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CONTINUOUS UNIFORM FINITE TIME STABILIZATION OF
PLANAR CONTROLLABLE SYSTEMS∗

HARSHAL B. OZA† , YURY V. ORLOV‡ , AND SARAH K. SPURGEON†

Abstract. Continuous homogeneous controllers are utilized in a full state feedback setting for
the uniform finite time stabilization of a perturbed double integrator in the presence of uniformly
decaying piecewise continuous disturbances. Semiglobal strong C1 Lyapunov functions are identified
to establish uniform asymptotic stability of the closed-loop planar system. Uniform finite time
stability is then proved by extending the homogeneity principle of discontinuous systems to the
continuous case with uniformly decaying piecewise continuous nonhomogeneous disturbances. A
finite upper bound on the settling time is also computed. The results extend the existing literature
on homogeneity and finite time stability by both presenting uniform finite time stabilization and
dealing with a broader class of nonhomogeneous disturbances for planar controllable systems while
also proposing a new class of homogeneous continuous controllers.
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1. Introduction. Continuous finite time stabilization of linear and nonlinear
control systems is an active area of research. The introduction of continuous finite
time controllers [13] revealed the non-Lipschitzian nature of the closed-loop dynamics
of planar finite time stable systems. Lyapunov and converse Lyapunov theorems were
subsequently established, and the continuity properties of the settling time function
were studied [8]. Homogeneous finite time controllers [6] and nonhomogeneous finite
time controllers [13] find applications in robotics [11, 16, 35] as well as in aerospace
engineering [7]. The finite time controllers, while being supported by a strict homo-
geneous Lyapunov function [7], prescribe better rejection of continuous disturbances
than that achieved by Lipschitz controllers [8, Th. 5.2].

Earlier results on asymptotic stabilization [18, 31] of continuous homogeneous
systems are based on the definition of a class of dilations where each state is dilated
with a different weight [18]. The notion of geometric homogeneity and its application
to stabilization were developed in [19, 20]. A detailed literature review on the topic
of geometric homogeneity is presented in [9], where it is established that geometric
homogeneity leads to finite time stability if the homogeneity degree of the asymptoti-
cally stable continuous homogeneous system is negative. A result on output feedback
synthesis which combines a continuous finite time observer with a continuous finite
time controller can be found in [15]. More recently, homogeneous approximations have
been studied [3] that led to the development of tools to establish global asymptotic
(and in some cases finite time) stability of nonlinear systems. This result used pre-
vious results on the so-called homogeneous domination approach (see [30], [3, section
5], and references therein for a detailed literature review).
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1155

Finite time stability and uniform finite time stability of nonlinear time varying
continuous systems was studied in [12]. Uniform finite time stability and the concept
of quasi-homogeneity were established in [26] for discontinuous homogeneous systems
with a negative homogeneity degree but with an additional requirement of uniform
asymptotic stability. A settling time estimate and tuning for the planar discontinuous
case with rectangular disturbances has been established recently via an alternative
Lyapunov-based proof [29], which is a special case of the more general result [26].
Homogeneity-based finite time stability results also exist for the so-called higher order
sliding mode controllers [24]. Several results also exist on continuous finite time
stabilization of nonlinear systems of dimension higher than two (see [9] and references
therein for linear controllable systems and [14, 17, 25, 35, 36] for nonlinear systems).

The main objective of this paper is to achieve continuous uniform finite time sta-
bilization of planar controllable systems with piecewise continuous, nonhomogeneous
disturbances. The proposed theoretical development considers a perturbed double
integrator. An existing finite time stabilizing, continuous, homogeneous controller [6],
[27] and a new homogeneous controller are utilized. The result on finite time stability
of discontinuous systems [26] is utilized in place of the continuous counterpart [8] in
order to extend the class of perturbations that can be successfully suppressed in finite
time. Uniform asymptotic stability of the closed-loop system is achieved by identify-
ing a class of semiglobal strong C1 Lyapunov functions for each of the two controllers.
Uniform finite time stability then follows from the homogeneity principle which is
extended for a continuous vector field. An explicit upper bound on the settling time
is then computed using the homogeneity regions without the need to find a Lyapunov
function satisfying a differential inequality. The main contribution is that the finite
time stability attained in this paper is uniform in the initial data and in the piecewise
continuous perturbation.

The theoretical motivation to propose a new Lyapunov and homogeneity frame-
work for planar continuous homogeneous vector fields is to give uniform finite time
stability, with respect to initial data and the disturbances. The motivation also lies in
proving robustness to discontinuous disturbances, which is a stronger property than
the existing methods for continuous disturbances which utilize the link between ho-
mogeneity [18, 31] and finite time stability [9]. The motivation also lies in computing
the settling time for the class of homogeneous controllers [6, Example 2] in the pres-
ence of nonhomogeneous perturbations. Uniform finite time stability is a stronger
feature than finite time stability and requires the Lyapunov stability to be uniform
with respect to the initial time [12, Remark 3.1]. In this paper, uniformity with re-
spect to disturbances, called equiuniformity according to [26], is emphasized. The
result presented in the following sections of this paper achieves this for the class of
controllers [6, Example 2] as well as the new result being proposed.

The method proposed in [7] relies on the homogeneity property of the strict
Lyapunov function and that of its derivative. It is known that every controllable
linear system admits a class of homogeneous finite time stabilizing controller (see
[14, Corollary 3.1], [9, sect. 7,8], and references therein). However, construction of a
strict Lyapunov function is required to find an explicit formula for the upper bound
on the settling time for the given homogeneous controller. No Lyapunov function
has been identified, for example, to prove that the controller [6, Example 2] finite
time stabilizes a double integrator when it is perturbed by a nonhomogeneous distur-
bance. Furthermore, the proposed results can motivate similar developments for even
arbitrarily higher order controllable systems in the presence of piecewise continuous
perturbations, which is also an interesting problem from an engineering viewpoint. It
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1156 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

should be noted that the proposed method proves uniform asymptotic stability of the
origin, a result stronger than that appearing in the existing results [9].

The structure of the paper is outlined as follows. The notation, basic definitions,
and problem statement are presented in section 2. Sections 3 and 4 present the main
results. Section 5 outlines the conclusions and future scope.

2. Preliminaries. This section first presents definitions of the mathematical
concepts that will be utilized throughout the paper.

2.1. Definitions. Consider the discontinuous dynamical system

(2.1) ẋ = φ(x, t),

where x = (x1, x2, . . . , xn)
T is the state vector, t ∈ R is the time variable, and function

φ(x, t) is piecewise continuous. The function φ : Rn+1 → Rn is piecewise continuous

iff Rn+1 is partitioned into a finite number of domains Gφj ∈ Rn+1, j = 1, . . . , Nφ,

with disjoint interiors and boundaries ∂Gφj of measure zero such that φ is continuous

within each of these domains and for all j = 1, . . . , Nφ it has a finite limit φj(x, t) as

the argument (x∗, t∗) ∈ Gφj approaches a boundary point (x, t) ∈ ∂Gφj . Throughout
the paper, solutions to differential equations will be understood as defined in the
following definition.

Definition 2.1 (solutions in the sense of Filippov [1]). Given the differential
equation (2.1), let the smallest convex closed set Φ(x, t) be introduced for each point
(x, t) ∈ Rn ×R such that Φ(x, t) contains all the limit points of φ(x∗, t) as x∗ → x,

t = constant, and (x∗, t) ∈ Rn+1\(∪Nφ

j=1∂G
φ
j ). An absolutely continuous function x(·)

defined on interval I is said to be a solution of (2.1) if it satisfies the differential
inclusion

(2.2) ẋ ∈ Φ(x, t)

almost everywhere on interval I.
The emphasis of this paper is on studying robustness in the presence of pertur-

bations. Let the perturbed version of (2.1) be given by

(2.3) ẋ = φ(x, t) + ψ(x, t),

where ψ(x, t) is a piecewise continuous function, inducing the partition of Rn+1

into a finite number of domains Gψj ∈ Rn+1, j = 1, . . . , Nψ, with disjoint interi-

ors and boundaries ∂Gψj of measure zero such that ψ is continuous within each of

these domains and for all j = 1, . . . , Nψ it has a finite limit ψj(x, t) as the argu-

ment (x∗, t∗) ∈ Gψj approaches a boundary point (x, t) ∈ ∂Gψj . The components
ψ1, ψ2, . . . , ψn of the perturbation ψ(x, t) are assumed throughout to be uniformly
bounded according to

(2.4) ess sup
t≥0

lim
x∗ → x
t∗ → t

|ψi(x∗, t∗)| ≤Miᾱ(‖x‖)

for all x ∈ Rn, for some nonnegative constants Mi, i = 1, 2, . . . , n, and some continu-
ous positive definite function ᾱ(·) of a scalar argument such that lim‖x‖→0 ᾱ(‖x‖)) = 0

for all (x∗, t∗) ∈ Gψj . If confined to (x∗, t∗) ∈ Gψj , j = 1, 2, . . . , Nψ, the inequality
(2.4) reduces to

(2.5) ess sup
t∗≥0

|ψi(x∗, t∗)| ≤Miᾱ(‖x∗‖).

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1157

Then, the following definition is in order for the perturbed system.
Definition 2.2. An absolutely continuous function x(·), defined on an interval

I, is said to be a solution of the uncertain differential equation (2.3) with the sectorial
constraints (2.4) iff it is a solution of (2.3) on the interval I in the sense of Definition
2.1 for some piecewise continuous function ψ subject to (2.4).

Analogously to [26, p. 1255], an uncertain system (2.3) can be represented as a
differential inclusion of the form

(2.6) ẋ ∈ Φ(x, t) + Ψ(x),

where Φ(x, t) is the same as defined in Definition 2.1, whereas given (x, t) ∈ Gψj , j =

1, 2, . . . , Nψ, the set Ψ(x) is the Cartesian product of the closed intervals Ψ(x) =
[−Miᾱ(‖x‖), Miᾱ(‖x‖)] for the disturbance constraints (2.4).

The main focus of this paper is on uniform finite time stability with respect to
initial time t0 as well as uncertainty ψ(x, t). It is important to highlight what is meant
by uniformity. This is a well-studied area for systems with continuous dynamics, and
many references are available [12, 21, 34] regarding uniformity with respect to initial
time. It can be seen from the above references, however, that emphasis is seldom
given to uniformity with respect to the disturbance. Indeed, finite time stability is
the same as uniform finite time stability in the absence of perturbation. Definitions
[26, Definitions 2.3–2.5] of (uniform) stability, (uniform) asymptotic stability, and
(uniform) finite time stability of the inclusion (2.2) for the discontinuous vector field,
which can be seen as the counterparts of the definitions available in the references
[12, 21, 34] for similar stability concepts in the case of the continuous vector field,
are not included here for brevity. The following definitions are inherited from [26,
Definitions 2.6–2.8], which take into account the uniformity of stability with respect
to the uncertainty ψ. It should be noted that the word “equiuniform” appearing in
[26] is utilized in the following definitions to refer to uniformity of various stability
concepts with respect to the initial conditions as well as the uncertainty ψ.

