ]SL2(Fq) =
A⊕BA. Therefore F[V ]SL2(Fq) is generated by ∆, J , Γ and B.
Since B2 has even weight, we have B2 ∈ A. Furthermore, B2 −

∆qΓ2 ∈ F[V ]SL2(Fq) is zero modulo a0. Thus J divides B2 −∆qΓ2. The
quotient is of even weight and hence is an element of A, say Φ(∆, J,Γ).
Therefore B2 = ∆qΓ2 + JΦ(∆, J,Γ).
The lead terms of the generators are LT(∆) = a21, LT(J) = a0a

q
2,

LT(Γ) = a
q(q−1)/2
2 and LT(B) = aq1a

q(q−1)/2
2 . Thus the only non-trivial

tête-a-tête is given by B2−∆qΓ2. Hence {∆, J,Γ} is a SAGBI basis for
A, Φ((∆, J,Γ) subducts to zero using {∆, J,Γ} and B2−∆qΓ2 subducts
to zero. Therefore {∆, J,Γ, B} is a SAGBI basis for F[V ]SL2(Fq). �

Corollary 3.5. Define

m :=

⌊

1

2
(q + 1 + q(q − 1)/2)

⌋

and s :=

⌊

1

2
(1 + q(q − 1)/2)

⌋

.

Then F(V )SL2(Fq) = F(B/∆m, J/∆(q+1)/2,Γ/∆s), a purely transcenden-
tal extension of F.

Proof. Let F denote the field generated by {B/∆m, J/∆(q+1)/2,Γ/∆s}.
Clearly F ⊆ F(V )SL2(Fq).
Suppose (q − 1)/2 even. Then m = 1

2
(q + 1 + q(q − 1)/2) and

s = q(q − 1)/4. Dividing the homogeneous relation from Theorem 3.4
by ∆2m−1 gives

∆

(

B

∆m

)2

=

(

Γ

∆s

)2

+

(

J

∆(q+1)/2

)

Φ(1, J/∆(q+1)/2,Γ/∆s).

Thus ∆ ∈ F . Therefore J,Γ, B ∈ F , giving F = F(V )SL2(Fq).

Suppose (q−1)/2 is odd. Thenm = 1
2
(q+ q(q−1)

2
) and s = 1

2
( q(q−1)

2
+1)

Furthermore Γ is of odd degree while J and ∆ are of even degree.
Thus Γ can not appear in Φ. Dividing the homogeneous relation from
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Theorem 3.4 by ∆2m gives
(

B

∆m

)2

= ∆

(

Γ

∆s

)2

+

(

J

∆(q+1)/2

)

Φ(1, J/∆(q+1)/2).

Thus ∆ ∈ F . Therefore J,Γ, B ∈ F , giving F = F(V )SL2(Fq).
�
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