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Abstract. The problem of classifying subjects into risk categories is a common 

challenge in medical research. Machine Learning (ML) methods are widely used 

in the areas of risk prediction and classification. The primary objective of these 

algorithms is to predict dichotomous responses (e.g. healthy/at risk) based on 

several features. Similarly to statistical inference models, also ML models are 

subject to the common problem of class imbalance. Therefore, they are affected 

by the majority class increasing the false negative rate. 

In this paper, we built and evaluated eighteen ML models classifying 

approximately 4300 female participants from the UK Biobank into three 

categorical risk statuses based on responses for the discretised visceral adipose 

tissue values from magnetic resonance imaging. We also examined the effect of 

sampling techniques on classification modelling when dealing with class 

imbalance. 

Results showed that the use of sampling techniques had a significant impact. 

They not only drove an improvement in predicting patients risk status, but also 

facilitated an increase in the information contained within each variable. Based 

on domain experts criteria, the three best models for classification were finally 

identified. 

These encouraging results will guide further developments of classification 

models for predicting visceral adipose tissue without the need for a costly scan. 

Keywords: Supervised Learning, Imbalanced Data, UK Biobank, Random 

Under-Sampling, Synthetic Minority Over-Sampling Technique, Visceral 

Adipose Tissue. 

1 Introduction 

Real-world data are often imbalanced and lack uniformly distribution across classes. 

Classification of imbalanced datasets is one of the challenges across several industrial 

and research domains [1]. There are multiple approaches to tackle class imbalance [2], 

simplest approaches include, for example, Data Enrichment. Others more sophisticated 

methods include various sampling techniques [3], cost-sensitive learning [4], [5] and 
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feature selection; or more complex strategies including meta-learning [6], combining 

classifiers [7], and algorithmic modifications [8]. 

When sampling methods are applied, questions over their suitability are often raised 

[9]. For example: is the new re-sampled dataset representative of the population in 

relation to the response variable? Is it acceptable to artificially generate synthetic data 

of class subjects when training Machine Learning (ML) classification models? It has 

been argued that by using sampling methods the original class ratio is lost during the 

training process and that this affects the accuracy metrics [10]. Similarly, training ML 

models with synthetic data may also compromise accuracy measures by deceiving the 

process of cross-validations sampling [11]. 

In this paper we compared the classification performance of six ML algorithms 

(Naïve Bayes, Logistic Regression, Artificial Neural Network, Decision Tree, Logistic 

Model Tree, and Random Forest) when using RUS [8] and SMOTE [12] sampling 

techniques on highly imbalanced data to predict visceral adipose tissue (VAT) disease 

risk in a multi-class classification problem, and to suggest the most suitable models to 

meet the domain experts’ success criteria. The data imbalance characteristic causing 

the transition in classifier training performance was monitored visually by Adaptive 

Projection Analysis (APA) [13] and numerically via Information Gain Attribute 

Evaluation (IG) [14], [15]. 

The paper is structured as follows: in Section 2, the domain problem and all the 

methods and approaches used in this study are presented. Then in Section 3, the 

experiments’ results are introduced, while Section 4 is reserved for discussion and 

conclusions. 

2 Materials and Methods 

2.1 The Domain Problem 

Obesity affects an increasing number of adults in the UK [16], with obesity-associated 

changes in adipose tissue (AT) predisposing to metabolic dysregulation [17]. 

Distribution of AT, in particular the accumulation of VAT and liver fat, are a key factor 

in determining susceptibility to disease [18], [19]. Excess VAT and liver fat play a 

significant role in the pathogenesis of type-2 diabetes, dyslipidaemia, hypertension and 

cardiovascular disease [20]. 

Current strategies for the treatment of obesity and its associated co-morbidities have 

focused on lifestyle improvements [21], [22], aiming to reduce VAT and liver fat, via 

exercise, associated with improved insulin sensitivity, decreased blood pressure and 

lower circulating lipid levels [17], [23], [24]. Large scale analysis of the compartmental 

distribution of AT is often limited due to the expense and time required to employ 

requisite imaging techniques. The UK Biobank provides a comprehensive means of 

assessing the relationship between body composition and lifestyle in a large population-

based cohort of adults aged 40-70 years, recruited between 2007 and 2010 [25]. The 

primary goal of this study was to identify the best model able to predict VAT levels in 

a cohort of female individuals from the UK Biobank. The UK Biobank had approval 
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from the North West Multi-Centre Research Ethics Committee (MREC) and written 

consent was obtained from all participants prior to their involvement. The data was 

acquired through the UK Biobank Access Application number 23889. The study was a 

cross-sectional assessment of 4327 female individuals from the UK Biobank 

multimodal imaging cohort [25]; aged 40-73 years and scanned chronologically 

between August 2014 and September 2016. The analysis of male subjects VAT is 

outside the scope of this paper. 