Suppose that x = 0 is an equilibrium point of the uncertain system (2.3), (2.4),
i.e., that x = 0 is a solution of (2.3) for some function ψ0, admissible in the sense
of (2.4), and let x(·, t0, x0) denote a solution of (2.3) for some admissible function ψ
under the initial conditions x(t0) = x0. The symbol Bδ in the following definitions
represents a ball centered at the origin with radius δ.

Definition 2.3 (equiuniform stability [26]). The equilibrium point x = 0 of the
uncertain system (2.3), (2.4) is equiuniformly stable iff for each t0 ∈ R, ε > 0 there
exists δ = δ(ε), dependent on ε and independent of t0 and ψ, such that each solution
x(·, t0, x0) of (2.3), (2.4) with the initial data x0 ∈ Bδ exists on the semi-infinite time
interval [t0,∞) and satisfies the inequality

(2.7) ‖(x(t, t0, x0))‖ ≤ ε for all t ∈ [t0,∞).

Definition 2.4 (equiuniform asymptotic stability [26]). The equilibrium point
x = 0 of the uncertain system (2.3), (2.4) is said to be equiuniformly asymptotically
stable if it is equiuniformly stable and the convergence

(2.8) lim
t→∞ ‖(x(t, t0, x0))‖ → 0

holds for all the solutions x(·, t0, x0) of the uncertain system (2.3), (2.4) initialized
within some Bδ (uniformly in the initial data t0 and x0). If this convergence remains

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1158 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

in force for each δ > 0, the equilibrium point is said to be globally equiuniformly
asymptotically stable.

Definition 2.5 (equiuniform finite time stability [26]). The equilibrium point
x = 0 of the uncertain system (2.3), (2.4) is said to be globally equiuniformly finite
time stable if, in addition to the global equiuniform asymptotical stability, the limiting
relation

(2.9) x(t, t0, x
0) = 0

holds for all the solutions x(·, t0, x0) and for all t ≥ t0 + T (t0, x
0), where the settling

time function

(2.10) T (t0, x
0) = sup

x(·,t0,x0)

inf{T ≥ 0 : x(t, t0, x
0) = 0 for all t ≥ t0 + T }

is such that

(2.11) T (Bδ) = sup
x0∈Bδ,t0∈R

T (t0, x
0) <∞ for all δ > 0,

where δ = δ(ε) is independent of t0 and ψ.
The infimum in (2.10) is to detect the first instant t = T such that x(t, t0, x

0) = 0
for all t ≥ t0+T , and the supremum is for taking the worst case trajectory that takes
the longest time to arrive at the origin.

Definition 2.6 (homogeneity of differential inclusions and equations [26]). The
differential inclusion (2.2) (the differential equation (2.1) or the uncertain systems
(2.3), (2.4)) is called homogeneous of degree q ∈ R with respect to dilation (r1, r2, . . . , rn),
where ri > 0, i = 1, 2, . . . , n, if there exists a constant c0 > 0, called a lower estimate
of the homogeneity parameter, such that any solution x(·) of (2.2) (respectively, that
of the differential equation (2.1), the uncertain systems (2.3), (2.4)) generates a pa-
rameterized set of solutions xc(·) with components

(2.12) xci (t) = crixi(c
qt)

and any parameter c ≥ c0.
Definition 2.7 (homogeneous piecewise continuous functions [26]). A piecewise

continuous function φ : Rn+1 → Rn is called homogeneous of degree q ∈ R with re-
spect to dilation (r1, r2, . . . , rn), where ri > 0, i = 1, 2, . . . , n, if there exists a constant
c0 > 0 such that

(2.13) φi(c
r1x1, c

r2x2, . . . , c
rnxn, c

−qt) = cq+riφi(x1, x2, . . . , xn, t)

for all c ≥ c0.

2.2. Problem statement. Let a controllable planar single input control system
be given as follows:

(2.14) ˙̄x = Āx̄+ B̄ v(x̄) + Ḡf(x̄, t),

where x̄ = (x̄1, x̄2)
T is the state vector, v(x̄) is the control input, the matrix pair

(Ā, B̄) is controllable, and f(x̄, t) is a scalar perturbation function. The following is
assumed.

Assumption 1. R(Ḡ) ⊆ R(B̄), where R(Ḡ) is the range of Ḡ and R(B̄) is the
range of B̄.

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1159

The above assumption, known as the matching condition [10], means there exists
a scalar p̄ ∈ R such that Ḡ = B̄p̄ holds true. Furthermore, due to the controllability
of the system (2.14), there always exists a nonsingular transformation matrix T such
that the system (2.14) can be converted into one with coordinates (x1, x2) with a
phase canonical structure [22, Th. 1.43]. Employing v(x) = kixi + u(x), i = 1, 2, with
ki representing scalars appearing in the second row of the transformed system matrix
T ĀT−1 with an opposite sign, and defining T B̄p̄f(T x̄, t) = ω(x, t), the following
perturbed double integrator results:

(2.15) ẋ1 = x2, ẋ2 = u(x1, x2) + ω(x, t),

where x = (x1, x2)
T ∈ R2 is the state vector, u is the control input, and ω(x, t) is a

piecewise continuous [1] disturbance. Consider the following two classes of homoge-
neous controllers:

u(x1, x2) = −μ1|x2|αsign(x2)− μ2|x1|
α

2−α sign(x1),(2.16)

u(x1, x2) = −(μ1|x2|α + μ3|x1|
α

2(2−α) |x2|
α
2 )sign(x2)− μ2|x1|

α
2−α sign(x1),(2.17)

where α ∈ (0, 1) and μ1, μ2, μ3 are positive constants.
Assumption 2. The piecewise continuous disturbance ω(x, t) is assumed to satisfy

one of the following two inequalities:

ess sup
t≥0

|ω(x1, x2, t)| ≤M |x2|α,(2.18)

ess sup
t≥0

|ω(x1, x2, t)| ≤M |x2|
α
2 (|x1|

α
2(2−α) + |x2|

α
2 ),(2.19)

where M is a positive constant.
Remark 1. The upper bound (2.19) can be shown to be conservatively larger

than some norm of the vector x raised to some power multiplied by |x2|
α
2 . Since the

Lyapunov analysis in the following sections proves uniform asymptotic stability for
the worst case given by the upper bound (2.19), the proposed synthesis is naturally
robust to disturbances bounded by such functions of norms. For example, for the
local case ‖x‖∞ = max{|x1|, |x2|} < 1, which is relevant to the problem formulation,

it is straightforward to derive the inequality ‖x‖
α
2
1 |x2|

α
2 < (|x1|

α
2(2−α) + |x2|

α
2 )|x2|

α
2 ,

where ‖x‖1 = |x1| + |x2| (it suffices to utilize [4, Facts 1.12.30, 1.17.35] to compute
the inequality).

The aim of this paper is to (i) prove uniform finite time stability and (ii) to
establish a finite upper bound on the settling time T of the closed-loop systems (2.15),
(2.16) and (2.15), (2.17) for α ∈ (23 , 1) in the presence of disturbances that satisfy
(2.18) and (2.19), respectively.

Global asymptotic stability of such a perturbed double integrator can be found
in [27, Theorem 2]. Global finite time stability for the unperturbed case with the
controller (2.16) was established via homogeneity in [6]. However, the class of non-
homogeneous disturbances (2.18) and (2.19) has not been studied explicitly in the
literature while proving finite time stability. For example, the continuous terminal
sliding mode control proposed in [35] makes no assumption on the continuity of lumped
disturbances. However, the corresponding synthesis leads to finite time stability only
if ‖ω‖ = 0. In the presence of nonzero ω and with an upper bound of the form
‖ω‖ ≤ b0+b1‖x‖+b2‖x‖2, where b0, b1, b2 are positive scalars, the states are rendered
only ultimately bounded. Furthermore, the existing result [3, Corollary 2.24] on ho-
mogeneous approximation cannot be applied to the problem under consideration since

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1160 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

the right-hand side contains ω(x, t), which is discontinuous. The converse Lyapunov
theorem presented in [32, section 1] for general discontinuous systems is applicable
but results only in asymptotic stability. On the other hand, the existence of a homo-
geneous Lyapunov function that could potentially result in finite time stability was
established in [32, section 2] for discontinuous dynamic systems but is inapplicable
to the system in question because of the presence of nonhomogeneous time varying
perturbations. The timeliness of the contribution of the results of this paper is rein-
forced by recent results on homogeneous inclusions where the principal result on the
converse Lyapunov theorem [5, Th. 4.1] is presented without proof.

The definition of finite time stability presented here is superior to that presented
in the literature to date as existing contributions do not incorporate robustness to
discontinuous disturbances.

Remark 2. As opposed to the existing results, the results in the next section al-
low discontinuous disturbances. Consider, for example, the discontinuous disturbance
ω(x1, x2, t) = |x2|αsign(x1) sin(t). As a matter of fact, in the presence of continuous
disturbances with an upper bound |x2|α, it is enough to apply [27, Th. 1] to estab-
lish global asymptotic stability and in turn [9, Th. 7.4] to establish global (but not
uniform) finite time stability of the closed-loop system (2.15), (2.16).

Remark 3. The controller (2.16) does not belong to the class of controllers pro-
posed in [13, Corollary 1]. The phase plane plot of the closed-loop system (2.15),
(2.16) with α ∈ (0, 1) can be found in [27], which shows that the trajectories spiral in-
finitely around the origin without approaching tangentially to the hyperplane x1 = 0
as they move to the origin.

The following lemma extends the existing result [26, Lem. 2.12] to the present
case with uniformly decaying piecewise continuous disturbances ω(x, t) and is utilized
in the proof of the main result. It should be noted that the unperturbed closed-loop
systems (2.15), (2.16) and (2.15), (2.17) with M = 0 are globally homogeneous of
degree q = −1 with respect to dilations (r1, r2) = (2−α1−α ,

1
1−α ) as per Definition 2.7

(see [6] and [27]).
Lemma 2.8. Let the function ω(x1, x2, t) be a piecewise continuous function which

is uniformly bounded as defined in (2.18). Then, the uncertain differential equation
(2.15), (2.16) with the uncertainty constraints (2.18) is homogeneous of degree q = −1
with respect to the dilation (r1, r2) = (2−α1−α ,

1
1−α ).

