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Quantitative Measurement of the Stability of a Pulverized Coal Fired 

Flame through Digital Image Processing and Statistical Analysis 

 

Abstract 

The stability of pulverized coal flames is a well-known problem in the power industry. Unstable flames often lead to lower 

combustion efficiency, higher pollutant emissions, and other operational problems. Many methods are available for flame 

monitoring and characterization, but very few are suitable for flame stability monitoring. This paper presents a method for 

assessing flame stability continuously and quantitatively by introducing a term named numerical indicator of flame stability 

based on digital image processing. This numerical indicator combines the statistical characteristics of four flame 

parameters which are derived from the flame images. To evaluate the effectiveness of the proposed method, the numerical 

indicator of a pulverized coal flame during a routine unit “turning off” process was determined on a 600 MWth coal-fired 

supercritical unit. Experimental results suggest that the flame stability at different stages of the turning off process is 

correctly quantified with the numerical indicator. 

Keywords: Pulverized coal; Flame stability; Flame monitoring; Digital imaging; Image processing; Statistical analysis. 

 

 

1. Introduction 

Flame stability in pulverized coal combustion is 

becoming increasingly an area of concern due to the trends 

of extending the use of low-quality coal and coal blends in 

existing power industries [1]. An unstable flame can cause 

many combustion problems, such as furnace vibration, low 

combustion efficiency, high NOx emissions, and even 

flameouts [2]. To improve overall performance of the 

furnace, ensure the safety of operators, and meet the 

stringent standards on energy saving and pollutant 

emissions, monitoring and characterization of flame 

stability have become highly desirable in the power 

generation industry [3].  

Various techniques for flame stability assessment have 

been proposed, such as planar laser-induced fluorescence 

[4, 5], chemiluminescence imaging [6, 7], electrostatic 

sensing [8, 9], and digital imaging [10, 11]. Digital imaging 

has been identified as one of the most effective approaches 

for flame stability assessment in practical furnaces in terms 

of system functionality, portability, cost-effectiveness and 

rich information [3]. Wojcik et al. [12] measured the 

stability of flames on a pulverized coal-fired furnace at a 

power industry by analysing the flame radiation images 

filtered by the wavelet transform. Smart et al. [13] 

investigated the stability of an oxy-fuel flame on a 0.5 

MWth coal fired combustion test rig by analysing the 

oscillation frequency of the radiation intensity of the root 

region of the flame. Samantaray et al. [14] analysed the 

stability of a natural gas flame and a coal-biomass co-firing 

flame in a 0.5 MWth pulverized fuel fired pilot swirl 

combustor through the uniformity of the two-dimensional 

distribution of flame brightness for studying the stability 

diagram of the flame. Matthes et al. [15] used the variation 

rate of the edges of a pulverized coal flame in a 2.5 MWth 

pilot swirl combustor to characterize the flame stability. 

Most of the existing flame stability measurement methods 

based on image processing use a single flame feature, such 

as contour [16, 17], root area [18, 19], colour [20, 21], and 

oscillation frequency [22, 23]. There are many limitations 

in these methods. It is impossible to extract flame contours 

from the image if the flame occupies the whole field of view 

of the camera [24]. Due to the limitation of the installation 

position of the camera on a coal fired unit in the power 

industry, the whole root of a flame may not be observed 

[25]. These methods focus on the stable state of a flame on 

their specific perspectives, which cannot reflect the real 

flame stability. There are some methods which evaluate 

flame stability through combining multiple parameters [26, 

27]. But on the one hand, some parameters which contain 

flame stability information may be omitted during the 

combination [26]; on the other hand, under specific 

combustion conditions, the parameters used in the 
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combination may not reflect the flame stability, which 

should be excluded [27]. 

This research focuses on the continuous and 

quantitative measurement of pulverized coal flame 

stability through digital image processing. The 

characteristic parameters of the flame, including 

brightness, nonuniformity, mean temperature, and 

oscillation frequency, are derived from flame images. The 

statistical characteristics of these parameters are combined 

to provide a numerical indicator for evaluating the flame 

stability. The findings reported in this paper are linked to 

the earlier work on the development of a general 

methodology for flame stability measurement [28]. In the 

earlier work, the quantitative measurement of the stability 

of a premixed methane-air flame and a methane-biomass 

flame has demonstrated the effectiveness of the general 

methodology. The applicability of this general 

methodology under a wide range of combustion conditions 

remains to be investigated.  

