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Abstract. Euler diagrams are a natural method of represgsiit-theoretic data and
have been employed in diverse areas such as vsgaltatistical data, as a basis for
diagrammatic logics and for displaying the reswitsdatabase search queries. For
effective use of Euler diagrams in practical compubased applications, the
generation of a diagram as a set of curves froralemtract description is necessary.
Various practical methods for Euler diagram genenabave been proposed, but in all
of these methods the diagrams that can be prodareednly for a restricted subset of
all possible abstract descriptions.

We describe a method for Euler diagram generatiemonstrated by implemented
software, and illustrate the advances in methodolog the production of diagrams
which were difficult or impossible to draw usingepious approaches. To allow the
generation of all abstract descriptions we maydugiired to have some properties of
the final diagram that are not considered nicepdrticular we permit more than two
curves to pass though a single point, permit somm&ecsegments to be drawn
concurrently, and permit duplication of curve labdlowever, our method attempts
to minimize these bad properties according to aehgrioritization.

Keywords: Euler Diagrams, Venn Diagrams

1 Introduction

Euler diagrams are sets of (possibly interlinkitgbelled closed curves and are
popular and intuitive notation for representingommhation about sets and their
relationships. They generalize Venn diagrams [#6iich represent all possible set
intersections for a given collection of sets. Eulegrams allow the omission of some
of these set intersections in the diagram, enalfivgn to make good use of the
spatial properties of containment and disjointnafssurves. Euler diagrams are said
to be effective since the relationships of the esnmatches the set theoretic
relationships of containment and disjointness [1Bfy provide ‘free rides’ [17]
where one obtains deductions with little cognitdgst due to the representation. For
example, if A is contained in B which is contairiadC then we get the information
that A is contained in C for free.

The motivation for this work comes from the usekafler diagrams in a wide
variety of applications, including the visualizatiof statistical data [2,13], displaying
the results of database queries [1] and repregpmim-hierarchical computer file
systems [3]. They have been used in a visual setnaeb editing environment [18]
and for viewing clusters which contain conceptsnfronultiple ontologies [11].



Another major application area is that of logicaasoning [12] and such logics are
used for formal object oriented specification [14].

A major requirement for many application areashiat tthey can automatically
produce an Euler diagram from an abstract desonipii the regions that should be
present in the diagram. This is called the Eulagdim generation problem.
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Fig. 1a. Concave Curve. Fig. 1b. A triple point.
A
B
Fig. 1c. Concurrent curves. Fig. 1d. Disconnected zones.
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| i A
Fig. 1e. Duplicated curve label. Fig. 1f. Non simple curve.

A range of diagram properties, called wellformedne®nditions, which are
topological or geometric constraints on the diagrahave been suggested with the
idea of helping to reduce human errors of comprsioenthese properties can also be
used as a classification system. Some of the maston properties are shown in
Fig. 1. Note that the termone in Fig. 1d refers to the region enclosed by aipaler
set of curve labels, and excluded by the rest efdhrve labels. For example the
region that is inside the curve labelled A but wésthe curve labelled B is
disconnected here.



The definition of what constitutes an Euler diagnemies in the literature, and can
usually be expressed in terms of these wellformgslm@nditions. Although Euler
himself [5] did not formally define the diagrams Wwas using, his illustrations do not
break any of wellformedness conditions given inufgyl. In [7] the first Euler
diagram generation algorithm was presented antidufbrmalized in [6]. This work
guaranteed the production of an Euler diagram texdts all of the wellformedness
conditions in Fig. 1 except Fig 1a, from an absti@descriptions whenever it was
possible to do so. An implementation of the aldwnitwas also provided which had a
limited guarantee of being able to draw any suety@im with up to four contours in
any one connected component. In [1] the relaxatfotihe wellformedness conditions
to allow multiple points and concurrent contoursswadopted, and although no
conversion from theory to practise was provideeyas shown that the Euler diagram
generation problem is NP-Complete in this case.ce&inmposing some
wellformedness conditions implies that some absilascriptions are not realisable
as Euler diagrams, in [1] the notion of an Euleagdam was extended so that any
abstract description with at most nine sets coeldltawn: they used Euler diagrams
that had holes, which are a restricted versiorlloWang duplicate curve labels.