2.2 Methodology 

Multi-class classification ML models were applied with the aim of predicting 

susceptibility to disease (risk) based on the discretised amount of VAT. A subset of 

2292 subjects was randomly selected from the original 4327 females and used to train 

six ML algorithms using 10-fold cross-validation in three different scenarios. The 

models were tested on the remaining 2035 cases. Fig. 1 shows the methodology: 

multiple imbalanced datasets with the same predictor variables were modified with 

sampling techniques, and used for modelling using the six ML algorithms. The 

accuracies of the models were compared after the training phase. IG was monitored for 

all predictor variables at every stage. 

Information Gain Evaluation Algorithm (IG). Information and entropy levels within 

independent variables were monitored using an Information Gain Attribute Evaluator 

Algorithm [15]. This algorithm evaluates the worth of each attribute by measuring 

information gained with respect to the class in combination with a ranker algorithm 

which ranks the attributes by their individual influence on the class [14], [15], [26]. 

 

Fig. 1. Methodology adopted in this work, showing the different steps followed. 
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Adaptive Projection Analysis (APA). APA uses a linear projection to display high 

dimensional data into 3-dimensions by allowing the user to drag points in an interactive 

scatter plot to find new views [13]. These views indicate the classes which can be 

separated, the attribute combinations which are most associated with each class, the 

outliers, the sources of error in the classification algorithms, and the existence of 

clusters in the data [27]. 

2.3 Data Preparation   

Random Undersampling (RUS). This approach consisted of selecting a subset of the 

majority class to balance the data [8]. In this approach some of the majority class 

records were removed at random. However, it was recognised that deleting records 

could lead to loss of important information or patterns which may have been relevant 

to the learning process [28]. Denoting the majority class L and the minority class S, r 

was defined as the ratio between the size of the minority and majority classes [3]. We 

performed random under-sampling of L to achieve a value of r = 0.5. 

 

𝑟 =
|𝑆|

|𝐿|
= 0.5 

Synthetic Minority Oversampling Technique (SMOTE). SMOTE is an over 

sampling technique developed by Chawla [12]. It aims to enhance the minority class 

by creating artificial examples in the minority class. For each data point x in S (the 

minority class), one of its k-nearest neighbours (k=5) was identified. The k neighbours 

were randomly selected, artificial observations were generated and spread in the area 

between x and nearest neighbours. These synthetic points were added to the dataset in 

class S. The artificial generation of the data points differed from the multiplication 

method [16] to avoid the problem of overfitting. 

2.4 ML Classification Algorithms 

Naïve Bayes (NB). A probabilistic machine learning classifier used for classification 

tasks. The foundation of the classifier is the Bayes Theorem [29]. It also assumes that 

predictor variables are independent and that all predictor variables have an equal effect 

on the response outcome. Despite the simplified assumptions of Naïve Bayes 

classifiers, they have been reported to be effective in complex real-world situations 

[30]. 

Logistic Regression (LR). LR is a deterministic technique which produces a 

probability-based model that takes into account the likelihood of an event occurring 

(the value of the class variable) depending on the values of the predictors (categorical 

or numerical) [31], [32]. 
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Artificial Neural Network (ANN). ANNs are used to fit observed data, especially high 

dimensional datasets characterised by noise and missingness (pollution). Neural 

networks comprise elementary autonomous computational units, known as neurons. 

Neurons are inter-connected via weighted connections and are organised in layers (an 

input layer, hidden layers and an output layer). In this study, we used a Multilayer 

Perceptron ANN with a sigmoid activation function [17].  

Decision Tree (C4.5). The C4.5 algorithm is used in Data Mining as a Decision Tree 

Classifier which generates a decision, based on a sample of data. In this method, a new 

data point is predicted (classified) via a series of tests to determine its class. The tests 

hierarchically assemble a tree of decisions, hence ‘decision tree’ [15], [33], [34]. 

