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Abstract

The pharmaceutical industry is plagued by the problem
of side effects that can occur anytime a prescribed medi-
cation is ingested. There has been a recent interest in us-
ing the vast quantities of medical data available in lon-
gitudinal observational databases to identify causal rela-
tionships between drugs and medical events. Unfortunately
the majority of existing post marketing surveillance algo-
rithms measure how dependant or associated an event is
on the presence of a drug rather than measuring causal-
ity. In this paper we investigate potential attributes that can
be used in causal inference to identify side effects based on
the Bradford-Hill causality criteria. Potential attributes are
developed by considering five of the causality criteria and
feature selection is applied to identify the most suitable of
these attributes for detecting side effects. We found that at-
tributes based on the specificity criterion may improve side
effect signalling algorithms but the experiment and dosage
criteria attributes investigated in this paper did not offer
sufficient additional information.

1. Introduction

The majority of the population will require medication
at some point during their lifetime and fortunately the med-
ication will often increase their standard of living. Occa-
sionally and often unpredictably a patient may experience
a negative side effect as a consequence of ingesting a drug.
When a drug is known to have caused a negative side ef-
fect, the side effect is referred to as an adverse drug reac-
tion (ADR). By the previous definition of an ADR it is clear
that an ADR represents a causal relation between a drug and
medical event.

The majority of existing algorithms for signalling ADRs
identify medical events that are associated to a specific drug
but association does not imply causation, as for example, a

drug and medical event may be associated if the drug is pre-
scribed to treat an illness that always precedes the medical
event. As a consequence, the existing algorithms generate
many false positive signals and are only considered ADR
filters rather than definitive detectors of ADRs as the sig-
nals they generate still need to be confirmed by more rigor-
ous investigations [1]. If an algorithm was developed that
could definitively detect ADRs then this algorithm is likely
to signal ADRs at a quicker rate due to no longer requiring
the rigorous investigations and would enable the investiga-
tion of all drug and medical event pairs rather than just the
ones that seem to have the greatest association.

One possible way of developing an algorithm that is ca-
pable of classifying each pair of drug and medical event as
either an ADR (the drug causes the medical event), an indi-
cator (the medical event causes the drug) or noise (no clear
causal relationship between the drug and medical event) is
to train a learning algorithm with suitable attributes. The
attributes need to be selected so that they give information
about causal relations. In this paper we have decided to de-
velop and investigate attributes derived from the Bradford-
Hill causality criteria [2] and find the most suitable at-
tributes by feature selection. The Bradford Hill causality
criteria are a group of nine factors that are often consid-
ered when determining causality in epidemiological stud-
ies. This is the first time attributes to determine causation
in Longitudinal Observational Databases (LODs) have been
investigated. The purpose of the paper is to firstly determine
if including attributes that cover previously unconsidered
Bradford Hill causality criteria could be advantageous for
algorithms that signal ADR in LODs and secondly to pre-
dict how useful each attribute is. The results of this paper
will help any future ADR classifying algorithm.

The continuation of this paper is are follows. In the next
section the existing methods and Bradford Hill causality cri-
teria are discussed. This is followed by the methodology
section detailing the attributes of interest for each of the
criterion chosen and the feature selection method applied.



Section 4 is the results of the feature selection and section
5 discusses the implications of our results. The paper con-
cludes with section 6 and possible future work is suggested.

2 Background

Existing methods of signalling ADR in healthcare
databases have generally been developed and applied to
Spontaneous Reporting System (SRS) databases, but new
methods are being developed for LODs. The SRS databases
contain voluntary records of suspected ADRs, for exam-
ple, if a patient thinks they have experienced an ADR they
can report this and the report will be added into an SRS
database. These databases often contain a vast quantity of
reports and have been used successfully in the past to iden-
tify some ADRs. Unfortunately the SRS databases are lim-
ited in the ADRs they can detect due to some ADRs being
difficult to spot and are therefore unlikely to be reported and
the reports often contain missing, incorrect or duplicated
data [1]. The SRS databases are known to suffer from un-
derreporting [4] as people may not identify an ADR or may
not bother to report one and this can cause a time lag before
an ADR is signalled. The ADR signalling algorithms devel-
oped for SRS databases are often referred to as ‘dispropor-
tionality methods’ as they estimate the background rate that
a specific medical event occurs by considering how often it
is reported with any drug and compare this with the how of-
ten it is reported with the drug of interest [10]. The dispro-
portionality methods signal medical events that are highly
associated to a specific drug, but these signalled medical
events then require further investigation to determine if the
association is causal or not.

