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1. Introduction

The aim of this paper is to study the Poisson prime spectra of Poisson algebras. More 
precisely, we focus on the catenary property – that all saturated chains of inclusions of 
Poisson prime ideals between any two fixed Poisson prime ideals have the same length 
– for the large class of Poisson algebras called Poisson nilpotent algebras. Many such 
algebras arise as semiclassical limits of quantum algebras, e.g., coordinate rings of matrix 
varieties or Schubert cells with natural Poisson structures. See [8, Section 2] and [5], for 
instance, for a number of examples.

Many properties of quantum algebras are known, or are conjectured to be, reflected 
in parallel properties of the Poisson algebras that arise as their semiclassical limits. 
Catenarity has been proved for the prime spectra of many quantized coordinate rings 
and related algebras, and the authors recently proved it for quantum nilpotent algebras 
[9]. The parallel result, for the Poisson prime spectra of Poisson nilpotent algebras, is 
established here.

In order to provide further detail, a few definitions are in order.

1.1. Poisson nilpotent algebras

The algebras just named are iterated Poisson polynomial algebras A[x; σ, δ]p (see 
Definition 2.1), meaning that A is a Poisson algebra and A[x; σ, δ]p denotes a polynomial 
ring A[x] equipped with a Poisson bracket that extends the one on A and satisfies

{x, a} = σ(a)x + δ(a) ∀ a ∈ A,

where σ and δ are suitable derivations on A. Given an iterated Poisson polynomial 
algebra

R := K[x1]p[x2;σ2, δ2]p · · · [xN ;σN , δN ]p , (1.1)

we set

Rk := K[x1, . . . , xk] = K[x1]p[x2;σ2, δ2]p · · · [xk;σk, δk]p

for k ∈ �0, N�. In particular, R0 = K and R1 = K[x1]p = K[x1; 0, 0]p.

Definition 1.1. An iterated Poisson polynomial algebra R as in (1.1) is called a Poisson 
nilpotent algebra or a Poisson-CGL extension [11, Definition 5.1] if it is equipped with 
a rational action of an algebraic torus H by Poisson algebra automorphisms such that

(i) The elements x1, . . . , xN are H-eigenvectors.
(ii) For every k ∈ �2, N�, the map δk on Rk−1 is locally nilpotent.
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(iii) For every k ∈ �1, N�, there exists hk ∈ LieH such that (hk·)|Rk−1 = σk and the 
hk-eigenvalue of xk is nonzero.

The main theorem of the paper is

Theorem 1.2. If R is a Poisson nilpotent algebra, then its Poisson prime spectrum 
P.SpecR is catenary.

Here P.SpecR consists of the ideals of R which are both Poisson ideals and prime 
ideals (see Definition 2.2 and Lemma 2.3).

1.2. Notation and conventions

Throughout, all algebras will be unital commutative algebras over a fixed base field 
K of characteristic zero.

2. Background and basics

Recall that a Poisson algebra (over K) is a commutative K-algebra equipped with a 
Poisson bracket {−, −}, that is, a Lie bracket which is also a derivation in each variable 
(for the associative product).

Definition 2.1. Let A be a Poisson algebra. A Poisson derivation on A is a K-linear map 
σ on A which is a derivation with respect to both the multiplication and the Poisson 
bracket, that is,

σ(ab) = σ(a)b + aσ(b) and σ({a, b}) = {σ(a), b} + {a, σ(b)} ∀ a, b ∈ A.

Suppose that δ is a Poisson σ-derivation on A (in the terminology of [3, §1.1.2]), meaning 
that δ is a K-linear derivation and

δ({a, b}) = {δ(a), b} + {a, δ(b)} + σ(a)δ(b) − δ(a)σ(b) ∀ a, b ∈ A. (2.1)

By [14, Theorem 1.1] (after replacing σ with −σ), the Poisson structure on A extends 
uniquely to a Poisson algebra structure on the polynomial ring A[x] such that

{x, a} = σ(a)x + δ(a) ∀ a ∈ A.

We write A[x] = A[x; σ, δ]p to denote this situation, and we refer to A[x; σ, δ]p as a 
Poisson polynomial algebra or a Poisson-Ore extension. The Poisson structure on A[x]
extends uniquely to the Laurent polynomial ring A[x±1]. We write A[x±1; σ, δ]p for this 
Poisson algebra and refer to it as a Poisson Laurent polynomial algebra.
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In either of the above cases, we omit δ from the notation if it is zero, that is, we write 
A[x; σ]p and A[x±1; σ]p for A[x; σ, 0]p and A[x±1; σ, 0]p.

The converse part of [14, Theorem 1.1] will also be needed: If a polynomial ring A[x]
supports a Poisson bracket such that A is a Poisson subalgebra and {x, A} ⊆ A + Ax, 
then A[x] = A[x; σ, δ]p for suitable σ and δ.

Definition 2.2. Let R be a Poisson algebra. The Poisson bracket on R induces unique 
Poisson brackets on any quotient of R modulo a Poisson ideal, meaning an ideal I such 
that {R, I} ⊆ I, and on any localization of R with respect to a multiplicative set (e.g., 
[13, Proposition 1.7]).

A Poisson automorphism of R is any algebra automorphism which preserves the Pois-
son bracket. We use the term Poisson action to refer to an action of a group on R by 
Poisson automorphisms.

The Poisson center of R is the set Zp := {z ∈ R | {z, −} ≡ 0}, which is a subalgebra 
of R. A Poisson-prime ideal is any proper Poisson ideal P of R such that (IJ ⊆ P =⇒
I ⊆ P or J ⊆ P ) for all Poisson ideals I and J of R.

Lemma 2.3. [7, Lemma 1.1] Let R be a Poisson algebra.
(a) Every prime ideal minimal over a Poisson ideal is a Poisson ideal.
(b) If R is noetherian, every Poisson-prime ideal of R is prime.

Remark. If R is a noetherian Poisson algebra, Lemma 2.3(b) implies that the Poisson-
prime ideals in R are precisely the ideals which are both Poisson ideals and prime ideals; 
in that case, the hyphen in the term “Poisson-prime” becomes unnecessary.

The Poisson prime spectrum of a Poisson algebra R is the set P.SpecR of all Poisson-
prime ideals of R, equipped with the natural Zariski topology (where the closed sets are 
the sets {P ∈ P.SpecR | P ⊇ I} for Poisson ideals I of R).