In this paper, we integrate and significantly exteéhe work of these three major
attempts at the Euler diagram generation problethpravide a complete solution to
general Euler diagram generation in the sense dngt abstract description is
drawable using our method.

We define arEuler diagram to be a set of labelled closed curves in the plsve
call the set of all of the labelled curves with sane label @ontour. A zone of an
Euler diagram is a region of the plane enclosed bgt of contours, and excluded by
the rest of the contours. The diagrams obtainedurageneration process can have
curves of any geometric shape and they may havkcdte contour labels, multiple
points, and concurrent curves. However, we guagant¢ to generate any diagrams
with duplicate zones or non-simple curves.

Utilising this broad definition of Euler diagramsakes the general generation
problem of any abstract description possible, bypically, the “more non-
wellformed” a diagram is the less desirable it ienf a usability perspective.
Therefore, we adopt a strategy which guides thputubwards being as wellformed
as possible, according to a chosen prioritisatibthe wellformedness conditions,
whilst ensuring that we generate a diagram with ¢berect set of zones (i.e. it
complies with the abstract description). Howeveg give no guarantee that the
diagrams generated are the most wellformed diagnamssible since some of the
problems that need to be solved to ensure thiBlBr€omplete.

In this paper we adopt the convention of usinglsihgfters to label contours. Each
zone can be described by the contour labels intwthie zone is contained, since the
excluding set of contour labels can be deduced flumset. An abstract description
is a description of precisely which zones are nemguto be present. For example, the
abstract description for the Euler diagram in Fégb is@g b ¢ ab ac abc, whered
indicates the zone which is contained by no comstocalled theoutside zone, which
must be present in every abstract description.

In Section 2, we give details of the generation hoét Section 3 gives our
conclusions and future directions.



2 The Generation Process

First we give a high level outline of the methodploused, with details and
explanation of the terminology appearing in latect®ns. Given an abstract
description of an Euler Diagram, we produce an afded Euler diagram using the
following steps:

1. Generate the superdual graph for the abstractig@eor

2. Using edge removal, find a planar subgraph thaitlieer wellconnected or
close to wellconnected.

3. If the graph is not wellconnected, add concurretfges to increase the
closeness of the graph to being wellconnected whilsintaining
planarity.

4. Find a plane layout for the graph.

5. Add edges to reduce unnecessary tangential intersec forming the
dual of the Euler graph.

6. Find subgraphs where duplicate curves will be meqlii

7. Construct the Euler diagram from the dual of thdeEgraph using a
triangulation based method.

Since we are constructing the dual of the Euleplgralanarity is clearly essential.

If the dual graph constructed is not wellconnedtesh the Euler diagram will have

either duplicate curves or concurrency. Steps 23y to reduce the instances of
either. However, step 3 may add concurrent edgestfiose with multiple contour

labels) which can reduce the number of duplicatevesi used at the expense of
causing concurrency. Step 5 removes unnecessaggntal intersections (those that
can be removed without introducing concurrent cuisegments). Checking the face
conditions, as in [7] would identify if multiple pas will appear, but since attempting
to search for an Euler dual which passed the faoelitions (and so has no multiple
points) is so time consuming, we omit this step.

2.1 Generating a Super Dual

Recall that an abstract description of a diagraiisisof zone descriptions (which
are just the sets of contour labels that will conthe zones). As described in [7] we
can construct the superdual by taking one nodedch required zone, and labelling
each one with its zone description. When an Eulggrdm is drawn, each contour’s
curves will enclose the nodes whose label set amthe contour label. Two nodes in
the superdual are connected by an edge preciseiy Wie labels differ by a single
contour label. The edges are labelled with theediffice between their incident node
labels. Fig. 2 shows an example of a superdualyeswdtant Euler diagram generated
for the abstract descriptio@ b c ab ac abc. In this case, and for other small
examples that can be drawn without concurrent eoator duplicate curve labels, the
superdual can be embedded without requiring steé)8,8 of our process. However,
many superduals are not planar, and so methodmdoaf planar dual need to be
applied, as described in the next section.



Fig. 2a. Superdual fo@ b c ab ac abc Fig. 2b. Embedded diagram.