The novelty of this paper lies in the quantitative 

measurement of the stability of a pulverized coal flame 

under full-scale power station conditions. The combustion 

of pulverized coal is far more complex than that of 

methane and biomass due to its complex physical and 

chemical properties [29, 30], and hence the measurement 

of the stability of a pulverized coal flame is more 

challenging. Furthermore, unlike on a laboratory 

combustion test rig, the harsh environment in a full-scale 

power plant furnace, such as high temperature and fly ash 

[31], make the measurement of pulverized coal flame 

stability more difficult. In addition, algorithms for 

advanced flame stability measurement in the power 

generation industry are still limited. Therefore, the 

evaluation of the proposed methodology for flame stability 

assessment on a full-scale coal fired power plant has 

important practical significance. It is anticipated that this 

method, once validated, will assist the power plant 

operators to measure quantitatively the flame stability and 

 

Fig. 1. Installation of the imaging system for flame stability measurement. 

 

Fig. 2. Block diagram of the flame stability assessment method. 
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identify the flame state and ultimately to optimize power 

plant operation.  

 

2. Methodology 

2.1. Measurement principle 

Fig. 1 shows a block diagram of the typical installation 

of the imaging system for flame stability measurement. The 

system consists of an optical probe, a CCD camera and a 

computer with bespoke image processing software. The 

optical probe, installed at an existing viewing port on the 

back of the burner, transmits the images of the root region 

of the flame to the camera. The image processing software 

processes the images and derives quantified flame stability 

continuously. Fig. 2 shows a block diagram of the flame 

stability measurement method. Four flame characteristic 

parameters, i.e., brightness, nonuniformity, mean 

temperature and oscillation frequency, are derived from the 

flame images using various digital image processing 

algorithms. The statistical characteristics of the four 

parameters are combined to obtain a flame stability index, 

which quantifies flame stability preliminarily. Then the 

index is converted to an integer as a numerical indicator of 

flame stability. This indicator is a single digit ranging from 

0 to 10 and represents one of the five flame states, i.e., 

stable, relatively stable, unstable, extremely unstable, and 

extinguished. The numerical indicator of flame stability is 

convenient for power plant operators to quantify flame 

stability information. 

Since the flame image is a two-dimensional projection 

of the burner flame which is three-dimensional in space, 

the installation position of the imaging probe affects 

significantly the image representation of the flame and the 

quality of the images. An ideal installation position under 

labotoray conditions is on the side-wall of the furnace 

where the camera can capture the side view of the whole 

flame. However, there are many constraints on a full-scale 

power station furnace where we can only install the 

imaging probe on a viewing port which is located at the 

back of the burner. This location is not ideal but the best 

we can do on a real power plant. However, with the 

imaging system we are able to visualize the root region of 

the flame, the most important part of the flame. Compared 

to the well-established flame-eyes or similar devices which 

“see” only a single line across a flame, the imaging 

approach provides significantly more information about 

the flame. Meanwhile, there are advantages to install the 

imaging probe at the back of the burner as this will ensure 

the camera visualises only the flame to be monitored and 

is not affected by neighboring flames in a multi-burner 

furnace. It is worth noting that, for the given existing 

viewing port (Fig. 1), the angle of the probe to the flame is 

almost fixed and a slight variation has no significant effect 

on the quality of the images collected and flame stability 

result. 

In this study, the term ‘flame stability’ is defined as the 

degree of fluctuation of a flame due to all physical and 

chemical changes in the flame characteristics during 

combustion. The stability of a flame depends on a variety 

of flame characteristics, including geometrical, 

thermodynamic and optical properties which in turn 

depend on many other factors such as type of fuel, fuel 

quality, burner design and combustion environment (air 

supply, furnace structure etc.). This study aims to measure 

quantitatively the stability of the coal fired flame under 

full-scale power station conditions. The ultimate aim of 

retaining stable flames is to optimize the combustion 

process, i.e., high combustion efficiency, low pollutant 

emissions, and enhance plant safety, under a wide range of 

plant conditions.  