Suppose R is a Poisson algebra and we have a Poisson action of a group H on R. One 
defines H-prime and H-Poisson-prime ideals of R in the same manner as Poisson-prime 
ideals. Namely, an H-prime (resp., H-Poisson-prime) ideal is any proper H-stable (resp., 
H-stable Poisson) ideal P of R such that (IJ ⊆ P =⇒ I ⊆ P or J ⊆ P ) for all 
H-stable (resp., H-stable Poisson) ideals I and J of R. We denote the sets of H-prime 
and H-Poisson-prime ideals of R by H- SpecR and H-P.SpecR, respectively.

These concepts are related by an analog of Lemma 2.3 when H is an algebraic torus 
and the action of H on R is rational, meaning that R is spanned by H-eigenvectors whose 
H-eigenvalues H → K∗ are morphisms of algebraic groups.

Lemma 2.4. [11, Lemma 4.3] Let R be a noetherian Poisson algebra, equipped with a 
rational Poisson action of a torus H. Then any prime ideal of R minimal over an H-
stable Poisson ideal is itself an H-stable Poisson ideal, and the H-Poisson-prime ideals 
of R are exactly the H-stable, Poisson, prime ideals of R.
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Lemma 2.4 allows a shortening of terminology: In the setting of the lemma,

H-P.SpecR = {Poisson H-prime ideals of R} = H- SpecR ∩ P.SpecR ∩ SpecR. (2.2)

This is immediate from the lemma together with the fact that the H-prime ideals of R
coincide with the H-stable prime ideals [2, Proposition II.2.9].

Proposition 2.5. Let R be a K-algebra equipped with a rational action of a K-torus H, 
and set h := LieH.

(a) The differential of the H-action gives an action of h on R by derivations. If R is 
a Poisson algebra and the H-action is a Poisson action, then h acts on R by Poisson 
derivations.

(b) The h-action on R commutes with the H-action.
(c) The h-eigenspaces in R coincide with the H-eigenspaces.
(d) Suppose R′ is another K-algebra, equipped with a rational action of the torus H by 

K-algebra automorphisms. Then any H-equivariant K-algebra homomorphism φ : R →
R′ is also h-equivariant.

Proof. (a) (b) (c) See [8, Section 1.2 and Lemmas 1.3, 1.4].
(d) Since φ is H-equivariant, it is a homogeneous map with respect to the X(H)-

gradings on R and R′. It follows from [8, Lemma 1.3] that φ(h · r) = h ·φ(r) for all h ∈ h

and all X(H)-homogeneous elements r ∈ R, and thus φ is h-equivariant. �
Whenever we have a K-algebra R equipped with a rational action of a K-torus H, we 

assume that LieH is acting on R by the differential of the H-action.

3. Poisson catenarity

We address Poisson catenarity of general Poisson algebras in this section, beginning 
with an example for which Poisson catenarity fails. We then establish two general theo-
rems. The first provides sufficient conditions for the Poisson prime spectrum of a Poisson 
algebra to be catenary, and the second provides a reduction of the key condition in the 
first theorem.

The following is a Poisson adaptation of an example of Bell and Sigurðsson [1, Example 
2.10].

Example 3.1. Let R be the polynomial ring K[x, y, z, w]. There is a Poisson bracket on 
R such that

{x, y} = 0 {x, z} = 0 {y, z} = 0

{w, x} = 2yz {w, y} = x + y2 {w, z} = 0.
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The restriction of {w, −} to A := K[x, y, z] equals the derivation δ := 2yz ∂
∂x +(x +y2) ∂

∂y

and R = A[w; 0, δ]p.
By [1, Example 2.10], the δ-invariant prime ideal P := Ax + Ay of A has δ-height 1, 

that is, P does not properly contain any nonzero δ-invariant prime ideals of A. We claim 
that the Poisson prime ideal RP = Rx +Ry has height 1 in P.SpecR, that is, RP does 
not properly contain any nonzero Poisson prime ideals of R.

Suppose, to the contrary, that RP properly contains a nonzero Poisson prime ideal Q. 
Then Q ∩A is a δ-invariant prime ideal of A properly contained in P , whence Q ∩A = 0. 
Consider the polynomial ring T := F [w] where F := FractA. As a localization of R, the 
ring T is a Poisson algebra, and TQ is a proper nonzero Poisson ideal of T . Note that 
the Poisson bracket vanishes on F × F , since it vanishes on A ×A. Let

t = t0 + t1w + · · · + tnw
n

be a nonzero polynomial in TQ of minimal degree, and note that n > 0. Since we may 
replace t by t−1

n t, there is no loss of generality in assuming that tn = 1. Observe that

{x, t} = nwn−1{x,w} + [lower terms] = −2nyzwn−1 + [lower terms],

so that deg{x, t} = n − 1. Since {x, t} ∈ TQ, this contradicts the minimality of n.
Therefore RP has height 1 in P.SpecR, as claimed. Consequently, the chain

0 < Rx + Ry < Rx + Ry + Rz

in P.SpecR is saturated. However, there is also a saturated chain

0 < Rz < Rx + Rz < Rx + Ry + Rz

in P.SpecR. Therefore P.SpecR is not catenary.

There are two general theorems in the literature that have been used to establish 
catenarity for the prime spectra of various quantum algebras – [10, Theorem 1.6] and 
[16, Theorem 0.1]. A key hypothesis in both theorems is normal separation, a condition 
that requires a suitable supply of normal elements in prime factor rings. An analogous 
condition, as follows, is important in the Poisson setting.

Definition 3.2. Let R be a Poisson algebra.
An element c ∈ R is called Poisson-normal provided {c, R} ⊆ Rc, that is, Rc is a 

Poisson ideal of R.
The set P.SpecR is said to have Poisson-normal separation provided that for any 

pair of distinct comparable prime ideals P � Q in R, the factor Q/P contains a nonzero 
Poisson-normal element of R/P .
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Theorem 3.3. Let R be a noetherian Poisson algebra such that P.SpecR has Poisson-
normal separation. Then any saturated chain in P.SpecR is also saturated as a chain in 
SpecR.