The LOD algorithms generally determine how depen-
dant the occurrence of a medical event is on the occurrence
of the drug by contrasting the observed number of times
the medical event occurs after the drug with how often you
would expect the medical event to occur after the drug under
the assumption they are independent. The methods deviate
in how they calculate the expected number of times a med-
ical event will occur after the drug, some use a cohort ap-
proach [6] [7], while others use a mixture of the case-series
and the ‘disproportionality’ approaches [8]. These algo-
rithms also tend to consider a temporal relation by filtering
medical events that are considered to have caused the drug
to be taken, or medical events that are likely to be ‘thera-
peutic failures’ (a result of the drug not working) [9]. Other
ADR signalling algorithms have used patient time to cal-
culate an expectation [9] or applied a sequential case-series
approach [5].

The Bradford Hill causality criteria were developed as a
way to distinguish between association and causation. The
nine factors of interest are summarised below.

• Association Strength - how strong the association is.

• Temporality - the direction of the association, does the
medical event often appear after the drug or before it?
• Specificity - how specific the relationship is.
• Experimentation - when the drug stops does the medi-

cal event stop, when it restarts does the medical event
also restart?
• Dosage - is there correlation between dosage and ex-

periencing the medical event?
• Analogy - does a similar drug have a similar side ef-

fect?
• Coherence - does the association make sense?
• Plausibility - is the association possible?
• Consistency - is there evidence of the association in

different databases?

Table 1. The Bradford-Hill causality criteria
and whether they are covered by existing
methods.

Criterion SRS methods LOD methods
Association Strength Yes Yes

Temporality Yes Yes
Specificity No No

Experimentation No No
Dosage No No
Analogy No No

Coherence Indirectly No
Plausibility No No
Consistency No No

Table 1 summarises the criteria covered by the existing
methods. It is clear that the existing methods all cover as-
sociation strength and temporality, as patients are in general
only likely to report a potential ADR to an SRS database if it
is newly occurring and the LOD algorithms include tempo-
ral filters. The SRS algorithms also indirectly cover plausi-
bility as the people making the report will natural filter any
medical event that occurs after the drug is prescribed that
is not plausible as an ADR. The remaining criteria are not
covered by the existing methods. However, attributes that
cover association strength, temporality, specificity, experi-
mentation and dosage are developed in the next section. Fu-
ture algorithms integrating these previously unconsidered
attributes for specificity, experimentation and dosage may
offer new in sight for ADR detection.

3. Methodology

3.1 Step 1: Generating Attributes

3.1.1 Strength of Association

The strength of association measures how dependant the
medical event is on the presence of the drug but does not



Table 2. A 2x2 contingency table frequently used in pharmacovigilance studies.
Event of Interest (X=1) Other Event (X=0) Totals

Drug of Interest (Y=1) a b a+b
Other Drug (Y=0) c d c+d

Totals a+c b+d a+b+c+d

Table 3. The different association strength measures and their probabilistic interpretations.
Association Measure Probabilistic Interpretation Calculation
Risk Difference (RD) P [X = 1|Y = 1]− P [X = 1|Y = 0] a

a+b −
c
c+d

Risk Ratio (RR) P [X = 1|Y = 1]/P [X = 1|Y = 0] a
a+b/

c
c+d

Odds Ratio (OD) P [X=1|Y=1]/P [X=0|Y=1]
P [X=1|Y=0]/P [X=0|Y=0] ad/bc

Table 4. Attribute Summary Table
Feature Criterion Description

RR, RD, OR Strength The Risk Ratio, Risk Difference and Odds Ratio for all prescriptions.
RR13d,RD13d,OR13d Strength The Risk Ratio, Risk Difference and Odds Ratio for drugs prescribed for the first

time in 13 months.
RR13BNF ,RD13BNF

,OR13BNF

Strength The Risk Ratio, Risk Difference and Odds Ratio for drugs corresponding to a bnf
that has not been prescribed in the last 13 months.