2.2. Flame parameters 

The measurement of the flame parameters depends 

upon many factors, such as fuel type, burner type, furnace 

structure, and installation position of the imaging probe. 

Practical constraints on a full-scale power plant (e.g. line-

of-sight restrictions, availability of a viewing port, burner 

structure etc.) often make the imaging probe installed on a 

less ideal of position, and therefore certain flame 

parameters may not be available. Since there are always 

some parameters available such as brightness, 

nonuniformity, temperature distribution etc, regardless of 

the installation position, the method presented in this paper 

is useful for evaluating flame stability.  

In the case of the present research, because the 

installation of the probe and hence the view of the flame 

depend on the availability of the observation port and 

furnace design, as shown in Fig. 1, some of the parameters 

are not measurable such as ignition point. The ignition 

point can be measured only when the fuel is ignited beyond 

the burner outlet. Furthermore, some of the parameters 

such as flame area and flame length are not concerned by 
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the operator, although their variation characteristics may 

include important information about flame stability. 

According to the characteristic of the flame images, the 

following four parameters are measured: 

(1) Brightness is defined as the average luminosity of a 

flame, normalized to the maximum grey-level of an 8-

bit digital image, i.e., 255. The brightness reflects the 

most basic luminous characteristics of the flame. 

(2) Nonuniformity represents the luminosity deviation 

between the ‘darker’ and ‘brighter’ regions of a flame. 

The nonuniformity reflects the uniformity of heat 

release in the flame region. 

(3) Mean temperature is the spatial average of the 

temperature distribution over the area of a flame image. 

The temperature distribution is determined using the 

radiation method [32]. The variation in the 

temperature distribution reflects the process of 

radiative heat transfer and is closely related to flame 

stability. The mean temperature characterizes the 

flame temperature distribution to a certain degree. 

(4) Oscillation frequency is determined as the weighted 

average frequency of the power-density of the flame 

signal (in the whole frequency range). The low-

frequency components of a flame signal stem largely 

from the geometrical fluctuations of the flame due to 

the aerodynamic or convective effect, whilst high-

frequency components may be because of the energy 

transitions among intermediate radicals or variations 

in the energy emission rate of reacting species [33]. 

Flame oscillation frequency is a comprehensive 

characteristic parameter which is closely related to 

flame stability. 

Detailed definitions of these parameters are given 

elsewhere [28]. Based on the definitions, the four 

parameters are derived from flame images. A flowchart for 

the determination of the flame parameters is shown in Fig. 

3. The RGB (red, green, and blue) images of a flame, 

which are captured by the camera, are converted into 

greyscale images via the following equation [34], 

0.30 0.59 0.11I R G B= + +                             (1) 

where R, G, and B are red, green, and blue components in 

RGB colour space, respectively, and I is a weighted sum of 

the three individual components in the RGB colour space 

and represents the radiation intensity distribution of the 

flame. Then the greyscale images are converted into binary 

images based on the adapting thresholding technique [35]. 

The binary images are used to analyse the geometric 

characteristics of the flame. Finally, the four parameters 

are determined from the greyscale and binary images 

together. 

It should be emphasized that the method presented in 

this paper extracts all possible flame characteristic 

parameters from the images and integrates them to 

determine flame stability. In other words, which 

parameters are determined and combined is not fixed 

because the measurement of the parameters depends on 

 

Fig. 3. Flowchart for the determination of flame 

parameters from flame images. 
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many factors. If a flame parameter is not available, then 

this parameter will not be quantified and used in the flame 

stability measurement. 

2.3. Flame stability index 

Flame stability index, which has been previously 

reported to evaluate the stabilities of methane and biomass 

flames [28], is used to measure the pulverized coal flame 

stability in this study. Fig.4 shows a flowchart of the 

software for the determination of flame stability index. 