Proof. We just need to show that if P � Q are Poisson prime ideals such that no Poisson 
prime ideals lie strictly between P and Q, then no prime ideals lie strictly between P
and Q, that is, ht(Q/P ) = 1.

By Poisson-normal separation, there exists c ∈ Q \ P such that c is Poisson-normal 
modulo P . Hence, Rc + P is a Poisson ideal contained in Q. Let Q′ ⊆ Q be a prime 
ideal minimal over Rc + P . By Lemma 2.3, Q′ is a Poisson ideal, and our assumption 
on P � Q implies that Q′ = Q. Thus Q is minimal over Rc + P . Krull’s Principal Ideal 
Theorem therefore implies ht(Q/P ) = 1, as required. �

We refer to a Poisson algebra as affine when the underlying associative algebra is 
affine (i.e., finitely generated as an algebra).

Corollary 3.4. Let R be an affine Poisson algebra. If P.SpecR has Poisson-normal sep-
aration, then P.SpecR is catenary.

Proof. Since R is an affine commutative algebra, SpecR is catenary (e.g., [4, Corollary 
13.6]). Given P � Q in P.SpecR, any two saturated chains of Poisson prime ideals from 
P to Q are also saturated as chains of ordinary prime ideals by Theorem 3.3, so they 
have the same length due to catenarity of SpecR. �
Definition 3.5. The Poisson height of a Poisson prime ideal P in a Poisson algebra R, 
denoted P-htP , is the height of P within the poset P.SpecR, that is, the supremum of 
the lengths of all chains of Poisson prime ideals in R descending from P .

Corollary 3.6. Let R be an affine Poisson algebra. If P.SpecR has Poisson-normal sep-
aration, then P-htP = htP for all P ∈ P.SpecR.

Proof. Let P ∈ P.SpecR. Any minimal prime ideal Q contained in P is a Poisson prime 
by Lemma 2.3(a), and any saturated chain from P to Q in P.SpecR is also saturated 
in SpecR by Theorem 3.3. Since P.SpecR and SpecR are both catenary, it follows that 
P-htP/Q = htP/Q. Taking suprema over all such Q yields P-htP = htP . �
Remark 3.7. In many quantum algebras T , catenarity of SpecT is accompanied by Tau-
vel’s height formula, which says that

htP + GKdimT/P = GKdimT

for all prime ideals P of T , assuming that T is a prime ring. An analogous Poisson version 
for an affine Poisson domain R would say that
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P-htP + GKdimR/P = GKdimR (3.1)

for all Poisson prime ideals P of R. If P.SpecR has Poisson-normal separation, then 
(3.1) follows from Corollary 3.6, since GKdim = K.dim for commutative affine algebras 
(e.g., [12, Theorem 4.5]) and htP + K.dimR/P = K.dimR for prime ideals P in such 
algebras R (e.g., [4, Corollary 13.4]).

A more “fully Poisson” version of (3.1) would replace GK-dimension with Poisson 
GK-dimension as defined in [15, Definition 3.5]. However, the resulting equations would 
be the same as (3.1), since, as is easily verified, Poisson GK-dimension agrees with GK-
dimension on affine Poisson algebras.

Our approach to the second main theorem of this section involves a stratification of 
the Poisson prime spectrum of a Poisson algebra.

Definition 3.8. Let R be a ring and H a group acting on R by ring automorphisms. The 
H-core of an ideal I of R is the ideal (I : H) :=

⋂
h∈H h · I. That is, (I : H) is the largest 

H-stable ideal of R contained in I.

Lemma 3.9. [7, Lemma 3.1] Let R be a noetherian Poisson algebra equipped with a ra-
tional Poisson action of an algebraic torus H.

(a) If I is a Poisson ideal of R, then (I : H) is an H-stable Poisson ideal.
(b) (P : H) ∈ H-P.SpecR for all P ∈ P.SpecR.

Definition 3.10. Let R be a noetherian Poisson algebra equipped with a rational Poisson 
action of an algebraic torus H. For J ∈ H-P.SpecR, set

P.SpecJ R = {P ∈ P.SpecR | (P : H) = J}.

In view of Lemma 3.9(b), we obtain a partition

P.SpecR = 

J∈H-P.SpecR

P.SpecJ R,

which is known as the H-stratification of P.SpecR.
Let EJ denote the set of H-eigenvectors in R/J . Since R/J is a domain (Lemma 2.4), 

EJ is multiplicatively closed, and the localization RJ := (R/J)[E−1
J ] is a subalgebra 

of the quotient field FractR/J . The Poisson bracket on R uniquely induces Poisson 
brackets on R/J and RJ (as well as on FractR/J), so that these algebras become Poisson 
algebras. Similarly, the action of H uniquely induces actions on R/J and RJ by Poisson 
automorphisms, as well as on FractR/J , although the latter action is no longer rational.

Theorem 3.11. [7, Theorem 4.2] Let R be a noetherian Poisson algebra equipped with a 
rational Poisson action of an algebraic torus H. Let J ∈ H-P.SpecR.
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(a) The algebra RJ is a graded field with respect to its induced X(H)-grading, i.e., all 
nonzero homogeneous elements of RJ are invertible.

(b) P.SpecJ R is homeomorphic to P.SpecRJ via localization and contraction.
(c) P.SpecRJ is homeomorphic to SpecZp(RJ ) via contraction and extension.

From this theorem we obtain a Poisson analog of the first conclusion of [6, Theorem 
5.3] as follows.

Definition 3.12. Suppose R is a Poisson algebra equipped with a Poisson action of a group 
H. Adapting the notation of [6, §5.2], we say that H-P.SpecR has Poisson-normal H-
separation provided that for any proper inclusion P � Q of Poisson H-prime ideals of 
R, there exists a Poisson-normal H-eigenvector of R/P which lies in Q/P .

Theorem 3.13. Let R be a noetherian Poisson algebra equipped with a rational Poisson 
action of an algebraic torus H. If H-P.SpecR has Poisson-normal H-separation, then 
P.SpecR has Poisson-normal separation.

Proof. Let P � Q be a proper inclusion of Poisson prime ideals of R. Set J := (P : H)
and K := (Q : H), which are members of H-P.SpecR such that P ∈ P.SpecJ R and 
Q ∈ P.SpecK R. Obviously J ⊆ K.