IC∆ Strength The Information Component as calculated in [8]
lowerIC∆ Strength The lower 95% interval of the Information Component as calculated in [8]

LEOPARD Temporality Is 1 if the drug is prescribed significantly more after the medical event than before
and 0 otherwise.

OEfilt1 Temporality Calculates if the ICδ is greater the month before the drug than the month after.
OEfilt2 Temporality Calculates if the ICδ is greater on the day of prescription compared to the month

after.
ABratio Level 2 Temporality How often the level 2 version of a Read Code is recorded after the prescription

compared to before.
ABratio Level 3 Temporality How often the level 3 version of a Read Code is recorded after the prescription

compared to before.
Age Standard Devia-
tion

Specificity Standard deviation of patient’s age who experience medical event after drug di-
vided by standard deviation of the ages for all the patients.

Gender Ratio Specificity Male proportion of patients experiencing the medical event within 30 days of the
drug divided by male proportion of patients prescribed the drug.

Read Code Level Specificity The specificity level of the Read Code.
RR drug / RR bnf Specificity The RR of the drug divided by the RR of the drug’s corresponding BNF.

Dosage Ratio Dosage Average dosage of patients experiencing the medical event within 30 days of the
drug divided by average dosage of patients prescribed the drug.

High Low Ratio Dosage Proportion of patients given the highest dosage that experience the medical event
(within 30 days) divided by the proportion of patients given the lowest dosage that
experience the medical event (within 30 days).

Spearman’s rank Dosage The Spearman’s rank correlation coefficient between the patient dosage and {0, 1}
indicating if the patient experienced the medical event within 30 days.

Pearson product-
moment

Dosage The Pearson product-moment correlation coefficient between the patient dosage
and {0, 1} indicating if the patient experienced the medical event within 30 days.

Repeat1 Experiment Number of patients that have medical event in at least two distinct hazard periods
and not in their non-hazard periods divided by the number of patients that have at
least two distinct hazard periods and have medical event in one hazard period.

Repeat2 Experiment Number of patients that have medical event in two distinct hazard periods and
not in their non-hazard periods divided by the number of times the medical event
occurs in the non-hazard periods of patients that have at least two distinct hazard
periods.



consider confounding effects. The standard epidemiology
and pharmacovigilance methods for calculating association
strength often make use of a 2x2 contingency table, see Ta-
ble 2, that compares the frequency that a medical event is
observed in a group of patients prescribed the drug of inter-
est and a group of patients prescribed any other drug. Three
common measures of association strength are the risk differ-
ence, risk ratio and odds ratio. The risk of having medical
event in the month after the drug of interest is prescribed is
then a/(a+ b) and the risk of having the event in the month
after any other drug is c/(c + d). The risk difference in-
vestigates the difference whereas the risk ratio investigates
the ratio between the risks of the two groups. The odds ra-
tio calculates the ratio between the odds that a medical event
occurs in the drug of interest group (a/b) and the odds that a
medical event occurs in the any other drug group (c/d). The
different association strength measures and their probabilis-
tic interpretations are described in Table 3. In this paper we
generate association strength attributes by calculating each
association measure under three different criteria. The first
criteria considers all drug prescriptions in the database, the
second criteria only considers drug prescriptions where the
drug is prescribed for the first time in 13 months and the fi-
nal criteria only considers drug prescriptions where the drug
BNF is recorded for the first time in 13 months.

An existing LOD algorithm for signalling ADRs, known
as the Observe to Expected Ratio algorithm [8], developed
a measure of dependency between a drug and medical event
known as the IC∆. In the paper we also include the IC∆

and it’s lower 95% confidence value as two additional asso-
ciation strength measures. So we generate eleven associa-
tion strength attributes in total.