Methane, biomass and coal are different fuels and their 

burners and furnaces are also different. The imaging 

system measures flame stability for a given combustion 

setting, regardless of fuel, burner and furnace, i.e., the 

same general procedure is applied to measure flame 

stability. However, since combustion setting is different 

from one system to another, there bound to be some 

differences between them when we apply the same 

procedure. In the case of the methane flame [28], its 

stability evaluation combines the flame area, area of root 

region, mean temperature, and oscillation frequency, while 

the pulverized coal flame has brightness, nonuniformity, 

mean temperature, and oscillation frequency. The reason 

for such differences is that the methane flame was 

visualized with the camera on an optimal position under 

laboratory conditions and its colour changes with air flow 

rate, which is very different from the pulverized coal 

flame. In the case of the biomass flame [28], its stability 

combines the parameters including brightness, mean 

temperature and oscillation frequency, which are similar to 

those for the pulverized coal flame. 

The flowchart in Fig. 4 is generic and is applicable to 

different flames. The values of a flame parameter are split 

into two groups: one group lies in the range between ± two 

standard deviations from the mean with 95% confidence 

limits, which is defined as usual values, while the other 

group is defined as unusual values, which fall outside ± 

two standard deviations. The normal and abnormal 

variability is obtained from the usual and unusual values, 

respectively. The normal variability of parameter x (x-nor) 

is defined as 

x nor
x nor

x nor





−

−

−

=                                 (2) 

where σx-nor and μx-nor are the standard deviation and mean 

of the usual values of the parameter x, respectively. x-nor 

reflects the most common and basic characteristics of the 

flame as a relative quantity. 

The abnormal variability of parameter x (x-abnor) is 

quantified in terms of an instability coefficient (Cx) and the 

normal variability, i.e., 

x abnor x x norC − −=                              (3) 

where Cx represents the variability of the unusual values of 

the parameter x and is determined as, 

x upper x lower

x

x nor

X X
C



− −

−

−
=                          (4) 

where Xx-upper and Xx-lower are calculated as follows: 

2x upper x upper xX  − −= −                        (5) 

2x lower x lower xX  − −= +                        (6) 

where μx-upper and μx-lower are averages of the unusual values 

which lie in the ranges within the upper and lower 95% 

confidence limits, respectively. σx is the standard deviation 

of x. Cx is determined as the flame is stable. The abnormal 

variability reflects the sensitivity of a parameter to the 

change in flame stability. 

 

Fig. 4. Flowchart for the determination of flame stability 

index. 
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The flame stability index (idx) is determined by 

(1 )

( ) ( )

1

1
(1 )

F F nor
e

C
N

idx x i x i nor

ie

C
N



 

−+

−

=

 
= + 
 

          (7) 

where Ne is the number of the parameters used in 

determining the flame stability index, x(i) is the ith 

parameter, Cx(i) and δx(i)-nor are the instability coefficient 

and normal variability of x(i), respectively. CF and δF-nor 

are the instability coefficient and normal variability of the 

oscillation frequency, respectively. An increasing δ means 

that one or more parameters vary substantially, i.e., the 

flame is unstable. The closer the index to zero, the more 

stable the flame. Additionally, in view of the fact that the 

stability index cannot be zero due to the natural fluctuation 

of a flame, we use zero value index to represent the non-

flame state, i.e. when the flame is extinguished. 

2.4. Numerical indicator of flame stability 

The flame stability index is always large than zero in 

practice, because the levels of characteristic parameters 

vary constantly even if the flame has achieved its most 

stable state. Due to no theoretical upper limit of the flame 

stability index, it is difficult for the industry operators to 

judge the real stable state of a flame using the stability 

index. Furthermore, small changes in the stability index 

means little to the operators because slight fluctuation in 

the flame stability in industrial furnaces is normal. In view 

of these facts, we need something simpler than stability 

index. 