If J �= K, then by Poisson-normal H-separation there is an H-eigenvector c ∈ K \ J
which is Poisson-normal modulo J . Obviously c ∈ Q and c is Poisson-normal modulo P . 
Since Rc is an H-invariant ideal not contained in J , we see that Rc � P , that is, c /∈ P . 
Thus in this case we are done.

Now assume that J = K. Since it is harmless to pass to R/J , there is no loss of 
generality in assuming that J = K = 0. We shall need the following fact:

Zp(R0) ⊆ {ac−1 | a, c ∈ R and c is a Poisson-normal H-eigenvector}. (3.2)

First note that the induced H-action on R0 is rational, equivalently, R0 is X(H)-graded. 
Since H acts by Poisson automorphisms, the Poisson bracket on R0 is X(H)-graded, 
that is, {(R0)u, (R0)v} ⊆ (R0)u+v for all u, v ∈ X(H). It follows that an element z ∈ R0
is Poisson-central if and only if all its homogeneous components are Poisson-central. 
Hence, to prove (3.2) it suffices to show that any homogeneous element z ∈ Zp(R0) can 
be written in the desired form.

Given such a z, consider the nonzero ideal I := {r ∈ R | zr ∈ R}. Since z is both 
homogeneous and Poisson-central, I is an H-stable Poisson ideal. If z ∈ R, we can 
write z = z1−1 in the desired form, so we may assume z /∈ R, whence I �= R. There 
are prime ideals P1, . . . , Pm minimal over I such that P1P2 · · ·Pm ⊆ I. Lemma 2.4
implies that the Pi are Poisson H-prime ideals. By Poisson-normal H-separation, each 
Pi contains a Poisson-normal H-eigenvector ci. Hence, c := c1c2 · · · cm is a Poisson-
normal H-eigenvector lying in I, and z = ac−1 where a = zc ∈ R. This establishes 
(3.2).
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Since J = K = 0, we have P, Q ∈ P.Spec0 R. By Theorem 3.11(b) (c), R0P∩Zp(R0) �
R0Q ∩ Zp(R0), so there exists a Poisson-central element z ∈ R0Q \R0P . Apply (3.2) to 
write z = ac−1 for some a, c ∈ R with c a Poisson-normal H-eigenvector of R. Note that 
a ∈ Q \ P , since R0Q ∩R = Q and R0P ∩R = P . Given any r ∈ R, we have {c, r} = cs

for some s ∈ R, whence

{a, r} = {zc, r} = z{c, r} = zcs = as.

Therefore a is Poisson-normal in R, hence also Poisson-normal modulo P , and the proof 
is complete �
4. A construction of Poisson-normal elements

4.1. Basic assumptions

Assume throughout this section that R = A[X; σ, δ]p is a Poisson-Cauchon extension
in the sense of [11, Definition 4.4], that is, the Poisson polynomial algebra R is equipped 
with a rational Poisson action of a K-torus H such that

• The subalgebra A is H-stable, and X is an H-eigenvector.
• δ is locally nilpotent.
• There exists h◦ ∈ h := LieH such that (h◦·)|A = σ and the h◦-eigenvalue λ◦ of X is 

nonzero.

The third condition relies on X being an h-eigenvector, which follows from Proposi-
tion 2.5(c).

We write χr : H → K∗ to denote the H-eigenvalue of an H-eigenvector r ∈ R.

4.2. The Poisson Cauchon map

Set R̂ := A[X±1; σ, δ]p. Since R̂ is a localization of R at a multiplicative set consisting 
of H-eigenvectors, the action of H on R extends uniquely to a rational action on R̂ by 
K-algebra automorphisms. As is easily checked, this is a Poisson action of H on R̂. Let 
θ : A → R̂ be the Poisson Cauchon map defined by

θ(a) =
∞∑
l=0

1
l!

(
−1
λ◦

)l

δl(a)X−l. (4.1)

Proposition 4.1. [8, Lemmas 3.4, 3.6, Theorem 3.7]; [11, Proposition 4.5, Corollary 4.6]
(a) θ is an injective Poisson algebra homomorphism.
(b) {X, θ(a)} = θσ(a)X for all a ∈ A.
(c) θ extends uniquely to an injective Poisson algebra homomorphism A[Y ; σ]p → R̂

with θ(Y ) = X, and then to a Poisson algebra isomorphism A[Y ±1; σ]p → R̂.
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(d) Set B := θ(A) and T := θ(A[Y ; σ]p) ⊆ R̂. Then T = B[X; α]p where α is the 
Poisson derivation of B defined by α(θ(a)) = θ(σ(a)).

(e) The localization T [X−1] = B[X±1; α]p coincides with R̂.
(f) The H-action on A extends uniquely to a rational Poisson action of H on 

A[Y ±1; σ]p such that χY = χX . With respect to this action, the isomorphism θ :
A[Y ±1; σ]p → R̂ is H-equivariant.

(g) α = (h◦·)|B.

Lemma 4.2. Let a ∈ A be nonzero and let s ∈ Z≥0 be maximal such that δs(a) �= 0. Then 
s is minimal such that θ(a)Xs ∈ R.

Proof. Since δl(a) = 0 for l > s, we have θ(a) =
∑s

l=0 clδ
l(a)X−l for some nonzero 

cl ∈ K. Thus θ(a)Xs ∈ R.
Suppose that s > 0 and θ(a)Xt ∈ R for some t < s. Then θ(a)Xs−1 ∈ R, whence 

δs(a)X−1 ∈ R. Consequently, δs(a) ∈ A ∩ RX = 0, which contradicts our choice of s. 
Therefore s is minimal such that θ(a)Xs ∈ R. �

The following Poisson version of [9, Lemma 2.2] is adapted from the proof of [11, 
Theorem 4.7].

Proposition 4.3. Assume that A is a domain. Let a ∈ A be a Poisson-normal H-
eigenvector, and let s ∈ Z≥0 be maximal such that δs(a) �= 0. Then the element 
x := θ(a)Xs is a Poisson-normal H-eigenvector in R. In particular, {x, X} = −ηxX, 
where η is the σ-eigenvalue of a.

Proof. In view of Proposition 4.1, the element b := θ(a) is a Poisson-normal H-
eigenvector in B, and the h◦-eigenvalue of b equals that of a (Proposition 2.5(d)), namely 
η. By Lemma 4.2, s is minimal such that bXs ∈ R. This places x ∈ R, and clearly x is 
an H-eigenvector.