Logistic Model Tree (LMT). LMT is a model with a tree structure but with LR 

functions at the leaves level. The LMT structure comprises a set of non-terminal nodes 

and a set of leaves (terminal nodes). LMT has been designed to adapt to small data 

subsets where a simple linear model offers best bias-variance trade-off [31]. 

Random Forest (RF). RF is a generalisation of standard decision trees proposed by 

Brieman based on bagging (Bootstrap Aggregation) from a single training set or 

random not pruned decision trees [18]. Bootstrap Aggregation is used to combine the 

predictions of the individual trees [19]. 

 

All the six methods used for this study were implemented in Weka [35] (with default 

parameters), with the C4.5 using the J48 implementation. 

2.5 Model Evaluation 

In agreement with domain experts, we chose several measures to evaluate the 

performance of each model. These measures included accuracy (later reported as 

‘CCI%’) true positive rate (also known as sensitivity or recall, ‘TPR’), specificity, false 

positive rate (‘FPR’), precision (‘Prcn’), area under the receiver operator curve 

(‘ROC’), and F-measure (‘F-m’) [36]-[38]. The latter is a harmonic mean of precision 

and recall. Practically, a high F-measure value indicates that both recall and precision 

are high, meaning fewer subjects misdiagnosed with a disease or risk of disease. The 

F-measure is essential to assess the model performance when classifying very 

imbalanced data [37]. 

2.6 Experimental Design 

The analysis was performed to predict VAT related disease susceptibility based on 

discretised MRI response labels: Healthy, Moderate and Risk defined according to 

VAT volume. If VAT volume was ≤2 litres then the subject was deemed ‘Healthy’ (H). 

If VAT volume was >2 litres but ≤5 litres, then the class was ‘Moderate’ (M). If VAT 
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volume was >5 litres, then the patient was at ‘Risk’ (R) [39]. The training datasets 

contained ten data variables reported in Table 1, with the VAT in litres being the class 

determination response variable. 

Table 1. Summary statistics of TD variables 

Numeric selected dataset variables Median Mean (Min, Max) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 2.2 2.5 (0.1, 9.7) 

Predictors variables    

Waist Circumference (WC in cm) 80.0 81.6 (55.0, 126.0) 

Pre-imaging Weight (W in Kg) 66.0 68.3 (42.0, 128.0) 

BMI (in kg/m2) 24.8 25.7 (15.5, 48.0) 

Hip circumference (HC in cm) 100.0 100.9 (77.0, 147.0) 

Standing height (H in m) 163.0 163.0 (141.0, 194.0) 

Systolic blood pressure (SBP in mmHG) 133.0 134.5 (87.0, 225.0) 

Diastolic blood pressure (DBP in mmHG) 77.0 77.8 (45.0, 120.0) 

Physical Activity Index (PAI) 0.5    0.6 (-12.0, 15.5) 

Age at recruitment (AGE in years) 55.0   54.6 (40.0, 70.0) 

Targeted dataset (TD). The TD was the first dataset we considered for modelling. The 

TD contained 2292 female records, from the UK Biobank cohort [45]. Table 1 shows 

the summary statistics of all TD’s variables. The TD was highly imbalanced: class H 

had 1002 subjects, the M class had 1128 subjects, and the minority R class contained 

only 162 subjects. 

Random under-sampled (RUS) dataset. This dataset was a reduced subset of TD. A 

subset of each majority class was randomly removed to balance the data. As a result of 

applying RUS to the TD, each of the H, M and R classes ended up with 162 subjects. 

Synthetic Minority Over-Sampled (SMOTE) dataset. This dataset was obtained as 

a result of applying SMOTE to the numeric data variables of TD. By doing so, the three 

VAT classes became more closely balanced. The H class had 1002 subjects, the M class 

had 1128 subjects and the R class contained 1296 subjects. The effect of SMOTE can 

be observed via APA visualisation in Fig. 2. 
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Fig. 2. APA visualisation of SMOTE dataset variables 

We used the IG Evaluator Algorithm to measure the information levels for independent 

variables in relation to the class variable. The measurement and ranking of IG in each 

independent variable in TD, RUS and SMOTE training sets will be presented in Section 

3. 