2.2 Edge Removal to Achieve Planarity

Given a superdual that is non-planar, we try ta fan planar subgraph of the
superdual that can be used to generate a genetal Hiagram that has no
concurrency or duplicated curve labels; i.e. it trus wellconnected, which means
that it must pass the connectivity conditions beldwen if such properties are
necessary, the amount of concurrency and the nuoflb®irves in a contour may be
reducible (by finding a subgraph that is “close” passing the connectivity
conditions). The connectivity conditions state that

a. the graph is connected

and for each contour label in the abstract desoript

b. if the nodes with that contour label present amaoeed (recall, a node is

labelled by a collection of contour labels) thee traph remains connected
and,

c. if the nodes without that contour label present @moved then the graph

must also remain connected.

If condition a does not hold in the superdual, then concurreaagquired in the
Euler diagram, and Step 3 of our method will beliggdpto add a multiply labelled
edge to the dual (corresponding to concurrencydgfes in the Euler diagram). If
conditionsb or ¢ do not hold and they cannot be fixed by thditeoon of edges
without breaking planarity, then duplicate curvieds will be used for that contour —
in the case of condition c failing, curves are pth¢inside” another curve of that
contour, forming holes in the contour.

In Step 2 we attempt to find a wellconnected plahal by removing edges from
the superdual. If this cannot be done, our edgevainstrategy attempts to find a
planar dual that has as much connectivity as plassthat is the occurrences of
conditionsb, or c are as few as can be achieved.

To guarantee to find a wellconnected planar duagr@hone exists is an NP-
Complete problem [1]. Therefore we resort to heiggsto do as good a job as



possible. Our current technique is to take a fdightweight approach of discovering
potentially removable edges, checking those that bsaremoved from the dual and
exploring the effects of removing combinationshadde. We first layout the superdual
graph using a spring embedder [4] and remove highdgsed edges, preferring the
potentially removable edges. Once a planar layaatdeen found we then attempt to
add back any unnecessarily deleted edges that imphe wellconnectedness. This
paper does not focus on heuristics, and we givg ansimple demonstration of a
possible technique. As with other NP-Complete motd we expect there to be a
number of alternative heuristics.
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Fig. 3a. Planar dual fodVenn Fig. 3b. 4Vennembedded.

Fig. 3a shows a wellconnected plane dual for 4\éma Venn diagram on 4 sets),
and the corresponding diagram generated from tni¢ id shown in Fig 3b. Various
edges have been removed from the superdual tovachlianarity, including the edge
betweend and b, and the edge betweer and bc. Depending on the starting
conditions, and on how much time is given to tharde, it is also possible that

versions of 4Venn which have triple points and daé curve labels might be
created (see Fig. 8 for example).

2.3 Concurrent Edge Addition

If, after Step 2, the graph is disconnected thertep 3, we attempt to make it
connected by adding edges whilst maintaining pigndn addition, for each contour
label, if removal of nodes without that contourdapresent would result in multiple
disconnected subgraphs, then we attempt to addsedeh would connect those
subgraphs.. Similarly, we attempt add edges whicimect any multiple disconnected
subgraphs formed by the removal of nodes with ¢batour label present. Recall that
edges in the dual graph are labelled with the diffee between the labels of the
nodes they are incident with. Edges that are latiddly more than one contour label
are calledconcurrent edges since they correspond to the use of concurrendjen



Euler diagram. Adding edges in this manner cancediie number of duplicate curve
labels but can also add extra concurrency.

Given that there appears to be a combinatoriallylaskve number of possible
ways of connecting up the various subgraphs ofitle graph, and only one of which
might be optimal, we expect that the problem oflifiy a planar dual which is as
close to wellconnected as possible by adding edgese at least NP-Complete.
Hence, we take a heuristic approach to deciding tooadd edges. Again we adopt a
simple method, taking a greedy approach, but with $mall examples we are
currently exploring (less than 10 sets) we findtthalatively few disconnected
components appear. We take one disconnected comipame attempt to connect it to
another by an edge that is labelled with the leasbhber of contours. This process
continues until the dual is connected or no mongravements can be made.

O IS

Fig. 4a. Fig. 4b. Fig. 4c.
Superdual ofd bc ac With concurrent edges Embedded diagram.