Since

{X, b} = α(b)X = (h◦ · b)X = ηbX, (4.2)

we see that {x, X} = −ηxX. It follows also that b is Poisson-normal in T and in R̂. In 
particular, R̂b is a Poisson ideal of R̂. Since R̂b = R̂x, the ideal

I := R̂x ∩R

is a Poisson ideal of R. We show that I = Rx, which will prove that x is Poisson-normal 
in R. Obviously I ⊇ Rx.

Let y ∈ I. Then y ∈ R̂b implies yXu ∈ Tb for some u ≥ 0. Now yXu = cb for some 
c ∈ T , and cXv ∈ R for some v ≥ 0. Then
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yXu+v+s = cbXv+s = cXvx ∈ Rx.

Let t ∈ Z≥0 be minimal such that yXt ∈ Rx, and write yXt = rx for some r ∈ R.
We will show that t = 0. Write

r =
∑
i≥0

riX
i, y =

∑
i≥0

yiX
i, x =

∑
i≥0

xiX
i

for some ri, yi, xi ∈ A. In case s = 0, we would have x = b = a ∈ A and so x0 = a �= 0. 
In case s > 0, we would have

x0X
−1 +

∑
i≥1

xiX
i−1 = xX−1 = bXs−1 /∈ R

by the minimality of s, again yielding x0 �= 0. Thus, x0 �= 0 in any case.
Observe that

∑
i≥0

yiX
i+t = yXt = rx =

∑
i≥0

rixX
i =

∑
i,j≥0

rixjX
i+j .

If t > 0, it would follow that r0x0 = 0, whence r0 = 0. But then r = r′X for some r′ ∈ R, 
and so

yXt−1 = rxX−1 = r′x ∈ Rx,

contradicting the minimality of t. Therefore t = 0.
Consequently, y = rx, proving that I = Rx as desired. �

5. Poisson-normal elements in Poisson-Cauchon extensions

Throughout this section, keep the assumptions of Section 4, so that R = A[X; σ, δ]p
is a Poisson-Cauchon extension. Assume in addition that A is a noetherian domain.

5.1. H-primes in Poisson-Cauchon extensions

Lemma 5.1. (a) Every Poisson H-prime ideal of R contracts to a δ-stable Poisson H-
prime ideal of A.

(b) For any δ-stable Poisson H-prime ideal P0 of A, there are at most two Poisson 
H-prime ideals of R that contract to P0 in A. There is always at least one, namely RP0.

Proof. Recall that any H-stable ideal of R or A is also h-stable.
(a) If Q is a Poisson H-prime ideal of R, then clearly Q ∩A is a Poisson H-prime ideal 

of A. Given a ∈ Q ∩ A, we have {X, a} ∈ {X, Q} ⊆ Q and σ(a) = h◦ · a ∈ h◦ · Q ⊆ Q, 
whence
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δ(a) = {X, a} − σ(a)X ∈ Q

and thus δ(a) ∈ Q ∩A.
(b) Since the action of h on R is by Poisson derivations (Proposition 2.5(a)), the action 

of (h◦·) on R is, in particular, a derivation. Moreover, by assumption (h◦·)|A = σ and 
h◦ · X = λ◦X with λ◦ ∈ K∗. Thus, [8, Proposition 1.2] implies that there are at most 
two (h◦·)-stable Poisson prime ideals of R that contract to P0. Consequently, there are 
at most two Poisson H-prime ideals of R that contract to P0 in A.

Since P0 is stable under both σ = (h◦·) and δ, the induced ideal RP0 is stable under 
{X, −}, and hence RP0 is a Poisson ideal of R. It is clearly also an H-prime ideal, and 
it contracts to P0 in A. �

We shall need

Observation 5.2. It is immediate from the definition that the H-core of a prime ideal of 
A (or R) is an H-prime ideal. Invoking [2, Proposition II.2.9], we conclude that

(i) If P is a prime ideal of A (or R), then its H-core (P : H) is a prime and H-prime 
ideal of A (or R).

It follows from (i) that

(ii) If I is an H-stable ideal of A (or R), then all prime ideals minimal over I are H-prime.

Set A∗ := FractA and R∗ := A∗[X]. Since A∗ and R∗ are localizations of A and 
R, the Poisson structures on A and R extend uniquely to Poisson structure on A∗ and 
R∗. As is easily checked, A∗ is a Poisson subalgebra of R∗, and {X, A∗} ⊆ A∗ + A∗X. 
Hence, R∗ is a Poisson polynomial ring A∗[X; σ∗, δ∗]p for suitable σ∗, δ∗. In particular, 
σ∗ and δ∗ are derivations on A∗ extending σ and δ, so they are the unique extensions 
determined by the quotient rule. We thus label these extensions σ and δ as well, and 
write R∗ = A∗[X; σ, δ]p.

The actions of H on A and R extend uniquely to Poisson actions on A∗ and R∗. 
However, these actions are not rational (unless H acts trivially), so we cannot differentiate 
them to obtain h-actions. On the other hand, the h-actions on A and R do extend 
(uniquely) to actions on A∗ and R∗ by derivations, via the quotient rule. It can be 
checked that the actions of h on A∗ and R∗ are by Poisson derivations, but we do not 
require these actions here.

Let us say that the algebra R∗ is H-Poisson simple in case the only H-stable Poisson 
ideals of R∗ are 0 and R∗. Thus, in view of Lemma 2.4, R∗ is H-Poisson simple if and 
only if 0 is the unique Poisson H-prime ideal of R.

Proposition 5.3. Suppose that R∗ is not H-Poisson simple.
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(a) There is a unique element d ∈ A∗ such that

(i) d is X(H)-homogeneous with α · d = χX(α)d for all α ∈ H.
(ii) {d, a} = σ(a)d + δ(a) for all a ∈ A∗.

In particular, X − d is an H-eigenvector with the same H-eigenvalue as X.
(b) σ(d) = λ◦d and δ(d) = −λ◦d

2.
(c) There is a unique nonzero Poisson H-prime ideal in R∗, namely R∗(X − d).
(d) Let I∗ be a proper nonzero H-stable Poisson ideal of R∗, let n be the minimum 

degree for nonzero elements of I∗, and let f = Xn + cXn−1 +[lower terms], with c ∈ A∗, 
be a monic element of I∗ with degree n. Then n > 0 and d = (−1/n)c.