The Test Dataset. The ML models were tested on the remaining 2035 individuals from 

the original 4327 UK Biobank cohort. The same ten variables as per the training 

datasets were available. Table 2 shows their summary statistics. Similarly to TD, the 

Test Dataset was also highly imbalanced: class H had 823 subjects, the M class had 

1039, and class R contained only 173 subjects. 
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Table 2. Summary statistics of test set variables 

Numeric test dataset variables Median Mean (Min, Max) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 2.4 2.7 (0.2, 10.0) 

Predictors variables    

Waist Circumference (WC in cm) 80.0 81.6 (55.0, 142.0) 

Pre-imaging Weight (W in Kg) 67.0 68.7 (39.0, 136.0) 

BMI (in kg/m2) 25.2 25.9 (14.4, 54.5) 

Hip circumference (HC in cm) 100.0 101.3 (73.0, 156.0) 

Standing height (H in m) 163.0 162.7 (145.0, 195.0) 

Systolic blood pressure (SBP in mmHG) 129.0 130.4 (87.0, 196.0) 

Diastolic blood pressure (DBP in mmHG) 76.0 76.6 (45.0, 115.0) 

Physical Activity Index (PAI) 0.0 0.1 (-12.5, 18.0) 

Age at recruitment (AGE in years) 55.0 54.6 (40.0, 70.0) 

3 Results 

3.1 Models Training Results 

From Table 3, the model training accuracies (CCI%) of all methods were computed and 

they showed that resampling methods resulted in an improvement in CCI% as 

compared to the original TD. Fig. 3 shows that LR, ANN, C4.5 and RF models training 

performances using the RUS dataset worsened compared to the same algorithms trained 

on TD. The ROC for each of the trained models ranged between 0.783 (for RF on 

SMOTE) and 0.96 (for C4.5 on TD). These values indicate that the trained models did 

not sacrifice a lot of precision of the system to get a good recall on the observed data 

points. The RF model achieved the highest TPR (0.850) when trained on the SMOTE 

dataset, whilst the C4.5 model achieved the lowest TPR (0.714) when trained on the 

RUS dataset. 

By observing the confusion matrices for all models after training on all the TD and 

RUS datasets, and bearing in mind that all comprise the same risk group participants, 

it is clear that the number of incorrectly classified instances for the R class significantly 

decreased for the models trained on the RUS dataset compared to those trained on the 

original TD. However, when evaluating the minority class accuracy performance in 

Fig. 4, it is notable that all trained models benefitted from the sampling methods, 

exhibiting significant TPR improvement for the R group in each model. 
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Fig. 3. Comparison of performance metrics across trained models. 

3.2 Models Test Results 

All models were tested on the same test dataset (N = 2035). When comparing the CCI% 

for all the models, the CCI% decreased with a maximum degradation of 6.2% when 

testing the C4.5 model trained on the RUS dataset compared to the same model built 

on the original TD; this excluded the LMT models which achieved an overall accuracy 

improvement on test dataset of 6.83% when comparing the SMOTE model to the TD 

one. 

From Fig. 5, it can be observed that in test, RF models achieved the best TPR of 

0.770 when trained on TD dataset. LMT model achieved the least TPR of 0.681 when 

trained on TD dataset. The ROC area across all tested models ranged between 0.786 

(for C4.5 on SMOTE) and 0.889 (for LR on TD). These values indicate that also the 

tested models do not sacrifice a lot of precision to get a good recall on the observed 

data points. 

When observing R, the class of interest, TPR performance results in Fig. 4 show that 

significant improvements were made in classifying the risk group with the highest level 

of 0.798 achieved by RF on RUS. RF also achieved the highest TPR improvement in 

test with a difference of 0.463 between RF on RUS and RF on TD, while NB ranked 

last, with just 0.121 in minority class TPR improvement between NB on SMOTE and 

TD. The confusion matrices in Table 3 confirm the above results. The RF model trained 

on SMOTE correctly classified the highest number of instances (138 of the original 

173) in the R group. The model which performed the worst in TPR performance for the 

minority class R was C4.5 trained on TD, which only correctly classified 43 instances. 
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Fig. 4. Risk class TPR performance for trained and tested models per dataset 

Table 3. Models Confusion Matrixes Comparison 
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3.3 Attribute Information Results 