3.1.2 Temporality

The existing algorithms that detect side effects using LODs
have often developed filters that use the temporal informa-
tion to remove medical events that are associated to the
drug of interest but frequently occur before the drug is pre-
scribed. The Observe to Expected ratio [8] filters medical
events that have an IC∆ on the day of the prescription or
the month before the prescription greater than the month af-
ter the prescription. This prompts two temporal attributes
OEfilt1 and OEfilt2. The OEfilt1 is one when the IC∆

for the month before the prescription is greater than the
IC∆ for the month after the prescription and zero other-
wise. The OEfilt2 is one when the IC∆ on the day of the
prescription is greater than the IC∆ for the month after the
prescription and zero otherwise.

Another existing temporality attribute is LEOPARD [9].
LEOPARD takes the perspective of the event and finds how
often a drug is prescribed before and after the first occur-
rence of the event respectively. If the number of times a

drug is prescribed after the first occurrence of the event is
significantly greater than the number of times the drug is
prescribed before then LEOPARD filters the drug and med-
ical event pair. The test used for significance is a one sided
binomial test.

The final attributes of interest for temporality, the After
Before (AB) ratios, are similar to LEOPARD but take the
perspective of the drug. The AB ratios calculate how of-
ten the medical event occurs after the drug of interest com-
pare to how often the medical event occurs before the drug
of interest. It is common for doctors to initially record a
less specific medical event and then later in time record a
more specific version of the medical event after laboratory
results are returned. As a consequence, many specific med-
ical events that started before the drug was prescribed are
only recorded after the prescription, but more general ver-
sions of the medical events are recorded before the prescrip-
tion. This can lead to a high AB ratio for medical events that
actually caused the drug to be prescribed. Rather than cal-
culating the AB ratio for the specific medical event, we de-
cided to calculate the AB ratio for the corresponding more
general versions of the medical event, this can be done eas-
ily due to medical events being recorded via Read Codes
that have a hierarchal structure. The hierarchal structure
means that medical events can be level 1 (very general) to
level 5 (very specific), but a level 5 medical event has a
corresponding level 1-4 medical event (it’s parent, grand-
parent, great-grandparent, etc...). Therefore the AB ratios
of interest are the AB ratio level 2 that first transforms level
5 to level 3 Read Codes into level 2 ones and then calcu-
lates the AB ratio for the level 2 version of the Read Code
corresponding to the medical event of interest and the AB
ratio level 3 that is similar but only transforms the level 5 to
level 4 Read Codes and calculates the AB ratio for the level
3 Read Code version corresponding to the medical event of
interest.

3.1.3 Specificity

The specificity measure investigates how specific the asso-
ciation is. In this paper we consider how specific the medi-
cal event is, we investigate if the medical event only occurs
for a certain age or gender and we consider if the medical
event associated to the drug is also associated to other sim-
ilar drugs.

The specificity of the medical event is simply the level of
the medical event’s Read Code (level 1 to Level 5). To de-
termine how specific the ages are for patients experiencing
the medical event after the drug we calculate the standard
deviation of the ages for the patients who have the drug
and then experience the medical event and divide this by
the standard deviation of the ages for all the patients pre-
scribed the drug. Similarly, to determine if the associa-



tion tends to only occur for a specific gender we calculate
the male/female proportion for patients that take the drug
and experience the medical event and divide this by the
male/female proportion for all the patents prescribed the
drug. The final values of interest investigate how specific
the medical event association is to the drug of interest com-
pared to other drugs in the same BNF family. A simple
measure is to compare the risk ratio of the drug and medical
event with the risk ratio of the BNF corresponding to the
drug and medical event.