In an industrial furnace, as the flame stability meets the 

industrial demand and fluctuates slightly, the mean of the 

corresponding stability index is considered as the 

representation of the best flame stability under current 

combustion conditions. When the combustion conditions 

change, the stability index may decrease with a large or 

small standard deviation. A large standard deviation 

indicates deteriorating flame stability while a small 

standard deviation suggests that the flame has better 

stability and the representation of the best flame stability 

should be re-determined. Deteriorating flame stability can 

also be reflected in increasing stability index. Based on 

such a characteristic of the flame stability index, a 

numerical indicator of flame stability (idr) is defined as 

follows 
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where σidx-stable and μidx-stable are the standard deviation and 

mean of the flame stability index as the flame is stable; αidr 

is defined as follows 
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           (9) 

where σidx is the standard deviation of the flame stability 

index. Equations (8) and (9) are derived from our long-

term experimental observations and experience in 

monitoring a range of flames over the years. In general, a 

more stable flame fluctuates less. The numerical indicator 

of flame stability is in effect an integer converted and 

rounded from the flame stability index and ranges from 0 

to 10. A smaller numerical indicator indicates that the 

flame is more unstable. The detailed relationship between 

the numerical indicator and stable states of a flame is as 

follows 

(1) the flame is stable, when idr ∈ [8, 10]; 

(2) the flame is relatively stable, when idr ∈ [6, 8); 

(3) the flame is unstable, when idr ∈ [3, 6); 

(4) the flame is extremely unstable, when idr ∈ (0, 3); 

(5) the flame is extinguished, when idr is 0. 

 

3. Demonstration trials and results 

3.1. Combustion conditions and fuel property 

Experimental work was undertaken on a 600 MWth 

coal-fired supercritical unit by firing pulverized coal to 

evaluate the effectiveness of the proposed methodology for 

numerical assessment of flame stability. An optical probe, 

shielded with a water-cooled jacket, was installed at an 

existing viewing port on the burner peripheral to visualize 

the flame using a 1/3-in RGB (red, green, blue) industrial 

CCD camera with 0.5-million pixels (960 width × 576 

height). The objective lens of the probe has a 90-viewing 
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angle with its surface being kept dust-free by a purged 

airflow. The root region of the flame is captured by the 

camera at a rate of 60 frames per second. It is known from 

our previous research that a pulverized coal flame spreads 

over a range of frequencies, but they are concentrated 

within the lower frequency band (0 to 20 Hz). The other 

factor that was considered when choosing the camera in 

terms of resolution and frame rate is its cost and the volume 

of the images to be processed by the computer. The flame 

images are acquired with 24-bit digitization (8 

bits/channel).  

Table 1 summarizes the proximate and ultimate 

analysis of the pulverized coal. In this research, the 

stability of the flame during a routine boiler “turning off” 

process is measured, the duration of which is 25 min. The 

reason for selecting this particular process is that the plant 

operators know well about the flame fluctuations 

(stability) during this procedure. More importantly, the 

field trials did not affect the routine operation of the power 

plant. The coal feed rate and air flow rate in this process 

are plotted in Fig. 5. The coal feed rate decreases rapidly 

from 11 min 30 sec to 16 min. The air flow rate begins to 

reduce at 15 min which is designed to be later than the coal 

feed rate for safety reasons. The “turning off” process is 

divided into four stages with time as depicted in Fig. 6. Fig. 

7 shows typical flame images during the four stages of the 

process. Note that the flame images captured in 0 min-6 

min and 21 min-25 min are not given here because of the 

fixed coal feed rate during the first and last stages. It can 

be seen in Fig. 7 that the flame is stable in the first stage 

where coal feed rate is constant. In the second stage, the 

flame stability deteriorates rapidly. With further reduction 

in coal feed rate, i.e. the third stage, the flame fluctuates 

progressively towards extinction. Finally, in the last stage, 

the flame is extinguished as no coal feed.  

3.2. Results and discussion 

Fig. 8 shows the key stages in the processing of a 

typical flame image during the stage of constant coal feed 

rate. First, the original image, which is an average of 60 

successive images taken in one second, is converted into 

the greyscale image based on equation (1). The original 

greyscale histogram is obtained from the greyscale image. 