An example of the process is shown in Fig 4 forahetract descriptio@ ac bc.
Fig 4a shows the superdual which is disconnectedfwo nodes have label sets
differing by one label. Fig 4b shows the dual grapth concurrent edges added as a
result of Step 3. We note that adding any two edgdabe superdual does not make
the graph wellconnected. For example, if we onlgeatione edge between nodes
labelled @” and“ac”, and anotheedgebetween nodes labelled?” and “bc” then
for the contourdabelled“c” conditionc of the connectivity conditions does not hold
since the nodes “ac” and “belould not benot adjacent. Similarly, leaving either of
the pair of nodes labelled?” and “ac” or the pair of nodes labelle@" and “bc” not
adjacent breaks conditidnof the connectivity conditions. The Euler diagraraated
(using the dual graph in Fig 4b) is shown in Fig, where we slightly separate the
concurrent curve segments to ease comprehension.

2.4 Planar Layout

In this step we embed the dual graph in the pldiere are various standard
approaches to planar layout. At the moment we usethod provided by the ODGF
software library. We make one adjustment to entheenode labelled with” is in
the outer face of the drawn graph, as this nodeesents the part of the diagram
enclosed by no contour. The layout of the dual &asignificant impact on the
drawing of the diagram, and Section 3 includes sdiseussion of methods to layout
planar graphs to improve the usability of the fidi@gram.



2.5 Edge Addition to Remove Tangential I nter sections

For the purposes of embedding we treat the dutdeadual of an Euler graph [1].
An Euler graph can be formed from an Euler diagbgnplacing a node at each point
where curves meet or cross, and connecting thewitbpedges that parallel the curve
segments. Using the dual of an Euler graph meaats tinlike the treatment of the
dual in [7], each face in the dual has at most pamt where contours meet or
concurrent edges separate. However, it can ledtetantroduction of unnecessary
tangential intersections and so we apply an edgiiadl process to remove them
(subdividing the faces of the dual separates thgetatial meetings of the curves).

A @

Fig. 5a. Dual graph foid aab b bcc Fig. 5b. Without edge addition.

Fig. 5c. Additional edge betwee@ andb Fig. 5d. With edge addition.

We detect the need for extra edges by testing fahin the dual graph. If it is
possible to add an edge between two non adjaceigsria the face and the new edge
will be labelled with one of the edge labels of taee, then that edge is added (recall
that edges are labelled with the difference inrthredident node labels). An example
is shown in Fig. 5, where Fig. 5a shows a dual lgrapd Fig. 5b shows the
corresponding Euler diagram which contains an uessary tangential intersection
(the point where all of the three curves meet). dtaph in Fig. 5a has an outside face
that has an edge labelled “b”, but it can also heawveather edge labelled “b” added to
it between nodes labelle®@ and b, as shown in Fig. 5c. The Euler diagram
constructed from the dual with the additional edgshown in Fig. 5d. We route this
edge without bends if possible, but often it is possible, as is the case in Fig. 5c. In
this case, a triangulation of the face is made, #r edge is routed through
appropriate triangulated edges.



Fig. 6a. Dual of the Euler graph for
D abcdabadbccd.
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Fig. 6d. Diagram with reduced

Fig. 6¢c. Additional edge betweemandd tangentiality but extra concurrency.

Fig. 7a. Dual of the Euler graph for
@ abc def ghi adg beh cfi Fig. 7b. Embedded diagram.

Fig. 8a. Contour Routing Fig. 8b. Embedded diagram.



Fig. 8c. Plane dual for 4Venn Fig. 8d. Hole has labels “D” and “d” added.

Not all tangential intersections are removed by thethod because some can only
be removed at a cost of adding extra concurrenmyekample Fig. 6a shows the dual
of the Euler diagram in Fig 6b. Addition of an edgeelled “bd” between nodes
labelled “b” and “d” would result in the removal tife tangential connection between
the nodes labelled “a” and “c”, however this wowltso result in a concurrent
segment “bd” shown in figures 6¢ and 6d.

2.6 Duplicate Curve Labels

As shown in [1], not all Euler diagrams can be eddeel in the plane with simple,
uniquely labelled curves. The reason is that tlaeeeabstract descriptions for which
any wellconnected dual graph is non-planar. Thenga in the paper i& abc def
ghi adg beh cfi, for which any wellconnected graph with the copasling nodes
contains a subgraph that is isomorphic with the-planar kg3 This limits the
method of [1] to guarantee the existence of a drgwainly if there are 8 sets or less.
We demonstrate that this example can be drawn bymathod in Fig. 7b; the red
contour “a” has two curves, since the subgrapthefdual with nodes containing the
label a consists of the two nodalsc andadg which not being adjacent in Fig. 7a,
breaking conditiort of the connectivity conditions. Given the needlfbge amounts
of concurrency when drawing this diagram, it is fikely to have a particularly
usable embedding, but this example demonstrateahifiey of our method to embed
a diagram from any abstract description.