Proof. Let x(·) = (x1(·), x2(·))T be a solution of (2.15), (2.16) under some piece-
wise continuous function ω(x, t), satisfying (2.18). Then it is straightforward to ver-
ify that for arbitrary c ≥ max(1, c0) the function xc(·) with components xci (t) =
crixi(c

qt), i = 1, 2, is a solution of (2.15), (2.16) with the piecewise continuous func-
tion ω(x1, x2, t) � ωc(x1, x2, t), which is as follows:

(2.20) ωc(x1, x2, t) = cq+r2ω(c−r1x1, c−r2x2, cqt),

where the right-hand side represents a parameterized set of uncertainties. The follow-
ing holds true due to the parameterization (2.20):

|ωc(x1, x2, t)| = |cq+r2ω(c−r1x1, c−r2x2, cqt)|
(2.21)

⇒ |ωc(x1, x2, t)| ≤ cq+r2M |c−r2x2|α ≤ cq+r2−αr2M |x2|α.

Hence, all parameterized disturbance functions represented by the right-hand side of
(2.20) are admissible in the sense of (2.18) if the following holds true:

(2.22) cq+r2−αr2 ≤ 1.
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1161

From the definitions r2 = 1
1−α , q = −1, it is obtained that

(2.23) q + r2 − αr2 = 0 ⇒ cq+r2−αr2 ≤ 1

and that the function ωc(x1, x2, t) is admissible in the sense of (2.18). Recalling
Definitions 2.6 and 2.7 and [26, Lemma 2.11], the solutions xc1(t) = cr1x1(c

qt),
xc2(t) = cr2x2(c

qt) are solutions of the system (2.15), (2.16) with the piecewise contin-
uous function ω(x1, x2, t) = ωc(x1, x2, t) given by (2.20). Thus, any solution of the dif-
ferential equation (2.15), (2.16) generates a parameterized set of solutions xc1(t), x

c
2(t)

with the parameter c large enough. Hence, (2.15), (2.16) is homogeneous of de-
gree q = −1 with the dilation (r1, r2) = (2−α1−α ,

1
1−α ). This proves the statement of

Lemma 2.8.
Lemma 2.9. Let the function ω(x1, x2, t) be a piecewise continuous function which

is uniformly bounded as defined in (2.19). Then, the uncertain differential equation
(2.15), (2.17) with the uncertainty constraints (2.19) is homogeneous of degree q = −1
with respect to the dilation (r1, r2) = (2−α1−α ,

1
1−α ).

Proof. The proof, while being identical to that of Lemma 2.8, follows by noting
that (i) the parameterization (2.20) can be utilized to analyze the upper bound

|ωc(x1, x2, t)| = |cq+r2ω(c−r1x1, c−r2x2, cqt)|
⇒ |ωc(x1, x2, t)| ≤ cq+r2M(|c−r1x1|

α
2(2−α) |c−r2x2|

α
2 + |c−r2x2|α),

(ii) the expression −r1α
2(2−α) = −r2α

2 holds true, and, finally, (iii) all parameterized

disturbance functions represented by the right-hand side of (2.20) are admissible in
the sense of (2.19) since

|ωc(x1, x2, t)| ≤ cq+r2−r2αM(|x1|
α

2(2−α) |x2|
α
2 + |x2|α) ≤M(|x1|

α
2(2−α) |x2|

α
2 + |x2|α)

holds true when the expression (2.22) holds true.
The importance of Lemmas 2.8 and 2.9 lies in the fact that proving uniform

asymptotic stability of the perturbed system (2.15), (2.16) (or, respectively, (2.15),
(2.17)) in the presence of disturbances ω(x1, x2, t) will render the existing result on
finite time stability of discontinuous systems [26, Th. 3.1] applicable to the present
case. Uniform asymptotic stability is proven next by identifying a class of semiglobal
C1 Lyapunov functions for a limited range of α ∈ (23 , 1).

3. Global equiuniform finite time stability. This section presents the main
results of the paper by proving equiuniform finite time stability of the closed-loop
system (2.15), (2.17) ((2.15), (2.16)) in Theorem 3.1 (respectively, in Theorem 3.2).

The closed-loop system (2.15), (2.17) exhibits rich and different qualitative be-
havior for different combinations of the values of the controller gains as depicted in
Figures 1 and 2. For the unperturbed case, phase plane analysis may be possible, in
a similar way to [7]. However, for the perturbed case (i.e., ω(x, t) �= 0), the analysis
becomes tedious. One possible direction is the method of majorization as undertaken
in [23, 29] for the discontinuous case. This remains an open problem since an explicit
integration of trajectories of the system (2.15), (2.17) is not straightforward to com-
pute. Hence, a systematic Lyapunov-based approach is established in the proof of
Theorem 3.1 below.

Theorem 3.1. Given α ∈ (23 , 1), the closed-loop system (2.15), (2.17) is globally
equiuniformly finite time stable, regardless of whichever disturbance ω(x, t), satisfying
condition (2.19) with 0 < M < min{μ1, μ3}, μ2 > max{μ1, μ3}, affects the system.
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1162 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

Fig. 1. Phase plane plot of the closed-loop
system (2.15), (2.17) with ω(x, t) = 0, μ1 =
3, μ2 = 5, μ3 = 4.

Fig. 2. Phase plane plot of the closed-loop
system (2.15), (2.17) with ω(x, t) = 0, μ1 =
1, μ2 = 2, μ3 = 1.

Proof. The proof is divided into several steps.
Step 1: Global asymptotic stability. Let the following candidate Lyapunov function

V be considered [6, 27]:

(3.1) V (x1, x2) = μ2
2− α

2
|x1|

2
2−α +

1

2
x22.

Under the conditions of the theorem, the time derivative of the function V (x1, x2),
computed along the trajectories of (2.15), (2.17), is estimated as follows:

V̇ = μ2|x1|
α

2−αx2sign(x1) + x2

(
−(μ1|x2|α + μ3|x1|

α
2(2−α) |x2|

α
2 )sign(x2)

−μ2|x1|
α

2−α sign(x1) + ω(x, t)

)

= −μ1|x2|α+1 − μ3|x1|
α

2(2−α) |x2|
α
2 +1 + x2ω(x, t)

≤ −μ1|x2|α+1 − μ3|x1|
α

2(2−α) |x2|
α
2 +1 + |x2|M(|x1|

α
2(2−α) |x2|

α
2 + |x2|α)(3.2)

≤ −(μ1 −M)|x2|α+1 − (μ3 −M)|x1|
α

2(2−α) |x2|
α
2 +1.

Noting that M < min{μ1, μ3} holds true by a condition of Theorem 3.1, expression
x2ẋ2 ≮ 0 holds true, and the equilibrium point x1 = x2 = 0 is the only trajectory
of (2.15), (2.17) on the invariance manifold x2 = 0 where V̇ (x1, x2) = 0, the global
asymptotic stability of (2.15), (2.17) is then established by applying the invariance
principle [2, 33].

Step 2: Semiglobal strong Lyapunov functions. This step shows the existence
of a parameterized family of semiglobal Lyapunov functions VR̃(x1, x2), with an a

priori but arbitrarily given R̃ > 0, such that each VR̃(x1, x2) is well-posed on the
corresponding compact set

DR̃ = {(x1, x2) ∈ R2 : V (x1, x2) ≤ R̃}.(3.3)

In other words, VR̃(x1, x2) is to be positive definite on DR̃, and its derivative, com-
puted along the trajectories of the uncertain system (2.15), (2.17) with initial condi-
tions within DR̃, is to be negative definite in the sense that

V̇R̃(x1, x2) ≤ −WR̃(x1, x2)(3.4)
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1163

for all (x1, x2) ∈ DR̃ and for some WR̃(x1, x2) positive definite on DR̃. A parame-

terized family of Lyapunov functions VR̃(x1, x2), R̃ > 0, with the properties defined
above are constructed as follows by combining the Lyapunov function V of (3.1),
whose time derivative (3.2) along the system motion is only negative semidefinite,
with the indefinite functions Ui, i = 1, 2, 3, 4:

VR̃(x1, x2) = V +

4∑
i=1

Ui,(3.5)

where the indefinite functions Ui, i = 1, 2, 3, 4, are defined by the expressions

U1 = κ1x1x2|x2|, U2 = κ1κ2|x1|
4−α

2(2−α) sign(x1)x2|x2|α,
(3.6)

U3 = 2κ1κ2κ3x
3
1x2|x2|

α
2 , U4 = κ1κ2κ3κ4x

5
1x2,

and the positive constants κi, i = 1, 2, 3, 4, are chosen a priori as follows:

κ4 <
(2 + α)μ2

β5
, κ3 <

(1 + α)μ2

β4
, κ2 <

2μ2

β3
,(3.7)

κ1 < min

{
μ1 −M

β1
,

μ3 −M

β2
,

μ2(2 − α)

β6
,

1

β7

}
,

where

ρ =
2R̃

μ2(2− α)
, β7 = ((2R̃) + κ2(2R̃)

α + 2κ2κ3(2R̃)
α
2 + κ2κ3κ4),

β6 = (ρ1−α + κ2ρ
2−α

2 + 2κ2κ3ρ
5−3α + κ2κ3κ4ρ

9−5α),

β5 = (μ3 +M)ρ
8−5α

4 ,

β4 = (2 + α)(μ3 +M)ρ
4−3α

2 + κ4(μ1 +M)ρ
16−11α

4 ,

β3 = (1 + α)(μ3 +M)(2R̃)
3α−2

4 + κ3(2 + α)(μ1 +M)ρ
4−3α

2 (2R̃)
3α−2

4 ,(3.8)

β2 = 2(μ3 +M)ρ
2−α
2 + κ2(1 + α)(μ1 +M)ρ

2−α
2 (2R̃)

3α−2
4 ,

β1 = (2R̃)
2−α
2 + 2(μ1 +M)ρ

2−α
2 + κ2

4− α

2(2− α)

√
2R̃ρ

α
4

+6κ2κ3ρ
2−α(2R̃)

2−α
4 + 5κ2κ3κ4ρ

2(2−α)(2R̃)
1−α

2 .

It should be noted that it is always possible to fix required parameters βj , j =
1, 2, . . . , 7, and κi, i = 1, 2, 3, 4, unambiguously satisfying (3.7) and (3.8) when the
following tuning procedure is adhered to.

In the first step, once constants μ1, μ2, and μ3 are fixed according to Theorem 3.1,
relation (3.8) defines ρ corresponding to R̃ of (3.3). In the second step, the constant
β5, which does not depend on any κi, can be fixed using (3.8). Then κ4 is fixed using
(3.7). In the third step, β4 is fixed using (3.8), and κ4 is as defined in the previous
step. Then, κ3 is fixed using (3.7). In the fourth step, β3 is fixed using (3.8), and κ3
is as defined in the previous step. Then κ2 is fixed using (3.7). In the fifth step, β1,
β6, and β7 are fixed using (3.8), and κ2, κ3, κ4 are as defined in the previous steps. In
the sixth step, fix β2 using (3.8), and κ2 is as defined in the fourth step. In the last
step, fix κ1 using (3.7), and β1, β2, β6, β7 are as defined in the previous steps.
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1164 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

Due to (3.2), all possible solutions of the uncertain system (2.15), (2.17), initial-
ized at t0 ∈ R within the compact set (3.3), are a priori estimated by

(3.9) sup
t∈[t0,∞)

V (x1, x2) ≤ R̃.