Second, map the greyscale levels in the original greyscale 

histogram to the new levels (Fig. 8). The bottom 1% and 

top 1% of the greyscale levels of all pixels are set to 

saturation, i.e. 0 and 255, respectively, to increase the 

contrast of the greyscale image. Third, the binary image is 

determined from the processed greyscale image through 

the locally adaptive threshold method [35]. The threshold 

for each pixel is determined from the local mean greyscale 

level around the neighbourhood of the pixel, the size of 

which is approximately 1/8th of the size of the image 

(69120 pixels in this study). Fourth, the flame edge is 

detected using the gradient-magnitude edge detection 

method [36]. A pair of 3×3 convolution masks are used to 

identify the edge by estimating the gradients in the X-

direction and Y-direction, respectively. Last, the flame 

parameters, i.e. brightness, nonuniformity, mean 

temperature and oscillation frequency, are determined 

from the greyscale levels in the original greyscale image 

and information from the flame edge. Fig. 9 depicts typical 

flame images during the last three stages of the shutting off 

process (typical flame images during the first stage are 

Table 1 

Proximate and ultimate analysis of the pulverized coal (as 

received). 

Proximate Analysis (%) 

Moisture content  6.70 

Volatile matter content 39.67 

Ash content 26.67 

Others 26.96 

Ultimate analysis (%) 

C 55.06 

O  6.68 

H  3.63 

S  0.32 

N  0.94 

Others 33.37 

 

 

Fig. 5. Variations in the coal feed rate and air flow rate 

with time. 



 8 

shown in Fig. 8). As can be seen in Figs. 8 and 9, during 

the first and second stages the flame edges are clear, whilst 

these edges gradually blur with rapidly decreasing coal 

feed rate during the third stage. In the last stage, no edges 

can be observed due to no coal feed. To a certain extent the 

flame edge information reflects the flame states. 

 

Fig. 6. Routine boiler “turning off” process. 

 
(a) Constant coal feed rate 

 

(b) Initial reduction in coal feed rate 

 

(c) Further reduction in coal feed rate 

 

(d) No coal feed 

Fig. 7. Typical flame images for different coal feed rates. 
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Fig. 10 shows the variations in the flame oscillation 

frequency as well as its variability with time. Each data 

point in the oscillation frequency plot is obtained from 512 

successive images whilst every data point in the variability 

graph is determined from 512 successive oscillation 

frequencies. The decreasing oscillation frequency and 

increasing variability suggest that the flame becomes 

unstable with time due to the progressive reduction in coal 

feed rate [28]. When the coal feed stops, the flame is 

extinguished. In this case, the flame oscillation frequency 

is forced to zero in the software system simply because the 

amplitude of the oscillation signal derived from the flame 

images is significantly weaker than that when the flame is 

present (Fig. 7). It must be noted that, internal within the 

image processing software, the system still returns a value 

of oscillation frequency due to the weak light fluctuations 

of the hot refractory wall in the furnace.  

 

Fig. 8. Key stages in the processing of a typical flame image during the stage of constant coal feed rate. 

  

(a) Initial reduction in coal feed rate (b) Further reduction in coal feed rate        (c) No coal feed 

Fig. 9. Typical flame images with flame edges. 

 

(a) Oscillation frequency             (b) Variability of the oscillation frequency         

Fig. 10. Variations in the oscillation frequency and its variability with time. 
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Figs. 11(a), 12(a), and 13(a) depict the variations in the 

brightness, nonuniformity, and mean temperature with 

time, respectively. It is clear from Figs. 11(a) that the 

brightness of the flame reduces rapidly in the third stage 

and down to zero in the final stage because of the weak 

image intensity, as evidenced in Fig. 7(d) and Fig. 9(c).  

It should be noted that the instantaneous value of a 

flame parameter is naturally fluctuating due to the inherent 

dynamic nature of the combustion process [37]. To obtain 

relatively steady flame parameters, a moving-average 

mechanism is applied to process the raw sequences of the 

four parameters, as plotted in Figs. 11(a), 12(a), and 13(a). 

The variations in the variability of the brightness, 

nonuniformity, and mean temperature with time are 

exhibited in Figs. 11(b), 12(b), and 13(b), respectively. 

Each data point in the variability plots is obtained from the 

raw parameter sequences with a moving window of 1024 

data length.  