When considering the monitored IG for each variable across all datasets (Fig. 6), it is 

clear that the information gain increased in each attribute for RUS and SMOTE datasets 

compared to the TD. By comparing the IG ranking of variables in each dataset, it is 

apparent that WC achieved the highest IG value in all the three datasets. The dominance 

in WC ranking was also accompanied by an increase of its values (from TD to RUS 

and SMOTE) that correlates directly with the increase in R class TPR performance in 

all trained models except for NB where RUS model overtook SMOTE by a small TPR 

positive margin of 0.092. From Fig. 6, SMOTE seems to boost the information within 

each variable. This, in turn, increases the R class separability from other classes in the 

training datasets which in turn increases the R class TPR (see Fig. 4). Fig. 7 displays 

the APA multi-dimensional visualisation which shows the improved R class 

separability per dataset. 

 

 

Fig. 5. Comparison of performance metrics across tested models 

 

Fig. 6. IG monitoring per variable in each dataset 
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Fig. 7. APA multi-dimensional visualisation 

3.4 Domain Experts’ Results 

During the development of prediction algorithms for use in disease risk-prediction it is 

important to recognise that the misclassification of subjects, for example false-positive 

misclassifications, could result in costly and unnecessary follow-up examinations; 

whereas false-negative misclassifications would result in individuals not receiving 

interventions to reduce excess VAT. In this particular application, apart from potential 

cost, there would be few adverse effects associated with healthy/moderate risk subjects 

being misclassified, as such subjects would be encouraged to undertake interventions 

to improve their lifestyle. Therefore, in common with other scenarios, the best models 

to adopt would be those which minimise the number of subjects misclassified as at 

‘risk’ in order that they might initiate interventions at an appropriate time. Confusion 

matrices play an essential role in defining the best-suited model for use in future trials. 

When analysing the confusion matrices (Table 3), three models were identified as 

satisfying the domain experts’ criteria. These models are reported in Table 4. They did 

not occupy the highest ranks when their performance metrics were compared to the 

others. 
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Table 4. Domain compliant prediction models. N(LMT RUS Trained) = 486; N(LR SMOTE 

Trained) = 3426; N(RF RUS Trained = 486). N(all Tested) = 2035. For the F-m metric, m=1. 

 

4 Discussion 

Imbalanced classes have a significant impact on the performance of standard machine 

learning algorithms. Classification performance in the training phase is severely 

impacted by class separability. Training the standard ML algorithms with highly 

imbalanced overlapping classes without any adjustment to the training set results in an 

accuracy bias towards the majority class. In this study, two methods (RUS and 

SMOTE) have been applied to adjust the class imbalance in the classification training 

phase at the dataset level. It remains unclear as to whether other remedies for 

imbalanced data classifications, such as Cost-Sensitive and Ensembles Learning (which 

are implemented at algorithmic level) could result in better performances [4],[6], [40]. 

The advantages of sampling techniques evaluated here, however, include simplicity and 

transportability. Nevertheless, they are limited by the amount of IG manipulation as a 

result of their application resulting in biased prediction towards the minority class. The 

excessive use of such techniques could result in overfitting of the models. 

In this study, traditional ML algorithms were sensitive to higher information gains 

and tended to produce superb performance results in training, but when testing the 

models, the overall model accuracy often dropped below the training phase 

performance. The UK Biobank dataset used in this study showed that applying the 

correct level of sampling without disrupting the original data distribution, together with 

the desired choice of performance metrics and slight manipulation of IG levels 

produced a prediction solution which could be developed further with algorithmic 

modifications [8]. Among all eighteen models presented in this study, only three 
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satisfied the domain experts’ success criteria for this specific domain problem (LMT 

and RF built with RUS sampled dataset, and LR built with SMOTE sampled dataset). 

This domain problem is the first to use the discretised MRI VAT variable ranges to 

describe the health status of participants and to label instances. It would be impractical 

to compare the results of this study to any other research from the same domain. 

Nevertheless, this work will be followed by further analyses where additional methods 

to improve the outcomes will be investigated. Starting from the best-performing 

methods in this work (LMT and RF), their combination into ensemble learners will first 

be considered. Future work will also take into account the predictions from this current 

paper and compare them to the actual incidence of diseases in the same cohort where 

data is available. 
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