The following inequalities hold true:

(3.10) |x1|
2

2−α ≤ ρ =
2R̃

(2− α)μ2
, |x2| ≤

√
2R̃.

Let the positive definiteness of the Lyapunov function (3.5) be verified. The positive
definiteness of (3.5) is guaranteed as shown below:

U1 = κ1x1x2|x2| ≥ −κ1

2
x2
1 − κ1

2
x2
2|x2|2 ≥ −κ1

2
ρ1−α|x1| 2

2−α − κ1

2
(2R̃)x2

2,

U2 = κ1κ2|x1|
4−α

2(2−α) sign(x1)x2|x2|α ≥ −1

2
κ1κ2|x1|

4−α
2−α − 1

2
κ1κ2x

2
2|x2|2α

≥ −1

2
κ1κ2

(
ρ

2−α
2 |x1| 2

2−α + (2R̃)αx2
2

)
,(3.11)

U3 = 2κ1κ2κ3x
3
1x2|x2|α2 ≥ −κ1κ2κ3

(
x6
1 + x2

2|x2|α
)

≥ −κ1κ2κ3

(
|x1| 2

2−α ρ5−3α + x2
2(
√

2R̃)α
)
,

U4 = κ1 κ2 κ3 κ4 x5
1 x2 ≥ −κ1 κ2 κ3 κ4

2
x10
1 − κ1 κ2 κ3 κ4x

2
2

≥ −κ1 κ2 κ3 κ4

2
|x1| 2

2−α ρ9−5α − κ1 κ2 κ3 κ4

2
x2
2,

where (3.10) and the trivial inequality 2ab > −(a2 + b2) for all a, b ∈ R have been
utilized. Hence, the Lyapunov function (3.5) is positive definite on compact set (3.3);
for all (x1, x2) ∈ DR̃\{0, 0} and κi > 0, i = 1, 2, 3, 4, satisfying (3.7), as shown below,

VR̃ ≥ μ2(2− α)

2
|x1|

2
2−α +

1

2
x22 −

1

2
κ1β6|x1|

2
2−α − 1

2
κ1β7x

2
2 ≥ LR̃V,(3.12)

where inequalities of (3.11) have been utilized, β6, β7 are defined in (3.8), and the
positive scalar LR̃ is defined as follows:

LR̃ < min

{
μ2

2− α

2
− 1

2
κ1β6,

1

2
(1− κ1β7)

}
.(3.13)

The scalar LR̃ is always greater than zero due to the condition (3.7) on κ1. Similarly,
the upper bound on VR̃ in terms of a C1 function can be obtained as follows:

VR̃ ≤ μ2(2− α)

2
|x1|

2
2−α +

1

2
x22 +

1

2
κ1β6|x1|

2
2−α +

1

2
κ1β7x

2
2 ≤MR̃V,(3.14)

where the trivial inequality 2ab < (a2 + b2) for all a, b ∈ R is used and

MR̃ > max

{
μ2

2− α

2
+

1

2
κ1β6,

1

2
(1 + κ1β7)

}
.(3.15)

Having established the positive definiteness of VR̃, its derivative computed along the
trajectories of the closed-loop system (2.15), (2.17) is to be negative definite in the
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1165

sense of (3.4). The derivative of U1 can be obtained as follows:

U̇1 = κ1|x2|3 + κ1x1|x2|ẋ2 + κ1x1x2sign(x2)ẋ2

= κ1|x2|3 + 2κ1x1|x2|ẋ2

= κ1|x2|3 + 2κ1x1|x2|
(

−(μ1|x2|α + μ3|x1|
α

2(2−α) |x2|
α
2 )sign(x2)

−μ2|x1|
α

2−α sign(x1) + ω(x, t)

)

≤ κ1|x2|3 + 2κ1μ1|x1||x2|α+1 + 2κ1μ3|x1||x1|
α

2(2−α) |x2|
α
2 +1(3.16)

+2κ1M |x1||x2|(|x1|
α

2(2−α) |x2|
α
2 + |x2|α)− 2κ1μ2|x1|

2
2−α |x2|

≤ κ1|x2|3 + 2κ1(μ1 +M)|x1||x2|α+1 + 2κ1(μ3 +M)|x1|
4−α

2(2−α) |x2|
α
2 +1

−2κ1μ2|x1|
2

2−α |x2|.

Similarly, the derivative of U2 can be obtained as follows:

U̇2 = κ1κ2
4− α

2(2− α)
|x1|

α
2(2−α) |x2|α+2 + κ1κ2|x1|

4−α
2(2−α) sign(x1)|x2|αẋ2

+κ1κ2|x1|
4−α

2(2−α) sign(x1)x2α|x2|α−1sign(x2)ẋ2

= κ1κ2
4− α

2(2− α)
|x1|

α
2(2−α) |x2|α+2 + (1 + α)κ1κ2|x1|

4−α
2(2−α) sign(x1)|x2|αẋ2

= κ1κ2
4− α

2(2− α)
|x1|

α
2(2−α) |x2|α+2

+(1 + α)κ1κ2|x1|
4−α

2(2−α) sign(x1)|x2|α
(

−μ1|x2|αsign(x2)− μ2|x1|
α

2−α sign(x1)

−μ3|x1|
α

2(2−α) |x2|
α
2 sign(x2) + ω(x, t)

)
(3.17)

≤ κ1κ2
4− α

2(2− α)
|x1|

α
2(2−α) |x2|α+2 + κ1κ2(1 + α)μ1|x1|

4−α
2(2−α) |x2|2α

+κ1κ2(1 + α)μ3|x1|
2

2−α |x2|
3α
2

+κ1κ2(1 + α)M |x1|
4−α

2(2−α) |x2|α(|x1|
α

2(2−α) |x2|
α
2 + |x2|α)

−κ1κ2(1 + α)μ2|x1|
4+α

2(2−α) |x2|α

≤ κ1κ2
4− α

2(2− α)
|x1|

α
2(2−α) |x2|α+2 + κ1κ2(1 + α)(μ1 +M)|x1|

4−α
2(2−α) |x2|2α

+κ1κ2(1 + α)(μ3 +M)|x1|
2

2−α |x2|
3α
2 − κ1κ2(1 + α)μ2|x1|

4+α
2(2−α) |x2|α.

Similarly, the derivative of U3 can be obtained as follows:

U̇3 = 6κ1κ2κ3x
2
1|x2|α2 +2 + 2κ1κ2κ3x

3
1|x2|α2 ẋ2 + ακ1κ2κ3x

3
1x2|x2|α2 −1sign(x2)ẋ2

= 6κ1κ2κ3x
2
1|x2|α2 +2 + (2 + α)κ1κ2κ3x

3
1|x2|α2 ẋ2

= 6κ1κ2κ3x
2
1|x2|α2 +2

+(2 + α)κ1κ2κ3x
3
1|x2|α2

(
−μ1|x2|αsign(x2)− μ2|x1| α

2−α sign(x1)

−μ3|x1|
α

2(2−α) |x2|α2 sign(x2) + ω(x, t)

)

= 6κ1κ2κ3x
2
1|x2|α2 +2 − (2 + α)κ1κ2κ3μ1x

3
1|x2| 3α2 sign(x2)

−(2 + α)κ1κ2κ3μ2x
2
1|x1| 2

2−α |x2|α2
−(2 + α)κ1κ2κ3μ3x

3
1|x2|α2 |x1|

α
2(2−α) |x2|α2 sign(x2) + (2 + α)κ1κ2κ3x

3
1|x2|α2 ω

≤ 6κ1κ2κ3x
2
1|x2|α2 +2 + (2 + α)κ1κ2κ3μ1|x1|3|x2| 3α2 − (2 + α)κ1κ2κ3μ2x

2
1|x1| 2

2−α |x2|α2
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1166 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

+(2 + α)κ1κ2κ3μ3|x1|3|x1|
α

2(2−α) |x2|α

+(2 + α)κ1κ2κ3|x1|3|x2|α2 (|x1|
α

2(2−α) |x2|α2 + |x2|α)
(3.18)

≤ 6κ1κ2κ3x
2
1|x2|α2 +2 + (2 + α)κ1κ2κ3(μ1 +M)|x1|3|x2| 3α2

−(2 + α)κ1κ2κ3μ2x
2
1|x1| 2

2−α |x2|α2
+(2 + α)κ1κ2κ3(μ3 +M)|x1|3|x1|

α
2(2−α) |x2|α.

Finally, the derivative of U4 can be obtained as follows:

U̇4 = 5κ1κ2κ3κ4x
4
1x

2
2 + κ1κ2κ3κ4x

5
1

(
−μ1|x2|αsign(x2)− μ2|x1|

α
2−α sign(x1)

−μ3|x1|
α

2(2−α) |x2|
α
2 sign(x2) + ω(x, t)

)

= 5κ1κ2κ3κ4x
4
1x

2
2 − κ1κ2κ3κ4μ1x

5
1|x2|αsign(x2)− κ1κ2κ3κ4μ2x

4
1|x1|

2
2−α

−κ1κ2κ3κ4μ3x
5
1|x1|

α
2(2−α) |x2|

α
2 sign(x2) + κ1κ2κ3κ4x

5
1ω(3.19)

≤ 5κ1κ2κ3κ4x
4
1x

2
2 + κ1κ2κ3κ4μ1|x1|5|x2|α − κ1κ2κ3κ4μ2x

4
1|x1|

2
2−α

+κ1κ2κ3κ4μ3|x1|5|x1|
α

2(2−α) |x2|
α
2 + κ1κ2κ3κ4Mx51(|x1|

α
2(2−α) |x2|

α
2 + |x2|α)

≤ 5κ1κ2κ3κ4x
4
1x

2
2 + κ1κ2κ3κ4(μ1 +M)|x1|5|x2|α − κ1κ2κ3κ4μ2x

4
1|x1|

2
2−α

+κ1κ2κ3κ4(μ3 +M)|x1|5|x1|
α

2(2−α) |x2|
α
2 .