Proof. Since R∗ is not H-Poisson simple, it contains a proper nonzero H-stable Poisson 
ideal I∗. Let n, f , and c be as in part (d). For any a ∈ A∗, the ideal I∗ contains the 
polynomial

{f, a} − nσ(a)f = [nδ(a) + {c, a} + c(n− 1)σ(a) − nσ(a)c]Xn−1 + [lower terms],

which must vanish due to the minimality of n, and so nδ(a) + {c, a} = cσ(a). Hence, the 
element

d := −1
n

c

satisfies condition (a)(ii).
Set Y := X − d. Then {Y, a} = σ(a)Y for a ∈ A∗, so R∗ is a Poisson polynomial 

algebra of the form A∗[Y ; σ]p. In particular, Y is Poisson-normal in R∗, so that R∗Y is 
a Poisson ideal of R∗. It is also a prime ideal.

Returning to the polynomial f , note that

(α · f) − χX(α)nf = [(α · c)χX(α)n−1 − χX(α)nc]Xn−1 + [lower terms] ∀α ∈ H
(h◦ · f) − nλ◦f = [(h◦ · c) + (n− 1)cλ◦ − nλ◦c]Xn−1 + [lower terms].

Since these polynomials lie in I∗, the minimality of n now implies that (α · c) = χX(α)c
for α ∈ H and h◦ · c = λ◦c. Consequently, condition (a)(i) holds for d and σ(d) = λ◦d. 
Thus, Y is an H-eigenvector with the same H-eigenvalue as X. In particular, it follows 
that R∗Y is H-stable. Therefore R∗Y is a Poisson H-prime ideal of R∗. Further, δ(d) =
{d, d} − σ(d)d = −λ◦d

2, verifying part (b).
It only remains to prove the uniqueness statements in parts (a) and (c). Since A∗

is a field, any nonzero Poisson H-prime ideal Q∗ of R∗ contracts to 0 in A∗. Hence, 
Q∗ ∩ R and R∗Y ∩ R are nonzero Poisson H-prime ideals of R that contract to 0 in A. 
Lemma 5.1(b) implies that Q∗ ∩R = R∗Y ∩R, and so Q∗ = R∗Y . This establishes part 
(c).
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Finally, suppose that d′ is an element of A∗ satisfying conditions (i), (ii). If Y ′ :=
X−d′, we observe as above that R∗Y ′ is a Poisson H-prime ideal of R∗. By the uniqueness 
result of part (c), R∗Y ′ = R∗Y . Since Y ′ and Y are monic of degree 1, they must be 
equal, whence d′ = d. This completes the proof of part (a). �

Whenever R∗ is not H-Poisson simple, we keep the notation d for the unique element 
of A∗ described in Proposition 5.3(a). Note that R∗ = A∗[X − d; σ]p in this case, and 
that the analogs of Lemma 5.1(a) and Observation 5.2(i), (ii) hold for R∗ and A∗.

Corollary 5.4. If R∗ is not H-Poisson simple, then R∗(X − d) ∩R is the unique nonzero 
Poisson H-prime ideal of R that contracts to 0 in A. Moreover, any H-stable Poisson 
ideal of R that contracts to 0 in A is contained in R∗(X − d) ∩R.

Proof. On one hand, P ∗ := R∗(X − d) is a nonzero Poisson H-prime ideal of R∗ that 
contracts to zero in A∗, whence P ∗ ∩ R is a nonzero Poisson H-prime ideal of R that 
contracts to 0 in A. On the other hand, any nonzero Poisson H-prime ideal Q of R with 
Q ∩ A = 0 localizes to a nonzero Poisson H-prime ideal R∗Q in R∗, whence R∗Q = P ∗

and thus Q = R∗Q ∩R = P ∗ ∩R.
Similarly, any H-stable Poisson ideal I of R with I ∩ A = 0 localizes to an H-stable 

Poisson ideal R∗I of R∗. Since I ∩ A = 0, we must have R∗I �= R∗, whence there is at 
least one prime ideal Q∗ of R∗ minimal over R∗I. Then Q∗ is a Poisson H-prime ideal 
by Lemma 2.3(a) and Observation 5.2(ii), whence Q∗ = P ∗. Therefore I ⊆ R∗I ∩ R ⊆
P ∗ ∩R. �
5.2. Some Poisson-normal H-eigenvectors

We upgrade [11, Lemma 4.11(a)] in the same manner as [9, Lemma 2.3]:

Lemma 5.5. Let δ be a derivation on a domain C of characteristic zero, and suppose 
e, f ∈ C with δ(e) = ef or δ(e) = fe. If there is some m ∈ Z≥0 such that δm(e) =
δm(f) = 0, then δ(e) = 0.

Proof. It suffices to show that one of e or f is zero. Suppose not, and let s, t ∈ Z≥0 be 
maximal such that δs(e), δt(f) �= 0. By Leibniz’ Rule,

δs+t(ef) =
s+t∑
i=0

(
s+t
i

)
δi(e)δs+t−i(f) =

(
s+t
s

)
δs(e)δt(f) �= 0,

since 
(
s+t
s

)
�= 0 in characteristic zero. Similarly, δs+t(fe) �= 0. But then δs+t+1(e) �= 0, 

due to the assumption that δ(e) = ef or δ(e) = fe. This contradicts the choice of s, 
since s + t + 1 > s. �
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Lemma 5.6. Assume there is a nonzero Poisson H-prime ideal P in R with P ∩ A = 0. 
Let a ∈ A be a Poisson-normal H-eigenvector, and let s ∈ Z≥0 be maximal such that 
δs(a) �= 0.

(a) If s > 0, then x := θ(a)Xs is a Poisson-normal H-eigenvector in R and x ∈ P . 
Moreover, d = (λ◦s)−1a−1δ(a).

(b) Now assume that a is the leading coefficient of some element of P with degree 1. 
Then a + P is a Poisson-normal H-eigenvector in R/P . Moreover, if also s = 0, then 
δ ≡ 0 and P = RX.