3.1.4 Dosage

One of the criteria that can be calculated using LOD data is
the medical event’s dependency on the dosage of the drug.
In general, ADRs will be more common in patients pre-
scribed a higher dosage of the drug. This inspired the fol-
lowing dosage attributes of interest. The first attribute is
the average dosage of the patients experiencing the medical
event after the drug divided by the average dosage of the pa-
tients prescribed the drug. If the patients experiencing the
medical event after the drug have a higher average dosage
than the all the patients prescribed the drug then this indi-
cates that the medical event occurs more often in patients
prescribed a high dosage. Another way of determining if
patients prescribed a higher dosage are more likely to ex-
perience the medical event is to compare the proportion of
patients who are prescribed the highest dosage who also ex-
perience the medical event divided by the proportion of pa-
tients who are prescribed the lowest dosage who also expe-
rience the medical event (if none of the patients prescribed
the lowest dosage experience the medical event the denom-
ination applied is 0.95). The final dosage attributes inves-
tigated are the Spearman’s rank correlation coefficient and
Pearson product-moment correlation coefficient on the set
of patient 2−tuple corresponding to the dosage prescribed
and indication if the event occurred, for example (250, 1)
corresponds to a patient prescribed 250mg who experienced
the event.

3.1.5 Experimentation

The experimentation criterion indicates whether the med-
ical event stops and restarts with the drug being stopped
and restarted. This attribute only considered patients that
have experienced a repeat of the drug with over a year be-
tween prescriptions; these patients are referred to as repeat
patients. The hazard period is 30 days after the drug is
prescribed and the corresponding non-hazard period is 335
days before the drug prescription. The Repeat1 attribute is
calculated as the number of repeat patients that experience
the medical event in at least two separate hazard periods
and not in the corresponding non-hazard periods divided

by the number of repeat patients that experience the med-
ical event in one hazard period and not in the corresponding
non-hazard period. The Repeat2 attribute is calculated as
the number of repeat patients that experience the medical
event in at least two separate hazard periods and not in the
corresponding non-hazard periods divided by the number
of times the medical event occurs in a repeat patients non-
hazard period.

3.2. Step 2: Feature Selection

In this study we apply a multivariate filter, the
Correlation-based Feature Selection (CFS) algorithm [3], as
this algorithm is not dependent on a specific classifier. The
CFS algorithm finds the optimal feature subset based on the
trade-off between how correlated the class labels are to the
feature subset and how intercorrelated the features of the
subset are.

The data used in this study are extracted from The
Health Improvement Network database (www.thin-uk.com)
and can be found at: http://www.ima.ac.uk/reps.

4. Results

Table 5 shows that the optimal attribute subset to use for
ADR discovery is LEOPARD, RD13BNF , ABratio Level
3, Gender Ratio and Read Code Level. The temporal and
strength attributes had the greatest correlation with the class
labels, whereas 75% of the dosage attributes has a zero cor-
relation measure.

5. Discussion

The results show that the temporal and strength attributes
are key for signalling ADRs as these had the highest correla-
tion with the class labels but the specificity attributes Gen-
der Ratio and Read Code level offered potentially new in
sight than available via the temporal and strength attributes.
The experiment and dosage attributes investigated in this
paper did not offer sufficient additional information than
what could be gained from the RD13BNF or the LEOPARD
attributes, although there does appear to be some correlation
between the class labels and both the Pearson’s correlation
rank attribute and the Repeats attributes.

The reason the dosage attributes did not have a greater
correlation with the class labels may be due to a limit-
ing factor of comparing different measurement types. The
dosages can be recorded via different measurement types
for example ‘mg’, ‘%’, ‘mm x cm xcm’ or the measure
type may be missing. As it is difficult to determine if
x quantity of ‘mg’ is greater than y quantity of ’%’, the



Table 5. The results of the CFS algorithm
ordered by the measure of correlation with
the class labels. Attributes not selected by
the CFS algorithm have the attribute they are
most correlated to listed in the CFS rank col-
umn.