The following inequality shows the negative definiteness of the derivative of V +U =
V +U1 +U2 +U3 +U4 which can be formulated by collecting all the derivatives from
(3.2), (3.16), (3.17), (3.18), and (3.19) as follows:

V̇ +

4∑
i=1

U̇i ≤ −
︷ ︸︸ ︷
(μ1 −M)|x2|α+1 −

︷ ︸︸ ︷
(μ3 −M)|x1|

α
2(2−α) |x2|α2 +1

+κ1|x2|3 + 2κ1(μ1 +M)|x1||x2|α+1 + 2κ1(μ3 +M)|x1|
4−α

2(2−α) |x2|α2 +1

−
︷ ︸︸ ︷
2κ1μ2|x1| 2

2−α |x2|
+κ1κ2

4− α

2(2− α)
|x1|

α
2(2−α) |x2|α+2 + κ1κ2(1 + α)(μ1 +M)|x1|

4−α
2(2−α) |x2|2α

+κ1κ2(1 + α)(μ3 +M)|x1| 2
2−α |x2| 3α2 −

︷ ︸︸ ︷
κ1κ2(1 + α)μ2|x1|

4+α
2(2−α) |x2|α(3.20)

+6κ1κ2κ3x
2
1|x2|α2 +2 + (2 + α)κ1κ2κ3(μ1 +M)|x1|3|x2| 3α2

−
︷ ︸︸ ︷
(2 + α)κ1κ2κ3μ2x

2
1|x1| 2

2−α |x2|α2
+(2 + α)κ1κ2κ3(μ3 +M)|x1|3|x1|

α
2(2−α) |x2|α

+5κ1κ2κ3κ4x
4
1x

2
2 + κ1κ2κ3κ4(μ1 +M)|x1|5|x2|α −

︷ ︸︸ ︷
κ1κ2κ3κ4μ2x

4
1|x1| 2

2−α

+κ1κ2κ3κ4(μ3 +M)|x1|5|x1|
α

2(2−α) |x2|α2 .
The expression (3.20) can be simplified by using the conservative upper bounds for
the positive definite terms within the compact set DR̃ defined in (3.3). Utilizing the
expressions (3.9) and (3.10) produces the following:

|x2|3 ≤ (2R̃)
2−α

2 |x2|α+1 , |x1||x2|α+1 ≤ ρ
2−α
2 |x2|α+1,

|x1|
α

2(2−α) |x2|α+2 ≤ ρ
α
4

√
2R̃|x2|α+1 , x2

1|x2|α2 +2 ≤ ρ2−α(2R̃)
2−α
4 |x2|α+1,

x4
1x

2
2 ≤ ρ2(2−α)(2R̃)

1−α
2 |x2|α+1 , |x1|

4−α
2(2−α) |x2|α2 +1 ≤ ρ

2−α
2 |x1|

α
2(2−α) |x2|α2 +1,

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

05
/2

6/
15

 to
 1

29
.1

2.
52

.3
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1167

|x1|
4−α

2(2−α) |x2|2α ≤ ρ
2−α
2 (2R̃)

3α−2
4 |x1|

α
2(2−α) |x2|α2 +1,(3.21)

|x1| 2
2−α |x2| 3α2 ≤ (2R̃)

3α−2
4 |x1| 2

2−α |x2| , |x1|3|x2| 3α2 ≤ ρ
4−3α

2 (2R̃)
3α−2

4 |x1| 2
2−α |x2|,

|x1|3|x1|
α

2(2−α) |x2|α ≤ ρ
4−3α

2 |x1|
4+α

2(2−α) |x2|α , |x1|5|x2|α ≤ ρ
16−11α

4 |x1|
4+α

2(2−α) |x2|α,
|x1|5|x1|

α
2(2−α) |x2|α2 ≤ ρ

8−5α
4 x2

1|x1| 2
2−α |x2|α2 .

Combining the overbraced terms in (3.20), which are the most dominant negative
terms, with the corresponding weaker positive definite terms as given by the upper
bounds (3.21) produces the following compact form of (3.20):

V̇ +

4∑
i=1

U̇i ≤ −((μ1 −M)− κ1β1)|x2|α+1 − ((μ3 −M)− κ1β2)|x1|
α

2(2−α) |x2|
α
2 +1

−κ1(μ2 − κ2β3)|x1|
2

2−α |x2| − κ1κ2((1 + α)μ2 − κ3β4)|x1|
4+α

2(2−α) |x2|α(3.22)

−κ1κ2κ3((2 + α)μ2 − κ4β5)x
2
1|x1|

2
2−α |x2|

α
2 − κ1κ2κ3κ4x

4
1|x1|

2
2−α ,

where βi, i = 1, 2, 3, 4, 5, are defined as in (3.8). It can be seen from the definitions
(3.7) that the derivative VR̃ is negative definite. Ignoring the semidefinite terms in

(3.22) containing |x1||x2|, the temporal derivative V̇R̃ can be obtained as

V̇R̃ = V̇ +
4∑
i=1

U̇i ≤ −((μ1 −M)− κ1β1)|x2|α+1 − κ1κ2κ3κ4x
4
1|x1|

2
2−α .(3.23)

Furthermore, the following inequalities hold true within the compacta (3.3):

x22 = |x2|2 = |x2|α+1|x2|1−α ≤ |x2|α+1
(√

2R̃
)1−α

(3.24)

⇒ −|x2|α+1 ≤ − x22(√
2R̃
)1−α .

Hence, (3.23) can be simplified as follows:

(3.25) V̇R̃ ≤ −cR̃
(
|x1|

10−4α
2−α + x22

)
,

where

(3.26) cR̃ = min

⎧⎪⎨
⎪⎩

(μ1 −M)− κ1β1(√
2R̃
)1−α , κ1 κ2 κ3 κ4 μ2

⎫⎪⎬
⎪⎭ > 0.

Case 1: |x1| ≥ 1. The following inequality holds true for |x1| ≥ 1:

(3.27)
10− 4α

2− α
≥ 2

2− α
⇔ |x1|

10−4α
2−α ≥ |x1|

2
2−α .

Also, the following can be obtained from (3.14):

(3.28)
MR̃

2
max{1, μ2(2 − α)}(|x1|

2
2−α + x22) ≥ VR̃(x1, x2).
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1168 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

Hence, the following inequality is then obtained for |x1| ≥ 1 by combining (3.25),
(3.27), and (3.28):

(3.29) V̇R̃ ≤ −κ̄1VR̃,

where

(3.30) κ̄1 =
2cR̃

MR̃max{1, μ2(2− α)} > 0.

Case 2: |x1| < 1. Note that the following inequalities hold true for |x1| < 1 and
for some γ > 5− 2α:

(3.31) |x1|
10−4α
2−α > |x1|

2γ
2−α ⇔ 10− 4α

2− α
<

2γ

2− α
⇔ γ > 5− 2α.

Noting that 5− 2α < 11
3 always holds true due to α ∈ (23 , 1), γ ≥ 11

3 is a valid choice.
In the following, γ = 4 is chosen. It can be seen that the following equality holds
true:(

|x1|
2

2−α + x22

)4
= |x1|

8
2−α + 4 |x1|

6
2−α x22 + 6 |x1|

4
2−αx42 + 4 |x1|

2
2−αx62 + x82

(3.32)
≤ max{ρ2α−1,K2}

(
|x1|

10−4α
2−α + x22

)
,

where the bounds (3.10) have been utilized, resulting in the following definition of
K2:

(3.33) K2 = max
{
4ρ3, 6ρ2(2R̃), 4ρ(2R̃)2, (2R̃)3

}
> 0.

Note that the following can be obtained from (3.14):

(3.34)

(
MR̃

2
max{1, μ2(2− α)}(|x1|

2
2−α + x22)

)4

≥ (VR̃(x1, x2))
4 .

Then, the following can be obtained by combining (3.25), (3.32), and (3.34):

(3.35) V̇R̃(x1, x2) ≤ −cR̃
(
|x1|

10−4α
2−α + x22

)
≤ −κ̄2 (VR̃)

4
,

where

(3.36) κ̄2 =
cR̃(

MR̃

2 max{1, μ2(2− α)}
)4

max{ρ2α−1,K2}
> 0.

Hence, the desired uniform negative definiteness (3.4) is obtained by combining (3.29)
and (3.35) as follows:

(3.37) WR̃(x1, x2) = min
{
κ̄1VR̃, κ̄2 (VR̃)

4
}
.

Step 3: Global equiuniform asymptotic stability. Since the inequality (3.4) holds
on the solutions of the uncertain system (2.15), (2.17), initialized within the com-
pact set (3.3), the decay of the function VR̃(x1, x2) can be found by considering the
majorant solution ν(t) of VR̃ as follows:

(3.38) ν̇(t) =

{
−κ̄1ν(t) if |x1| ≥ 1,
−κ̄2νγ if |x1| < 1,
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1169

where γ > 5 − 2α is introduced for generality. A more conservative decay than that
in (3.38) can be computed. There are two possible subcases, namely, ν(t) ≥ 1 and
ν(t) < 1, for each of the cases |x1| ≥ 1 and |x2| < 1. The following expressions hold
true for a positive definite function ν(t) and a scalar γ > 1:

ν(t)γ ≥ ν(t) ⇒ −ν(t)γ ≤ −ν(t) if ν(t) ≥ 1,
(3.39)

ν(t)γ ≤ ν(t) ⇒ −ν(t) ≤ −ν(t)γ if ν(t) < 1.

Hence, the decay (3.38) is modified by utilizing (3.39) independently of the magnitude
of |x1| and dependent on ν(t) as follows:

(3.40) ν̇(t) =

{
−κ̄ν if ν(t) ≥ 1,
−κ̄νγ if ν(t) < 1,

where

(3.41) κ̄ = min{κ̄1, κ̄2} > 0.

The solution for the case ν(t) < 1 can be obtained as follows:

(3.42)

∫ ν(t)

ν0

dζ(t)

ζγ
= −κ̄

∫ t

t1

dτ,

where ν0 = ν(t1), where t1 is the time instant when the solution ν(t) satisfies the
condition ν(t) = 1. The general solution of ν(t) of (3.40) can then be obtained as
follows:

(3.43) ν(t) =

⎧⎨
⎩
ν(t0) e

−κ̄(t−t0) if ν(t) ≥ 1,

ν(t1)
(

1
κ̄(t−t1)(γ−1)νγ−1

0 +1

) 1
γ−1

if ν(t) < 1.

It is noted that t1 = t0 if ν(t0) ≤ 1. It can be easily seen that the solution ν(t) → 0 as
t→ ∞ and that the decay rate depends on the gain parameters μ1, μ2, μ3 and bound
M on the disturbance ω(x, t). On the compact set (3.3), the following inequality holds
(see (3.12) and (3.14)):

(3.44) LR̃V (x1, x2) ≤ VR̃(x1, x2) ≤MR̃V (x1, x2)

for all (x1, x2) ∈ DR̃ and positive constants LR̃,MR̃. The above inequalities (3.43)
and (3.44) ensure that the globally radially unbounded function V (x1, x2) decays
exponentially:

(3.45) V (x1(t), x2(t)) ≤

⎧⎨
⎩
L−1

R̃
MR̃R̃e

−κ̄(t−t0) if VR̃ ≥ 1,

L−1

R̃
MR̃R̃

(
1

κ̄(t−t1)(γ−1)νγ−1
0 +1

) 1
γ−1

if VR̃ < 1

on the solutions of (2.15), (2.17) uniformly in ω(x, t) and the initial data, located
within an arbitrarily large set (3.3). This proves that the uncertain system (2.15),
(2.17) is globally equiuniformly asymptotically stable around the origin (x1, x2) =
(0, 0).