Proof. Note that a /∈ P , because P ∩A = 0. The ideal P localizes to a nonzero Poisson 
H-prime ideal P ∗ of R∗ such that P ∗∩R = P , and P ∗ = R∗(X−d) by Proposition 5.3(c).

(a) By Proposition 4.3, x is a Poisson-normal H-eigenvector in R. Now Rx is a nonzero 
H-stable Poisson ideal of R, and Rx ∩ A = 0 because deg x = s > 0. By Corollary 5.4, 
Rx ⊆ P , whence x ∈ P .

Note that x = aXs + cXs−1 + [lower terms], where c = −λ−1
◦ δ(a). The ideal Rx

localizes to a proper nonzero H-stable Poisson ideal R∗x in R∗, and s is the minimum 
degree for nonzero elements of R∗x. Since a−1x is a monic element of R∗x with degree 
s, Proposition 5.3(d) implies that d = (−1/s)a−1c = (λ◦s)−1a−1δ(a).

(b) By hypothesis, aX + c ∈ P for some c ∈ A. Then X + a−1c is a monic element 
of P ∗ with degree 1. Since P ∗ is proper, it contains no nonzero elements of degree 0. 
Hence, we again apply Proposition 5.3(d), obtaining d = −a−1c.

If s = 0, then δ(a) = 0, whence δm(d) = −a−1δm(c) = 0 for some m ∈ Z≥0. Since 
δ(d) = −λ◦d2 (Proposition 5.3(b)), Lemma 5.5 implies that δ(d) = 0. It follows that 
d = 0, whence δ ≡ 0 in this case. We then have P = R∗X ∩ R = RX. Moreover, a = x

and so

{a,X} = −ηaX ∈ Ra,

where η is the σ-eigenvalue of a (Proposition 4.3). Thus, a is Poisson-normal in R, whence 
a + P is Poisson-normal in R/P .

Finally, assume that s > 0. By part (a), we have

a−1c = −d = −(λ◦s)−1a−1δ(a),

whence δ(a) = −λ◦sc. Since aX + c ∈ P , it follows that

{X, a} = ηaX − λ◦sc ≡ ηaX − λ◦s(−aX) = (η + λ◦s)Xa (mod P ).

As a is already Poisson-normal in A, we conclude that a + P is Poisson-normal in 
R/P . �
Proposition 5.7. Assume that every nonzero Poisson H-prime ideal of A contains a 
Poisson-normal H-eigenvector.



K.R. Goodearl, S. Launois / Journal of Algebra 611 (2022) 265–284 281
If P � Q are Poisson H-prime ideals of R with P ∩ A = 0, then there exists a 
Poisson-normal H-eigenvector u of R/P such that u ∈ Q/P .

Proof. Recall that Q ∩A is a δ-stable Poisson H-prime ideal of A.
Assume first that P �= 0. Then 0 and P are two Poisson H-prime ideals of R that 

contract to 0 in A, so Q ∩A �= 0 by Lemma 5.1(b).
Now P localizes to a nonzero Poisson H-prime ideal P ∗ in R∗, and P ∗ = R∗(X − d)

by Proposition 5.3(c). Writing d = bc−1 for some b, c ∈ A with c �= 0, we have cX − b =
c(X − d) ∈ P ∗ ∩R = P . Thus, the ideal

J := {a ∈ A | aX + e ∈ P for some e ∈ A}

is nonzero. Note that since A is a domain, and since 1 /∈ Q, we have

0 �= J ∩ (Q ∩A) = J ∩Q �= A.

Since P is H-stable, so is J . We also observe that J is a Poisson ideal of A. Namely, if 
a ∈ J and f ∈ A, then aX + e ∈ P for some e ∈ A, whence {aX + e, f} ∈ P . Since

{aX + e, f} = {a, f}X + a
(
σ(f)X + δ(f)

)
+ {e, f}

= {a, f}X + σ(f)(aX + e) + aδ(f) − σ(f)e + {e, f},

we see that {a, f}X+(aδ(f) −σ(f)e +{e, f}) ∈ P , so that {a, f} ∈ J as required. Thus, 
J ∩Q is an H-stable Poisson ideal of A.

There exist prime ideals P1, . . . , Pr in A minimal over J ∩ Q such that P1P2 · · ·Pr

is contained in J ∩ Q. Since J ∩ Q is an H-stable Poisson ideal, each Pi is a Poisson 
H-prime ideal of A (Lemma 2.3(a) and Observation 5.2(ii)). By hypothesis, each Pi

contains a Poisson-normal H-eigenvector ai, and thus a := a1a2 · · · ar is a Poisson-normal 
H-eigenvector of A that lies in J ∩ Q. Since a is in J , it is the leading coefficient of an 
element of P of degree 1. By Lemma 5.6(b), the coset u := a + P is a Poisson-normal 
H-eigenvector of R/P . Moreover, u ∈ Q/P because a ∈ Q.

Now assume that P = 0. If Q ∩A �= 0, then by hypothesis Q ∩A contains a Poisson-
normal H-eigenvector a of A. Then δl(a) ∈ Q ∩ A for all l ∈ Z≥0, whence the element 
u := θ(a)Xs lies in Q, where s ∈ Z≥0 is minimal such that θ(a)Xs ∈ R. By Lemma 4.2
and Proposition 4.3, u is a Poisson-normal H-eigenvector in R.

Finally, suppose that Q ∩A = 0. As above, the set

J := {a ∈ A | aX + e ∈ Q for some e ∈ A}

is a nonzero H-stable Poisson ideal of A. If J = A, then 1 ∈ J , while if J �= A, then 
J contains a product of nonzero Poisson H-prime ideals of A. In either case, there is a 
Poisson-normal H-eigenvector a of A that lies in J . Let s ∈ Z≥0 be maximal such that 
δs(a) �= 0.
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If s > 0, then by Proposition 4.3 and Lemma 5.6(a), the element u := θ(a)Xs

is a Poisson-normal H-eigenvector of R that lies in Q. On the other hand, if s = 0, 
Lemma 5.6(b) shows that δ ≡ 0 and Q = RX. In this case, u := X is a Poisson-normal 
H-eigenvector of R that lies in Q. �
5.3. Carrying Poisson-normal H-separation from A to R

Recall the concept of Poisson-normal H-separation from Definition 3.12.

Theorem 5.8. If H-P.SpecA has Poisson-normal H-separation, then so does H-P.SpecR.