Fig. 11 shows that with constant coal feed rate (first 

stage, 0 min - 11 min 30 sec), the brightness and its 

  

(a) Brightness                       (b) Variability of the brightness             

Fig. 11. Variations in the brightness and its variability with time. 

 

(a) Nonuniformity                   (b) Variability of the nonuniformity            

Fig. 12. Variations in the nonuniformity and its variability with time. 

 

(a) Mean temperature               (b) Variability of the mean temperature          

Fig. 13. Variations in the mean temperature and its variability with time. 
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variability fluctuate slightly around their means, which 

indicates that the flame is stable. Similar results are also 

obtained from the nonuniformity (Fig. 12). Additionally, 

although the fluctuation in the mean temperature is 

relatively significant (Fig. 13(a)), the average of the mean 

temperature remains relatively steady (Fig. 13(a)), 

indicating a stable flame. Such a stable flame is also 

represented by the magnitude of the oscillation frequency 

and small variability in Fig. 10. 

With initial reduction in coal feed rate (second stage, 

11 min 30 sec - 12 min 30 sec), the brightness, 

nonuniformity, mean temperature and their variability 

present obvious peaks, as shown in Figs. 11, 12, and 13, 

respectively. Typical flame images before, during and after 

the peak time of the parameter variations are shown in Fig. 

14. The corresponding flame temperature distributions are 

given in Fig. 15 in the form of pseudo-colour maps. The 

temperature distributions are normalised to a theoretical 

maximum. The reason for these peaks is that the mixture 

of the coal and air achieves the optimal equivalence ratio 

for combustion with the coal feed reduced gradually [38]. 

The initially decreasing coal feed rate and constant air flow 

rate in the second stage (Fig. 5) also indicate this reason 

for such peaks. The complete combustion of the pulverized 

coal increases the flame temperature (Fig. 14) and causes 

the intense light emitted from the flame (Fig. 15) [38], 

which increases the brightness and nonuniformity as well 

as their variability significantly. During this stage, the 

oscillation frequency and its variability have a minimum 

and a peak, respectively, both indicating that flame 

stability deteriorates rapidly. 

Figs. 11(a), 12(a), and 13(a) depict that, with further 

reduction in coal feed rate (third stage, 12 min 30 sec - 16 

min), the brightness, nonuniformity, and mean temperature 

decrease with time due to the insufficient fuel supply. This 

can be observed in Fig. 5 and Fig. 7(c) as well. The bright 

flame gradually dims and blurs with time. Figs. 11(b), 

12(b), and 13(b) depict that the variability of the three 

parameters has the same decreasing trend, which indicates 

that the flame becomes stable. However, as shown in Fig. 

10, the oscillation frequency and its variability maintain 

the levels achieved in the second stage, i.e. the small 

oscillation frequency and large variability. This suggests 

that the flame is unstable, which is opposite to the results 

from the other three parameters. This is because the 

 

(a) Before the peak time             (b) During the peak time            (c) After the peak time 

Fig. 14. Typical flame images before, during and after the peak time of the parameter variation in Figs. 11, 12 and 13. 

 

(a) Before the peak time            (b) During the peak time            (c) After the peak time 

Fig. 15. Temperature distributions of the flames in Fig. 14. 

 

Fig. 16. Instability coefficients for the flame parameters. 
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decreasing coal feed rate increases the low frequency 

components of the flame signal due to the aerodynamics in 

the furnace. The oscillation frequency in this stage is 

mainly determined by the air flow rate, which is also 

supported by the excessive air flow rate, as shown in Fig. 

5. Considering that the flame is nearly extinguished due to 

the excessive air, the oscillation frequency and its 

variability reflect the flame stability better than the other 

parameters. 

Figs. 11, 12, and 13 confirm that, with no coal feed (last 

stage, 16 min - 25min), the brightness, nonuniformity, and 

mean temperature are all forced to zero as the flame is now 

absent. Again, within the image processing software, the 

system still returns values of nonuniformity and mean 

temperature, which are derived the images of the hot 

refractory wall. 

Fig. 16 shows the instability coefficients of the four 

parameters to characterise their sensitivity to the flame 

stability variation, as described in Section 2.3. These 

coefficients are determined from the variability of the 

unusual values of the corresponding parameters in the first 

stage because the flame in this stage is the most stable. Figs. 