Step 4: Global equiuniform finite time stability. The piecewise continuous un-
certainty ω(x1, x2, t) in the right-hand side of the system (2.15), (2.17) is uniformly
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1170 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

bounded by M |x2|
α
2 (|x1|

α
2(2−α) + |x2|

α
2 ). The feedback is globally homogeneous with

homogeneity degree q = −1 with respect to dilation (r1, r2) = (2−α1−α ,
1

1−α ). In the
presence of piecewise continuous disturbances ω(x1, x2, t), Lemma 2.9 proves that the
closed-loop system (2.15), (2.17) is homogeneous of degree q = −1 with respect to
dilations (r1, r2) = (2−α1−α ,

1
1−α ). Thus, coupling the homogeneity of the perturbed

system (2.15), (2.17) within the arbitrarily large compact set (3.3), with the global
equiuniform asymptotic stability of the system (2.15), (2.17), it is obtained that the
closed-loop system (2.15), (2.17) is globally equiuniformly finite time stable according
to [26, Theorem 3.1].

Remark 4. In the case of purely continuous disturbances ω(x1, x2, t), the existing
result ([3, Corollary 2.24] applied to [3, Example 2.19]), which utilizes some positive
constants p, q such that 0 < q < p < 2, may provide a finite time stability with
superior robustness properties when compared to the controller (2.16). Under the
hypothesis of [3, Corollary 2.24], for example, the result [3, Corollary 2.24] is superior
if parameter α is chosen such that 0 < q < p < α < 1 holds true. However, the class of
controllers presented in Theorem 3.1 is able to maintain robustness for discontinuous
disturbances, which admit an upper bound that is a function of both the state vari-
ables, without requiring any condition such as that on homogeneous approximation
appearing in [3, Corollary 2.24].

The controller (2.17) coincides with the controller (2.16) when μ3 = 0 is chosen.
The controller (2.16) is robust to disturbances bounded by the vanishing bounds
given by (2.18). This result is captured in the following theorem, the proof of which
is very similar to that of Theorem 3.1 in that equiuniform asymptotic stability is
to be proven by identifying semiglobal strong Lyapunov functions followed by the
application of Lemma 2.8 to establish equiuniform finite time stability. A sketch of a
proof is included in the following.

Theorem 3.2. Given α ∈ (23 , 1), the closed-loop system (2.15), (2.16) is globally
equiuniformly finite time stable, regardless of whichever disturbance ω(x, t), satisfying
condition (2.18) with 0 < M < μ1 < μ2 −M , affects the system.

Proof. The sketch of the proof is given briefly.
Step 1: Global asymptotic stability. The same Lyapunov function V considered

in Theorem 3.1 is a valid candidate. Under the conditions of the theorem, the time
derivative of the function V (x1, x2), computed along the trajectories of (2.15), (2.16),
is estimated as follows [27, Th. 1]:

(3.46) V̇ ≤ −(μ1 −M)|x2|α+1.

Noting thatM < μ1 by a condition of the theorem and that the equilibrium point x1 =
x2 = 0 is the only trajectory of (2.15), (2.16) on the invariance manifold x2 = 0 where
V̇ (x1, x2) = 0, the global asymptotic stability of (2.15), (2.16) is then established by
applying the invariance principle [2, 33].

Step 2: Semiglobal strong Lyapunov functions. The indefinite functions similar to
Theorem 3.1 are identified as follows:

U(x1, x2) = U1(x1, x2) + U2(x1, x2) + U3(x1, x2),

U1(x1, x2) = κ1|x1|
2α

2−α sign(x1) |x2|2α x2,(3.47)

U2(x1, x2) = κ1 κ2 x
3
1 x2 |x2|α, U3(x1, x2) = κ1 κ2 κ3 x

5
1 x2.
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1171

This produces a class of semiglobal Lyapunov functions as follows:

(3.48) VR̃(x1, x2) = V (x1, x2) +

3∑
i=1

Ui(x1, x2),

where the positive weight scalars κi, i = 1, 2, 3, are chosen small enough so that

κ2 <
(1 + 2α)μ2

(1 + α)(μ1 +M) ρ3(1−α)
, κ3 <

(1 + α)μ2

(μ1 +M) ρ
4−3α

2

,(3.49)

κ1 < min
{

μ1−M
K1

, μ2(2−α)
κ2ρ5−3α(1+κ3ρ2(2−α))

, 1

ρ2α+(2R̃)2α−1
+κ2((2R̃)

α
+κ3)

}
,

K1 =
2α

2− α
ρ

3α−2
2

(
2R̃
) 1+α

2

+ (μ1 +M)(1 + 2α)ρα
(
2R̃
) 2α−1

2

(3.50)

+ 3κ2ρ
2−α

(
2R̃
) 1

2

+ 5κ2κ3ρ
2(2−α)

(
2R̃
) 1−α

2

,

and ρ is defied in (3.10). Following a similar tuning procedure to that outlined in
Theorem 3.1, scalars κ2, κ3, K1, and κ1 can be fixed unambiguously, in that order,
for given values of μ1, μ2, R̃, andM . A similar semiglobal analysis to that of Theorem
3.1 leads to the temporal derivative

(3.51) V̇R̃ ≤ − (μ1 −M − κ1K1) |x2|α+1 − κ1 κ2 κ3 μ2 x
4
1 |x1|

2
2−α ,

which includes exactly the same powers of the terms |x1| and |x2| as there are in (3.23)
with a slight difference in the multipliers of these terms. Equiuniform asymptotic
stability then follows as the temporal derivative (3.51) is negative definite due to
(3.49).

Step 3: Global equiuniform finite time stability. Coupling the homogeneity of the
perturbed system (2.15), (2.16) (see Lemma 2.8) within the arbitrarily large compact
set (3.3) with the global equiuniform asymptotic stability of the system (2.15), (2.16),
it is obtained that the closed-loop system (2.15), (2.16) is globally equiuniformly finite
time stable according to [26, Theorem 3.1].

4. Settling time estimate. A finite upper bound on the settling time of the
closed-loop system (2.15), (2.16) is computed in this section, which presents the second
main result of the paper. Since Theorems 3.1 and 3.2 arrive at similar expressions
while proving equiuniform asymptotic stability (see (3.23) and (3.51)), the method
of deriving the settling time presented in this section applies to both the closed-loop
systems (2.15), (2.17) and (2.15), (2.16). The identification of the ellipsoids Eδ, E 1

2 δ

(see [26, Theorem 3.1]) can lead to an explicit formula for the finite settling time. A
method similar to that developed for a discontinuous controller [28] is employed to
identify the required parameters for the computation of the settling time.

4.1. Parameters for settling time computation. The process of identifying
the parameters for the computation of the settling time can be listed as follows:

1. Identify the radius r̄ of the ball

Br̄ =
{
(x1, x2) :

x21
r̄2

+
x22
r̄2

≤ 1

}
.(4.1)
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1172 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

2. Identify the scalar δ > 0 such that the following definition of the ellipsoid Eδ
holds true [26]:

Eδ =

{
(x1, x2) :

√( x1
δr1

)2
+
( x2
δr2

)2
≤ 1

}
⊆ Br̄,(4.2)

where r1, r2 are dilation weights.
3. Identify the scalars R′ > 0, R̄ > 0 such that the following expressions of the

level sets of the Lyapunov function VR̃ hold true in addition to (4.2):

Ω2 =
{
(x1, x2) : VR̃(x1, x2) ≤ R̄

}
⊆ Eδ,

(4.3)
Eδ ⊆ Ω1 = {(x1, x2) : VR̃(x1, x2) ≤ R′} .

4. Identify the scalar R̂ > 0 of the level set Ω3 corresponding to the ellipsoid
E 1

2 δ
[26] in a similar way such that the following expressions are satisfied:

E 1
2 δ

=

⎧⎨
⎩(x1, x2) :

√(
x1

( 1
2 δ)

r1

)2

+

(
x2

( 1
2 δ)

r2

)2

≤ 1

⎫⎬
⎭ ,

(4.4)
Ω3 =

{
(x1, x2) : VR̃(x1, x2) ≤ R̂

}
⊆ E 1

2 δ
.

The motivation to achieve the above results is the fact that the estimate of the finite
settling time can be obtained by utilizing the exponential decay (3.43) once the defini-
tions of the parameters r̄, δ, R̄, R′, R̂ are obtained (recall that the finite time stability
results [26, Theorem 3.2] and Theorem 3.2 apply in the vicinity of the origin defined
by the ball Br and ellipsoids Eδ, E 1

2 δ
). The stated steps can be established as follows.

Step 1: Definition of radius r̄ of the ball Br̄.
Lemma 4.1. Given a positive scalar M0 ∈ (M(

√
2R̃)

α
2 , 1 + M(

√
2R̃)

α
2 ) and

conditions μ1 > max{1,M}, μ2 > μ1, μ2 > μ3, the following upper bound on 1-norm
‖x‖1 = |x1|+ |x2| holds true in finite time:

|x1|+ |x2| ≤
M0 −M

(
2R̃
)α

2

μ2
(4.5)

for some arbitrary scalar α ∈ (23 , 1).
Proof. It should be noted that this lemma was not needed in the proof of The-

orem 3.1. Theorem 3.1 asserts the fact that the trajectories of the closed-loop sys-
tem (2.15), (2.17) decay exponentially within the vicinityDR̃ of the origin if the condi-
tion q+r2−αr2 ≤ 0 is met. Hence, in finite time, the system trajectories enter a region
close to origin where the homogeneous part −μ1|x2|αsign(x2) − μ2|x1|

α
2−α sign(x1)−

μ3|x2|
α
2 |x1|

α
2(2−α) sign(x2) of the second differential equation of the closed-loop sys-

tem (2.15), (2.17) dominates the nonhomogeneous part ω(x1, x2, t). Due to equiuni-
form asymptotic stability of the closed-loop system (2.15), (2.17), this region can

be chosen such that the expression |x1|
α

2(2−α) + |x2|
α
2 < 1 holds true. This means

M |x2|
α
2 (|x1|

α
2(2−α) + |x2|

α
2 ) ≤ M |x2|

α
2 ≤ M(2R̃)

α
2 . Hence, a conservative region can

be chosen such that the following holds true:

μ2(|x1|
α

2−α + |x2|α + |x2|
α
2 |x1|

α
2(2−α) ) +M(2R̃)

α
2 < M0(4.6)
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1173

with the positive scalar M0. Since the Lyapunov function VR̃ decays exponentially,
the above constantM0 can be arbitrarily chosen and the trajectories are guaranteed to
enter the region (4.6) in finite time. Let the choice be M0 ∈ (M(2R̃)

α
2 , 1+M(2R̃)

α
2 ).