Attribute Class Correlation CFS Rank
LEOPARD 0.3238 1

OEfilt1 0.2637 LEOPARD
OEfilt2 0.2618 LEOPARD

RD13BNF 0.2347 2
RD13d 0.2248 LEOPARD

RD 0.2231 RD13BNF

ABratio Lv3 0.2231 3
ABratio Lv2 0.1755 ABratio Lv3

RR13d 0.1593 RD13BNF

OR13d 0.1593 RD13BNF

RR13BNF 0.1514 RD13BNF

OR13BNF 0.1514 RD13BNF

RR 0.1408 RD13BNF

OR 0.1408 RD13BNF

lowerIC∆ 0.135 RD13BNF

Pearson rank 0.1029 RD13BNF

Gender Ratio 0.0663 4
Repeats1 0.0651 LEOPARD
Repeats2 0.0651 LEOPARD

IC∆ 0.0608 RD13BNF

Read Code Lv 0.0279 5
RRDrug/RRBNF 0 -

Dosage Ratio 0 -
High Low Ratio 0 -

Age STDEV 0 -
Spearman’s’ rank 0 -

dosage attributes were calculated only considering prescrip-
tions measured in ‘mg’ (as this was the most popular). Un-
fortunately this resulted in occasional issues due to ‘mg’
measured prescriptions of some drugs investigated always
being the same quantity or many prescriptions of a drug
not being included in the dosage attribute calculations. The
experiment attributes were also limited if the drug inves-
tigated was rarely repeated. Furthermore, the experiment
attributes may have been biased in this study due to using
known ADRs, as if an ADR is known and a patient expe-
riences the ADR after the drug then the doctor is likely to
notice this and not prescribed the drug to that patient in the
future. One possible way to overcome this issue would be
to use only newly discovered ADRs in the data as the med-
ical records may be more likely to have patients, who at the
time unknowingly experienced the ADRs, having a repeat
prescription.

6. Conclusion

In this paper we have applied feature selection to at-
tributes we generated based on the Bradford Hill causal-
ity criteria to determine suitable attributes to be used by a
general learning algorithm to identify side effects in LODs.
This is the first time suitable attributes for identifying causal
relations between prescribed drugs and medical events have
been explored and the results now present the opportunity to
develop novel learning algorithms. We have found that the
specificity attributes offer additional information for ADR
signalling and it would be advantageous to include them
into ADR signalling algorithms. Unfortunately the experi-
ment and dosage attributes were not very correlated with the
class labels but this is likely to be due to current limitations.

Possible future work could focus on developing a way
to compare prescriptions with different measurement types
so all the prescription data can be used for calculating the
dosage attributes or involve developing attributes that cover
the remaining Bradford Hill causality criteria (plausibility,
coherence, consistency and analogy).

References

[1] J. Almenoff, J. M. Tonning, A. L. Gould, and et al. Perspec-
tives on the use of data mining in pharmacovigilance. Drug
Saf, 28(11):981–1007, 2005.

[2] A. Bradford-Hill. The environment and disease: Association
or causation? Proceedings of the Royal Society of Medicine,
58:295–300, 1965.

[3] M. A. Hall. Correlation-based feature selection for machine
learning. Technical report, 1999.

[4] L. Hazell and S. A. W. Shakir. Under-reporting of ad-
verse drug reactions: A systematic review. Drug Safety,
29(5):385–396, 2006.

[5] M. N. Hocine, P. Musonda, N. J. Andrews, and C. P. Farring-
tonl. Sequential case series analysis for pharmacovigilance.
J. R. Statist. Soc., 172:213–236, 2009.

[6] H. Jin, J. Chen, C. Kelman, and et al. Mining unexpected
associations for signalling potential adverse drug reactions
from administrative health databases. PAKDD, pages 867–
876, 2006.

[7] H. W. Jin, J. Chen, H. He, and et al. Signaling potential
adverse drug reactions from administrative health databases.
IEEE Trans Knowl Data Eng, 22(6):839–853, 2010.

[8] G. N. Noren, J. Hopstadius, A. Bate, and et al. Temporal
pattern discovery in longitudinal electronic patients records.
Data Min Knowl Disc, 20:361–387, 2010.

[9] M. J. Schuemie. Methods for drug safety signal detection
in longitudinal observational databases: LGPS and LEOP-
ARD. Pharmacoepidemiol Drug Saf, 20(3):292–299, 2011.

[10] E. P. van Puijenbroek, A. Bate, H. G. M. Leufkens, and et al.
A comparison of measures of disproportionality for signal
detection in spontaneous reporting systems for adverse drug
reactions. Pharmacoepidemiol Drug Saf, 11(1):3–10, 2002.