Proof. Let P � Q be a proper inclusion of Poisson H-prime ideals of R. Then P0 := P∩A
is a δ-stable Poisson H-prime ideal of A (Lemma 5.1(a)), and we may replace A, R, P , 
Q by A/P0, R/RP0, P/RP0, Q/RP0, respectively. Thus, there is no loss of generality in 
assuming that P ∩A = 0.

The hypothesis of Poisson-normal H-separation now implies that every nonzero Pois-
son H-prime ideal of A contains a Poisson-normal H-eigenvector of A. Therefore, 
by Proposition 5.7, there exists a Poisson-normal H-eigenvector u of R/P such that 
u ∈ Q/P . This verifies Poisson-normal H-separation in H-P.SpecR. �
6. Proof of the main theorem

The Main Theorem 1.2 follows easily from Theorems 5.8 and 3.13 together with 
Corollary 3.4. In fact, these results yield Poisson catenarity for a somewhat larger class 
of algebras, as we now show. The following lemma will line up an inductive step.

Lemma 6.1. Let R be a Poisson K-algebra, equipped with a rational Poisson action of 
an algebraic K-torus H, and let A be an H-stable Poisson subalgebra of R. Assume that 
there exist an H-eigenvector x ∈ R and an element h◦ ∈ h := LieH such that

(i) The rule δ(a) = {x, a} − (h◦ · a)x defines a map δ from A to itself.
(ii) δ is locally nilpotent.
(iii) The h◦-eigenvalue of x is nonzero.

Then there exists a Poisson-Cauchon extension R+ = A[X; (h◦·)|A, δ]p relative to the 
same torus H, and the identity map on A extends to an H-equivariant Poisson algebra 
homomorphism φ : R+ → R such that φ(X) = x.

Proof. Recall (Proposition 2.5(a)) that σ := (h◦·)|A is a Poisson derivation on A. Since 
also {x, −} is a derivation, the map δ is a derivation on A. As shown in the proof of [8, 
Proposition 1.8], δ satisfies condition (2.1), and thus there exists a Poisson polynomial 
ring R+ = A[X; σ, δ]p. By construction, the identity map on A extends to a Poisson 
algebra homomorphism φ : R+ → R such that φ(X) = x.
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The action of H on A extends to a rational action of H on R+ – by K-algebra 
automorphisms, at least – such that X is an H-eigenvector with the same H-eigenvalue 
as x. With respect to this action, φ is H-equivariant. For α ∈ H and a ∈ A, we compute 
that

α · {X, a} = α ·
(
σ(a)X + δ(a)

)
= α ·

(
(h◦ · a)X + {x, a} − (h◦ · a)x

)
=

(
h◦ · (α · a)

)
χx(α)X + {χx(α)x, α · a} −

(
h◦ · (α · a)

)(
χx(α)x

)
= χx(α)

[
σ(α · a)X + δ(α · a)

]
= χx(α){X, α · a} = {α ·X, α · a},

where we have used Proposition 2.5(b). Since also α ·{a, b} = {α ·a, α ·b} for all a, b ∈ A, 
it follows that α preserves the Poisson bracket on R+. Therefore the action of H on R+

is a Poisson action.
By assumption (iii), h◦ · x = λ◦x for some nonzero λ◦ ∈ K. Since X and x are H-

eigenvectors with the same H-eigenvalue, they are also h-eigenvectors with the same 
h-eigenvalue, by Proposition 2.5(c) (d). In particular, h◦ ·X = λ◦X.

Therefore R+ is a Poisson-Cauchon extension relative to H. �
Theorem 6.2. Let R be a Poisson K-algebra, equipped with a rational Poisson action of 
an algebraic K-torus H. Assume that R is generated (as a K-algebra) by H-eigenvectors 
x1, . . . , xN , and that there exist h1, . . . , hN ∈ h := LieH such that

(i) {xi, xj} − (hi · xj)xi ∈ K〈x1, . . . , xi−1〉 for N ≥ i > j ≥ 1.
(ii) For all i ∈ �2, N�, the map a �→ {xi, a} − (hi · a)xi on K〈x1, . . . , xi−1〉 is locally 

nilpotent.
(iii) For all i ∈ �1, N�, the hi-eigenvalue of xi is nonzero.

Then P.SpecR has Poisson-normal separation and is catenary.

Remark. For i ∈ �2, N�, the map δi :=
(
a �→ {xi, a} − (hi · a)xi

)
in hypothesis (ii) is a 

derivation from K〈x1, . . . , xi−1〉 to R, because {xi, −} and (hi·) are derivations. In view 
of hypothesis (i), it follows that δi maps K〈x1, . . . , xi−1〉 to itself. Thus, hypothesis (ii) 
says that δi is a locally nilpotent derivation on K〈x1, . . . , xi−1〉.

Proof. We show that H-P.SpecR has Poisson-normal H-separation. Once that is estab-
lished, Theorem 3.13 will imply that P.SpecR has Poisson-normal separation, and then 
Corollary 3.4 will imply that P.SpecR is catenary.

It suffices to show that Poisson-normal H-separation holds in H-P.Spec (R/P ) for any 
factor algebra R/P where P ∈ H-P.SpecR. These factor algebras are also Poisson K-
algebras, H acts rationally on them by Poisson automorphisms, and they are generated 
by H-eigenvectors satisfying conditions corresponding to (i)–(iii). Thus, there is no loss 
of generality in assuming that R is a domain.
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We now prove Poisson-normal H-separation for H-P.SpecR by induction on N , start-
ing with the case N = 0. In that case, R = K and the condition holds trivially. Now 
let N > 0 and assume that H-P.Spec of the algebra A := K〈x1, . . . , xN−1〉 has Poisson-
normal H-separation. Note that A is stable under the H-action and hence also under the 
h-action.

In view of Lemma 6.1, there exist a Poisson-Cauchon extension R+ := A[X; σ, δ]p
relative to H and a surjective H-equivariant Poisson algebra homomorphism φ : R+ → R.

Since A is a noetherian domain and H-P.SpecA has Poisson-normal H-separation, 
Theorem 5.8 implies that H-P.SpecR+ has Poisson-normal H-separation. Therefore 
H-P.SpecR has Poisson-normal H-separation, completing the induction step. �
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