Noting that |ω(x1, x2, t)| ≤ M |x2|
α
2 (|x1|

α
2(2−α) + |x2|

α
2 ) ≤ M |x2|

α
2 ≤ M(2R̃)

α
2 for

the case when |x1|
α

2(2−α) + |x2|
α
2 < 1 holds true and noting that |x1|

α
2−α + |x2|α ≤

|x1|
α

2−α + |x2|α + |x2|
α
2 |x1|

α
2(2−α) for all x1, x2, the following is obtained from (4.6):

μ2|x1|
α

2−α + μ1|x2|α + |ω(x1, x2, t)| ≤ μ2(|x1|
α

2−α + |x2|α) +M
(
2R̃
)α

2 ≤M0.(4.7)

Hence, (4.6) is a conservatively large upper bound for the chosen scalar M0 on the
nonhomogeneous right-hand side. The following is obtained from (4.7):

μ2(|x1|
α

2−α + |x2|α) +M(2R̃)
α
2 < M0 ⇒ |x1|

α
2−α + |x2|α ≤ M0 −M(2R̃)

α
2

μ2
.(4.8)

Noting that the bound appearing in the right-hand side of (4.8) is always less than
unity due to the conditions μ2 > 1, 0 < M0 − M(2R̃)

α
2 < 1 of Lemma 4.1, the

inequality |x1|+ |x2| ≤ |x1|
α

2−α + |x2|α also holds true. Hence a conservative estimate
of the region within the compact set (3.3) in terms of the 1-norm can be obtained
from (4.8) as follows:

|x1|+ |x2| ≤
M0 −M

(
2R̃
)α

2

μ2
,(4.9)

where R̃ = V (x1(t0), x2(t0)).
It is recalled here that the uncertainty ω(x1, x2, t) is treated as a nonhomogeneous

perturbation. The finite time stability of discontinuous homogeneous systems in the
presence of nonhomogeneous perturbations was established in the previous section
(see Theorem 3.1). The following is a well-known relationship between the Euclidean
norm ‖x‖2 =

√
x21 + x22 and 1-norm ‖x‖1 = |x1|+ |x2| of vector x = (x1, x2)

T (see [4,
Fact 1.12.34]):

‖x‖1 ≤
√
2‖x‖2.(4.10)

From (4.9) and (4.10), a conservative bound on the radius r̄ of the ball Br̄ can be
obtained as follows:

r̄ =
√
x21 + x22 ≤

M0 −M
(
2R̃
)α

2

√
2μ2

.(4.11)

The inequalities (4.10) and (4.11), when combined, will always ensure that the in-
equality (4.9) holds true.

Step 2: Definition of the parameter δ. The aim is to find δ > 0 such that every
point (x1, x2) contained within the ellipsoid Eδ is also contained within the ball Br̄.
Having computed the radius r̄ in Step 1, if δ > 0 is chosen such that the equalities

min

{
1

δ2r1
,

1

δ2r2

}
=

1

r̄2
⇒ max

{
δ2r1 , δ2r2

}
= r̄2 ⇒ max {δr1 , δr2} = r̄(4.12)

are satisfied, then, due to the fact that the equality

min

{
1

δ2r1
,

1

δ2r2

}(
x21 + x22

)
=

1

r̄2
(
x21 + x22

)
(4.13)
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1174 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

always holds true, the inequality

min

{
1

δ2r1
,

1

δ2r2

}(
x21 + x22

)
=

1

r̄2
(
x21 + x22

)
≤
( x1
δr1

)2
+
( x2
δr2

)2
(4.14)

also holds true. If the given point (x1, x2) ∈ Eδ, then the inequality√( x1
δr1

)2
+
( x2
δr2

)2
≤ 1(4.15)

holds true, which, using (4.14), leads to the inequality

1

r̄2
(
x21 + x22

)
≤ 1.(4.16)

Hence (x1, x2) ∈ Br̄, and the choice (4.12) of δ is indeed valid, which, upon further
simplification, satisfies

δ = min
{
r̄

1
r1 , r̄

1
r2

}
.(4.17)

The aim of computing δ > 0 such that Eδ ⊆ Br̄ is thus achieved.
Step 3: Definition of scalars R̄, R′ of the level sets Ω1,Ω2. The first aim is to

compute R̄ > 0 such that the level set Ω2 satisfies Ω2 ⊆ Eδ. Combining the definition
of the level set Ω2 with the inequality (3.14), it suffices that the inequality V ≤ R̄

MR̃

holds true in order that Ω2 ⊆ Eδ is satisfied for any given (x1, x2) in a small vicinity
of the origin. Hence the following must be satisfied:

μ2(2− α)MR̃

2R̄
|x1|

2
2−α +

MR̃

2R̄
x22 ≤ 1 ⇒

( x1
δr1

)2
+
( x2
δr2

)2
≤ 1.(4.18)

Having computed the ellipsoid parameter δ in Step 2, if R̄ > 0 is chosen such that
the inequalities ( x1

δr1

)2
≤ μ2(2− α)MR̃

2R̄
|x1|

2
2−α ,

( x2
δr2

)2
≤ MR̃

2R̄
x22(4.19)

are satisfied, then the inequality( x1
δr1

)2
+
( x2
δr2

)2
≤ μ2(2− α)MR̃

2R̄
|x1|

2
2−α +

MR̃

2R̄
x22(4.20)

always holds true. For a given point (x1, x2) ∈ Ω2, the inequality

μ2(2− α)MR̃

2R̄
|x1|

2
2−α +

MR̃

2R̄
x22 ≤ 1(4.21)

holds true, which, using (4.20), leads to the inequality( x1
δr1

)2
+
( x2
δr2

)2
≤ 1.(4.22)

Hence (x1, x2) ∈ Eδ, and the choice (4.19) of R̄ is indeed valid. Noting from (3.10)

that x21 < |x1|
2

2−α ρ1−α, requirement (4.19) can be reformulated as follows:

( x1
δr1

)2
≤ |x1|

2
2−α

δ2r1

(
2R̃

(2− α)μ2

)1−α
≤ μ2(2− α)MR̃

2R̄
|x1|

2
2−α ,

(4.23) ( x2
δr2

)2
≤ MR̃

2R̄
x22.
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1175

The above inequalities (4.23) result in the following definition of R̄:

R̄ =
MR̃

2
min

⎧⎪⎨
⎪⎩δ2r1μ2−α

2

(2− α)
2−α(

2R̃
)1−α , δ2r2

⎫⎪⎬
⎪⎭ .(4.24)

The second aim is to compute R′ > 0 such that the the expression Eδ ⊆ Ω1 is satisfied.
Combining the definition of the level set Ω1 with the inequality (3.14), it suffices that

the inequality V ≤ R′
MR̃

holds true in order that Eδ ⊆ Ω1 is satisfied for any given

(x1, x2) in a small vicinity of the origin. Hence the following must be satisfied:

( x1
δr1

)2
+
( x2
δr2

)2
≤ 1 ⇒ μ2(2− α)MR̃

2R′ |x1|
2

2−α +
MR̃

2R′ x
2
2 ≤ 1.(4.25)

If the inequality

μ2(2− α)MR̃

2R′ |x1|
2

2−α +
MR̃

2R′ x
2
2 ≤

( x1
δr1

)2
+
( x2
δr2

)2
(4.26)

holds true, then (4.25) always holds true for all (x1, x2) ∈ Eδ. Inequality (4.26) always
holds true if the following is ensured:

μ2(2− α)MR̃

2R′ |x1|
2

2−α ≤ (1 − ε1),
MR̃

2R′ x
2
2 ≤ ε1

( x2
δr2

)2
,(4.27)

where 0 < ε1 < 1 is an arbitrary constant. The fact that (x1, x2) ∈ Eδ leads to
|x1| ≤ δr1 by definition. Hence (4.27) can be further simplified to derive a formula
for R′ by enforcing the following subconditions:

μ2(2 − α)MR̃

2R′ |x1|
2

2−α ≤ μ2(2 − α)MR̃

2R′ δ
2r1
2−α ≤ (1− ε1),

(4.28)
MR̃

2R′ x
2
2 ≤ ε1

( x2
δr2

)2
.

Hence the formula

R′ =
MR̃

2
max

{
δ

2r1
2−α

μ2(2 − α)

1− ε1
,

δ2r2

ε1

}
(4.29)

can be deduced from (4.28). The aims of computing R′ > 0, R̄ > 0 such that Ω2 ⊆
Eδ ⊆ Ω1 are thus achieved.

Step 4: Definition of the parameter R̂ of the level set Ω3. Arguments similar to
those outlined in Step 3 produce the following formula:1

R̂ =
MR̃

8
min

⎧⎪⎨
⎪⎩
δ2r1 (μ2(2− α))

2−α(
2R̃
)1−α , δ2r2

⎫⎪⎬
⎪⎭ .(4.30)

1All constants MR̃,MR̄,M
R̂
,M

Ŕ
corresponding to the semiglobal regions DR̃,Ωi, i = 1, 2, 3, can

be chosen as MR̃ = MR̄ = M
R̂

= MR′ since only the lower bound (3.14) is to be satisfied.
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1176 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

Fig. 3. Finite time behavior: Regions ‖(x1, x2)‖1, ball Br̄, ellipsoids (Eδ, E 1
2
δ), and level sets

ΩR,Ω1,Ω2,Ω3.