The example in Fig.7 uses duplicate curves forddwme contour. Given a dual
graph (obtained from Step 3 of our method), we alisc the duplicate contours
required by looking at the connected componentthefsubgraphs of the dual that
include the contour label present (correspondingh wellconnected conditiog,
Section 2.2) or removed, corresponding to the diseoles (wellconnected condition
b). To enable us to draw the Euler diagram, we bellthe nodes of the graph that
contain the contour label which requires the usdugflicate curves, being careful to
distinguish the case of holes. Essentially, we kibeplabel of the contour the same
for one of the components (in the label presene)casd change it for the other
components (thereby assigning new curve labels her adopt the convention of



using capital letters for the duplicates to helgtidguish from the usual lowercase).
Then we alter the labels of the nodes on the coensrin the label removed case, so
that they indicate the new curve labels assignetedisas the fact that these nodes are
within a hole in that contour. This relabeling pedare allows us to draw the curves
correctly, but when labelling the contours of theaf diagram, we revert to the
original labels for the curves.

Fig. 8 shows an example for 4Venn drawn with a hblere there is a duplicate
label “d” required for two curves, because, whedewmincluding “d” are removed
from the dual graph in Fig 8c the subgraph with esoéhbelled “b” “ab” “bc” and
“abc” is not connected to the rest of the grapher&fore, these four nodes have the
label “d” added, together with the label “D”, indiing a hole, as shown in Fig 8d.
“D” will be mapped back to “d” when the diagrameisibedded, as in Fig 8b.

Fig. 9.An incorrect embedding for & a b ab ac abc

2.7 Constructing the Euler Diagram from the dual of the Euler graph

In general, straight lines cannot simply be dravetwieen edges of the dual to
indicate where the contours pass through the fbeesuse a face may not be convex.
This could cause the lines to intersect edges @fdial graph whose labels do not
include the same contour label, possibly introdgdimcorrect contour intersections
that cause the diagram generated to not have théred zone set. If an arbitrary
polyline routing through the face is taken, incotri@atersections can again occur, also
possibly failing to form a diagram with the requireone set. For example, see Figure
9 where the zone appears but does not exist in the abstract deserjand the zone
a is disconnected, appearing both at the bottom tapdright of Figure 9. The
difficulty of routing contours motivates the useafriangulation. The convex nature
of the triangles means that the above problemdeaavoided, but we must establish
how to route contours through the triangles.

First, we triangulate the bounded faces of the gpldmal graph, and for the outer
face we form a border of nodes with empty labetaiad the graph and triangulate the
polygon that is formed (see Fig. 10d, where thalbonodes have been hidden). As
with the dual graph, each triangulation edge illed with the difference between



the labels present in its incident nodes, see Eigda. Again, as with the dual, the
labels on the triangulation edges indicate whichtaors will cross them when we
produce an embedding.

We choose one triangle in each face to be rteeting triangle in which all
contours in that face will cross or meet. In therent implementation, this is taken to
be the triangle that contains the centriod of tbhlgon formed from the face (or is
the triangle closest to the centriod, if none conty. We mark a point called the
meeting point in the centre of the meeting triangle, and alltoars in the face must
pass through that point.

Next we assign an ordering of the contours whichstmpass through each
triangulated edge in the face. This will enabldaiassign points on the triangulation
edges where the contours cross them. For the pespof this method we add
triangulation edges to parallel dual graph edgescGrrent contours that are drawn
across the face maintain concurrency until at l#esimeeting point, where they may
separate if that concurrency is not maintainedhénface.