11(b), 12(b), and 13(b) exhibit that the variability of the 

nonuniformity has the most significant change among the 

four parameters during the first three stages. Furthermore, 

the nonuniformity has the highest instability coefficient 

(Fig.16). Thus, the nonuniformity reflects the change in the 

flame stability better than the other three parameters in this 

study. This can be also observed in Fig. 7 that the 

difference of the luminous intensities between the ‘light’ 

and ‘dark’ regions changes significantly with the reduction 

in coal feed rate. The instability coefficient for the 

oscillation frequency is very low compared to the other 

three parameters. This is because the oscillation frequency, 

which is determined from multiple images (512 in this 

study), contains multi-aspect flame stability information 

and reflects flame stability over a period of time. When the 

flame is stable, the oscillation frequency does not have a 

significant change and thus its instability coefficient is 

very low. The other three parameters fluctuate 

occasionally over a wider range of values due to the 

inherent dynamic nature of the combustion process, 

leading to relatively large instability coefficients.  

Figs. 17(a) and (b) exhibits the flame stability index 

and its standard deviation, respectively, during the shut off 

process. As the coal feed rate remains constant (first stage, 

0 min - 11 min 30 sec), there is no significant change in the 

flame stability index, indicating a stable flame, except for 

the 8th minute. The flame stability index at the 8th minute 

demonstrates the flame stability deteriorate temporarily 

likely due to large coal particles at that moment. With the 

initial reduction in coal feed rate (second stage, 11 min 30 

sec - 12 min 30 sec), the flame stability index has a 

significant peak, indicating that the flame is unstable. With 

further reduction in coal feed rate (third stage, 12 min 30 

 

    (a) Flame stability index 

 

   (b) Standard deviation of flame stability index 

 

(c) Numerical indicator of flame stability 

Fig. 17. Flame stability results in terms of flame stability 

index and numerical indicator. 
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sec - 16 min), the decreasing flame stability index with the 

large standard deviations (Fig. 17(b)), where each data 

point is obtained from 128 stability index, suggest that the 

flame fluctuates progressively towards extinction. With no 

apparent coal feed (last stage, 16 min - 25min), the flame 

stability index is 0, which is due to the fact that the flame 

has been extinguished in this stage.  

As can be seen, although the flame stability index 

characterises the flame stability sensibly, its result is not 

straightforward enough to comprehend for the plant 

operators. Fig. 17(c) shows the variation in the numerical 

indicator of flame stability throughout the shut-down 

process. The four distinct colours, i.e. green, blue, orange, 

and red, represent four different flame states, i.e. stable, 

relatively stable, unstable, and extremely unstable, 

respectively. As the flame is extinguished in the last stage, 

the numerical indicator is 0. The mean and standard 

deviation of the flame stability index during 0 min to 7 min 

are 0.1064 and 0.0030, respectively. Due to the small 

standard deviation (Fig. 17(b)), the mean represents the 

best flame stability under the current combustion 

conditions. Based on such a mean and standard deviation, 

the numerical indicator of flame stability is obtained from 

the flame stability index. It can be seen from Fig. 17(c) that 

the numerical flame stability indicator presents well the 

flame state from stable to unstable and eventually 

extinguished. The colour coded flame states are the direct 

outputs of the flame monitoring system. 

 

4. Conclusion 

The stability of a pulverized coal flame has been 

measured continuously and quantitatively based on the 

digital imaging and image processing techniques. Results 

obtained on a 600 MWth coal-fired supercritical unit have 

demonstrated that, in a routine boiler “turning off” process, 

the flame stability is well characterized using the 

numerical indicator, which is converted and rounded from 

the flame stability index. The numerical indicator for flame 

stability changes from 10 to 1, suggesting that the flame 

stability deteriorates gradually with the decreasing coal 

feed rate. Moreover, the results have indicated that the 

nonuniformity is most sensitive to the change in flame 

stability. It has also been found that the oscillation 

frequency and its variability reflect better the stability of 

the nearly-extinguished flame than the other parameters. 
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