4.2. Computation of settling time. The finite time behavior2 is geometri-
cally depicted in Figure 3. Trajectories of the system (2.15), (2.17) in the phase
plane (x1, x2) are also schematically shown. The existence of a uniformly decaying
global Lyapunov function VR̃ is utilized (see (3.43)). The point O1 is the system
initial condition which corresponds to the boundary of the level set ΩR̃ = {(x1, x2) :
VR̃(x1, x2) ≤ MR̃R̃}, where R̃ = V (x1(t0), x2(t0)). Then, due to the fact that the
system decays exponentially toward the origin, it can be deduced that the trajectory
enters the ball Br̄ in finite time, where r̄ is defined by (4.11), and subsequently enters
the ellipsoid Eδ. This in turn causes the trajectories of the closed-loop system to
satisfy the definition of the level set Ω2 =

{
(x1, x2) : VR̃(x1, x2) ≤ R̄

}
⊆ Eδ of the

Lyapunov function VR̃ in finite time. This corresponds to the point O2 . Finally, finite
time stability follows from the homogeneity principle once the system trajectories are
inside the ellipsoid Eδ (see Theorem 3.1 and [26, Th. 3.1]). As a consequence, the
settling time of the system is the summation of the following:

T = TO1−O2 + Th,(4.31)

where TO1−O2 is the time taken by the state trajectories of the closed-loop system to
attain the level set Ω2 (point O2 ) from the initial condition level set ΩR̃ (point O1 )
and Th is finite settling time of the system to attain equilibrium point (0, 0) from the
boundary of Eδ ⊆ Ω1, which can be readily computed using the expression (3.12) of

2This figure is inspired from [28], where a discontinuous counterpart α = 0 of the control law
(2.16) was studied.
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1177

[26] as follows:

Th =
c0
q

1− 2q

{
sup

(x1,x2)∈Eδ

TO2−O3

}
,(4.32)

where q is the homogeneity degree, c0 is a lower estimate of the homogeneity param-
eter, and TO2−O3 is the time taken by the state trajectories of the closed-loop system
to travel from the boundary Eδ ⊆ Ω1 to the boundary Ω3 ⊆ E 1

2 δ
(point O3 ). While

computing TO2−O3 , the necessity to use the boundary of the level set Ω1 in place of
Ω2 stems from the fact that the supremum of TO2−O3 has to be taken into considera-
tion while computing the worst possible decay of the Lyapunov function. Hence, the
boundary given by Ω2 has to be utilized to compute TO1−O2 and that given by Ω1 to
compute TO2−O3 in order to encompass the worst case scenario. Although an overlap
of time contributions may occur in the summation (4.31) leading to a conservative
result since Ω2 ⊆ Ω1 holds true, the estimate of the settling time thus obtained is a
true upper bound nevertheless. The terms TO1−O2 and TO2−O3 can be estimated for
γ = 4 from the decay (3.43) as follows:

TO1−O2 (μ1, μ2,M, R̃, R̄) =

⎧⎪⎪⎨
⎪⎪⎩
tO1 + t̄ if MR̃R̃ ≥ 1, R̄ > 1,

tO1 + t1 +
1−R̄3

3κ̄R̄3 if MR̃R̃ ≥ 1, R̄ < 1,

tO1 +
((

M
R̃

R̃

R̄
)3−1)

3κ̄(R̃MR̃)3
if MR̃R̃ < 1,

(4.33)

TO2−O3 (μ1, μ2,M, R̃, R̂) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln(R′
R̂

)

κ̄ if R′ > 1, R̂ > 1,
lnR′
κ̄ + 1−R̂3

3κ̄R̂3
if R′ > 1, R̂ < 1,

((R′
R̂

)3−1)

3κ̄(R̂)3
if R′ < 1,

where t̄ and t1 can be obtained from the first equality of the exponential decay (3.43)
as

t̄ =
ln

MR̃R̃

R̄

κ̄
, t1 =

ln
(
MR̃R̃

)
κ̄

,(4.34)

and the substitutions VR̃(tO1 ) =MR̃R̃, VR̃(tO2 ) = R̄ have been utilized corresponding
to the level sets ΩR̃ and Ω2 at time instants tO1 and tO2 , respectively, in the first

equality and substitutions VR̃(tO2 ) = R′, VR̃(tO3 ) = R̂ have been utilized correspond-
ing to the level sets Ω1 and Ω3 at time instants tO2 and tO3 , respectively, in the second
equality while utilizing (3.43).

Under the stated assumptions, the parameters r̄, δ, R̄, R̂, R′ outlined in section 4.1
and in turn the settling time estimate (4.31) can be computed a priori for a given R̃.
It remains to give conditions under which the estimates TO1−O2 , Th are guaranteed to
be positive or, in other words, expressions MR̃R̃ > R̄ and R′ > R̂ always hold true.

Lemma 4.2. Given a positive scalar M0 ∈ (M(
√
2R̃)

α
2 , 1 +M(

√
2R̃)

α
2 ), con-

ditions μ1 > max{1,M}, μ2 > max{μ1,
1−ε1

(2−α)ε1 ,
2−α
4 }, R̃ > 1, and the condition

1 > ε1 > 1 − ε̄2 > 0, with some positive scalar ε̄ ∈ (0, 1), the expressions MR̃R̃ > R̄

and R′ > R̂ always hold true.

Proof. Due to the choice M0 ∈ (M(
√
2R̃)

α
2 , 1 +M(

√
2R̃)

α
2 ), the inequality

(M0 −M(
√
2R̃)

α
2 )2 < 1(4.35)
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1178 H. B. OZA, Y. V. ORLOV, AND S. K. SPURGEON

holds true. Using the condition μ2 >
2−α
4 , (4.35) can be modified as follows:

(M0 −M(
√
2R̃)

α
2 )2

4μ2
2

μ2(2− α) < 1.(4.36)

The inequality R̃ > 1 holds true by assumption, and hence (4.36) can be rewritten as

(M0 −M(
√
2R̃)

α
2 )2

4μ2
2

μ2(2− α) < R̃.(4.37)

Rearranging (4.37) and raising the power by 2− α results in

(
M0 −M(

√
2R̃)

α
2

√
2μ2

)2(2−α)

(μ2(2− α))2−α < 2R̃
2−α

.(4.38)

Recalling the definition of δ from (4.17), multiplying byMR̃ on both sides, and noting
that 2r1

r2
= 2(2− α) produces

MR̃δ
2r1

(μ2(2 − α))2−α

2R̃
1−α < 2MR̃R̃,(4.39)

which, in turn, recalling the definition of R̄ from (4.24), gives

MR̃δ
2r1

(μ2(2− α))2−α

2R̃
1−α < MR̃R̃.(4.40)

Using a similar analysis, (4.35) produces

MR̃

2
δ2r2 < MR̃R̃.(4.41)

Hence, MR̃R̃ > R̄ follows from (4.40), (4.41). The second claim to be proved is

R′ > R̂. First, the following, which stems from the condition μ2 >
(1−ε1)
ε1(2−α) , is in order

to simplify (4.29):

μ2 >
(1 − ε1)

ε1(2− α)
⇒ μ2(2− α)

1− ε1
>

1

ε1

⇒ δ
2r1
2−α−2r2 μ2(2 − α)

1− ε1
>

1

ε1
because 2r1

2−α − 2r2 = 0.(4.42)

⇒ δ
2r1
2−α

μ2(2− α)

1− ε1
>
δ2r2

ε1

Recalling the definition (4.29) of R′, (4.42) produces

R′ =
MR̃

2
δ

2r1
2−α

μ2(2− α)

1− ε1
.(4.43)

It can be seen from the definition of R̂ in (4.30) that the terms inside the min{·}
function are less than unity since δ < 1 due to the condition M0 ∈ (M(

√
2R̃)

α
2 , 1 +

M(
√
2R̃)

α
2 ). Hence, in order to prove R′ > R̂, it suffices to prove that the right-hand
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CONTINUOUS UNIFORM FINITE TIME STABILIZATION 1179

side of (4.43) is greater than
MR̃

8 . Let the scalar ε̄ ∈ (0, 1) be selected small enough
such that

1 >
(M0 −M(2R̃)

α
2 )√

2
> ε̄μ2 > 0, ε1 > 1− ε̄2 ⇔ ε̄2

1− ε1
> 1(4.44)

holds true. This is always possible for fixed values of μ2. Then, the following holds
from (4.44):

(M0 −M(2R̃)
α
2 )√

2
> ε̄μ2 ⇒ (M0 −M(2R̃)

α
2 )√

2μ2

> ε̄

⇒ δ > ε̄
1
r2 (since (4.17) and r̄ < 1, r1 > r2 produces δ = r̄

1
r2 )

⇒ δ
2r1
2−α > ε̄

2r1
(2−α)r2 = ε̄2(4.45)

⇒ δ
2r1
2−α

μ2(2− α)

1− ε1
>

μ2(2− α)

1− ε1
ε̄2 > 1

since μ2 > 1, 2− α > 1, ε̄2

1−ε1
> 1.

Noting that min{ δ
2r1 (μ2(2−α))2−α

(2R̃)1−α
, δ2r2} < 1 and in turn R̂ <

MR̃

8 , combining the last

inequality of (4.45) with (4.43) produces

MR̃

2
δ

2r1
2−α

μ2(2− α)

1− ε1
>

MR̃

2

μ2(2− α)

1− ε1
ε̄2 >

MR̃

8
>

MR̃

8
min

{
δ2r1 (μ2(2− α))2−α

(2R̃)1−α
, δ2r2

}
⇒ R′ > R̂.(4.46)

Thus, the estimate (4.31) proves to be a positive real constant.
Remark 5. The estimate of the homogeneity parameter c should satisfy c ≥ c0

for the chosen c0, where c0 is the lower estimate of the homogeneity parameter. It
can be seen from the above development that the closed-loop system is homogeneous
inside the ellipsoid Eδ. The identity δ R−1

0 = c then leads to c = 1 because R0 = δ
is chosen to facilitate the application of (4.32), where the scalar R0 > 0 represents
the largest ellipsoid ER0 (see (3.12) of [26] for more details). Hence c0 = 1 is a valid
choice.

5. Conclusions. Uniform asymptotic stability of planar controllable systems is
established for two classes of continuous homogeneous controllers by identifying cor-
responding C1 smooth, strong Lyapunov functions. The homogeneity principle of
discontinuous systems is extended to the case of continuous systems with uniformly
decaying, but piecewise continuous, nonhomogeneous disturbances to establish uni-
form finite time stability of planar controllable systems. In turn, it gives finite time
stability results superior to the existing results which only cover either homogeneous
or continuous disturbances. Interestingly, the Lyapunov function V given in (3.1) is
homogeneous in the sense of the definition given in the statement of [31, Lemma 2]
since for all c = max{1, c0}, c0 > 0, and r1 = 2−α

1−α , r2 = 1
2−α , r3 = 2

1−α the equality

(5.1) V (cr1x1, c
r2x2) = cr3V (x1, x2)

holds true, where r3 > r1, r3 > r2. Thus, the Lyapunov analysis of previous sections
combines a C1 smooth homogeneous Lyapunov function that satisfies (5.1) with in-
definite functions to form a semiglobal Lyapunov function VR̃ such that the time

derivative V̇R̃ is negative definite along the closed-loop system trajectories. The

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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future scope of this line of research is to investigate if the semiglobal Lyapunov
analysis can be successfully extended to the case of dimension n, i.e., dn

dtn x(t) =

u(x, ẋ, . . . , dn−1

dtn−1x, ) + ω(x, ẋ, . . . , dn−1

dtn−1x, t), in the presence of nonhomogeneous time

varying discontinuous disturbances ω(x, ẋ, . . . , dn−1

dtn−1x, t), where the existing results
for homogeneous systems with discontinuous right-hand sides [32] may prove to be
instrumental.
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