The ordering of contours that pass through a ttimn edge that parallels a dual
edge is trivial because there is either only onataar or group of concurrent
contours. Also, any triangulation edge with no com$ passing through it can be
trivially assigned an empty order. It is then neegg to assign a contour ordering to
the other triangulation edges of the face. FigshOws an example of this process.
Once the trivial above triangulation edge orderingge been performed there will be
at least two triangles with two triangulation edgesigned, see Fig. 10a. If the face is
not a meeting triangle (shown as the triangle doimg a green circle as the marked
point) then the order of the third triangulatiorgedf such triangle can be assigned;
Fig. 10b shows the assignment of one of these. thhis triangulation edge will have
contours ordered to avoid any contour crossingkerface by reading the order of the
two assigned triangulation edges in sequence and assimilar order for the edge, as
shown in Fig. 10c where both triangulation edgew m@ave an assigned order. In
addition, we enforce the condition that all contoon the other two triangulation
edges must also be present in the third triangulagdge, to ensure that all contours
reach the meeting point.

The assignment of a contour ordering on a triariguiaedge means that another
triangle has an additional triangulation edge veitimtour ordering assigned, as each
triangulation edge (that is not a dual graph edgehared between two triangles in
the face. Hence the process continues until ahgpilation edges are assigned an
order. At this point the meeting triangle shoulgoahave all three of its triangulation
edges with assigned order, as the triangles thatowud it should all have
triangulation edges with assigned order.

This method can be shown to terminate due to tlstricked nature of the
triangulation, where any triangles without any ngalation edges parallel to face
edges imply that there is an extra triangulatiocefavith two triangulation edges
parallel to face edges.Once the triangulation edge® been assigned an ordering,
the curves can be routed around the face by linkimghe appropriate triangulation
edge points, except where the triangulation facdésmeeting triangle, where they
must first pass through the meeting point in thengsle (shown as a filled circle
inside a triangle in figures 10a, 10b and 10c).



Fig. 10a. Unassigned Triangulation Edges Fig. 10b. One Triangulation Edge Assigned.

Fig. 10c. Both Triangulation Edges Assigned Fig. 10d. Every Triangulation Edge

Fig. 10e. Contours Routed Through Cut Points Fig. 10f. Final Diagram

2.8 Non-Atomic Diagrams

Up to this point we have only shown examples ofrmatodiagrams, which are
diagrams that can be drawn with disconnected cost¢8].. The above method can
be used to draw both atomic and non-atomic diagraviis the atomic components
tangentially connected. However, for reasons obritligmic efficiency, as well as
improved layout, it is desirable to lay these diegs out as separate components,
which are joined at a later date. Figure 11 showsraatomic diagram that has nested
componentsd a b ab ac ad ae acd.



Fig. 11. A nested diagram, showing the rectangle in whighrtested components can appear.

Non-atomic components can be identified from thal diraph from the abstract
description [1] and placed in a maximal rectanglat ttan found in the appropriate
zone, as shown in Figure 11. Nested componentslsanbe created when there is
more than one curve in a contour and the additionates do not intersect with any
other curves in the diagram. Where multiple nesaiponents are to be embedded
within a single zone, the rectangle is simply spiib the required number of sub
rectangles. Any nested component may have furtheted components inserted by
simply repeating the process.

3 Conclusionsand Further Work

We have presented the first generation methoddoegting an Euler diagram for
any abstract description.. To do this we have bnotiggether and extended various
approaches in the literature, and developed newhaméems for the embedding
process. We have demonstrated these ideas withutofrpm a working software
system the implements the method. In terms of teéhadology adopted, Step 2 -
edge removal to find a plane dual, and Step 3 -{ngddoncurrent edges, are
computationally intractable problems to solve elyadh the general case, so
improved heuristics and optimizations are a rickaaof further work. Initially,
utilizing effective search techniques such as cairgtsatisfaction and adapting well
known heuristics such as insertion methods fromTirevelling Salesman Problem
are likely to improve current performance.

A further avenue of research is in improvementshef final layout which is an
essential feature in usability terms. Methods, saghhose discussed in [9,15] have
been applied to the some of the diagrams showhisnpiaper, and further heuristics
that more accurately measure contour smoothnessagmwell as measuring other



aesthetic features of the diagram not currentlysiciared could be introduced. Also,
the plane embedding of the dual has significantaichpon the usability of the
drawing, and methods to control the layout at Steuld impact on the number of
triple points generated, which is currently notrieged, for example.

Acknowledgments. This work has been funded by the EPSRC under gmefist
EP/E010393/1 and EP/E011160/1.
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